1 | SUBROUTINE INTEGRATE( TIN, TOUT ) |
---|
2 | |
---|
3 | IMPLICIT NONE |
---|
4 | INCLUDE 'KPP_ROOT_Parameters.h' |
---|
5 | INCLUDE 'KPP_ROOT_Global.h' |
---|
6 | INTEGER Nstp, Nacc, Nrej, Nsng, IERR |
---|
7 | SAVE Nstp, Nacc, Nrej, Nsng |
---|
8 | |
---|
9 | ! TIN - Start Time |
---|
10 | KPP_REAL TIN |
---|
11 | ! TOUT - End Time |
---|
12 | KPP_REAL TOUT |
---|
13 | INTEGER i |
---|
14 | |
---|
15 | KPP_REAL RPAR(20) |
---|
16 | INTEGER IPAR(20) |
---|
17 | EXTERNAL FunTemplate, JacTemplate |
---|
18 | |
---|
19 | |
---|
20 | DO i=1,20 |
---|
21 | IPAR(i) = 0 |
---|
22 | RPAR(i) = 0.0d0 |
---|
23 | ENDDO |
---|
24 | |
---|
25 | |
---|
26 | IPAR(1) = 0 ! non-autonomous |
---|
27 | IPAR(2) = 1 ! vector tolerances |
---|
28 | RPAR(3) = STEPMIN ! starting step |
---|
29 | IPAR(4) = 5 ! choice of the method |
---|
30 | |
---|
31 | CALL Rosenbrock(VAR,TIN,TOUT, |
---|
32 | & ATOL,RTOL, |
---|
33 | & FunTemplate,JacTemplate, |
---|
34 | & RPAR,IPAR,IERR) |
---|
35 | |
---|
36 | |
---|
37 | Nstp = Nstp + IPAR(13) |
---|
38 | Nacc = Nacc + IPAR(14) |
---|
39 | Nrej = Nrej + IPAR(15) |
---|
40 | Nsng = Nsng + IPAR(18) |
---|
41 | PRINT*,'Step=',Nstp,' Acc=',Nacc,' Rej=',Nrej, |
---|
42 | & ' Singular=',Nsng |
---|
43 | |
---|
44 | |
---|
45 | IF (IERR.LT.0) THEN |
---|
46 | print *,'Rosenbrock: Unsucessful step at T=', |
---|
47 | & TIN,' (IERR=',IERR,')' |
---|
48 | ENDIF |
---|
49 | |
---|
50 | TIN = RPAR(11) ! Exit time |
---|
51 | STEPMIN = RPAR(12) |
---|
52 | |
---|
53 | RETURN |
---|
54 | END |
---|
55 | |
---|
56 | |
---|
57 | !~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
58 | SUBROUTINE Rosenbrock(Y,Tstart,Tend, |
---|
59 | & AbsTol,RelTol, |
---|
60 | & ode_Fun,ode_Jac , |
---|
61 | & RPAR,IPAR,IERR) |
---|
62 | !~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
63 | ! |
---|
64 | ! Solves the system y'=F(t,y) using a Rosenbrock method defined by: |
---|
65 | ! |
---|
66 | ! G = 1/(H*gamma(1)) - ode_Jac(t0,Y0) |
---|
67 | ! T_i = t0 + Alpha(i)*H |
---|
68 | ! Y_i = Y0 + \sum_{j=1}^{i-1} A(i,j)*K_j |
---|
69 | ! G * K_i = ode_Fun( T_i, Y_i ) + \sum_{j=1}^S C(i,j)/H * K_j + |
---|
70 | ! gamma(i)*dF/dT(t0, Y0) |
---|
71 | ! Y1 = Y0 + \sum_{j=1}^S M(j)*K_j |
---|
72 | ! |
---|
73 | ! For details on Rosenbrock methods and their implementation consult: |
---|
74 | ! E. Hairer and G. Wanner |
---|
75 | ! "Solving ODEs II. Stiff and differential-algebraic problems". |
---|
76 | ! Springer series in computational mathematics, Springer-Verlag, 1996. |
---|
77 | ! The codes contained in the book inspired this implementation. |
---|
78 | ! |
---|
79 | ! (C) Adrian Sandu, August 2004 |
---|
80 | ! Virginia Polytechnic Institute and State University |
---|
81 | ! Contact: sandu@cs.vt.edu |
