1 | !> @file src/inifor_transform.f90 |
---|
2 | !------------------------------------------------------------------------------! |
---|
3 | ! This file is part of the PALM model system. |
---|
4 | ! |
---|
5 | ! PALM is free software: you can redistribute it and/or modify it under the |
---|
6 | ! terms of the GNU General Public License as published by the Free Software |
---|
7 | ! Foundation, either version 3 of the License, or (at your option) any later |
---|
8 | ! version. |
---|
9 | ! |
---|
10 | ! PALM is distributed in the hope that it will be useful, but WITHOUT ANY |
---|
11 | ! WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR |
---|
12 | ! A PARTICULAR PURPOSE. See the GNU General Public License for more details. |
---|
13 | ! |
---|
14 | ! You should have received a copy of the GNU General Public License along with |
---|
15 | ! PALM. If not, see <http://www.gnu.org/licenses/>. |
---|
16 | ! |
---|
17 | ! Copyright 2017-2018 Leibniz Universitaet Hannover |
---|
18 | ! Copyright 2017-2018 Deutscher Wetterdienst Offenbach |
---|
19 | !------------------------------------------------------------------------------! |
---|
20 | ! |
---|
21 | ! Current revisions: |
---|
22 | ! ----------------- |
---|
23 | ! |
---|
24 | ! |
---|
25 | ! Former revisions: |
---|
26 | ! ----------------- |
---|
27 | ! $Id: inifor_transform.f90 3447 2018-10-29 15:52:54Z kanani $ |
---|
28 | ! Renamed source files for compatibilty with PALM build system |
---|
29 | ! |
---|
30 | ! |
---|
31 | ! 3395 2018-10-22 17:32:49Z eckhard |
---|
32 | ! Switched addressing of averaging regions from index bounds to list of columns |
---|
33 | ! Added routines for the computation of geostrophic winds including: |
---|
34 | ! - the downward extrapolation of density (linear) and |
---|
35 | ! - pressure (hydrostatic equation) and |
---|
36 | ! - rotation of geostrophic wind components to PALM frame of reference |
---|
37 | ! |
---|
38 | ! 3183 2018-07-27 14:25:55Z suehring |
---|
39 | ! Introduced new PALM grid stretching |
---|
40 | ! Removed unnecessary subroutine parameters |
---|
41 | ! Renamed kcur to k_intermediate |
---|
42 | ! |
---|
43 | ! |
---|
44 | ! 3182 2018-07-27 13:36:03Z suehring |
---|
45 | ! Initial revision |
---|
46 | ! |
---|
47 | ! |
---|
48 | ! |
---|
49 | ! Authors: |
---|
50 | ! -------- |
---|
51 | ! @author Eckhard Kadasch |
---|
52 | ! |
---|
53 | ! Description: |
---|
54 | ! ------------ |
---|
55 | !> The transform module provides INIFOR's low-level transformation and |
---|
56 | !> interpolation routines. The rotated-pole transformation routines phirot2phi, |
---|
57 | !> phi2phirot, rlarot2rla, rla2rlarot, uv2uvrot, and uvrot2uv are adapted from |
---|
58 | !> int2lm's utility routines. |
---|
59 | !------------------------------------------------------------------------------! |
---|
60 | MODULE transform |
---|
61 | |
---|
62 | USE control |
---|
63 | USE defs, & |
---|
64 | ONLY: G, TO_DEGREES, TO_RADIANS, PI, dp |
---|
65 | USE types |
---|
66 | USE util, & |
---|
67 | ONLY: real_to_str, str |
---|
68 | |
---|
69 | IMPLICIT NONE |
---|
70 | |
---|
71 | CONTAINS |
---|
72 | |
---|
73 | !------------------------------------------------------------------------------! |
---|
74 | ! Description: |
---|
75 | ! ------------ |
---|
76 | !> Interpolates linearly in the vertical direction in very column (i,j) of the |
---|
77 | !> output array outvar(i,j,:) using values of the source array invar. In cells |
---|
78 | !> that are outside the COSMO-DE domain, indicated by negative interpolation |
---|
79 | !> weights, extrapolate constantly from the cell above. |
---|
80 | !> |
---|
81 | !> Input parameters: |
---|
82 | !> ----------------- |
---|
83 | !> invar : Array of source data |
---|
84 | !> |
---|
85 | !> outgrid % kk : Array of vertical neighbour indices. kk(i,j,k,:) contain the |
---|
86 | !> indices of the two vertical neighbors of PALM-4U point (i,j,k) on the |
---|
87 | !> input grid corresponding to the source data invar. |
---|
88 | !> |
---|
89 | !> outgrid % w_verti : Array of weights for vertical linear interpolation |
---|
90 | !> corresponding to neighbour points indexed by kk. |
---|
91 | !> |
---|
92 | !> Output papameters: |
---|
93 | !> ------------------ |
---|
94 | !> outvar : Array of interpolated data |
---|
95 | !------------------------------------------------------------------------------! |
---|
96 | SUBROUTINE interpolate_1d(in_arr, out_arr, outgrid) |
---|
97 | TYPE(grid_definition), INTENT(IN) :: outgrid |
---|
98 | REAL(dp), INTENT(IN) :: in_arr(0:,0:,0:) |
---|
99 | REAL(dp), INTENT(OUT) :: out_arr(0:,0:,:) |
---|
100 | |
---|
101 | INTEGER :: i, j, k, l, nz |
---|
102 | |
---|
103 | nz = UBOUND(out_arr, 3) |
---|
104 | |
---|
105 | DO j = LBOUND(out_arr, 2), UBOUND(out_arr, 2) |
---|
106 | DO i = LBOUND(out_arr, 1), UBOUND(out_arr, 1) |
---|
107 | DO k = nz, LBOUND(out_arr, 3), -1 |
---|
108 | |
---|
109 | ! TODO: Remove IF clause and extrapolate based on a critical vertical |
---|
110 | ! TODO: index marking the lower bound of COSMO-DE data coverage. |
---|
111 | ! Check for negative interpolation weights indicating grid points |
---|
112 | ! below COSMO-DE domain and extrapolate from the top in such cells. |
---|
113 | IF (outgrid % w_verti(i,j,k,1) < -1.0_dp .AND. k < nz) THEN |
---|
114 | out_arr(i,j,k) = out_arr(i,j,k+1) |
---|
115 | ELSE |
---|
116 | out_arr(i,j,k) = 0.0_dp |
---|
117 | DO l = 1, 2 |
---|
118 | out_arr(i,j,k) = out_arr(i,j,k) + & |
---|
119 | outgrid % w_verti(i,j,k,l) * & |
---|
120 | in_arr(i,j,outgrid % kk(i,j,k, l) ) |
---|
121 | END DO |
---|
122 | END IF |
---|
123 | END DO |
---|
124 | END DO |
---|
125 | END DO |
---|
126 | END SUBROUTINE interpolate_1d |
---|
127 | |
---|
128 | |
---|
129 | !------------------------------------------------------------------------------! |
---|
130 | ! Description: |
---|
131 | ! ------------ |
---|
132 | !> Interpolates bi-linearly in horizontal planes on every k level of the output |
---|
133 | !> array outvar(:,:,k) using values of the source array invar(:,:,:). The source |
---|
134 | !> (invar) and interpolation array (outvar) need to have matching dimensions. |
---|
135 | !> |
---|
136 | !> Input parameters: |
---|
137 | !> ----------------- |
---|
138 | !> invar : Array of source data |
---|
139 | !> |
---|
140 | !> outgrid % ii, % jj : Array of neighbour indices in x and y direction. |
---|
141 | !> ii(i,j,k,:), and jj(i,j,k,:) contain the four horizontal neighbour points |
---|
142 | !> of PALM-4U point (i,j,k) on the input grid corresponding to the source |
---|
