source: palm/trunk/UTIL/inifor/src/inifor_transform.f90 @ 4660

Last change on this file since 4660 was 4553, checked in by eckhard, 5 years ago

Fixed domain extend check, readablity and documentation improvements

  • Property svn:keywords set to Id
File size: 59.3 KB
Line 
1!> @file src/inifor_transform.f90
2!------------------------------------------------------------------------------!
3! This file is part of the PALM model system.
4!
5! PALM is free software: you can redistribute it and/or modify it under the
6! terms of the GNU General Public License as published by the Free Software
7! Foundation, either version 3 of the License, or (at your option) any later
8! version.
9!
10! PALM is distributed in the hope that it will be useful, but WITHOUT ANY
11! WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR
12! A PARTICULAR PURPOSE.  See the GNU General Public License for more details.
13!
14! You should have received a copy of the GNU General Public License along with
15! PALM. If not, see <http://www.gnu.org/licenses/>.
16!
17! Copyright 2017-2020 Leibniz Universitaet Hannover
18! Copyright 2017-2020 Deutscher Wetterdienst Offenbach
19!------------------------------------------------------------------------------!
20!
21! Current revisions:
22! -----------------
23!
24!
25! Former revisions:
26! -----------------
27! $Id: inifor_transform.f90 4553 2020-06-03 16:34:15Z pavelkrc $
28! Improved code readability and documentation
29!
30!
31! 4523 2020-05-07 15:58:16Z eckhard
32! bugfix: pressure extrapolation
33! respect integer working precision (iwp) specified in inifor_defs.f90
34! moved fill_water_cells() routine here
35! remove unused routine, appropriately renamed constand_density_pressure()
36!
37!
38! 4481 2020-03-31 18:55:54Z maronga
39! Use PALM's working precision
40! Improved coding style
41!
42!
43! 3785 2019-03-06 10:41:14Z eckhard
44! Remove basic state pressure before computing geostrophic wind
45!  - Introduced new level-based profile averaging routine that does not rely on
46!    external weights average_profile()
47!  - Renamed original weights-based routine average_profile() ->
48!    interp_average_profile()
49! Average geostrophic wind components on coarse COSMO levels instead of fine PALM levels
50!  - Introduced new profile interpolation routine for interpolating single
51!    profiles from COSMO to PALM levels
52!  - Renamed original array variant interpolate_1d() -> interpolate_1d_arr()
53!
54!
55!
56! 3716 2019-02-05 17:02:38Z eckhard
57! Include out-of-bounds error message in log
58!
59!
60! 3680 2019-01-18 14:54:12Z knoop
61! Check if set of averaging columns is empty
62!
63!
64! 3618 2018-12-10 13:25:22Z eckhard
65! Prefixed all INIFOR modules with inifor_, removed unused variables
66!
67!
68! 3615 2018-12-10 07:21:03Z raasch
69! bugfix: abort replaced by inifor_abort
70!
71! 3614 2018-12-10 07:05:46Z raasch
72! unused variables removed
73!
74! 3613 2018-12-07 18:20:37Z eckhard
75! Use averaged heights profile for level-based averaging instead of modified
76!    COSMO heights array
77!
78!
79! 3557 2018-11-22 16:01:22Z eckhard
80! Updated documentation
81!
82!
83! 3537 2018-11-20 10:53:14Z eckhard
84! bugfix: working precision added
85!
86! 3447 2018-10-29 15:52:54Z eckhard
87! Renamed source files for compatibilty with PALM build system
88!
89!
90! 3395 2018-10-22 17:32:49Z eckhard
91! Switched addressing of averaging regions from index bounds to list of columns
92! Added routines for the computation of geostrophic winds including:
93!    - the downward extrapolation of density (linear) and
94!    - pressure (hydrostatic equation) and
95!    - rotation of geostrophic wind components to PALM frame of reference
96!
97! 3183 2018-07-27 14:25:55Z suehring
98! Introduced new PALM grid stretching
99! Removed unnecessary subroutine parameters
100! Renamed kcur to k_intermediate
101!
102!
103! 3182 2018-07-27 13:36:03Z suehring
104! Initial revision
105!
106!
107!
108! Authors:
109! --------
110!> @author Eckhard Kadasch (Deutscher Wetterdienst, Offenbach)
111!
112! Description:
113! ------------
114!> The transform module provides INIFOR's low-level transformation and
115!> interpolation routines. The rotated-pole transformation routines phirot2phi,
116!> phi2phirot, rlarot2rla, rla2rlarot, uv2uvrot, and uvrot2uv are adapted from
117!> int2lm's utility routines.
118!------------------------------------------------------------------------------!
119#if defined ( __netcdf )
120 MODULE inifor_transform
121
122    USE inifor_control
123    USE inifor_defs,                                                           &
124        ONLY: BETA, G, P_SL, PI, RD, T_SL, TO_DEGREES, TO_RADIANS, WATER_ID,   &
125              iwp, wp
126    USE inifor_types
127    USE inifor_util,                                                           &
128        ONLY: get_basic_state, real_to_str, str
129
130    IMPLICIT NONE
131
132 CONTAINS
133
134
135 SUBROUTINE interpolate_1d(in_arr, out_arr, outgrid)
136    TYPE(grid_definition), INTENT(IN) ::  outgrid
137    REAL(wp), INTENT(IN)              ::  in_arr(:)
138    REAL(wp), INTENT(OUT)             ::  out_arr(:)
139
140    INTEGER(iwp) :: k, l, nz
141
142    nz = UBOUND(out_arr, 1)
143
144    DO  k = nz, LBOUND(out_arr, 1), -1
145
146!
147!--    TODO: Remove IF clause and extrapolate based on a critical vertical
148!--    TODO: index marking the lower bound of COSMO-DE data coverage.
149!--    Check for negative interpolation weights indicating grid points
150!--    below COSMO-DE domain and extrapolate from the top in such cells.
151       IF (outgrid%w(1,k,1) < -1.0_wp .AND. k < nz)  THEN
152          out_arr(k) = out_arr(k+1)
153       ELSE
154          out_arr(k) = 0.0_wp
155          DO  l = 1, 2
156             out_arr(k) = out_arr(k) +                                      &
157                 outgrid%w(1,k,l) * in_arr(outgrid%kkk(1,k,l) )
158          ENDDO
159       ENDIF
160    ENDDO
161
162 END SUBROUTINE interpolate_1d
163
164
165!------------------------------------------------------------------------------!
166! Description:
167! ------------
168!> Interpolates linearly in the vertical direction in very column (i,j) of the
169!> output array outvar(i,j,:) using values of the source array invar. In cells
170!> that are outside the COSMO-DE domain, indicated by negative interpolation
171!> weights, extrapolate constantly from the cell above.
172!>
173!> Input parameters:
174!> -----------------
175!> invar : Array of source data
176!>
177!> outgrid%kk : Array of vertical neighbour indices. kk(i,j,k,:) contain the
178!>     indices of the two vertical neighbors of PALM-4U point (i,j,k) on the
179!>     input grid corresponding to the source data invar.
180!>
181!> outgrid%w_verti : Array of weights for vertical linear interpolation
182!>     corresponding to neighbour points indexed by kk.
183!>
184!> Output papameters:
185!> ------------------
186!> outvar : Array of interpolated data
187!------------------------------------------------------------------------------!
188 SUBROUTINE interpolate_1d_arr(in_arr, out_arr, outgrid)
189    TYPE(grid_definition), INTENT(IN) ::  outgrid
190    REAL(wp), INTENT(IN)              ::  in_arr(0:,0:,0:)
191    REAL(wp), INTENT(OUT)             ::  out_arr(0:,0:,:)
192
193    INTEGER(iwp) :: i, j, k, l, nz
194
195    nz = UBOUND(out_arr, 3)
196
197    DO  j = LBOUND(out_arr, 2), UBOUND(out_arr, 2)
198    DO  i = LBOUND(out_arr, 1), UBOUND(out_arr, 1)
199    DO  k = nz, LBOUND(out_arr, 3), -1
200
201!
202!--    TODO: Remove IF clause and extrapolate based on a critical vertical
203!--    TODO: index marking the lower bound of COSMO-DE data coverage.
204!--    Check for negative interpolation weights indicating grid points
205!--    below COSMO-DE domain and extrapolate from the top in such cells.
206       IF (outgrid%w_verti(i,j,k,1) < -1.0_wp .AND. k < nz)  THEN
207          out_arr(i,j,k) = out_arr(i,j,k+1)
208       ELSE
209          out_arr(i,j,k) = 0.0_wp
210          DO  l = 1, 2
211             out_arr(i,j,k) = out_arr(i,j,k) +                              &
212                 outgrid%w_verti(i,j,k,l) *                               &
213                 in_arr(i,j,outgrid%kk(i,j,k, l) )
214          ENDDO
215       ENDIF
216    ENDDO
217    ENDDO
218    ENDDO
219 END SUBROUTINE interpolate_1d_arr
220
221
222!------------------------------------------------------------------------------!
223! Description:
224! ------------
225!> Interpolates bi-linearly in horizontal planes on every k level of the output
226!> array outvar(:,:,k) using values of the source array invar(:,:,:). The source
227!> (invar) and interpolation array (outvar) need to have matching dimensions.