---|
82 | ! This implementation is part of KPP - the Kinetic PreProcessor |
---|
83 | !~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
84 | ! |
---|
85 | !~~~> INPUT ARGUMENTS: |
---|
86 | ! |
---|
87 | !- Y(NVAR) = vector of initial conditions (at T=Tstart) |
---|
88 | !- [Tstart,Tend] = time range of integration |
---|
89 | ! (if Tstart>Tend the integration is performed backwards in time) |
---|
90 | !- RelTol, AbsTol = user precribed accuracy |
---|
91 | !- SUBROUTINE ode_Fun( T, Y, Ydot ) = ODE function, |
---|
92 | ! returns Ydot = Y' = F(T,Y) |
---|
93 | !- SUBROUTINE ode_Fun( T, Y, Ydot ) = Jacobian of the ODE function, |
---|
94 | ! returns Jcb = dF/dY |
---|
95 | !- IPAR(1:10) = integer inputs parameters |
---|
96 | !- RPAR(1:10) = real inputs parameters |
---|
97 | !~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
98 | ! |
---|
99 | !~~~> OUTPUT ARGUMENTS: |
---|
100 | ! |
---|
101 | !- Y(NVAR) -> vector of final states (at T->Tend) |
---|
102 | !- IPAR(11:20) -> integer output parameters |
---|
103 | !- RPAR(11:20) -> real output parameters |
---|
104 | !- IERR -> job status upon return |
---|
105 | ! - succes (positive value) or failure (negative value) - |
---|
106 | ! = 1 : Success |
---|
107 | ! = -1 : Improper value for maximal no of steps |
---|
108 | ! = -2 : Selected Rosenbrock method not implemented |
---|
109 | ! = -3 : Hmin/Hmax/Hstart must be positive |
---|
110 | ! = -4 : FacMin/FacMax/FacRej must be positive |
---|
111 | ! = -5 : Improper tolerance values |
---|
112 | ! = -6 : No of steps exceeds maximum bound |
---|
113 | ! = -7 : Step size too small |
---|
114 | ! = -8 : Matrix is repeatedly singular |
---|
115 | !~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
116 | ! |
---|
117 | !~~~> INPUT PARAMETERS: |
---|
118 | ! |
---|
119 | ! Note: For input parameters equal to zero the default values of the |
---|
120 | ! corresponding variables are used. |
---|
121 | ! |
---|
122 | ! IPAR(1) = 1: F = F(y) Independent of T (AUTONOMOUS) |
---|
123 | ! = 0: F = F(t,y) Depends on T (NON-AUTONOMOUS) |
---|
124 | ! IPAR(2) = 0: AbsTol, RelTol are NVAR-dimensional vectors |
---|
125 | ! = 1: AbsTol, RelTol are scalars |
---|
126 | ! IPAR(3) -> maximum number of integration steps |
---|
127 | ! For IPAR(3)=0) the default value of 100000 is used |
---|
128 | ! |
---|
129 | ! IPAR(4) -> selection of a particular Rosenbrock method |
---|
130 | ! = 0 : default method is Rodas3 |
---|
131 | ! = 1 : method is Ros2 |
---|
132 | ! = 2 : method is Ros3 |
---|
133 | ! = 3 : method is Ros4 |
---|
134 | ! = 4 : method is Rodas3 |
---|
135 | ! = 5: method is Rodas4 |
---|
136 | ! |
---|
137 | ! RPAR(1) -> Hmin, lower bound for the integration step size |