143 | !> data invar. (The outgrid carries the relationship with the ingrid in the |
---|
144 | ! form of the interpoaltion weights.) |
---|
145 | !> |
---|
146 | !> outgrid % w_horiz: Array of weights for horizontal bi-linear interpolation |
---|
147 | !> corresponding to neighbour points indexed by ii and jj. |
---|
148 | !> |
---|
149 | !> Output papameters: |
---|
150 | !> ------------------ |
---|
151 | !> outvar : Array of interpolated data |
---|
152 | !------------------------------------------------------------------------------! |
---|
153 | SUBROUTINE interpolate_2d(invar, outvar, outgrid, ncvar) |
---|
154 | ! I index 0-based for the indices of the outvar to be consistent with the |
---|
155 | ! outgrid indices and interpolation weights. |
---|
156 | TYPE(grid_definition), INTENT(IN) :: outgrid |
---|
157 | REAL(dp), INTENT(IN) :: invar(0:,0:,0:) |
---|
158 | REAL(dp), INTENT(OUT) :: outvar(0:,0:,0:) |
---|
159 | TYPE(nc_var), INTENT(IN), OPTIONAL :: ncvar |
---|
160 | |
---|
161 | INTEGER :: i, j, k, l |
---|
162 | |
---|
163 | ! TODO: check if input dimensions are consistent, i.e. ranges are correct |
---|
164 | IF (UBOUND(outvar, 3) .GT. UBOUND(invar, 3)) THEN |
---|
165 | message = "Output array for '" // TRIM(ncvar % name) // "' has ' more levels (" // & |
---|
166 | TRIM(str(UBOUND(outvar, 3))) // ") than input variable ("//& |
---|
167 | TRIM(str(UBOUND(invar, 3))) // ")." |
---|
168 | CALL abort('interpolate_2d', message) |
---|
169 | END IF |
---|
170 | |
---|
171 | DO k = 0, UBOUND(outvar, 3) |
---|
172 | DO j = 0, UBOUND(outvar, 2) |
---|
173 | DO i = 0, UBOUND(outvar, 1) |
---|
174 | outvar(i,j,k) = 0.0_dp |
---|
175 | DO l = 1, 4 |
---|
176 | |
---|
177 | outvar(i,j,k) = outvar(i,j,k) + & |
---|
178 | outgrid % w_horiz(i,j,l) * invar( outgrid % ii(i,j,l), & |
---|
179 | outgrid % jj(i,j,l), & |
---|
180 | k ) |
---|
181 | END DO |
---|
182 | END DO |
---|
183 | END DO |
---|
184 | END DO |
---|
185 | |
---|
186 | END SUBROUTINE interpolate_2d |
---|
187 | |
---|
188 | |
---|
189 | SUBROUTINE average_2d(in_arr, out_arr, ii, jj) |
---|
190 | REAL(dp), INTENT(IN) :: in_arr(0:,0:,0:) |
---|
191 | REAL(dp), INTENT(OUT) :: out_arr(0:) |
---|
192 | INTEGER, INTENT(IN), DIMENSION(:) :: ii, jj |
---|
193 | |
---|
194 | INTEGER :: i, j, k, l |
---|
195 | REAL(dp) :: ni |
---|
196 | |
---|
197 | IF (SIZE(ii) .NE. SIZE(jj)) THEN |
---|
198 | message = "Length of 'ii' and 'jj' index lists do not match." // & |
---|
199 | NEW_LINE(' ') // "ii has " // str(SIZE(ii)) // " elements, " // & |
---|
200 | NEW_LINE(' ') // "jj has " // str(SIZE(jj)) // "." |
---|
201 | CALL abort('average_2d', message) |
---|
202 | END IF |
---|
203 | |
---|
204 | DO k = 0, UBOUND(out_arr, 1) |
---|
205 | |
---|
206 | out_arr(k) = 0.0_dp |
---|
207 | DO l = 1, UBOUND(ii, 1) |
---|
208 | i = ii(l) |
---|
209 | j = jj(l) |
---|
210 | out_arr(k) = out_arr(k) +& |
---|
211 | in_arr(i, j, k) |
---|
212 | END DO |
---|
213 | |
---|
214 | END DO |
---|
215 | |
---|
216 | ni = 1.0_dp / SIZE(ii) |
---|
217 | out_arr(:) = out_arr(:) * ni |
---|
218 | |
---|
219 | END SUBROUTINE average_2d |
---|
220 | |
---|
221 | |
---|
222 | SUBROUTINE interpolate_3d(source_array, palm_array, palm_intermediate, palm_grid) |
---|
223 | TYPE(grid_definition), INTENT(IN) :: palm_intermediate, palm_grid |
---|
224 | REAL(dp), DIMENSION(:,:,:), INTENT(IN) :: source_array |
---|
225 | REAL(dp), DIMENSION(:,:,:), INTENT(OUT) :: palm_array |
---|
226 | REAL(dp), DIMENSION(:,:,:), ALLOCATABLE :: intermediate_array |
---|
227 | INTEGER :: nx, ny, nlev |
---|
228 | |
---|
229 | nx = palm_intermediate % nx |
---|
230 | ny = palm_intermediate % ny |
---|
231 | nlev = palm_intermediate % nz ! nlev |
---|
232 | |
---|
233 | ! Interpolate from COSMO-DE to intermediate grid. Allocating with one |
---|
234 | ! less point in the vertical, since scalars like T have 50 instead of 51 |
---|
235 | ! points in COSMO-DE. |
---|
236 | ALLOCATE(intermediate_array(0:nx, 0:ny, 0:nlev-1)) ! |
---|
237 | |
---|
238 | CALL interpolate_2d(source_array, intermediate_array, palm_intermediate) |
---|
239 | |
---|
240 | ! Interpolate from intermediate grid to palm_grid grid, includes |
---|
241 | ! extrapolation for cells below COSMO-DE domain. |
---|
242 | CALL interpolate_1d(intermediate_array, palm_array, palm_grid) |
---|
243 | |
---|
244 | DEALLOCATE(intermediate_array) |
---|
245 | |
---|
246 | END SUBROUTINE interpolate_3d |
---|
247 | |
---|
248 | |
---|
249 | SUBROUTINE average_profile(source_array, profile_array, avg_grid) |
---|
250 | TYPE(grid_definition), INTENT(IN) :: avg_grid |
---|
251 | REAL(dp), DIMENSION(:,:,:), INTENT(IN) :: source_array |
---|
252 | REAL(dp), DIMENSION(:), INTENT(OUT) :: profile_array |
---|
253 | |
---|
254 | INTEGER :: i_source, j_source, k_profile, k_source, l, m |
---|
255 | |
---|
256 | REAL :: ni_columns |
---|
257 | |
---|
258 | profile_array(:) = 0.0_dp |
---|
259 | |
---|
260 | DO l = 1, avg_grid % n_columns |
---|
261 | i_source = avg_grid % iii(l) |
---|
262 | j_source = avg_grid % jjj(l) |
---|
263 | |
---|
264 | DO k_profile = avg_grid % k_min, UBOUND(profile_array, 1) ! PALM levels |
---|
265 | |
---|
266 | DO m = 1, 2 ! vertical interpolation neighbours |
---|
267 | |
---|
268 | k_source = avg_grid % kkk(l, k_profile, m) |
---|
269 | |
---|
270 | profile_array(k_profile) = profile_array(k_profile) & |
---|
271 | + avg_grid % w(l, k_profile, m) & |
---|
272 | * source_array(i_source, j_source, k_source) |
---|
273 | |
---|
274 | END DO ! m, vertical interpolation neighbours |
---|
275 | |
---|
276 | END DO ! k_profile, PALM levels |
---|
277 | |
---|
278 | END DO ! l, horizontal neighbours |
---|
279 | |
---|
280 | ni_columns = 1.0_dp / avg_grid % n_columns |
---|
281 | profile_array(:) = profile_array(:) * ni_columns |
---|
282 | |
---|
283 | ! Extrapolate constant to the bottom |
---|
284 | profile_array(1:avg_grid % k_min-1) = profile_array(avg_grid % k_min) |
---|
285 | |
---|
286 | END SUBROUTINE average_profile |
---|
287 | |
---|
288 | |
---|
289 | SUBROUTINE extrapolate_density(rho, avg_grid) |
---|
290 | REAL(dp), DIMENSION(:), INTENT(INOUT) :: rho |
---|
291 | TYPE(grid_definition), INTENT(IN) :: avg_grid |
---|
292 | |
---|
293 | REAL(dp) :: drhodz, dz, zk, rhok |
---|
294 | INTEGER :: k_min |
---|
295 | |
---|
296 | k_min = avg_grid % k_min |
---|
297 | zk = avg_grid % z(k_min) |
---|
298 | rhok = rho(k_min) |
---|
299 | dz = avg_grid % z(k_min + 1) - avg_grid % z(k_min) |
---|
300 | drhodz = (rho(k_min + 1) - rho(k_min)) / dz |
---|
301 | |
---|
302 | rho(1:k_min-1) = rhok + drhodz * (avg_grid % z(1:k_min-1) - zk) |