228!>
229!> Input parameters:
230!> -----------------
231!> invar : Array of source data
232!>
233!> outgrid%ii,%jj : Array of neighbour indices in x and y direction.
234!>     ii(i,j,k,:), and jj(i,j,k,:) contain the four horizontal neighbour points
235!>     of PALM-4U point (i,j,k) on the input grid corresponding to the source
236!>     data invar. (The outgrid carries the relationship with the ingrid in the
237!      form of the interpolation weights.)
238!>
239!> outgrid%w_horiz: Array of weights for horizontal bi-linear interpolation
240!>     corresponding to neighbour points indexed by ii and jj.
241!>
242!> Output papameters:
243!> ------------------
244!> outvar : Array of interpolated data
245!------------------------------------------------------------------------------!
246 SUBROUTINE interpolate_2d(invar, outvar, outgrid, ncvar)
247!
248!-- I index 0-based for the indices of the outvar to be consistent with the
249!-- outgrid indices and interpolation weights.
250    TYPE(grid_definition), INTENT(IN)  ::  outgrid
251    REAL(wp), INTENT(IN)               ::  invar(0:,0:,0:)
252    REAL(wp), INTENT(OUT)              ::  outvar(0:,0:,0:)
253    TYPE(nc_var), INTENT(IN), OPTIONAL ::  ncvar
254
255    INTEGER(iwp) ::  i, j, k, l
256
257!
258!-- TODO: check if input dimensions are consistent, i.e. ranges are correct
259    IF ( UBOUND(outvar, 3) .GT. UBOUND(invar, 3) )  THEN
260        message = "Output array for '" // TRIM(ncvar%name) // "' has ' more levels (" // &
261           TRIM(str(UBOUND(outvar, 3, kind=iwp))) // ") than input variable ("//&
262           TRIM(str(UBOUND(invar, 3, kind=iwp))) // ")."
263        CALL inifor_abort('interpolate_2d', message)
264    ENDIF
265
266    DO  k = 0, UBOUND(outvar, 3)
267    DO  j = 0, UBOUND(outvar, 2)
268    DO  i = 0, UBOUND(outvar, 1)
269       outvar(i,j,k) = 0.0_wp
270       DO  l = 1, 4
271         
272          outvar(i,j,k) = outvar(i,j,k) +                                   &
273             outgrid%w_horiz(i,j,l) * invar( outgrid%ii(i,j,l),         & 
274                                               outgrid%jj(i,j,l),         &
275                                               k )
276       ENDDO
277    ENDDO
278    ENDDO
279    ENDDO
280       
281 END SUBROUTINE interpolate_2d
282
283
284!------------------------------------------------------------------------------!
285! Description:
286! ------------
287!> Compute the horizontal average of the in_arr(:,:,:) and store it in
288!> out_arr(:)
289!------------------------------------------------------------------------------!
290 SUBROUTINE average_2d(in_arr, out_arr, ii, jj)
291    REAL(wp), INTENT(IN)                   ::  in_arr(0:,0:,0:)
292    REAL(wp), INTENT(OUT)                  ::  out_arr(0:)
293    INTEGER(iwp), INTENT(IN), DIMENSION(:) ::  ii, jj
294
295    INTEGER(iwp) ::  i, j, k, l
296    REAL(wp)     ::  ni
297
298    IF (SIZE(ii) /= SIZE(jj))  THEN
299       message = "Length of 'ii' and 'jj' index lists do not match." //     &
300          NEW_LINE(' ') // "ii has " // str(SIZE(ii, kind=iwp)) // " elements, " //   &
301          NEW_LINE(' ') // "jj has " // str(SIZE(jj, kind=iwp)) // "."
302       CALL inifor_abort('average_2d', message)
303    ENDIF
304
305    IF (SIZE(ii) == 0)  THEN
306       message = "No columns to average over; " //                          &
307                 "size of index lists 'ii' and 'jj' is zero."
308       CALL inifor_abort('average_2d', message)
309    ENDIF
310
311    DO  k = 0, UBOUND(out_arr, 1)
312
313       out_arr(k) = 0.0_wp
314       DO  l = 1, UBOUND(ii, 1)
315          i = ii(l)
316          j = jj(l)
317          out_arr(k) = out_arr(k) + in_arr(i, j, k)
318       ENDDO
319
320    ENDDO
321
322    ni = 1.0_wp / SIZE(ii)
323    out_arr(:) = out_arr(:) * ni
324
325 END SUBROUTINE average_2d
326
327
328!------------------------------------------------------------------------------!
329! Description:
330! ------------
331!> Three-dimensional interpolation driver. Interpolates from the source_array to
332!> the given palm_grid.
333!>
334!> The routine separates horizontal and vertical
335!> interpolation. In the horizontal interpolation step, the source_array data is
336!> interpolated along COSMO grid levels onto the intermediate grid (vertically
337!> as coarse as COSMO, horizontally as fine as PALM).
338!------------------------------------------------------------------------------!
339 SUBROUTINE interpolate_3d(source_array, palm_array, palm_intermediate, palm_grid)
340    TYPE(grid_definition), INTENT(IN) ::  palm_intermediate, palm_grid
341    REAL(wp), DIMENSION(:,:,:), INTENT(IN)  ::  source_array
342    REAL(wp), DIMENSION(:,:,:), INTENT(OUT) ::  palm_array
343    REAL(wp), DIMENSION(:,:,:), ALLOCATABLE ::  intermediate_array
344    INTEGER(iwp) ::  nx, ny, nlev
345
346    nx = palm_intermediate%nx
347    ny = palm_intermediate%ny
348    nlev = palm_intermediate%nz
349
350!
351!-- Interpolate from COSMO to intermediate grid. Allocating with one
352!-- less point in the vertical, since scalars like T have 50 instead of 51
353!-- points in COSMO.
354    ALLOCATE(intermediate_array(0:nx, 0:ny, 0:nlev-1)) !
355
356    CALL interpolate_2d(source_array, intermediate_array, palm_intermediate)
357
358!
359!-- Interpolate from intermediate grid to palm_grid grid, includes
360!-- extrapolation for cells below COSMO domain.
361    CALL interpolate_1d_arr(intermediate_array, palm_array, palm_grid)
362
363    DEALLOCATE(intermediate_array)
364
365 END SUBROUTINE interpolate_3d
366
367
368!------------------------------------------------------------------------------!
369! Description:
370! ------------
371!> Average data horizontally from the source_array over the region given by the
372!> averaging grid 'avg_grid' and store the result in 'profile_array'.
373!------------------------------------------------------------------------------!
374 SUBROUTINE interp_average_profile(source_array, profile_array, avg_grid)
375    TYPE(grid_definition), INTENT(IN)          ::  avg_grid
376    REAL(wp), DIMENSION(:,:,:), INTENT(IN)     ::  source_array
377    REAL(wp), DIMENSION(:), INTENT(OUT)        ::  profile_array
378
379    INTEGER(iwp) ::  i_source, j_source, k_profile, k_source, l, m
380
381    REAL ::  ni_columns
382
383    profile_array(:) = 0.0_wp
384
385    DO  l = 1, avg_grid%n_columns
386       i_source = avg_grid%iii(l)
387       j_source = avg_grid%jjj(l)
388
389!
390!--    Loop over PALM levels
391       DO  k_profile = avg_grid%k_min, UBOUND(profile_array, 1)
392
393!
394!--       Loop over vertical interpolation neighbours
395          DO  m = 1, 2
396
397             k_source = avg_grid%kkk(l, k_profile, m)
398
399             profile_array(k_profile) = profile_array(k_profile)            &
400                + avg_grid%w(l, k_profile, m)                             &
401                * source_array(i_source, j_source, k_source)
402!
403!--       Loop over vertical interpolation neighbours m
404          ENDDO
405
406!
407!--    Loop over PALM levels k_profile
408       ENDDO
409
410!
411!-- Loop over horizontal neighbours l
412    ENDDO
413
414    ni_columns = 1.0_wp / avg_grid%n_columns
415    profile_array(:) = profile_array(:) * ni_columns
416
417!
418!-- Constant extrapolation to the bottom
419    profile_array(1:avg_grid%k_min-1) = profile_array(avg_grid%k_min)
420
421 END SUBROUTINE interp_average_profile
422
423
424!------------------------------------------------------------------------------!
425! Description:
426! ------------
427!> Average data horizontally from the source_array over the region given by the
428!> averaging grid 'avg_grid' and store the result in 'profile_array'.
429!------------------------------------------------------------------------------!
430 SUBROUTINE average_profile( source_array, profile_array, avg_grid )
431
432    TYPE(grid_definition), INTENT(IN)          ::  avg_grid
433    REAL(wp), DIMENSION(:,:,:), INTENT(IN)     ::  source_array 
434    REAL(wp), DIMENSION(:), INTENT(OUT)        ::  profile_array
435
436    INTEGER(iwp) ::  i_source, j_source, l, nz, nlev
437
438    REAL(wp) ::  ni_columns
439
440    nlev = SIZE( source_array, 3 )
441    nz   = SIZE( profile_array, 1 )
442
443    IF ( nlev /= nz )  THEN
444       message = "Lengths of input and output profiles do not match: " //   &
445                 "cosmo_pressure(" // TRIM( str( nlev ) ) //                &
446                 "), profile_array(" // TRIM( str( nz ) )  // ")."