---|
138 | ! It is strongly recommended to keep Hmin = ZERO |
---|
139 | ! RPAR(2) -> Hmax, upper bound for the integration step size |
---|
140 | ! RPAR(3) -> Hstart, starting value for the integration step size |
---|
141 | ! |
---|
142 | ! RPAR(4) -> FacMin, lower bound on step decrease factor (default=0.2) |
---|
143 | ! RPAR(5) -> FacMin,upper bound on step increase factor (default=6) |
---|
144 | ! RPAR(6) -> FacRej, step decrease factor after multiple rejections |
---|
145 | ! (default=0.1) |
---|
146 | ! RPAR(7) -> FacSafe, by which the new step is slightly smaller |
---|
147 | ! than the predicted value (default=0.9) |
---|
148 | !~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
149 | ! |
---|
150 | !~~~> OUTPUT PARAMETERS: |
---|
151 | ! |
---|
152 | ! Note: each call to Rosenbrock adds the corrent no. of fcn calls |
---|
153 | ! to previous value of IPAR(11), and similar for the other params. |
---|
154 | ! Set IPAR(11:20) = 0 before call to avoid this accumulation. |
---|
155 | ! |
---|
156 | ! IPAR(11) = No. of function calls |
---|
157 | ! IPAR(12) = No. of jacobian calls |
---|
158 | ! IPAR(13) = No. of steps |
---|
159 | ! IPAR(14) = No. of accepted steps |
---|
160 | ! IPAR(15) = No. of rejected steps (except at the beginning) |
---|
161 | ! IPAR(16) = No. of LU decompositions |
---|
162 | ! IPAR(17) = No. of forward/backward substitutions |
---|
163 | ! IPAR(18) = No. of singular matrix decompositions |
---|
164 | ! |
---|
165 | ! RPAR(11) -> Texit, the time corresponding to the |
---|
166 | ! computed Y upon return |
---|
167 | ! RPAR(12) -> Hexit, last accepted step before exit |
---|
168 | ! For multiple restarts, use Hexit as Hstart in the following run |
---|
169 | !~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
170 | |
---|
171 | IMPLICIT NONE |
---|
172 | INCLUDE 'KPP_ROOT_Parameters.h' |
---|
173 | INCLUDE 'KPP_ROOT_Sparse.h' |
---|
174 | |
---|
175 | KPP_REAL Tstart,Tend |
---|
176 | KPP_REAL Y(KPP_NVAR),AbsTol(KPP_NVAR),RelTol(KPP_NVAR) |
---|
177 | INTEGER IPAR(20) |
---|
178 | KPP_REAL RPAR(20) |
---|
179 | INTEGER IERR |
---|
180 | !~~~> The method parameters |
---|
181 | INTEGER Smax |
---|
182 | PARAMETER (Smax = 6) |
---|
183 | INTEGER Method, ros_S |
---|
184 | KPP_REAL ros_M(Smax), ros_E(Smax) |
---|
185 | KPP_REAL ros_A(Smax*(Smax-1)/2), ros_C(Smax*(Smax-1)/2) |
---|
186 | KPP_REAL ros_Alpha(Smax), ros_Gamma(Smax), ros_ELO |
---|
187 | LOGICAL ros_NewF(Smax) |
---|
188 | CHARACTER*12 ros_Name |
---|
189 | !~~~> Local variables |
---|
190 | KPP_REAL Roundoff,FacMin,FacMax,FacRej,FacSafe |
---|
191 | KPP_REAL Hmin, Hmax, Hstart, Hexit |
---|
192 | KPP_REAL Texit |
---|
193 | INTEGER i, UplimTol, Max_no_steps |
---|