---|
303 | |
---|
304 | END SUBROUTINE extrapolate_density |
---|
305 | |
---|
306 | |
---|
307 | SUBROUTINE extrapolate_pressure(p, rho, avg_grid) |
---|
308 | REAL(dp), DIMENSION(:), INTENT(IN) :: rho |
---|
309 | REAL(dp), DIMENSION(:), INTENT(INOUT) :: p |
---|
310 | TYPE(grid_definition), INTENT(IN) :: avg_grid |
---|
311 | |
---|
312 | REAL(dp) :: drhodz, dz, zk, rhok |
---|
313 | INTEGER :: k, k_min |
---|
314 | |
---|
315 | k_min = avg_grid % k_min |
---|
316 | zk = avg_grid % z(k_min) |
---|
317 | rhok = rho(k_min) |
---|
318 | dz = avg_grid % z(k_min + 1) - avg_grid % z(k_min) |
---|
319 | drhodz = 0.5_dp * (rho(k_min + 1) - rho(k_min)) / dz |
---|
320 | |
---|
321 | DO k = 1, k_min-1 |
---|
322 | p(k) = constant_density_pressure(p(k_min), zk, rhok, drhodz, & |
---|
323 | avg_grid % z(k), G) |
---|
324 | END DO |
---|
325 | |
---|
326 | END SUBROUTINE extrapolate_pressure |
---|
327 | |
---|
328 | |
---|
329 | !------------------------------------------------------------------------------! |
---|
330 | ! Description: |
---|
331 | ! ------------ |
---|
332 | !> Takes the averaged pressure profile <p> and sets the lowest entry to the |
---|
333 | !> extrapolated pressure at the surface. |
---|
334 | !------------------------------------------------------------------------------! |
---|
335 | SUBROUTINE get_surface_pressure(p, rho, avg_grid) |
---|
336 | REAL(dp), DIMENSION(:), INTENT(IN) :: rho |
---|
337 | REAL(dp), DIMENSION(:), INTENT(INOUT) :: p |
---|
338 | TYPE(grid_definition), INTENT(IN) :: avg_grid |
---|
339 | |
---|
340 | REAL(dp) :: drhodz, dz, zk, rhok |
---|
341 | INTEGER :: k, k_min |
---|
342 | |
---|
343 | k_min = avg_grid % k_min |
---|
344 | zk = avg_grid % z(k_min) |
---|
345 | rhok = rho(k_min) |
---|
346 | dz = avg_grid % z(k_min + 1) - avg_grid % z(k_min) |
---|
347 | drhodz = 0.5_dp * (rho(k_min + 1) - rho(k_min)) / dz |
---|
348 | |
---|
349 | p(1) = constant_density_pressure(p(k_min), zk, rhok, drhodz, & |
---|
350 | 0.0, G) |
---|
351 | |
---|
352 | END SUBROUTINE get_surface_pressure |
---|
353 | |
---|
354 | |
---|
355 | FUNCTION constant_density_pressure(pk, zk, rhok, drhodz, z, g) RESULT(p) |
---|
356 | |
---|
357 | REAL(dp), INTENT(IN) :: pk, zk, rhok, drhodz, g, z |
---|
358 | REAL(dp) :: p |
---|
359 | |
---|
360 | p = pk + ( zk - z ) * g * ( rhok + 0.5*drhodz * (zk - z) ) |
---|
361 | |
---|
362 | END FUNCTION constant_density_pressure |
---|
363 | |
---|
364 | !-----------------------------------------------------------------------------! |
---|
365 | ! Description: |
---|
366 | ! ----------- |
---|
367 | !> This routine computes profiles of the two geostrophic wind components ug and |
---|
368 | !> vg. |
---|
369 | !-----------------------------------------------------------------------------! |
---|
370 | SUBROUTINE geostrophic_winds(p_north, p_south, p_east, p_west, rho, f3, & |
---|
371 | Lx, Ly, phi_n, lam_n, phi_g, lam_g, ug, vg) |
---|
372 | |
---|
373 | REAL(dp), DIMENSION(:), INTENT(IN) :: p_north, p_south, p_east, p_west, & |
---|
374 | rho |
---|
375 | REAL(dp), INTENT(IN) :: f3, Lx, Ly, phi_n, lam_n, phi_g, lam_g |
---|
376 | REAL(dp), DIMENSION(:), INTENT(OUT) :: ug, vg |
---|
377 | REAL(dp) :: facx, facy |
---|
378 | |
---|
379 | facx = 1.0_dp / (Lx * f3) |
---|
380 | facy = 1.0_dp / (Ly * f3) |
---|
381 | ug(:) = - facy / rho(:) * (p_north(:) - p_south(:)) |
---|
382 | vg(:) = facx / rho(:) * (p_east(:) - p_west(:)) |
---|
383 | |
---|
384 | CALL rotate_vector_field( & |
---|
385 | ug, vg, angle = meridian_convergence_rotated(phi_n, lam_n, phi_g, lam_g)& |
---|
386 | ) |
---|
387 | |
---|
388 | END SUBROUTINE geostrophic_winds |
---|
389 | |
---|
390 | |
---|
391 | !-----------------------------------------------------------------------------! |
---|
392 | ! Description: |
---|
393 | ! ----------- |
---|
394 | !> This routine computes the inverse Plate Carree projection, i.e. in projects |
---|
395 | !> Cartesian coordinates (x,y) onto a sphere. It returns the latitude and |
---|
396 | !> lngitude of a geographical system centered at x0 and y0. |
---|
397 | !-----------------------------------------------------------------------------! |
---|
398 | SUBROUTINE inv_plate_carree(x, y, x0, y0, r, lat, lon) |
---|
399 | REAL(dp), INTENT(IN) :: x(:), y(:), x0, y0, r |
---|
400 | REAL(dp), INTENT(OUT) :: lat(:), lon(:) |
---|
401 | |
---|
402 | REAL(dp) :: ri |
---|
403 | |
---|
404 | ! TODO check dimensions of lat/lon and y/x match |
---|
405 | |
---|
406 | ri = 1.0_dp / r |
---|
407 | |
---|
408 | lat(:) = (y(:) - y0) * ri |
---|
409 | lon(:) = (x(:) - x0) * ri |
---|
410 | END SUBROUTINE |
---|
411 | |
---|
412 | |
---|
413 | !-----------------------------------------------------------------------------! |
---|
414 | ! Description: |
---|
415 | ! ------------ |
---|
416 | !> Computes the reverse Plate-Carree projection of a x or y position on a |
---|
417 | !> Cartesian grid. |
---|
418 | !> |
---|
419 | !> Input parameters: |
---|
420 | !> ----------------- |
---|
421 | !> xy : x or y coordinate of the Cartasian grid point [m]. |
---|
422 | !> |
---|
423 | !> xy0 : x or y coordinate that coincides with the origin of the underlying |
---|
424 | !> sperical system (crossing point of the equator and prime meridian) [m]. |
---|
425 | !> |
---|
426 | !> r : Radius of the of the underlying sphere, e.g. EARTH_RADIUS [m]. |
---|
427 | !> |
---|
428 | !> Returns: |
---|
429 | !> -------- |
---|
430 | !> project : Longitude (in case xy = x) or latitude (xy = y) of the given input |
---|
431 | !> coordinate xy. |
---|
432 | !------------------------------------------------------------------------------! |
---|
433 | ELEMENTAL REAL(dp) FUNCTION project(xy, xy0, r) |
---|
434 | REAL(dp), INTENT(IN) :: xy, xy0, r |
---|
435 | REAL(dp) :: ri |
---|
436 | |
---|
437 | ! If this elemental function is called with a large array as xy, it is |
---|
438 | ! computationally more efficient to precompute the inverse radius and |
---|
439 | ! then muliply. |
---|
440 | ri = 1.0_dp / r |
---|
441 | |
---|
442 | project = (xy - xy0) * ri |
---|
443 | |
---|
444 | END FUNCTION project |
---|
445 | |
---|
446 | |
---|
447 | REAL(dp) FUNCTION phic_to_phin(phi_c) |
---|
448 | REAL(dp), INTENT(IN) :: phi_c |
---|
449 | |
---|
450 | phic_to_phin = 0.5_dp * PI - ABS(phi_c) |
---|
451 | |
---|
452 | END FUNCTION phic_to_phin |
---|
453 | |
---|
454 | |
---|
455 | REAL(dp) FUNCTION lamc_to_lamn(phi_c, lam_c) |
---|
456 | REAL(dp), INTENT(IN) :: phi_c, lam_c |
---|
457 | |
---|
458 | lamc_to_lamn = lam_c |
---|
459 | IF (phi_c > 0.0_dp) THEN |
---|