447       CALL inifor_abort('average_pressure_perturbation', message)
448    ENDIF
449   
450    profile_array(:) = 0.0_wp
451
452    DO  l = 1, avg_grid%n_columns
453
454       i_source = avg_grid%iii(l)
455       j_source = avg_grid%jjj(l)
456
457       profile_array(:) = profile_array(:)                                  &
458                        + source_array(i_source, j_source, :)
459
460    ENDDO
461
462    ni_columns = 1.0_wp / avg_grid%n_columns
463    profile_array(:) = profile_array(:) * ni_columns
464
465 END SUBROUTINE average_profile
466
467
468!------------------------------------------------------------------------------!
469! Description:
470! ------------
471!> This is a sister routine to average_profile() and differes from it in that
472!> it removes the COSMO basic state pressure from the input array before
473!> averaging.
474!------------------------------------------------------------------------------!
475 SUBROUTINE average_pressure_perturbation( cosmo_pressure, profile_array,   &
476                                           cosmo_grid, avg_grid )
477
478    TYPE(grid_definition), INTENT(IN)          ::  cosmo_grid, avg_grid
479    REAL(wp), DIMENSION(:,:,:), INTENT(IN)     ::  cosmo_pressure
480    REAL(wp), DIMENSION(:), INTENT(OUT)        ::  profile_array
481
482    INTEGER(iwp) ::  i_source, j_source, l, nz, nlev
483
484    REAL(wp)                            ::  ni_columns
485    REAL(wp), DIMENSION(:), ALLOCATABLE ::  basic_state_pressure
486
487    nlev = SIZE( cosmo_pressure, 3 )
488    nz   = SIZE( profile_array, 1 )
489
490    IF ( nlev /= nz )  THEN
491       message = "Lengths of input and output profiles do not match: " //   &
492                 "cosmo_pressure(" // TRIM( str( nlev ) ) //                &
493                 "), profile_array(" // TRIM( str( nz ) )  // ")."
494       CALL inifor_abort('average_pressure_perturbation', message)
495    ENDIF
496
497    ALLOCATE( basic_state_pressure(nz) )
498    profile_array(:) = 0.0_wp
499
500    DO  l = 1, avg_grid%n_columns
501       i_source = avg_grid%iii(l)
502       j_source = avg_grid%jjj(l)
503
504!
505!--    Compute pressure perturbation by removing COSMO basic state pressure
506       CALL get_basic_state( cosmo_grid%hfl(i_source,j_source,:), BETA,   &
507                             P_SL, T_SL, RD, G, basic_state_pressure )
508
509       profile_array(:) = profile_array(:)                                  &
510                        + cosmo_pressure(i_source, j_source, :)             &
511                        - basic_state_pressure(:)
512
513!
514!-- Loop over horizontal neighbours l
515    ENDDO
516
517    DEALLOCATE( basic_state_pressure )
518
519    ni_columns = 1.0_wp / avg_grid%n_columns
520    profile_array(:) = profile_array(:) * ni_columns
521
522 END SUBROUTINE average_pressure_perturbation
523
524
525!------------------------------------------------------------------------------!
526! Description:
527! ------------
528!> Computes average soil values in COSMO-DE water cells from neighbouring
529!> non-water cells. This is done as a preprocessing step for the COSMO-DE
530!> soil input arrays, which contain unphysical values for water cells.
531!>
532!> This routine computes the average of up to all nine neighbouring cells
533!> or keeps the original value, if not at least one non-water neightbour
534!> is available.
535!>
536!> By repeatedly applying this step, soil data can be extrapolated into
537!> 'water' regions occupying multiple cells, one cell per iteration.
538!>
539!> Input parameters:
540!> -----------------
541!> soiltyp : 2d map of COSMO-DE soil types
542!> nz : number of layers in the COSMO-DE soil
543!> niter : number iterations
544!>
545!> Output parameters:
546!> ------------------
547!> array : the soil array (i.e. water content or temperature)
548!------------------------------------------------------------------------------!
549 SUBROUTINE fill_water_cells(soiltyp, array, nz, niter)
550    INTEGER(iwp), DIMENSION(:,:,:), INTENT(IN) :: soiltyp
551    REAL(wp), DIMENSION(:,:,:), INTENT(INOUT)  :: array
552    INTEGER(iwp), INTENT(IN)                   :: nz, niter
553
554    REAL(wp), DIMENSION(nz)                    :: column
555    INTEGER(iwp), DIMENSION(:,:), ALLOCATABLE  :: old_soiltyp, new_soiltyp
556    INTEGER(iwp)                               :: l, i, j, nx, ny, n_cells, ii, jj, iter
557    INTEGER(iwp), DIMENSION(8)                 :: di, dj
558
559    nx = SIZE(array, 1)
560    ny = SIZE(array, 2)
561    di = (/ -1, -1, -1, 0,  0,  1, 1, 1 /)
562    dj = (/ -1,  0,  1, -1, 1, -1, 0, 1 /)
563
564    ALLOCATE(old_soiltyp(SIZE(soiltyp,1), &
565                         SIZE(soiltyp,2) ))
566
567    ALLOCATE(new_soiltyp(SIZE(soiltyp,1), &
568                         SIZE(soiltyp,2) ))
569
570    old_soiltyp(:,:) = soiltyp(:,:,1)
571    new_soiltyp(:,:) = soiltyp(:,:,1)
572
573    DO  iter = 1, niter
574
575       DO  j = 1, ny
576       DO  i = 1, nx
577       
578          IF (old_soiltyp(i,j) == WATER_ID)  THEN
579
580             n_cells = 0
581             column(:) = 0.0_wp
582             DO  l = 1, SIZE(di)
583
584                ii = MIN(nx, MAX(1_iwp, i + di(l)))
585                jj = MIN(ny, MAX(1_iwp, j + dj(l)))
586
587                IF (old_soiltyp(ii,jj) .NE. WATER_ID)  THEN
588                   n_cells = n_cells + 1
589                   column(:) = column(:) + array(ii,jj,:)
590                ENDIF
591
592             ENDDO
593
594!
595!--          Overwrite if at least one non-water neighbour cell is available
596             IF (n_cells > 0)  THEN
597                array(i,j,:) = column(:) / n_cells
598                new_soiltyp(i,j) = 0
599             ENDIF
600
601          ENDIF
602
603       ENDDO
604       ENDDO
605
606       old_soiltyp(:,:) = new_soiltyp(:,:)
607
608    ENDDO
609
610    DEALLOCATE(old_soiltyp, new_soiltyp)
611
612 END SUBROUTINE fill_water_cells
613
614
615!------------------------------------------------------------------------------!
616! Description:
617! ------------
618!> Takes the averaged pressure profile <p> and sets the lowest entry to the
619!> extrapolated pressure at the surface.
620!------------------------------------------------------------------------------!
621 SUBROUTINE get_surface_pressure(p, rho, avg_grid)
622    REAL(wp), DIMENSION(:), INTENT(IN)    ::  rho
623    REAL(wp), DIMENSION(:), INTENT(INOUT) ::  p
624    TYPE(grid_definition), INTENT(IN)     ::  avg_grid
625
626    REAL(wp)     ::  drhodz, dz, zk, rhok
627    INTEGER(iwp) ::  k_min
628
629    k_min = avg_grid%k_min
630    zk    = avg_grid%z(k_min)
631    rhok  = rho(k_min)
632    dz    = avg_grid%z(k_min + 1) - avg_grid%z(k_min)
633    drhodz = ( rho(k_min + 1) - rho(k_min) ) / dz
634
635    p(1) = linear_density_pressure( p(k_min), zk, rhok, drhodz,                &
636                                    z = 0.0_wp, g=G )
637
638 END SUBROUTINE get_surface_pressure
639
640
641 FUNCTION linear_density_pressure(pk, zk, rhok, drhodz, z, g)  RESULT(p)
642
643    REAL(wp), INTENT(IN)  ::  pk, zk, rhok, drhodz, g, z
644    REAL(wp) ::  p
645
646    p = pk + ( zk - z ) * g * ( rhok - 0.5_wp * drhodz * (zk - z) )
647
648 END FUNCTION linear_density_pressure
649
650!-----------------------------------------------------------------------------!
651! Description:
652! -----------
653!> This routine computes profiles of the two geostrophic wind components ug and
654!> vg.
655!-----------------------------------------------------------------------------!
656 SUBROUTINE geostrophic_winds(p_north, p_south, p_east, p_west, rho, f3,    &
657                              Lx, Ly, phi_n, lam_n, phi_g, lam_g, ug, vg)
658
659    REAL(wp), DIMENSION(:), INTENT(IN)  ::  p_north, p_south, p_east, p_west,  &
660                                            rho
661    REAL(wp), INTENT(IN)                ::  f3, Lx, Ly, phi_n, lam_n, phi_g, lam_g
662    REAL(wp), DIMENSION(:), INTENT(OUT) ::  ug, vg
663    REAL(wp)                            ::  facx, facy
664
665    facx = 1.0_wp / (Lx * f3)
666    facy = 1.0_wp / (Ly * f3)
667    ug(:) = - facy / rho(:) * (p_north(:) - p_south(:))
668    vg(:) =   facx / rho(:) * (p_east(:) - p_west(:))
669
670    CALL rotate_vector_field(                                                  &
671       ug, vg, angle = meridian_convergence_rotated(phi_n, lam_n, phi_g, lam_g)&
672    )
673
674 END SUBROUTINE geostrophic_winds
675
676
677!-----------------------------------------------------------------------------!