194 | LOGICAL Autonomous, VectorTol |
---|
195 | !~~~> Statistics on the work performed |
---|
196 | INTEGER Nfun,Njac,Nstp,Nacc,Nrej,Ndec,Nsol,Nsng |
---|
197 | COMMON /Statistics/ Nfun,Njac,Nstp,Nacc,Nrej, |
---|
198 | & Ndec,Nsol,Nsng |
---|
199 | !~~~> Parameters |
---|
200 | KPP_REAL ZERO, ONE, DeltaMin |
---|
201 | PARAMETER (ZERO = 0.0d0) |
---|
202 | PARAMETER (ONE = 1.0d0) |
---|
203 | PARAMETER (DeltaMin = 1.0d-5) |
---|
204 | !~~~> Functions |
---|
205 | EXTERNAL ode_Fun, ode_Jac |
---|
206 | KPP_REAL WLAMCH, ros_ErrorNorm |
---|
207 | EXTERNAL WLAMCH, ros_ErrorNorm |
---|
208 | |
---|
209 | !~~~> Initialize statistics |
---|
210 | Nfun = IPAR(11) |
---|
211 | Njac = IPAR(12) |
---|
212 | Nstp = IPAR(13) |
---|
213 | Nacc = IPAR(14) |
---|
214 | Nrej = IPAR(15) |
---|
215 | Ndec = IPAR(16) |
---|
216 | Nsol = IPAR(17) |
---|
217 | Nsng = IPAR(18) |
---|
218 | |
---|
219 | !~~~> Autonomous or time dependent ODE. Default is time dependent. |
---|
220 | Autonomous = .NOT.(IPAR(1).EQ.0) |
---|
221 | |
---|
222 | !~~~> For Scalar tolerances (IPAR(2).NE.0) the code uses AbsTol(1) and RelTol(1) |
---|
223 | ! For Vector tolerances (IPAR(2).EQ.0) the code uses AbsTol(1:NVAR) and RelTol(1:NVAR) |
---|
224 | IF (IPAR(2).EQ.0) THEN |
---|
225 | VectorTol = .TRUE. |
---|
226 | UplimTol = KPP_NVAR |
---|
227 | ELSE |
---|
228 | VectorTol = .FALSE. |
---|
229 | UplimTol = 1 |
---|
230 | END IF |
---|
231 | |
---|
232 | !~~~> The maximum number of steps admitted |
---|
233 | IF (IPAR(3).EQ.0) THEN |
---|
234 | Max_no_steps = 100000 |
---|
235 | ELSEIF (Max_no_steps.GT.0) THEN |
---|
236 | Max_no_steps=IPAR(3) |
---|
237 | ELSE |
---|
238 | WRITE(6,*)'User-selected max no. of steps: IPAR(3)=',IPAR(3) |
---|
239 | CALL ros_ErrorMsg(-1,Tstart,ZERO,IERR) |
---|
240 | RETURN |
---|
241 | END IF |
---|
242 | |
---|
243 | !~~~> The particular Rosenbrock method chosen |
---|
244 | IF (IPAR(4).EQ.0) THEN |
---|
245 | Method = 3 |
---|
246 | ELSEIF ( (IPAR(4).GE.1).AND.(IPAR(4).LE.5) ) THEN |
---|
247 | Method = IPAR(4) |
---|
248 | ELSE |
---|
249 | WRITE (6,*) 'User-selected Rosenbrock method: IPAR(4)=', Method |
---|
250 | CALL ros_ErrorMsg(-2,Tstart,ZERO,IERR) |
---|
251 | RETURN |
---|
252 | END IF |
---|
253 | |
---|
254 | !~~~> Unit roundoff (1+Roundoff>1) |
---|
255 | Roundoff = WLAMCH('E') |
---|
256 | |
---|
257 | !~~~> Lower bound on the step size: (positive value) |
---|
258 | IF (RPAR(1).EQ.ZERO) THEN |
---|
259 | Hmin = ZERO |
---|
260 | ELSEIF (RPAR(1).GT.ZERO) THEN |
---|
261 | Hmin = RPAR(1) |
---|
262 | ELSE |
---|
263 | WRITE (6,*) 'User-selected Hmin: RPAR(1)=', RPAR(1) |
---|
264 | CALL ros_ErrorMsg(-3,Tstart,ZERO,IERR) |
---|
265 | RETURN |
---|
266 | END IF |
---|