460 | lamc_to_lamn = lam_c - SIGN(PI, lam_c) |
---|
461 | END IF |
---|
462 | |
---|
463 | END FUNCTION lamc_to_lamn |
---|
464 | |
---|
465 | |
---|
466 | REAL(dp) FUNCTION gamma_from_hemisphere(phi_cg, phi_ref) |
---|
467 | REAL(dp), INTENT(IN) :: phi_cg, phi_ref |
---|
468 | LOGICAL :: palm_centre_is_south_of_cosmo_origin |
---|
469 | |
---|
470 | palm_centre_is_south_of_cosmo_origin = (phi_cg < phi_ref) |
---|
471 | |
---|
472 | IF (palm_centre_is_south_of_cosmo_origin) THEN |
---|
473 | gamma_from_hemisphere = PI |
---|
474 | ELSE |
---|
475 | gamma_from_hemisphere = 0.0_dp |
---|
476 | END IF |
---|
477 | END FUNCTION gamma_from_hemisphere |
---|
478 | |
---|
479 | |
---|
480 | !------------------------------------------------------------------------------! |
---|
481 | ! Description: |
---|
482 | ! ------------ |
---|
483 | !> Computes the geographical coordinates corresponding to the given rotated-pole |
---|
484 | !> coordinates. |
---|
485 | !> |
---|
486 | !> In INIFOR, this routine is used to convert coordinates between two |
---|
487 | !> rotated-pole systems: COSMO-DE's rotated-pole system, and one centred at the |
---|
488 | !> PALM-4U domain centre. In this case, the PALM-4U system is thought of as the |
---|
489 | !> rotated-pole system and the routine is used to rotate back to COSMO-DE's |
---|
490 | !> system which is thought of as the geographical one. |
---|
491 | !> |
---|
492 | !> Input parameters: |
---|
493 | !> ----------------- |
---|
494 | !> phir(:), lamr(: ): latitudes and longitudes of the rotated-pole grid |
---|
495 | !> |
---|
496 | !> phip, lamp: latitude and longitude of the rotated north pole |
---|
497 | !> |
---|
498 | !> gam: "angle between the north poles. If [gam] is not present, the other |
---|
499 | !> system is the real geographical system." (original phiro2rot |
---|
500 | !> description) |
---|
501 | !> |
---|
502 | !> Output parameters: |
---|
503 | !> ------------------ |
---|
504 | !> phi(:,:), lam(:,:): geographical latitudes and logitudes |
---|
505 | !------------------------------------------------------------------------------! |
---|
506 | SUBROUTINE rotate_to_cosmo(phir, lamr, phip, lamp, phi, lam, gam) |
---|
507 | REAL(dp), INTENT(IN) :: phir(0:), lamr(0:), phip, lamp, gam |
---|
508 | REAL(dp), INTENT(OUT) :: phi(0:,0:), lam(0:,0:) |
---|
509 | |
---|
510 | INTEGER :: i, j |
---|
511 | |
---|
512 | IF ( SIZE(phi, 1) .NE. SIZE(lam, 1) .OR. & |
---|
513 | SIZE(phi, 2) .NE. SIZE(lam, 2) ) THEN |
---|
514 | PRINT *, "inifor: rotate_to_cosmo: Dimensions of phi and lambda do not match. Dimensions are:" |
---|
515 | PRINT *, "inifor: rotate_to_cosmo: phi: ", SIZE(phi, 1), SIZE(phi, 2) |
---|
516 | PRINT *, "inifor: rotate_to_cosmo: lam: ", SIZE(lam, 1), SIZE(lam, 2) |
---|
517 | STOP |
---|
518 | END IF |
---|
519 | |
---|
520 | IF ( SIZE(phir) .NE. SIZE(phi, 2) .OR. & |
---|
521 | SIZE(lamr) .NE. SIZE(phi, 1) ) THEN |
---|
522 | PRINT *, "inifor: rotate_to_cosmo: Dimensions of phir and lamr do not match. Dimensions are:" |
---|
523 | PRINT *, "inifor: rotate_to_cosmo: phir: ", SIZE(phir), SIZE(phi, 2) |
---|
524 | PRINT *, "inifor: rotate_to_cosmo: lamr: ", SIZE(lamr), SIZE(phi, 1) |
---|
525 | STOP |
---|
526 | END IF |
---|
527 | |
---|
528 | DO j = 0, UBOUND(phir, 1) |
---|
529 | DO i = 0, UBOUND(lamr, 1) |
---|
530 | |
---|
531 | phi(i,j) = phirot2phi(phir(j) * TO_DEGREES, & |
---|
532 | lamr(i) * TO_DEGREES, & |
---|
533 | phip * TO_DEGREES, & |
---|
534 | lamp * TO_DEGREES, & |
---|
535 | gam * TO_DEGREES) * TO_RADIANS |
---|
536 | |
---|
537 | lam(i,j) = rlarot2rla(phir(j) * TO_DEGREES, & |
---|
538 | lamr(i) * TO_DEGREES, & |
---|
539 | phip * TO_DEGREES, & |
---|
540 | lamp * TO_DEGREES, & |
---|
541 | gam * TO_DEGREES) * TO_RADIANS |
---|
542 | |
---|
543 | END DO |
---|
544 | END DO |
---|
545 | |
---|
546 | END SUBROUTINE rotate_to_cosmo |
---|
547 | |
---|
548 | |
---|
549 | SUBROUTINE rotate_vector_field(x, y, angle) |
---|
550 | REAL(dp), DIMENSION(:), INTENT(INOUT) :: x, y !< x and y coodrinate in arbitrary units |
---|
551 | REAL(dp), INTENT(IN) :: angle !< rotation angle [deg] |
---|
552 | |
---|
553 | INTEGER :: i |
---|
554 | REAL(dp) :: sine, cosine, v_rot(2), rotation(2,2) |
---|
555 | |
---|
556 | sine = SIN(angle * TO_RADIANS) |
---|
557 | cosine = COS(angle * TO_RADIANS) |
---|
558 | ! RESAHPE() fills columns first, so the rotation matrix becomes |
---|
559 | ! |
---|
560 | ! rotation = [ cosine -sine ] |
---|
561 | ! [ sine cosine ] |
---|
562 | rotation = RESHAPE( (/cosine, sine, -sine, cosine/), (/2, 2/) ) |
---|
563 | |
---|
564 | DO i = LBOUND(x, 1), UBOUND(x, 1) |
---|
565 | |
---|
566 | v_rot(:) = MATMUL(rotation, (/x(i), y(i)/)) |
---|
567 | |
---|
568 | x(i) = v_rot(1) |
---|
569 | y(i) = v_rot(2) |
---|
570 | |
---|
571 | END DO |
---|
572 | |
---|
573 | END SUBROUTINE rotate_vector_field |
---|
574 | |
---|
575 | |
---|
576 | |
---|
577 | !------------------------------------------------------------------------------! |
---|
578 | ! Description: |
---|
579 | ! ------------ |
---|
580 | !> This routine computes the local meridian convergence between a rotated-pole |
---|
581 | !> and a geographical system using the Eq. (6) given in the DWD manual |
---|
582 | !> |
---|
583 | !> Baldauf et al. (2018), Beschreibung des operationelle KuÌrzestfrist- |
---|
584 | !> vorhersagemodells COSMO-D2 und COSMO-D2-EPS und seiner Ausgabe in die |
---|
585 | !> Datenbanken des DWD. |
---|
586 | !> https://www.dwd.de/SharedDocs/downloads/DE/modelldokumentationen/nwv/cosmo_d2/cosmo_d2_dbbeschr_aktuell.pdf?__blob=publicationFile&v=2 |
---|
587 | !> |
---|
588 | FUNCTION meridian_convergence_rotated(phi_n, lam_n, phi_g, lam_g) & |
---|
589 | RESULT(delta) |
---|
590 | |
---|
591 | REAL(dp), INTENT(IN) :: phi_n, lam_n, phi_g, lam_g |
---|
592 | REAL(dp) :: delta |
---|
593 | |
---|
594 | delta = atan2( COS(phi_n) * SIN(lam_n - lam_g), & |
---|
595 | COS(phi_g) * SIN(phi_n) - & |
---|
596 | SIN(phi_g) * COS(phi_n) * COS(lam_n - lam_g) ) |
---|
597 | |
---|
598 | END FUNCTION meridian_convergence_rotated |
---|
599 | |
---|
600 | !------------------------------------------------------------------------------! |
---|
601 | ! Description: |
---|
602 | ! ------------ |
---|
603 | !> Compute indices of PALM-4U grid point neighbours in the target |
---|
604 | !> system (COSMO-DE) by rounding up and down. (i,j) are the indices of |
---|
605 | !> the PALM-4U grid and (ii(i,j,1-4), jj(i,j,1-4)) contain the indices |
---|
606 | !> of the its four neigbouring points in the COSMO-DE grid. |
---|
607 | !> |
---|
608 | !> |
---|
609 | !> COSMO-DE grid |