678! Description:
679! -----------
680!> This routine computes the inverse Plate Carree projection, i.e. in projects
681!> Cartesian coordinates (x,y) onto a sphere. It returns the latitude and
682!> lngitude of a geographical system centered at x0 and y0.
683!-----------------------------------------------------------------------------!
684 SUBROUTINE inv_plate_carree(x, y, x0, y0, r, lat, lon)
685    REAL(wp), INTENT(IN)  ::  x(:), y(:), x0, y0, r
686    REAL(wp), INTENT(OUT) ::  lat(:), lon(:)
687   
688    REAL(wp) :: ri
689
690!
691!-- TODO check dimensions of lat/lon and y/x match
692
693    ri = 1.0_wp / r
694   
695    lat(:) = (y(:) - y0) * ri
696    lon(:) = (x(:) - x0) * ri
697 END SUBROUTINE 
698
699
700!-----------------------------------------------------------------------------!
701! Description:
702! ------------
703!> Computes the reverse Plate-Carree projection of a x or y position on a
704!> Cartesian grid.
705!>
706!> Input parameters:
707!> -----------------
708!> xy : x or y coordinate of the Cartasian grid point [m].
709!>
710!> xy0 : x or y coordinate that coincides with the origin of the underlying
711!>     sperical system (crossing point of the equator and prime meridian) [m].
712!>
713!> r : Radius of the of the underlying sphere, e.g. EARTH_RADIUS [m].
714!>
715!> Returns:
716!> --------
717!> project : Longitude (in case xy = x) or latitude (xy = y) of the given input
718!>     coordinate xy.
719!------------------------------------------------------------------------------!
720 ELEMENTAL REAL(wp) FUNCTION project(xy, xy0, r)
721    REAL(wp), INTENT(IN)  ::  xy, xy0, r
722    REAL(wp) :: ri
723
724!
725!-- If this elemental function is called with a large array as xy, it is
726!-- computationally more efficient to precompute the inverse radius and
727!-- then muliply.
728    ri = 1.0_wp / r
729
730    project = (xy - xy0) * ri
731
732 END FUNCTION project
733
734
735!------------------------------------------------------------------------------!
736! Description:
737! ------------
738!> For a rotated-pole system with the origin at geographical latitude 'phi_c',
739!> compute the geographical latitude of its rotated north pole.
740!------------------------------------------------------------------------------!
741 REAL(wp) FUNCTION phic_to_phin(phi_c)
742     REAL(wp), INTENT(IN) ::  phi_c
743
744     phic_to_phin = 0.5_wp * PI - ABS(phi_c)
745
746 END FUNCTION phic_to_phin
747
748   
749!------------------------------------------------------------------------------!
750! Description:
751! ------------
752!> For a rotated-pole system with the origin at geographical latitude 'phi_c'
753!> and longitude 'lam_c', compute the geographical longitude of its rotated
754!> north pole.
755!------------------------------------------------------------------------------!
756 REAL(wp) FUNCTION lamc_to_lamn(phi_c, lam_c)
757    REAL(wp), INTENT(IN) ::  phi_c, lam_c
758     
759    lamc_to_lamn = lam_c
760    IF (phi_c > 0.0_wp)  THEN
761       lamc_to_lamn = lam_c - SIGN(PI, lam_c)
762    ENDIF
763
764 END FUNCTION lamc_to_lamn
765
766
767!------------------------------------------------------------------------------!
768! Description:
769! ------------
770!> Set gamma according to whether PALM domain is in the northern or southern
771!> hemisphere of the COSMO rotated-pole system. Gamma assumes either the
772!> value 0 or PI and is needed to work around around a bug in the
773!> rotated-pole coordinate transformations.
774!------------------------------------------------------------------------------!
775 REAL(wp) FUNCTION gamma_from_hemisphere(phi_cg, phi_ref)
776    REAL(wp), INTENT(IN) ::  phi_cg
777    REAL(wp), INTENT(IN) ::  phi_ref
778
779    LOGICAL ::  palm_origin_is_south_of_cosmo_origin
780   
781    palm_origin_is_south_of_cosmo_origin = (phi_cg < phi_ref)
782
783    IF (palm_origin_is_south_of_cosmo_origin)  THEN
784        gamma_from_hemisphere = PI
785    ELSE
786        gamma_from_hemisphere = 0.0_wp
787    ENDIF
788 END FUNCTION gamma_from_hemisphere
789
790
791!------------------------------------------------------------------------------!
792! Description:
793! ------------
794!> Computes the geographical coordinates corresponding to the given rotated-pole
795!> coordinates.
796!>
797!> In INIFOR, this routine is used to convert coordinates between two
798!> rotated-pole systems: COSMO-DE's rotated-pole system, and one centred at the
799!> PALM-4U domain centre. In this case, the PALM-4U system is thought of as the
800!> rotated-pole system and the routine is used to rotate back to COSMO-DE's
801!> system which is thought of as the geographical one.
802!>
803!> Input parameters:
804!> -----------------
805!> phir(:), lamr(: ): latitudes and longitudes of the rotated-pole grid
806!>
807!> phip, lamp: latitude and longitude of the rotated north pole
808!>
809!> gam: "angle between the north poles. If [gam] is not present, the other
810!>       system is the real geographical system." (original phiro2rot
811!>       description)
812!>
813!> Output parameters:
814!> ------------------
815!> phi(:,:), lam(:,:): geographical latitudes and logitudes
816!------------------------------------------------------------------------------!
817 SUBROUTINE rotate_to_cosmo(phir, lamr, phip, lamp, phi, lam, gam)
818    REAL(wp), INTENT(IN)  ::  phir(0:), lamr(0:), phip, lamp, gam
819    REAL(wp), INTENT(OUT) ::  phi(0:,0:), lam(0:,0:)
820
821    INTEGER(iwp) ::  i, j
822   
823    IF ( SIZE(phi, 1) .NE. SIZE(lam, 1) .OR. &
824         SIZE(phi, 2) .NE. SIZE(lam, 2) )  THEN
825       PRINT *, "inifor: rotate_to_cosmo: Dimensions of phi and lambda do not match. Dimensions are:"
826       PRINT *, "inifor: rotate_to_cosmo: phi: ", SIZE(phi, 1), SIZE(phi, 2)
827       PRINT *, "inifor: rotate_to_cosmo: lam: ", SIZE(lam, 1), SIZE(lam, 2)
828       STOP
829    ENDIF
830
831    IF ( SIZE(phir) .NE. SIZE(phi, 2) .OR. &
832         SIZE(lamr) .NE. SIZE(phi, 1) )  THEN
833       PRINT *, "inifor: rotate_to_cosmo: Dimensions of phir and lamr do not match. Dimensions are:"
834       PRINT *, "inifor: rotate_to_cosmo: phir: ", SIZE(phir), SIZE(phi, 2)
835       PRINT *, "inifor: rotate_to_cosmo: lamr: ", SIZE(lamr), SIZE(phi, 1)
836       STOP
837    ENDIF
838   
839    DO  j = 0, UBOUND(phir, 1)
840       DO  i = 0, UBOUND(lamr, 1)
841
842          phi(i,j) = phirot2phi(phir(j) * TO_DEGREES,                       &
843                                lamr(i) * TO_DEGREES,                       &
844                                phip * TO_DEGREES,                          &
845                                gam  * TO_DEGREES) * TO_RADIANS
846
847          lam(i,j) = rlarot2rla(phir(j) * TO_DEGREES,                       &
848                                lamr(i) * TO_DEGREES,                       &
849                                phip * TO_DEGREES,                          &
850                                lamp * TO_DEGREES,                          &
851                                gam  * TO_DEGREES) * TO_RADIANS
852
853       ENDDO
854    ENDDO
855
856 END SUBROUTINE rotate_to_cosmo
857       
858
859!------------------------------------------------------------------------------!
860! Description:
861! ------------
862!> Rotate the given vector field (x(:), y(:)) by the given 'angle'.
863!------------------------------------------------------------------------------!
864 SUBROUTINE rotate_vector_field(x, y, angle)
865    REAL(wp), DIMENSION(:), INTENT(INOUT) :: x, y  !< x and y coodrinate in arbitrary units
866    REAL(wp), INTENT(IN)                  :: angle !< rotation angle [deg]
867
868    INTEGER(iwp) :: i
869    REAL(wp)     :: sine, cosine, v_rot(2), rotation(2,2)
870
871    sine = SIN(angle * TO_RADIANS)
872    cosine = COS(angle * TO_RADIANS)
873!