267 | !~~~> Upper bound on the step size: (positive value) |
---|
268 | IF (RPAR(2).EQ.ZERO) THEN |
---|
269 | Hmax = ABS(Tend-Tstart) |
---|
270 | ELSEIF (RPAR(2).GT.ZERO) THEN |
---|
271 | Hmax = MIN(ABS(RPAR(2)),ABS(Tend-Tstart)) |
---|
272 | ELSE |
---|
273 | WRITE (6,*) 'User-selected Hmax: RPAR(2)=', RPAR(2) |
---|
274 | CALL ros_ErrorMsg(-3,Tstart,ZERO,IERR) |
---|
275 | RETURN |
---|
276 | END IF |
---|
277 | !~~~> Starting step size: (positive value) |
---|
278 | IF (RPAR(3).EQ.ZERO) THEN |
---|
279 | Hstart = MAX(Hmin,DeltaMin) |
---|
280 | ELSEIF (RPAR(3).GT.ZERO) THEN |
---|
281 | Hstart = MIN(ABS(RPAR(3)),ABS(Tend-Tstart)) |
---|
282 | ELSE |
---|
283 | WRITE (6,*) 'User-selected Hstart: RPAR(3)=', RPAR(3) |
---|
284 | CALL ros_ErrorMsg(-3,Tstart,ZERO,IERR) |
---|
285 | RETURN |
---|
286 | END IF |
---|
287 | !~~~> Step size can be changed s.t. FacMin < Hnew/Hexit < FacMax |
---|
288 | IF (RPAR(4).EQ.ZERO) THEN |
---|
289 | FacMin = 0.2d0 |
---|
290 | ELSEIF (RPAR(4).GT.ZERO) THEN |
---|
291 | FacMin = RPAR(4) |
---|
292 | ELSE |
---|
293 | WRITE (6,*) 'User-selected FacMin: RPAR(4)=', RPAR(4) |
---|
294 | CALL ros_ErrorMsg(-4,Tstart,ZERO,IERR) |
---|
295 | RETURN |
---|
296 | END IF |
---|
297 | IF (RPAR(5).EQ.ZERO) THEN |
---|
298 | FacMax = 6.0d0 |
---|
299 | ELSEIF (RPAR(5).GT.ZERO) THEN |
---|
300 | FacMax = RPAR(5) |
---|
301 | ELSE |
---|
302 | WRITE (6,*) 'User-selected FacMax: RPAR(5)=', RPAR(5) |
---|
303 | CALL ros_ErrorMsg(-4,Tstart,ZERO,IERR) |
---|
304 | RETURN |
---|
305 | END IF |
---|
306 | !~~~> FacRej: Factor to decrease step after 2 succesive rejections |
---|
307 | IF (RPAR(6).EQ.ZERO) THEN |
---|
308 | FacRej = 0.1d0 |
---|
309 | ELSEIF (RPAR(6).GT.ZERO) THEN |
---|
310 | FacRej = RPAR(6) |
---|
311 | ELSE |
---|
312 | WRITE (6,*) 'User-selected FacRej: RPAR(6)=', RPAR(6) |
---|
313 | CALL ros_ErrorMsg(-4,Tstart,ZERO,IERR) |
---|
314 | RETURN |
---|
315 | END IF |
---|
316 | !~~~> FacSafe: Safety Factor in the computation of new step size |
---|
317 | IF (RPAR(7).EQ.ZERO) THEN |
---|
318 | FacSafe = 0.9d0 |
---|
319 | ELSEIF (RPAR(7).GT.ZERO) THEN |
---|
320 | FacSafe = RPAR(7) |
---|
321 | ELSE |
---|
322 | WRITE (6,*) 'User-selected FacSafe: RPAR(7)=', RPAR(7) |
---|
323 | CALL ros_ErrorMsg(-4,Tstart,ZERO,IERR) |
---|
324 | RETURN |
---|
325 | END IF |
---|
326 | !~~~> Check if tolerances are reasonable |
---|
327 | DO i=1,UplimTol |
---|
328 | IF ( (AbsTol(i).LE.ZERO) .OR. (RelTol(i).LE.10.d0*Roundoff) |
---|
329 | & .OR. (RelTol(i).GE.1.0d0) ) THEN |
---|
330 | WRITE (6,*) ' AbsTol(',i,') = ',AbsTol(i) |
---|
331 | WRITE (6,*) ' RelTol(',i,') = ',RelTol(i) |
---|
332 | CALL ros_ErrorMsg(-5,Tstart,ZERO,IERR) |
---|
333 | RETURN |
---|
334 | END IF |
---|
335 | END DO |