---|
610 | !> ------------- |
---|
611 | !> jj, lat |
---|
612 | !> ^ j |
---|
613 | !> | \ i |
---|
614 | !> jj(i,j,2/3) + ... 2 ---\--------/------ 3 |
---|
615 | !> | | ^ \ / | |
---|
616 | !> | | |wp \ / | |
---|
617 | !> | | v \ / | |
---|
618 | !> latpos + ............ o/ (i,j) | |
---|
619 | !> | | : | |
---|
620 | !> | | :<----wl---->| |
---|
621 | !> jj(i,j,1/4) + ... 1 -------:----------- 4 |
---|
622 | !> | : : : |
---|
623 | !> | : : : |
---|
624 | !> | : lonpos : |
---|
625 | !> L-----+--------+------------+------> ii, lon |
---|
626 | !> ii(i,j,1/2) ii(i,j,3/4) |
---|
627 | !> |
---|
628 | !> |
---|
629 | !> Input parameters: |
---|
630 | !> ----------------- |
---|
631 | !> source_lat, source_lon : (rotated-pole) coordinates of the source grid (e.g. |
---|
632 | !> COSMO-DE) |
---|
633 | !> |
---|
634 | !> source_dxi, source_dyi : inverse grid spacings of the source grid. |
---|
635 | !> |
---|
636 | !> target_lat, target_lon : (rotated-pole) coordinates of the target grid (e.g. |
---|
637 | !> COSMO-DE) |
---|
638 | !> |
---|
639 | !> Output parameters: |
---|
640 | !> ------------------ |
---|
641 | !> palm_ii, palm_jj : x and y index arrays of horizontal neighbour columns |
---|
642 | !> |
---|
643 | !------------------------------------------------------------------------------! |
---|
644 | SUBROUTINE find_horizontal_neighbours(cosmo_lat, cosmo_lon, & |
---|
645 | palm_clat, palm_clon, & |
---|
646 | palm_ii, palm_jj) |
---|
647 | |
---|
648 | REAL(dp), DIMENSION(0:), INTENT(IN) :: cosmo_lat, cosmo_lon |
---|
649 | REAL(dp), DIMENSION(0:,0:), INTENT(IN) :: palm_clat, palm_clon |
---|
650 | REAL(dp) :: cosmo_dxi, cosmo_dyi |
---|
651 | INTEGER, DIMENSION(0:,0:,1:), INTENT(OUT) :: palm_ii, palm_jj |
---|
652 | |
---|
653 | REAL(dp) :: lonpos, latpos, lon0, lat0 |
---|
654 | INTEGER :: i, j |
---|
655 | |
---|
656 | lon0 = cosmo_lon(0) |
---|
657 | lat0 = cosmo_lat(0) |
---|
658 | cosmo_dxi = 1.0_dp / (cosmo_lon(1) - cosmo_lon(0)) |
---|
659 | cosmo_dyi = 1.0_dp / (cosmo_lat(1) - cosmo_lat(0)) |
---|
660 | |
---|
661 | DO j = 0, UBOUND(palm_clon, 2)!palm_grid % ny |
---|
662 | DO i = 0, UBOUND(palm_clon, 1)!palm_grid % nx |
---|
663 | ! Compute the floating point index corrseponding to PALM-4U grid point |
---|
664 | ! location along target grid (COSMO-DE) axes. |
---|
665 | lonpos = (palm_clon(i,j) - lon0) * cosmo_dxi |
---|
666 | latpos = (palm_clat(i,j) - lat0) * cosmo_dyi |
---|
667 | |
---|
668 | IF (lonpos < 0.0 .OR. latpos < 0.0) THEN |
---|
669 | PRINT *, " Error while finding neighbours: lonpos or latpos out of bounds!" |
---|
670 | PRINT *, " (i,j) = (", i, ",",j,")" |
---|
671 | PRINT *, " lonpos ", lonpos*TO_DEGREES, ", latpos ", latpos*TO_DEGREES |
---|
672 | PRINT *, " lon0 ", lon0 *TO_DEGREES, ", lat0 ", lat0*TO_DEGREES |
---|
673 | PRINT *, " PALM lon ", palm_clon(i,j)*TO_DEGREES, ", PALM lat ",palm_clat(i,j)*TO_DEGREES |
---|
674 | STOP |
---|
675 | END IF |
---|
676 | |
---|
677 | palm_ii(i,j,1) = FLOOR(lonpos) |
---|
678 | palm_ii(i,j,2) = FLOOR(lonpos) |
---|
679 | palm_ii(i,j,3) = CEILING(lonpos) |
---|
680 | palm_ii(i,j,4) = CEILING(lonpos) |
---|
681 | |
---|
682 | palm_jj(i,j,1) = FLOOR(latpos) |
---|
683 | palm_jj(i,j,2) = CEILING(latpos) |
---|
684 | palm_jj(i,j,3) = CEILING(latpos) |
---|
685 | palm_jj(i,j,4) = FLOOR(latpos) |
---|
686 | END DO |
---|
687 | END DO |
---|
688 | |
---|
689 | END SUBROUTINE find_horizontal_neighbours |
---|
690 | |
---|
691 | |
---|
692 | SUBROUTINE find_vertical_neighbours_and_weights_interp( palm_grid, & |
---|
693 | palm_intermediate ) |
---|
694 | TYPE(grid_definition), INTENT(INOUT) :: palm_grid |
---|
695 | TYPE(grid_definition), INTENT(IN) :: palm_intermediate |
---|
696 | |
---|
697 | INTEGER :: i, j, k, nx, ny, nz, nlev, k_intermediate |
---|
698 | LOGICAL :: point_is_below_grid, point_is_above_grid, & |
---|
699 | point_is_in_current_cell |
---|
700 | REAL(dp) :: current_height, column_base, column_top, h_top, h_bottom, & |
---|
701 | weight |
---|
702 | |
---|
703 | nx = palm_grid % nx |
---|
704 | ny = palm_grid % ny |
---|
705 | nz = palm_grid % nz |
---|
706 | nlev = palm_intermediate % nz |
---|
707 | |
---|
708 | ! in each column of the fine grid, find vertical neighbours of every cell |
---|
709 | DO j = 0, ny |
---|
710 | DO i = 0, nx |
---|
711 | |
---|
712 | k_intermediate = 0 |
---|
713 | |
---|
714 | column_base = palm_intermediate % h(i,j,0) |
---|
715 | column_top = palm_intermediate % h(i,j,nlev) |
---|
716 | |
---|
717 | ! scan through palm_grid column and set neighbour indices in |
---|
718 | ! case current_height is either below column_base, in the current |
---|
719 | ! cell, or above column_top. Keep increasing current cell index until |
---|
720 | ! the current cell overlaps with the current_height. |
---|
721 | DO k = 1, nz |
---|
722 | |
---|
723 | ! Memorize the top and bottom boundaries of the coarse cell and the |
---|
724 | ! current height within it |
---|
725 | current_height = palm_grid % z(k) + palm_grid % z0 |
---|
726 | h_top = palm_intermediate % h(i,j,k_intermediate+1) |
---|
727 | h_bottom = palm_intermediate % h(i,j,k_intermediate) |
---|
728 | |
---|
729 | point_is_above_grid = (current_height > column_top) !22000m, very unlikely |
---|
730 | point_is_below_grid = (current_height < column_base) |
---|
731 | |
---|
732 | point_is_in_current_cell = ( & |
---|
733 | current_height >= h_bottom .AND. & |
---|
734 | current_height < h_top & |
---|
735 | ) |
---|
736 | |
---|
737 | ! set default weights |
---|
738 | palm_grid % w_verti(i,j,k,1:2) = 0.0_dp |
---|
739 | |
---|
740 | IF (point_is_above_grid) THEN |
---|
741 | |
---|
742 | palm_grid % kk(i,j,k,1:2) = nlev |
---|
743 | palm_grid % w_verti(i,j,k,1:2) = - 2.0_dp |
---|
744 | |
---|
745 | message = "PALM-4U grid extends above COSMO-DE model top." |
---|
746 | CALL abort('find_vertical_neighbours_and_weights', message) |
---|
747 | |
---|
748 | ELSE IF (point_is_below_grid) THEN |
---|
749 | |
---|
750 | palm_grid % kk(i,j,k,1:2) = 0 |
---|
751 | palm_grid % w_verti(i,j,k,1:2) = - 2.0_dp |
---|
752 | |
---|
753 | ELSE |
---|
754 | ! cycle through intermediate levels until current |
---|
755 | ! intermediate-grid cell overlaps with current_height |
---|
756 | DO WHILE (.NOT. point_is_in_current_cell .AND. k_intermediate <= nlev-1) |
---|
757 | k_intermediate = k_intermediate + 1 |
---|
758 | |
---|
759 | h_top = palm_intermediate % h(i,j,k_intermediate+1) |
---|
760 | h_bottom = palm_intermediate % h(i,j,k_intermediate) |
---|
761 | point_is_in_current_cell = ( & |
---|
762 | current_height >= h_bottom .AND. & |