874!-- RESAHPE() fills columns first, so the rotation matrix becomes
875!--
876!-- rotation = [ cosine   -sine  ]
877!--            [  sine    cosine ]
878    rotation = RESHAPE( (/cosine, sine, -sine, cosine/), (/2, 2/) )
879
880    DO  i = LBOUND(x, 1), UBOUND(x, 1)
881
882       v_rot(:) = MATMUL(rotation, (/x(i), y(i)/))
883
884       x(i) = v_rot(1)
885       y(i) = v_rot(2)
886
887    ENDDO
888
889 END SUBROUTINE rotate_vector_field
890
891
892
893!------------------------------------------------------------------------------!
894! Description:
895! ------------
896!> This routine computes the local meridian convergence between a rotated-pole
897!> and a geographical system using the Eq. (6) given in the DWD manual
898!>
899!>    Baldauf et al. (2018), Beschreibung des operationelle Kürzestfrist-
900!>    vorhersagemodells COSMO-D2 und COSMO-D2-EPS und seiner Ausgabe in die
901!>    Datenbanken des DWD.
902!>    https://www.dwd.de/SharedDocs/downloads/DE/modelldokumentationen/nwv/cosmo_d2/cosmo_d2_dbbeschr_aktuell.pdf?__blob=publicationFile&v=2
903!------------------------------------------------------------------------------!
904 FUNCTION meridian_convergence_rotated(phi_n, lam_n, phi_g, lam_g)          &
905    RESULT(delta)
906
907    REAL(wp), INTENT(IN) ::  phi_n, lam_n, phi_g, lam_g
908    REAL(wp)             ::  delta
909
910    delta = atan2( COS(phi_n) * SIN(lam_n - lam_g),                         &
911                   COS(phi_g) * SIN(phi_n) -                                &
912                   SIN(phi_g) * COS(phi_n) * COS(lam_n - lam_g) )
913
914 END FUNCTION meridian_convergence_rotated
915
916!------------------------------------------------------------------------------!
917! Description:
918! ------------
919!> Compute indices of PALM-4U grid point neighbours in the target
920!> system (COSMO-DE) by rounding up and down. (i,j) are the indices of
921!> the PALM-4U grid and (ii(i,j,1-4), jj(i,j,1-4)) contain the indices
922!> of the its four neigbouring points in the COSMO-DE grid.
923!>
924!>
925!>                     COSMO-DE grid
926!>                     -------------
927!>           jj, lat
928!>              ^        j
929!>              |         \          i
930!>  jj(i,j,2/3) + ... 2 ---\--------/------ 3
931!>              |     | ^   \      /        |
932!>              |     | |wp  \    /         |
933!>              |     | v     \  /          |
934!>       latpos + ............ o/ (i,j)     |
935!>              |     |        :            |
936!>              |     |        :<----wl---->|
937!>  jj(i,j,1/4) + ... 1 -------:----------- 4
938!>              |     :        :            :
939!>              |     :        :            :
940!>              |     :      lonpos         :
941!>              L-----+--------+------------+------> ii, lon
942!>               ii(i,j,1/2)        ii(i,j,3/4)
943!>
944!>
945!> Input parameters:
946!> -----------------
947!> source_lat, source_lon : (rotated-pole) coordinates of the source grid (e.g.
948!>    COSMO-DE)
949!>
950!> source_dxi, source_dyi : inverse grid spacings of the source grid.
951!>
952!> target_lat, target_lon : (rotated-pole) coordinates of the target grid (e.g.
953!>    COSMO-DE)
954!>
955!> Output parameters:
956!> ------------------
957!> palm_ii, palm_jj : x and y index arrays of horizontal neighbour columns
958!>
959!------------------------------------------------------------------------------!
960 SUBROUTINE find_horizontal_neighbours(cosmo_lat, cosmo_lon,                &
961                                       palm_clat, palm_clon,                &
962                                       palm_ii, palm_jj)
963
964    REAL(wp), DIMENSION(0:), INTENT(IN)            ::  cosmo_lat, cosmo_lon
965    REAL(wp), DIMENSION(0:,0:), INTENT(IN)         ::  palm_clat, palm_clon
966    REAL(wp)                                       ::  cosmo_dxi, cosmo_dyi
967    INTEGER(iwp), DIMENSION(0:,0:,1:), INTENT(OUT) ::  palm_ii, palm_jj
968
969    REAL(wp)     ::  lonpos, latpos, lon0, lat0
970    INTEGER(iwp) ::  i, j
971
972    lon0 = cosmo_lon(0)
973    lat0 = cosmo_lat(0)
974    cosmo_dxi = 1.0_wp / (cosmo_lon(1) - cosmo_lon(0))
975    cosmo_dyi = 1.0_wp / (cosmo_lat(1) - cosmo_lat(0))
976
977    DO  j = 0, UBOUND(palm_clon, 2)!palm_grid%ny
978    DO  i = 0, UBOUND(palm_clon, 1)!palm_grid%nx
979!
980!--    Compute the floating point index corrseponding to PALM-4U grid point
981!--    location along target grid (COSMO-DE) axes.
982       lonpos = (palm_clon(i,j) - lon0) * cosmo_dxi
983       latpos = (palm_clat(i,j) - lat0) * cosmo_dyi
984
985       IF (lonpos < 0.0_wp .OR. latpos < 0.0_wp)  THEN
986          message = "lonpos or latpos out of bounds " //                    &
987             "while finding interpolation neighbours!" // NEW_LINE(' ') //  &
988             "          (i,j) = (" //                                       &
989             TRIM(str(i)) // ", " // TRIM(str(j)) // ")" // NEW_LINE(' ') //&
990             "          lonpos " // TRIM(real_to_str(lonpos*TO_DEGREES)) // &
991             ", latpos " // TRIM(real_to_str(latpos*TO_DEGREES)) // NEW_LINE(' ') // &
992             "          lon0 " // TRIM(real_to_str(lon0  *TO_DEGREES)) //   &
993             ", lat0   " // TRIM(real_to_str(lat0*TO_DEGREES)) // NEW_LINE(' ') // &
994             "          PALM lon " // TRIM(real_to_str(palm_clon(i,j)*TO_DEGREES)) // &
995             ", PALM lat " // TRIM(real_to_str(palm_clat(i,j)*TO_DEGREES))
996          CALL inifor_abort('find_horizontal_neighbours', message)
997       ENDIF
998
999       palm_ii(i,j,1) = FLOOR(lonpos)
1000       palm_ii(i,j,2) = FLOOR(lonpos)
1001       palm_ii(i,j,3) = CEILING(lonpos)
1002       palm_ii(i,j,4) = CEILING(lonpos)
1003
1004       palm_jj(i,j,1) = FLOOR(latpos)
1005       palm_jj(i,j,2) = CEILING(latpos)
1006       palm_jj(i,j,3) = CEILING(latpos)
1007       palm_jj(i,j,4) = FLOOR(latpos)
1008    ENDDO
1009    ENDDO
1010
1011 END SUBROUTINE find_horizontal_neighbours
1012
1013   
1014!------------------------------------------------------------------------------!
1015! Description:
1016! ------------
1017!> Computes linear vertical interpolation neighbour indices and weights for each
1018!> column of the given palm grid.
1019!------------------------------------------------------------------------------!
1020 SUBROUTINE find_vertical_neighbours_and_weights_interp( palm_grid,            &
1021                                                         palm_intermediate )
1022    TYPE(grid_definition), INTENT(INOUT) ::  palm_grid
1023    TYPE(grid_definition), INTENT(IN)    ::  palm_intermediate
1024
1025    INTEGER(iwp) ::  i, j, k, nx, ny, nz, nlev, k_intermediate
1026    LOGICAL      ::  point_is_below_grid, point_is_above_grid,                 &
1027                     point_is_in_current_cell
1028    REAL(wp)     ::  current_height, column_base, column_top, h_top, h_bottom, &
1029                     weight
1030
1031    nx   = palm_grid%nx
1032    ny   = palm_grid%ny
1033    nz   = palm_grid%nz
1034    nlev = palm_intermediate%nz
1035
1036!
1037!-- in each column of the fine grid, find vertical neighbours of every cell
1038    DO  j = 0, ny
1039    DO  i = 0, nx
1040
1041       k_intermediate = 0
1042
1043       column_base = palm_intermediate%intermediate_h(i,j,0)
1044       column_top  = palm_intermediate%intermediate_h(i,j,nlev)
1045
1046!
1047!--    scan through palm_grid column and set neighbour indices in
1048!--    case current_height is either below column_base, in the current
1049!--    cell, or above column_top. Keep increasing current cell index until
1050!--    the current cell overlaps with the current_height.
1051       DO  k = 1, nz
1052
1053!
1054!--       Memorize the top and bottom boundaries of the coarse cell and the
1055!--       current height within it
1056          current_height = palm_grid%z(k) + palm_grid%z0
1057          h_top    = palm_intermediate%intermediate_h(i,j,k_intermediate+1)
1058          h_bottom = palm_intermediate%intermediate_h(i,j,k_intermediate)
1059
1060          point_is_above_grid = (current_height > column_top) !22000m, very unlikely
1061          point_is_below_grid = (current_height < column_base)
1062
1063          point_is_in_current_cell = (                                      &
1064             current_height >= h_bottom .AND.                               &
1065             current_height <  h_top                                        &
1066          )
1067
1068!