---|
763 | current_height < h_top & |
---|
764 | ) |
---|
765 | END DO |
---|
766 | |
---|
767 | IF (k_intermediate > nlev-1) THEN |
---|
768 | message = "Index " // TRIM(str(k_intermediate)) // & |
---|
769 | " is above intermediate grid range." |
---|
770 | CALL abort('find_vertical_neighbours', message) |
---|
771 | END IF |
---|
772 | |
---|
773 | palm_grid % kk(i,j,k,1) = k_intermediate |
---|
774 | palm_grid % kk(i,j,k,2) = k_intermediate + 1 |
---|
775 | |
---|
776 | ! copmute vertical weights |
---|
777 | weight = (h_top - current_height) / (h_top - h_bottom) |
---|
778 | palm_grid % w_verti(i,j,k,1) = weight |
---|
779 | palm_grid % w_verti(i,j,k,2) = 1.0_dp - weight |
---|
780 | END IF |
---|
781 | |
---|
782 | END DO |
---|
783 | |
---|
784 | END DO |
---|
785 | END DO |
---|
786 | |
---|
787 | END SUBROUTINE find_vertical_neighbours_and_weights_interp |
---|
788 | |
---|
789 | |
---|
790 | SUBROUTINE find_vertical_neighbours_and_weights_average( avg_grid ) |
---|
791 | TYPE(grid_definition), INTENT(INOUT) :: avg_grid |
---|
792 | |
---|
793 | INTEGER :: i, j, k_palm, k_intermediate, l, nlev |
---|
794 | LOGICAL :: point_is_below_grid, point_is_above_grid, & |
---|
795 | point_is_in_current_cell |
---|
796 | REAL(dp) :: current_height, column_base, column_top, h_top, h_bottom, & |
---|
797 | weight |
---|
798 | |
---|
799 | |
---|
800 | avg_grid % k_min = LBOUND(avg_grid % z, 1) |
---|
801 | |
---|
802 | nlev = SIZE(avg_grid % cosmo_h, 3) |
---|
803 | |
---|
804 | ! in each column of the fine grid, find vertical neighbours of every cell |
---|
805 | DO l = 1, avg_grid % n_columns |
---|
806 | |
---|
807 | i = avg_grid % iii(l) |
---|
808 | j = avg_grid % jjj(l) |
---|
809 | |
---|
810 | column_base = avg_grid % cosmo_h(i,j,1) |
---|
811 | column_top = avg_grid % cosmo_h(i,j,nlev) |
---|
812 | |
---|
813 | ! scan through avg_grid column until and set neighbour indices in |
---|
814 | ! case current_height is either below column_base, in the current |
---|
815 | ! cell, or above column_top. Keep increasing current cell index until |
---|
816 | ! the current cell overlaps with the current_height. |
---|
817 | k_intermediate = 1 !avg_grid % cosmo_h is indezed 1-based. |
---|
818 | DO k_palm = 1, avg_grid % nz |
---|
819 | |
---|
820 | ! Memorize the top and bottom boundaries of the coarse cell and the |
---|
821 | ! current height within it |
---|
822 | current_height = avg_grid % z(k_palm) + avg_grid % z0 |
---|
823 | h_top = avg_grid % cosmo_h(i,j,k_intermediate+1) |
---|
824 | h_bottom = avg_grid % cosmo_h(i,j,k_intermediate) |
---|
825 | |
---|
826 | point_is_above_grid = (current_height > column_top) !22000m, very unlikely |
---|
827 | point_is_below_grid = (current_height < column_base) |
---|
828 | |
---|
829 | point_is_in_current_cell = ( & |
---|
830 | current_height >= h_bottom .AND. & |
---|
831 | current_height < h_top & |
---|
832 | ) |
---|
833 | |
---|
834 | ! set default weights |
---|
835 | avg_grid % w(l,k_palm,1:2) = 0.0_dp |
---|
836 | |
---|
837 | IF (point_is_above_grid) THEN |
---|
838 | |
---|
839 | avg_grid % kkk(l,k_palm,1:2) = nlev |
---|
840 | avg_grid % w(l,k_palm,1:2) = - 2.0_dp |
---|
841 | |
---|
842 | message = "PALM-4U grid extends above COSMO-DE model top." |
---|
843 | CALL abort('find_vertical_neighbours_and_weights_average', message) |
---|
844 | |
---|
845 | ELSE IF (point_is_below_grid) THEN |
---|
846 | |
---|
847 | avg_grid % kkk(l,k_palm,1:2) = 0 |
---|
848 | avg_grid % w(l,k_palm,1:2) = - 2.0_dp |
---|
849 | avg_grid % k_min = MAX(k_palm + 1, avg_grid % k_min) |
---|
850 | ELSE |
---|
851 | ! cycle through intermediate levels until current |
---|
852 | ! intermediate-grid cell overlaps with current_height |
---|
853 | DO WHILE (.NOT. point_is_in_current_cell .AND. k_intermediate <= nlev-1) |
---|
854 | k_intermediate = k_intermediate + 1 |
---|
855 | |
---|
856 | h_top = avg_grid % cosmo_h(i,j,k_intermediate+1) |
---|
857 | h_bottom = avg_grid % cosmo_h(i,j,k_intermediate) |
---|
858 | point_is_in_current_cell = ( & |
---|
859 | current_height >= h_bottom .AND. & |
---|
860 | current_height < h_top & |
---|
861 | ) |
---|
862 | END DO |
---|
863 | |
---|
864 | ! k_intermediate = 48 indicates the last section (indices 48 and 49), i.e. |
---|
865 | ! k_intermediate = 49 is not the beginning of a valid cell. |
---|
866 | IF (k_intermediate > nlev-1) THEN |
---|
867 | message = "Index " // TRIM(str(k_intermediate)) // & |
---|
868 | " is above intermediate grid range." |
---|
869 | CALL abort('find_vertical_neighbours', message) |
---|
870 | END IF |
---|
871 | |
---|
872 | avg_grid % kkk(l,k_palm,1) = k_intermediate |
---|
873 | avg_grid % kkk(l,k_palm,2) = k_intermediate + 1 |
---|
874 | |
---|
875 | ! copmute vertical weights |
---|
876 | weight = (h_top - current_height) / (h_top - h_bottom) |
---|
877 | avg_grid % w(l,k_palm,1) = weight |
---|
878 | avg_grid % w(l,k_palm,2) = 1.0_dp - weight |
---|
879 | END IF |
---|
880 | |
---|
881 | END DO ! k, PALM levels |
---|
882 | END DO ! l, averaging columns |
---|
883 | |
---|
884 | END SUBROUTINE find_vertical_neighbours_and_weights_average |
---|
885 | |
---|
886 | !------------------------------------------------------------------------------! |
---|
887 | ! Description: |
---|
888 | ! ------------ |
---|
889 | !> Compute the four weights for horizontal bilinear interpolation given the |
---|
890 | !> coordinates clon(i,j) clat(i,j) of the PALM-4U grid in the COSMO-DE |
---|
891 | !> rotated-pole grid and the neightbour indices ii(i,j,1-4) and jj(i,j,1-4). |
---|
892 | !> |
---|
893 | !> Input parameters: |
---|
894 | !> ----------------- |
---|
895 | !> palm_grid % clon : longitudes of PALM-4U scalars (cell centres) in COSMO-DE's rotated-pole grid [rad] |
---|
896 | !> |
---|
897 | !> palm_grid % clat : latitudes of PALM-4U cell centres in COSMO-DE's rotated-pole grid [rad] |
---|
898 | !> |
---|
899 | !> cosmo_grid % lon : rotated-pole longitudes of scalars (cell centres) of the COSMO-DE grid [rad] |
---|
900 | !> |
---|
901 | !> cosmo_grid % lat : rotated-pole latitudes of scalars (cell centers) of the COSMO-DE grid [rad] |
---|
902 | !> |
---|
903 | !> cosmo_grid % dxi : inverse grid spacing in the first dimension [m^-1] |
---|
904 | !> |
---|
905 | !> cosmo_grid % dyi : inverse grid spacing in the second dimension [m^-1] |
---|
906 | !> |
---|
907 | !> Output parameters: |
---|
908 | !> ------------------ |
---|
909 | !> palm_grid % w_horiz(:,:,1-4) : weights for bilinear horizontal interpolation |
---|
910 | ! |
---|
911 | ! COSMO-DE grid |
---|
912 | ! ------------- |
---|