1069!--       set default weights
1070          palm_grid%w_verti(i,j,k,1:2) = 0.0_wp
1071
1072          IF (point_is_above_grid)  THEN
1073
1074             palm_grid%kk(i,j,k,1:2) = nlev
1075             palm_grid%w_verti(i,j,k,1:2) = - 2.0_wp
1076
1077             message = "PALM-4U grid extends above COSMO-DE model top."
1078             CALL inifor_abort('find_vertical_neighbours_and_weights', message)
1079
1080          ELSE IF (point_is_below_grid)  THEN
1081
1082             palm_grid%kk(i,j,k,1:2) = 0
1083             palm_grid%w_verti(i,j,k,1:2) = - 2.0_wp
1084
1085          ELSE
1086!
1087!--          cycle through intermediate levels until current
1088!--          intermediate-grid cell overlaps with current_height
1089             DO  WHILE (.NOT. point_is_in_current_cell .AND. k_intermediate <= nlev-1)
1090                k_intermediate = k_intermediate + 1
1091
1092                h_top    = palm_intermediate%intermediate_h(i,j,k_intermediate+1)
1093                h_bottom = palm_intermediate%intermediate_h(i,j,k_intermediate)
1094                point_is_in_current_cell = (                                &
1095                   current_height >= h_bottom .AND.                         &
1096                   current_height <  h_top                                  &
1097                )
1098             ENDDO
1099
1100             IF (k_intermediate > nlev-1)  THEN
1101                message = "Index " // TRIM(str(k_intermediate)) //          &
1102                          " is above intermediate grid range."
1103                CALL inifor_abort('find_vertical_neighbours', message)
1104             ENDIF
1105   
1106             palm_grid%kk(i,j,k,1) = k_intermediate
1107             palm_grid%kk(i,j,k,2) = k_intermediate + 1
1108
1109!
1110!--          compute vertical weights
1111             weight = (h_top - current_height) / (h_top - h_bottom)
1112             palm_grid%w_verti(i,j,k,1) = weight
1113             palm_grid%w_verti(i,j,k,2) = 1.0_wp - weight
1114          ENDIF
1115
1116       ENDDO
1117
1118    ENDDO
1119    ENDDO
1120
1121 END SUBROUTINE find_vertical_neighbours_and_weights_interp
1122
1123
1124!------------------------------------------------------------------------------!
1125! Description:
1126! ------------
1127!> Computes linear vertical interpolation neighbour indices and weights for each
1128!> column of the given averaging grid.
1129!>
1130!> The difference to the _interp variant of this routine lies in how columns
1131!> are adressed. While the _interp variant loops over all PALM grid columns
1132!> given by combinations of all index indices (i,j), this routine loops over a
1133!> subset of COSMO columns, which are sequentially stored in the index lists
1134!> iii(:) and jjj(:).
1135!------------------------------------------------------------------------------!
1136 SUBROUTINE find_vertical_neighbours_and_weights_average(                   &
1137    avg_grid, level_based_averaging                                         &
1138 )
1139
1140    TYPE(grid_definition), INTENT(INOUT), TARGET ::  avg_grid
1141    LOGICAL                                      ::  level_based_averaging
1142
1143    INTEGER(iwp)      ::  i, j, k_palm, k_intermediate, l, nlev
1144    LOGICAL           ::  point_is_below_grid, point_is_above_grid,         &
1145                          point_is_in_current_cell
1146    REAL(wp)          ::  current_height, column_base, column_top, h_top,   &
1147                          h_bottom, weight
1148    REAL(wp), POINTER ::  cosmo_h(:,:,:)
1149
1150
1151    avg_grid%k_min = LBOUND(avg_grid%z, 1)
1152
1153    nlev = SIZE(avg_grid%cosmo_h, 3)
1154
1155!
1156!-- For level-based averaging, use the profile of averaged vertical mesoscale
1157!-- levels computed in init_averaging_grid().
1158    IF (level_based_averaging)  THEN
1159       cosmo_h => avg_grid%intermediate_h
1160    ELSE
1161       cosmo_h => avg_grid%cosmo_h
1162    ENDIF
1163
1164!
1165!-- in each column of the fine grid, find vertical neighbours of every cell
1166    DO  l = 1, avg_grid%n_columns
1167
1168!--    The profile of averaged vertical mesoscale levels stored in
1169!--    intermediate_h only contains one column. By using the same column -- and
1170!--    consequently the same vertical interpolation neighbours and weights --
1171!--   
1172       IF (level_based_averaging)  THEN
1173          i = 1
1174          j = 1
1175       ELSE
1176          i = avg_grid%iii(l)
1177          j = avg_grid%jjj(l)
1178       ENDIF
1179
1180       column_base = cosmo_h(i,j,1)
1181       column_top  = cosmo_h(i,j,nlev)
1182
1183!
1184!--    Scan through avg_grid column until and set neighbour indices in
1185!--    case current_height is either below column_base, in the current
1186!--    cell, or above column_top. Keep increasing current cell index until
1187!--    the current cell overlaps with the current_height.
1188       k_intermediate = 1 !avg_grid%cosmo_h is indexed 1-based.
1189       DO  k_palm = 1, avg_grid%nz
1190
1191!
1192!--       Memorize the top and bottom boundaries of the coarse cell and the
1193!--       current height within it
1194          current_height = avg_grid%z(k_palm) + avg_grid%z0
1195          h_top    = cosmo_h(i,j,k_intermediate+1)
1196          h_bottom = cosmo_h(i,j,k_intermediate)
1197
1198!
1199!--       COSMO column top is located at 22000m, point_is_above_grid is very
1200!--       unlikely.
1201          point_is_above_grid = (current_height > column_top)
1202          point_is_below_grid = (current_height < column_base)
1203
1204          point_is_in_current_cell = (                                      &
1205             current_height >= h_bottom .AND.                               &
1206             current_height <  h_top                                        &
1207          )
1208
1209!
1210!--       set default weights
1211          avg_grid%w(l,k_palm,1:2) = 0.0_wp
1212
1213          IF (point_is_above_grid)  THEN
1214
1215             avg_grid%kkk(l,k_palm,1:2) = nlev
1216             avg_grid%w(l,k_palm,1:2) = - 2.0_wp
1217
1218             message = "PALM-4U grid extends above COSMO-DE model top."
1219             CALL inifor_abort('find_vertical_neighbours_and_weights_average', message)
1220
1221          ELSE IF (point_is_below_grid)  THEN
1222
1223             avg_grid%kkk(l,k_palm,1:2) = 0
1224             avg_grid%w(l,k_palm,1:2) = - 2.0_wp
1225             avg_grid%k_min = MAX(k_palm + 1, avg_grid%k_min)
1226          ELSE
1227!
1228!--          cycle through intermediate levels until current
1229!--          intermediate-grid cell overlaps with current_height
1230             DO  WHILE (.NOT. point_is_in_current_cell .AND. k_intermediate <= nlev-1)
1231                k_intermediate = k_intermediate + 1
1232
1233                h_top    = cosmo_h(i,j,k_intermediate+1)
1234                h_bottom = cosmo_h(i,j,k_intermediate)
1235                point_is_in_current_cell = (                                &
1236                   current_height >= h_bottom .AND.                         &
1237                   current_height <  h_top                                  &
1238                )
1239             ENDDO
1240
1241!
1242!--          k_intermediate = 48 indicates the last section (indices 48 and 49), i.e.
1243!--          k_intermediate = 49 is not the beginning of a valid cell.
1244             IF (k_intermediate > nlev-1)  THEN
1245                message = "Index " // TRIM(str(k_intermediate)) //          &
1246                          " is above intermediate grid range."
1247                CALL inifor_abort('find_vertical_neighbours', message)
1248             ENDIF
1249   
1250             avg_grid%kkk(l,k_palm,1) = k_intermediate
1251             avg_grid%kkk(l,k_palm,2) = k_intermediate + 1
1252
1253!
1254!--          compute vertical weights
1255             weight = (h_top - current_height) / (h_top - h_bottom)
1256             avg_grid%w(l,k_palm,1) = weight
1257             avg_grid%w(l,k_palm,2) = 1.0_wp - weight
1258          ENDIF
1259
1260!
1261!--    Loop over PALM levels k
1262       ENDDO
1263
1264!
1265!--    Loop over averaging columns l
1266    ENDDO
1267 
1268 END SUBROUTINE find_vertical_neighbours_and_weights_average
1269
1270!------------------------------------------------------------------------------!
1271! Description:
1272! ------------
1273!> Compute the four weights for horizontal bilinear interpolation given the
1274!> coordinates clon(i,j) clat(i,j) of the PALM-4U grid in the COSMO-DE
1275!> rotated-pole grid and the neightbour indices ii(i,j,1-4) and jj(i,j,1-4).