913 | ! jj, lat |
---|
914 | ! ^ j |
---|
915 | ! | \ i |
---|
916 | ! jj(i,j,2/3) + ... 2 ---\--------/------ 3 |
---|
917 | ! | | ^ \ / | |
---|
918 | ! | | |wp \ / | |
---|
919 | ! | | v \ / | |
---|
920 | ! latpos + ............ o/ (i,j) | |
---|
921 | ! | | : | |
---|
922 | ! | | :<----wl---->| |
---|
923 | ! jj(i,j,1/4) + ... 1 -------:----------- 4 |
---|
924 | ! | : : : |
---|
925 | ! | : : : |
---|
926 | ! | : lonpos : |
---|
927 | ! L-----+--------+------------+------> ii, lon |
---|
928 | ! ii(i,j,1/2) ii(i,j,3/4) |
---|
929 | ! |
---|
930 | SUBROUTINE compute_horizontal_interp_weights(cosmo_lat, cosmo_lon, & |
---|
931 | palm_clat, palm_clon, palm_ii, palm_jj, palm_w_horiz) |
---|
932 | |
---|
933 | REAL(dp), DIMENSION(0:), INTENT(IN) :: cosmo_lat, cosmo_lon |
---|
934 | REAL(dp) :: cosmo_dxi, cosmo_dyi |
---|
935 | REAL(dp), DIMENSION(0:,0:), INTENT(IN) :: palm_clat, palm_clon |
---|
936 | INTEGER, DIMENSION(0:,0:,1:), INTENT(IN) :: palm_ii, palm_jj |
---|
937 | |
---|
938 | REAL(dp), DIMENSION(0:,0:,1:), INTENT(OUT) :: palm_w_horiz |
---|
939 | |
---|
940 | REAL(dp) :: wl, wp |
---|
941 | INTEGER :: i, j |
---|
942 | |
---|
943 | cosmo_dxi = 1.0_dp / (cosmo_lon(1) - cosmo_lon(0)) |
---|
944 | cosmo_dyi = 1.0_dp / (cosmo_lat(1) - cosmo_lat(0)) |
---|
945 | |
---|
946 | DO j = 0, UBOUND(palm_clon, 2) |
---|
947 | DO i = 0, UBOUND(palm_clon, 1) |
---|
948 | |
---|
949 | ! weight in lambda direction |
---|
950 | wl = ( cosmo_lon(palm_ii(i,j,4)) - palm_clon(i,j) ) * cosmo_dxi |
---|
951 | |
---|
952 | ! weight in phi direction |
---|
953 | wp = ( cosmo_lat(palm_jj(i,j,2)) - palm_clat(i,j) ) * cosmo_dyi |
---|
954 | |
---|
955 | IF (wl > 1.0_dp .OR. wl < 0.0_dp) THEN |
---|
956 | message = "Horizontal weight wl = " // TRIM(real_to_str(wl)) // & |
---|
957 | " is out bounds." |
---|
958 | CALL abort('compute_horizontal_interp_weights', message) |
---|
959 | END IF |
---|
960 | IF (wp > 1.0_dp .OR. wp < 0.0_dp) THEN |
---|
961 | message = "Horizontal weight wp = " // TRIM(real_to_str(wp)) // & |
---|
962 | " is out bounds." |
---|
963 | CALL abort('compute_horizontal_interp_weights', message) |
---|
964 | END IF |
---|
965 | |
---|
966 | palm_w_horiz(i,j,1) = wl * wp |
---|
967 | palm_w_horiz(i,j,2) = wl * (1.0_dp - wp) |
---|
968 | palm_w_horiz(i,j,3) = (1.0_dp - wl) * (1.0_dp - wp) |
---|
969 | palm_w_horiz(i,j,4) = 1.0_dp - SUM( palm_w_horiz(i,j,1:3) ) |
---|
970 | |
---|
971 | END DO |
---|
972 | END DO |
---|
973 | |
---|
974 | END SUBROUTINE compute_horizontal_interp_weights |
---|
975 | |
---|
976 | |
---|
977 | !------------------------------------------------------------------------------! |
---|
978 | ! Description: |
---|
979 | ! ------------ |
---|
980 | !> Interpolates u and v components of velocities located at cell faces to the |
---|
981 | !> cell centres by averaging neighbouring values. |
---|
982 | !> |
---|
983 | !> This routine is designed to be used with COSMO-DE arrays where there are the |
---|
984 | !> same number of grid points for scalars (centres) and velocities (faces). In |
---|
985 | !> COSMO-DE the velocity points are staggared one half grid spaceing up-grid |
---|
986 | !> which means the first centre point has to be omitted and is set to zero. |
---|
987 | SUBROUTINE centre_velocities(u_face, v_face, u_centre, v_centre) |
---|
988 | REAL(dp), DIMENSION(0:,0:,0:), INTENT(IN) :: u_face, v_face |
---|
989 | REAL(dp), DIMENSION(0:,0:,0:), INTENT(OUT) :: u_centre, v_centre |
---|
990 | INTEGER :: nx, ny |
---|
991 | |
---|
992 | nx = UBOUND(u_face, 1) |
---|
993 | ny = UBOUND(u_face, 2) |
---|
994 | |
---|
995 | u_centre(0,:,:) = 0.0_dp |
---|
996 | u_centre(1:,:,:) = 0.5_dp * ( u_face(0:nx-1,:,:) + u_face(1:,:,:) ) |
---|
997 | |
---|
998 | v_centre(:,0,:) = 0.0_dp |
---|
999 | v_centre(:,1:,:) = 0.5_dp * ( v_face(:,0:ny-1,:) + v_face(:,1:,:) ) |
---|
1000 | END SUBROUTINE centre_velocities |
---|
1001 | |
---|
1002 | |
---|
1003 | FUNCTION phirot2phi (phirot, rlarot, polphi, pollam, polgam) |
---|
1004 | |
---|
1005 | REAL(dp), INTENT (IN) :: polphi !< latitude of the rotated north pole |
---|
1006 | REAL(dp), INTENT (IN) :: pollam !< longitude of the rotated north pole |
---|
1007 | REAL(dp), INTENT (IN) :: phirot !< latitude in the rotated system |
---|
1008 | REAL(dp), INTENT (IN) :: rlarot !< longitude in the rotated system |
---|
1009 | REAL(dp), INTENT (IN) :: polgam !< angle between the north poles of the systems |
---|
1010 | |
---|
1011 | REAL(dp) :: phirot2phi !< latitude in the geographical system |
---|
1012 | |
---|
1013 | REAL(dp) :: zsinpol, zcospol, zphis, zrlas, zarg, zgam |
---|
1014 | |
---|
1015 | zsinpol = SIN(polphi * TO_RADIANS) |
---|
1016 | zcospol = COS(polphi * TO_RADIANS) |
---|
1017 | zphis = phirot * TO_RADIANS |
---|
1018 | |
---|
1019 | IF (rlarot > 180.0_dp) THEN |
---|
1020 | zrlas = rlarot - 360.0_dp |
---|
1021 | ELSE |
---|
1022 | zrlas = rlarot |
---|
1023 | END IF |
---|
1024 | zrlas = zrlas * TO_RADIANS |
---|
1025 | |
---|
1026 | IF (polgam /= 0.0_dp) THEN |
---|
1027 | zgam = polgam * TO_RADIANS |
---|
1028 | zarg = zsinpol * SIN (zphis) + & |
---|
1029 | zcospol * COS(zphis) * ( COS(zrlas) * COS(zgam) - & |
---|
1030 | SIN(zgam) * SIN(zrlas) ) |
---|
1031 | ELSE |
---|
1032 | zarg = zcospol * COS (zphis) * COS (zrlas) + zsinpol * SIN (zphis) |
---|
1033 | END IF |
---|
1034 | |
---|
1035 | phirot2phi = ASIN (zarg) * TO_DEGREES |
---|
1036 | |
---|
1037 | END FUNCTION phirot2phi |
---|
1038 | |
---|
1039 | |
---|
1040 | FUNCTION phi2phirot (phi, rla, polphi, pollam) |
---|
1041 | |
---|
1042 | REAL(dp), INTENT (IN) :: polphi !< latitude of the rotated north pole |
---|
1043 | REAL(dp), INTENT (IN) :: pollam !< longitude of the rotated north pole |
---|
1044 | REAL(dp), INTENT (IN) :: phi !< latitude in the geographical system |
---|
1045 | REAL(dp), INTENT (IN) :: rla !< longitude in the geographical system |
---|
1046 | |
---|
1047 | REAL(dp) :: phi2phirot !< longitude in the rotated system |
---|
1048 | |
---|
1049 | REAL(dp) :: zsinpol, zcospol, zlampol, zphi, zrla, zarg1, zarg2, zrla1 |
---|
1050 | |
---|
1051 | zsinpol = SIN(polphi * TO_RADIANS) |
---|
1052 | zcospol = COS(polphi * TO_RADIANS) |
---|
1053 | zlampol = pollam * TO_RADIANS |
---|
1054 | zphi = phi * TO_RADIANS |
---|
1055 | |
---|
1056 | IF (rla > 180.0_dp) THEN |
---|
1057 | zrla1 = rla - 360.0_dp |
---|
1058 | ELSE |
---|
1059 | zrla1 = rla |
---|
1060 | END IF |
---|
1061 | zrla = zrla1 * TO_RADIANS |
---|
1062 | |
---|
1063 | zarg1 = SIN(zphi) * zsinpol |
---|
1064 | zarg2 = COS(zphi) * zcospol * COS(zrla - zlampol) |
---|
1065 | |
---|
1066 | phi2phirot = ASIN(zarg1 + zarg2) * TO_DEGREES |
---|
1067 | |
---|
1068 | END FUNCTION phi2phirot |
---|
1069 | |
---|
1070 | |
---|
1071 | FUNCTION rlarot2rla(phirot, rlarot, polphi, pollam, polgam) |
---|
1072 | |
---|
1073 | REAL(dp), INTENT (IN) :: polphi !< latitude of the rotated north pole |
---|
1074 | REAL(dp), INTENT (IN) :: pollam !< longitude of the rotated north pole |
---|
1075 | REAL(dp), INTENT (IN) :: phirot !< latitude in the rotated system |
---|
1076 | REAL(dp), INTENT (IN) :: rlarot !< longitude in the rotated system |
---|
1077 | REAL(dp), INTENT (IN) :: polgam !< angle between the north poles of the systems |
---|
1078 | |
---|
1079 | REAL(dp) :: rlarot2rla !< latitude in the geographical system |
---|
1080 | |
---|
1081 | REAL(dp) :: zsinpol, zcospol, zlampol, zphis, zrlas, zarg1, zarg2, zgam |
---|
1082 | |
---|
1083 | zsinpol = SIN(TO_RADIANS * polphi) |
---|
1084 | zcospol = COS(TO_RADIANS * polphi) |
---|
1085 | zlampol = TO_RADIANS * pollam |
---|
1086 | zphis = TO_RADIANS * phirot |
---|
1087 | |
---|
1088 | IF (rlarot > 180.0_dp) THEN |
---|
1089 | zrlas = rlarot - 360.0_dp |
---|
1090 | ELSE |
---|
1091 | zrlas = rlarot |
---|
1092 | END IF |
---|
1093 | zrlas = TO_RADIANS * zrlas |
---|
1094 | |
---|
1095 | IF (polgam /= 0.0_dp) THEN |
---|
1096 | zgam = TO_RADIANS * polgam |
---|
1097 | zarg1 = SIN(zlampol) * (zcospol * SIN(zphis) - zsinpol*COS(zphis) * & |
---|
1098 | (COS(zrlas) * COS(zgam) - SIN(zrlas) * SIN(zgam)) ) - & |
---|
1099 | COS(zlampol) * COS(zphis) * ( SIN(zrlas) * COS(zgam) + & |
---|
1100 | COS(zrlas) * SIN(zgam) ) |
---|
1101 | |
---|
1102 | zarg2 = COS (zlampol) * (zcospol * SIN(zphis) - zsinpol*COS(zphis) * & |
---|
1103 | (COS(zrlas) * COS(zgam) - SIN(zrlas) * SIN(zgam)) ) + & |
---|
1104 | SIN(zlampol) * COS(zphis) * ( SIN(zrlas) * COS(zgam) + & |
---|
1105 | COS(zrlas) * SIN(zgam) ) |
---|
1106 | ELSE |
---|
1107 | zarg1 = SIN (zlampol) * (-zsinpol * COS(zrlas) * COS(zphis) + & |
---|
1108 | zcospol * SIN(zphis)) - & |
---|
1109 | COS (zlampol) * SIN(zrlas) * COS(zphis) |
---|
1110 | zarg2 = COS (zlampol) * (-zsinpol * COS(zrlas) * COS(zphis) + & |
---|
1111 | zcospol * SIN(zphis)) + & |
---|
1112 | SIN (zlampol) * SIN(zrlas) * COS(zphis) |
---|
1113 | END IF |
---|
1114 | |
---|
1115 | IF (zarg2 == 0.0_dp) zarg2 = 1.0E-20_dp |
---|
1116 | |
---|
1117 | rlarot2rla = ATAN2(zarg1,zarg2) * TO_DEGREES |
---|
1118 | |
---|
1119 | END FUNCTION rlarot2rla |
---|
1120 | |
---|
1121 | |
---|
1122 | FUNCTION rla2rlarot ( phi, rla, polphi, pollam, polgam ) |
---|
1123 | |
---|
1124 | REAL(dp), INTENT (IN) :: polphi !< latitude of the rotated north pole |
---|
1125 | REAL(dp), INTENT (IN) :: pollam !< longitude of the rotated north pole |
---|
1126 | REAL(dp), INTENT (IN) :: phi !< latitude in geographical system |
---|
1127 | REAL(dp), INTENT (IN) :: rla !< longitude in geographical system |
---|
1128 | REAL(dp), INTENT (IN) :: polgam !< angle between the north poles of the systems |
---|
1129 | |
---|
1130 | REAL (KIND=dp) :: rla2rlarot !< latitude in the the rotated system |
---|
1131 | |
---|
1132 | REAL (KIND=dp) :: zsinpol, zcospol, zlampol, zphi, zrla, zarg1, zarg2, zrla1 |
---|
1133 | |
---|
1134 | zsinpol = SIN(polphi * TO_RADIANS) |
---|
1135 | zcospol = COS(polphi * TO_RADIANS) |
---|
1136 | zlampol = pollam * TO_RADIANS |
---|
1137 | zphi = phi * TO_RADIANS |
---|
1138 | |
---|
1139 | IF (rla > 180.0_dp) THEN |
---|
1140 | zrla1 = rla - 360.0_dp |
---|
1141 | ELSE |
---|
1142 | zrla1 = rla |
---|
1143 | END IF |
---|
1144 | zrla = zrla1 * TO_RADIANS |
---|
1145 | |
---|
1146 | zarg1 = - SIN (zrla-zlampol) * COS(zphi) |
---|
1147 | zarg2 = - zsinpol * COS(zphi) * COS(zrla-zlampol) + zcospol * SIN(zphi) |
---|
1148 | |
---|
1149 | IF (zarg2 == 0.0_dp) zarg2 = 1.0E-20_dp |
---|
1150 | |
---|
1151 | rla2rlarot = ATAN2 (zarg1,zarg2) * TO_DEGREES |
---|
1152 | |
---|
1153 | IF (polgam /= 0.0_dp ) THEN |
---|
1154 | rla2rlarot = polgam + rla2rlarot |
---|
1155 | IF (rla2rlarot > 180._dp) rla2rlarot = rla2rlarot - 360.0_dp |
---|
1156 | END IF |
---|
1157 | |
---|
1158 | END FUNCTION rla2rlarot |
---|
1159 | |
---|
1160 | |
---|
1161 | SUBROUTINE uv2uvrot(u, v, rlat, rlon, pollat, pollon, urot, vrot) |
---|
1162 | |
---|
1163 | REAL(dp), INTENT (IN) :: u, v !< wind components in the true geographical system |
---|
1164 | REAL(dp), INTENT (IN) :: rlat, rlon !< coordinates in the true geographical system |
---|
1165 | REAL(dp), INTENT (IN) :: pollat, pollon !< latitude and longitude of the north pole of the rotated grid |
---|
1166 | |
---|
1167 | REAL(dp), INTENT (OUT) :: urot, vrot !< wind components in the rotated grid |
---|
1168 | |
---|
1169 | REAL (dp) :: zsinpol, zcospol, zlonp, zlat, zarg1, zarg2, znorm |
---|
1170 | |
---|
1171 | zsinpol = SIN(pollat * TO_RADIANS) |
---|
1172 | zcospol = COS(pollat * TO_RADIANS) |
---|
1173 | zlonp = (pollon-rlon) * TO_RADIANS |
---|
1174 | zlat = rlat * TO_RADIANS |
---|
1175 | |
---|
1176 | zarg1 = zcospol * SIN(zlonp) |
---|
1177 | zarg2 = zsinpol * COS(zlat) - zcospol * SIN(zlat) * COS(zlonp) |
---|
1178 | znorm = 1.0_dp / SQRT(zarg1*zarg1 + zarg2*zarg2) |
---|
1179 | |
---|
1180 | urot = u * zarg2 * znorm - v * zarg1 * znorm |
---|
1181 | vrot = u * zarg1 * znorm + v * zarg2 * znorm |
---|
1182 | |
---|
1183 | END SUBROUTINE uv2uvrot |
---|
1184 | |
---|
1185 | |
---|
1186 | SUBROUTINE uvrot2uv (urot, vrot, rlat, rlon, pollat, pollon, u, v) |
---|
1187 | |
---|
1188 | REAL(dp), INTENT(IN) :: urot, vrot !< wind components in the rotated grid |
---|
1189 | REAL(dp), INTENT(IN) :: rlat, rlon !< latitude and longitude in the true geographical system |
---|
1190 | REAL(dp), INTENT(IN) :: pollat, pollon !< latitude and longitude of the north pole of the rotated grid |
---|
1191 | |
---|
1192 | REAL(dp), INTENT(OUT) :: u, v !< wind components in the true geographical system |
---|
1193 | |
---|
1194 | REAL(dp) :: zsinpol, zcospol, zlonp, zlat, zarg1, zarg2, znorm |
---|
1195 | |
---|
1196 | zsinpol = SIN(pollat * TO_RADIANS) |
---|
1197 | zcospol = COS(pollat * TO_RADIANS) |
---|
1198 | zlonp = (pollon-rlon) * TO_RADIANS |
---|
1199 | zlat = rlat * TO_RADIANS |
---|
1200 | |
---|
1201 | zarg1 = zcospol * SIN(zlonp) |
---|
1202 | zarg2 = zsinpol * COS(zlat) - zcospol * SIN(zlat) * COS(zlonp) |
---|
1203 | znorm = 1.0_dp / SQRT(zarg1*zarg1 + zarg2*zarg2) |
---|
1204 | |
---|
1205 | u = urot * zarg2 * znorm + vrot * zarg1 * znorm |
---|
1206 | v = - urot * zarg1 * znorm + vrot * zarg2 * znorm |
---|
1207 | |
---|
1208 | END SUBROUTINE uvrot2uv |
---|
1209 | |
---|
1210 | END MODULE |
---|
1211 | |
---|