1276!>
1277!> Input parameters:
1278!> -----------------
1279!> palm_grid%clon : longitudes of PALM-4U scalars (cell centres) in COSMO-DE's rotated-pole grid [rad]
1280!>
1281!> palm_grid%clat : latitudes of PALM-4U cell centres in COSMO-DE's rotated-pole grid [rad]
1282!>
1283!> cosmo_grid%lon : rotated-pole longitudes of scalars (cell centres) of the COSMO-DE grid [rad]
1284!>
1285!> cosmo_grid%lat : rotated-pole latitudes of scalars (cell centers) of the COSMO-DE grid [rad]
1286!>
1287!> cosmo_grid%dxi : inverse grid spacing in the first dimension [m^-1]
1288!>
1289!> cosmo_grid%dyi : inverse grid spacing in the second dimension [m^-1]
1290!>
1291!> Output parameters:
1292!> ------------------
1293!> palm_grid%w_horiz(:,:,1-4) : weights for bilinear horizontal interpolation
1294!
1295!                               COSMO-DE grid
1296!                               -------------
1297!                     jj, lat
1298!                        ^        j
1299!                        |         \          i
1300!            jj(i,j,2/3) + ... 2 ---\--------/------ 3
1301!                        |     | ^   \      /        |
1302!                        |     | |wp  \    /         |
1303!                        |     | v     \  /          |
1304!                 latpos + ............ o/ (i,j)     |
1305!                        |     |        :            |
1306!                        |     |        :<----wl---->|
1307!            jj(i,j,1/4) + ... 1 -------:----------- 4
1308!                        |     :        :            :
1309!                        |     :        :            :
1310!                        |     :      lonpos         :
1311!                        L-----+--------+------------+------> ii, lon
1312!                         ii(i,j,1/2)        ii(i,j,3/4)
1313!         
1314!------------------------------------------------------------------------------!
1315 SUBROUTINE compute_horizontal_interp_weights(cosmo_lat, cosmo_lon,         &
1316    palm_clat, palm_clon, palm_ii, palm_jj, palm_w_horiz)
1317       
1318    REAL(wp), DIMENSION(0:), INTENT(IN)           ::  cosmo_lat, cosmo_lon
1319    REAL(wp)                                      ::  cosmo_dxi, cosmo_dyi
1320    REAL(wp), DIMENSION(0:,0:), INTENT(IN)        ::  palm_clat, palm_clon
1321    INTEGER(iwp), DIMENSION(0:,0:,1:), INTENT(IN) ::  palm_ii, palm_jj
1322
1323    REAL(wp), DIMENSION(0:,0:,1:), INTENT(OUT) ::  palm_w_horiz
1324
1325    REAL(wp)     ::  wlambda, wphi
1326    INTEGER(iwp) ::  i, j
1327
1328    cosmo_dxi = 1.0_wp / (cosmo_lon(1) - cosmo_lon(0))
1329    cosmo_dyi = 1.0_wp / (cosmo_lat(1) - cosmo_lat(0))
1330
1331    DO  j = 0, UBOUND(palm_clon, 2)
1332    DO  i = 0, UBOUND(palm_clon, 1)
1333   
1334!
1335!--    weight in lambda direction
1336       wlambda = ( cosmo_lon(palm_ii(i,j,4)) - palm_clon(i,j) ) * cosmo_dxi
1337
1338!
1339!--    weight in phi direction
1340       wphi = ( cosmo_lat(palm_jj(i,j,2)) - palm_clat(i,j) ) * cosmo_dyi
1341
1342       IF (wlambda > 1.0_wp .OR. wlambda < 0.0_wp)  THEN
1343           message = "Horizontal weight wlambda = " // TRIM(real_to_str(wlambda)) //   &
1344                     " is out bounds."
1345           CALL inifor_abort('compute_horizontal_interp_weights', message)
1346       ENDIF
1347       IF (wphi > 1.0_wp .OR. wphi < 0.0_wp)  THEN
1348           message = "Horizontal weight wphi = " // TRIM(real_to_str(wphi)) //   &
1349                     " is out bounds."
1350           CALL inifor_abort('compute_horizontal_interp_weights', message)
1351       ENDIF
1352
1353       palm_w_horiz(i,j,1) = wlambda * wphi
1354       palm_w_horiz(i,j,2) = wlambda * (1.0_wp - wphi)
1355       palm_w_horiz(i,j,3) = (1.0_wp - wlambda) * (1.0_wp - wphi)
1356       palm_w_horiz(i,j,4) = 1.0_wp - SUM( palm_w_horiz(i,j,1:3) )
1357
1358    ENDDO
1359    ENDDO
1360       
1361 END SUBROUTINE compute_horizontal_interp_weights
1362
1363
1364!------------------------------------------------------------------------------!
1365! Description:
1366! ------------
1367!> Interpolates u and v components of velocities located at cell faces to the
1368!> cell centres by averaging neighbouring values.
1369!>
1370!> This routine is designed to be used with COSMO-DE arrays where there are the
1371!> same number of grid points for scalars (centres) and velocities (faces). In
1372!> COSMO-DE the velocity points are staggared one half grid spaceing up-grid
1373!> which means the first centre point has to be omitted and is set to zero.
1374!------------------------------------------------------------------------------!
1375 SUBROUTINE centre_velocities(u_face, v_face, u_centre, v_centre)
1376    REAL(wp), DIMENSION(0:,0:,0:), INTENT(IN)  ::  u_face, v_face
1377    REAL(wp), DIMENSION(0:,0:,0:), INTENT(OUT) ::  u_centre, v_centre
1378    INTEGER(iwp) ::  nx, ny
1379
1380    nx = UBOUND(u_face, 1)
1381    ny = UBOUND(u_face, 2)
1382
1383    u_centre(0,:,:)  = 0.0_wp
1384    u_centre(1:,:,:) = 0.5_wp * ( u_face(0:nx-1,:,:) + u_face(1:,:,:) )
1385
1386    v_centre(:,0,:)  = 0.0_wp
1387    v_centre(:,1:,:) = 0.5_wp * ( v_face(:,0:ny-1,:) + v_face(:,1:,:) )
1388 END SUBROUTINE centre_velocities
1389
1390
1391!------------------------------------------------------------------------------!
1392! Description:
1393! ------------
1394!> Compute the geographical latitude of a point given in rotated-pole cordinates
1395!------------------------------------------------------------------------------!
1396 FUNCTION phirot2phi (phirot, rlarot, polphi, polgam)
1397 
1398    REAL(wp), INTENT (IN) ::  polphi      !< latitude of the rotated north pole
1399    REAL(wp), INTENT (IN) ::  phirot      !< latitude in the rotated system
1400    REAL(wp), INTENT (IN) ::  rlarot      !< longitude in the rotated system
1401    REAL(wp), INTENT (IN) ::  polgam      !< angle between the north poles of the systems
1402
1403    REAL(wp)              ::  phirot2phi  !< latitude in the geographical system
1404   
1405    REAL(wp)              ::  zsinpol, zcospol, zphis, zrlas, zarg, zgam
1406 
1407    zsinpol = SIN(polphi * TO_RADIANS)
1408    zcospol = COS(polphi * TO_RADIANS)
1409    zphis   = phirot * TO_RADIANS
1410
1411    IF (rlarot > 180.0_wp)  THEN
1412       zrlas = rlarot - 360.0_wp
1413    ELSE
1414       zrlas = rlarot
1415    ENDIF
1416    zrlas = zrlas * TO_RADIANS
1417 
1418    IF (polgam /= 0.0_wp)  THEN
1419       zgam = polgam * TO_RADIANS
1420       zarg = zsinpol * SIN (zphis) +                                       &
1421              zcospol * COS(zphis) * ( COS(zrlas) * COS(zgam) -             &
1422                                       SIN(zgam)  * SIN(zrlas) )
1423    ELSE
1424       zarg = zcospol * COS (zphis) * COS (zrlas) + zsinpol * SIN (zphis)
1425    ENDIF
1426   
1427    phirot2phi = ASIN (zarg) * TO_DEGREES
1428 
1429 END FUNCTION phirot2phi
1430
1431
1432!------------------------------------------------------------------------------!
1433! Description:
1434! ------------
1435!> Compute the geographical latitude of a point given in rotated-pole cordinates
1436!------------------------------------------------------------------------------!
1437 FUNCTION phi2phirot (phi, rla, polphi, pollam)
1438 
1439    REAL(wp), INTENT (IN) ::  polphi !< latitude of the rotated north pole
1440    REAL(wp), INTENT (IN) ::  pollam !< longitude of the rotated north pole
1441    REAL(wp), INTENT (IN) ::  phi    !< latitude in the geographical system
1442    REAL(wp), INTENT (IN) ::  rla    !< longitude in the geographical system
1443   
1444    REAL(wp) ::  phi2phirot          !< longitude in the rotated system
1445   
1446    REAL(wp) ::  zsinpol, zcospol, zlampol, zphi, zrla, zarg1, zarg2, zrla1
1447   
1448    zsinpol = SIN(polphi * TO_RADIANS)
1449    zcospol = COS(polphi * TO_RADIANS)
1450    zlampol = pollam * TO_RADIANS
1451    zphi    = phi * TO_RADIANS
1452
1453    IF (rla > 180.0_wp)  THEN
1454       zrla1 = rla - 360.0_wp
1455    ELSE
1456       zrla1 = rla
1457    ENDIF
1458    zrla = zrla1 * TO_RADIANS
1459   
1460    zarg1 = SIN(zphi) * zsinpol
1461    zarg2 = COS(zphi) * zcospol * COS(zrla - zlampol)
1462   
1463    phi2phirot = ASIN(zarg1 + zarg2) * TO_DEGREES
1464 
1465 END FUNCTION phi2phirot
1466
1467
1468!------------------------------------------------------------------------------!
1469! Description:
1470! ------------
1471!> Compute the geographical longitude of a point given in rotated-pole cordinates
1472!------------------------------------------------------------------------------!
1473 FUNCTION rlarot2rla(phirot, rlarot, polphi, pollam, polgam)
1474 
1475    REAL(wp), INTENT (IN) ::  polphi !< latitude of the rotated north pole
1476    REAL(wp), INTENT (IN) ::  pollam !< longitude of the rotated north pole
1477    REAL(wp), INTENT (IN) ::  phirot !< latitude in the rotated system
1478    REAL(wp), INTENT (IN) ::  rlarot !< longitude in the rotated system
1479    REAL(wp), INTENT (IN) ::  polgam !< angle between the north poles of the systems
1480   
1481    REAL(wp) ::  rlarot2rla          !< latitude in the geographical system
1482   
1483    REAL(wp) ::  zsinpol, zcospol, zlampol, zphis, zrlas, zarg1, zarg2, zgam
1484   
1485    zsinpol = SIN(TO_RADIANS * polphi)
1486    zcospol = COS(TO_RADIANS * polphi)
1487    zlampol = TO_RADIANS * pollam
1488    zphis   = TO_RADIANS * phirot
1489
1490    IF (rlarot > 180.0_wp)  THEN
1491       zrlas = rlarot - 360.0_wp
1492    ELSE
1493       zrlas = rlarot
1494    ENDIF
1495    zrlas   = TO_RADIANS * zrlas
1496   
1497    IF (polgam /= 0.0_wp)  THEN
1498       zgam  = TO_RADIANS * polgam
1499       zarg1 = SIN(zlampol) * (zcospol * SIN(zphis) - zsinpol*COS(zphis) *  &
1500               (COS(zrlas) * COS(zgam) - SIN(zrlas) * SIN(zgam)) ) -        &
1501               COS(zlampol) * COS(zphis) * ( SIN(zrlas) * COS(zgam) +       &
1502                                             COS(zrlas) * SIN(zgam) )
1503   
1504       zarg2 = COS (zlampol) * (zcospol * SIN(zphis) - zsinpol*COS(zphis) * &
1505               (COS(zrlas) * COS(zgam) - SIN(zrlas) * SIN(zgam)) ) +        &
1506               SIN(zlampol) * COS(zphis) * ( SIN(zrlas) * COS(zgam) +       &
1507                                             COS(zrlas) * SIN(zgam) )
1508    ELSE
1509       zarg1   = SIN (zlampol) * (-zsinpol * COS(zrlas) * COS(zphis)  +     &
1510                                   zcospol *              SIN(zphis)) -     &
1511                 COS (zlampol) *             SIN(zrlas) * COS(zphis)
1512       zarg2   = COS (zlampol) * (-zsinpol * COS(zrlas) * COS(zphis)  +     &
1513                                   zcospol *              SIN(zphis)) +     &
1514                 SIN (zlampol) *             SIN(zrlas) * COS(zphis)
1515    ENDIF
1516   
1517    IF (zarg2 == 0.0_wp)  zarg2 = 1.0E-20_wp
1518   
1519    rlarot2rla = ATAN2(zarg1,zarg2) * TO_DEGREES
1520     
1521 END FUNCTION rlarot2rla
1522
1523
1524!------------------------------------------------------------------------------!
1525! Description:
1526! ------------
1527!> Compute the rotated-pole longitude of a point given in geographical cordinates
1528!------------------------------------------------------------------------------!
1529 FUNCTION rla2rlarot ( phi, rla, polphi, pollam, polgam )
1530
1531    REAL(wp), INTENT (IN) ::  polphi !< latitude of the rotated north pole
1532    REAL(wp), INTENT (IN) ::  pollam !< longitude of the rotated north pole
1533    REAL(wp), INTENT (IN) ::  phi    !< latitude in geographical system
1534    REAL(wp), INTENT (IN) ::  rla    !< longitude in geographical system
1535    REAL(wp), INTENT (IN) ::  polgam !< angle between the north poles of the systems
1536   
1537    REAL(wp) ::  rla2rlarot    !< latitude in the the rotated system
1538   
1539    REAL(wp) ::  zsinpol, zcospol, zlampol, zphi, zrla, zarg1, zarg2, zrla1
1540   
1541    zsinpol = SIN(polphi * TO_RADIANS)
1542    zcospol = COS(polphi * TO_RADIANS)
1543    zlampol = pollam * TO_RADIANS
1544    zphi    = phi * TO_RADIANS
1545
1546    IF (rla > 180.0_wp)  THEN
1547       zrla1 = rla - 360.0_wp
1548    ELSE
1549       zrla1 = rla
1550    ENDIF
1551    zrla = zrla1 * TO_RADIANS
1552   
1553    zarg1 = - SIN (zrla-zlampol) * COS(zphi)
1554    zarg2 = - zsinpol * COS(zphi) * COS(zrla-zlampol) + zcospol * SIN(zphi)
1555   
1556    IF (zarg2 == 0.0_wp)  zarg2 = 1.0E-20_wp
1557   
1558    rla2rlarot = ATAN2 (zarg1,zarg2) * TO_DEGREES
1559   
1560    IF (polgam /= 0.0_wp )  THEN
1561       rla2rlarot = polgam + rla2rlarot
1562       IF (rla2rlarot > 180._wp)  rla2rlarot = rla2rlarot - 360.0_wp
1563    ENDIF
1564   
1565 END FUNCTION rla2rlarot
1566
1567
1568!------------------------------------------------------------------------------!
1569! Description:
1570! ------------
1571!> Rotate the given velocity vector (u,v) from the geographical to the
1572!> rotated-pole system
1573!------------------------------------------------------------------------------!
1574 SUBROUTINE uv2uvrot(u, v, rlat, rlon, pollat, pollon, urot, vrot)
1575 
1576    REAL(wp), INTENT (IN)  ::  u, v           !< wind components in the true geographical system
1577    REAL(wp), INTENT (IN)  ::  rlat, rlon     !< coordinates in the true geographical system
1578    REAL(wp), INTENT (IN)  ::  pollat, pollon !< latitude and longitude of the north pole of the rotated grid
1579   
1580    REAL(wp), INTENT (OUT) ::  urot, vrot     !< wind components in the rotated grid             
1581   
1582    REAL (wp) ::  zsinpol, zcospol, zlonp, zlat, zarg1, zarg2, znorm
1583   
1584    zsinpol = SIN(pollat * TO_RADIANS)
1585    zcospol = COS(pollat * TO_RADIANS)
1586    zlonp   = (pollon-rlon) * TO_RADIANS
1587    zlat    = rlat * TO_RADIANS
1588   
1589    zarg1 = zcospol * SIN(zlonp)
1590    zarg2 = zsinpol * COS(zlat) - zcospol * SIN(zlat) * COS(zlonp)
1591    znorm = 1.0_wp / SQRT(zarg1*zarg1 + zarg2*zarg2)
1592   
1593    urot = u * zarg2 * znorm - v * zarg1 * znorm
1594    vrot = u * zarg1 * znorm + v * zarg2 * znorm
1595 
1596 END SUBROUTINE uv2uvrot
1597
1598
1599!------------------------------------------------------------------------------!
1600! Description:
1601! ------------
1602!> Rotate the given velocity vector (urot, vrot) from the rotated-pole to the
1603!> geographical system
1604!------------------------------------------------------------------------------!
1605 SUBROUTINE uvrot2uv (urot, vrot, rlat, rlon, pollat, pollon, u, v)
1606 
1607    REAL(wp), INTENT(IN) ::  urot, vrot     !< wind components in the rotated grid
1608    REAL(wp), INTENT(IN) ::  rlat, rlon     !< latitude and longitude in the true geographical system
1609    REAL(wp), INTENT(IN) ::  pollat, pollon !< latitude and longitude of the north pole of the rotated grid
1610   
1611    REAL(wp), INTENT(OUT) ::  u, v          !< wind components in the true geographical system
1612   
1613    REAL(wp) ::  zsinpol, zcospol, zlonp, zlat, zarg1, zarg2, znorm
1614 
1615    zsinpol = SIN(pollat * TO_RADIANS)
1616    zcospol = COS(pollat * TO_RADIANS)
1617    zlonp   = (pollon-rlon) * TO_RADIANS
1618    zlat    = rlat * TO_RADIANS
1619 
1620    zarg1 = zcospol * SIN(zlonp)
1621    zarg2 = zsinpol * COS(zlat) - zcospol * SIN(zlat) * COS(zlonp)
1622    znorm = 1.0_wp / SQRT(zarg1*zarg1 + zarg2*zarg2)
1623 
1624    u =   urot * zarg2 * znorm + vrot * zarg1 * znorm
1625    v = - urot * zarg1 * znorm + vrot * zarg2 * znorm
1626 
1627 END SUBROUTINE uvrot2uv
1628
1629 END MODULE inifor_transform
1630#endif
1631
Note: See TracBrowser for help on using the repository browser.