---|
336 | |
---|
337 | |
---|
338 | !~~~> Initialize the particular Rosenbrock method |
---|
339 | |
---|
340 | IF (Method .EQ. 1) THEN |
---|
341 | CALL Ros2(ros_S, ros_A, ros_C, ros_M, ros_E, |
---|
342 | & ros_Alpha, ros_Gamma, ros_NewF, ros_ELO, ros_Name) |
---|
343 | ELSEIF (Method .EQ. 2) THEN |
---|
344 | CALL Ros3(ros_S, ros_A, ros_C, ros_M, ros_E, |
---|
345 | & ros_Alpha, ros_Gamma, ros_NewF, ros_ELO, ros_Name) |
---|
346 | ELSEIF (Method .EQ. 3) THEN |
---|
347 | CALL Ros4(ros_S, ros_A, ros_C, ros_M, ros_E, |
---|
348 | & ros_Alpha, ros_Gamma, ros_NewF, ros_ELO, ros_Name) |
---|
349 | ELSEIF (Method .EQ. 4) THEN |
---|
350 | CALL Rodas3(ros_S, ros_A, ros_C, ros_M, ros_E, |
---|
351 | & ros_Alpha, ros_Gamma, ros_NewF, ros_ELO, ros_Name) |
---|
352 | ELSEIF (Method .EQ. 5) THEN |
---|
353 | CALL Rodas4(ros_S, ros_A, ros_C, ros_M, ros_E, |
---|
354 | & ros_Alpha, ros_Gamma, ros_NewF, ros_ELO, ros_Name) |
---|
355 | ELSE |
---|
356 | WRITE (6,*) 'Unknown Rosenbrock method: IPAR(4)=', Method |
---|
357 | CALL ros_ErrorMsg(-2,Tstart,ZERO,IERR) |
---|
358 | RETURN |
---|
359 | END IF |
---|
360 | |
---|
361 | !~~~> CALL Rosenbrock method |
---|
362 | CALL RosenbrockIntegrator(Y,Tstart,Tend,Texit, |
---|
363 | & AbsTol,RelTol, |
---|
364 | & ode_Fun,ode_Jac , |
---|
365 | ! Rosenbrock method coefficients |
---|
366 | & ros_S, ros_M, ros_E, ros_A, ros_C, |
---|
367 | & ros_Alpha, ros_Gamma, ros_ELO, ros_NewF, |
---|
368 | ! Integration parameters |
---|
369 | & Autonomous, VectorTol, Max_no_steps, |
---|
370 | & Roundoff, Hmin, Hmax, Hstart, Hexit, |
---|
371 | & FacMin, FacMax, FacRej, FacSafe, |
---|
372 | ! Error indicator |
---|
373 | & IERR) |
---|
374 | |
---|
375 | |
---|
376 | !~~~> Collect run statistics |
---|
377 | IPAR(11) = Nfun |
---|
378 | IPAR(12) = Njac |
---|
379 | IPAR(13) = Nstp |
---|
380 | IPAR(14) = Nacc |
---|
381 | IPAR(15) = Nrej |
---|
382 | IPAR(16) = Ndec |
---|
383 | IPAR(17) = Nsol |
---|
384 | IPAR(18) = Nsng |
---|
385 | !~~~> Last T and H |
---|
386 | RPAR(11) = Texit |
---|
387 | RPAR(12) = Hexit |
---|
388 | |
---|
389 | RETURN |
---|
390 | END ! SUBROUTINE Rosenbrock |
---|
391 | |
---|
392 | |
---|
393 | !~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
394 | SUBROUTINE RosenbrockIntegrator(Y,Tstart,Tend,T, |
---|
395 | & AbsTol,RelTol, |
---|
396 | & ode_Fun,ode_Jac , |
---|
397 | !~~~> Rosenbrock method coefficients |
---|
398 | & ros_S, ros_M, ros_E, ros_A, ros_C, |
---|
399 | & ros_Alpha, ros_Gamma, ros_ELO, ros_NewF, |
---|
400 | !~~~> Integration parameters |
---|
401 | & Autonomous, VectorTol, Max_no_steps, |
---|
402 | & Roundoff, Hmin, Hmax, Hstart, Hexit, |
---|
403 | & FacMin, FacMax, FacRej, FacSafe, |
---|
404 | !~~~> Error indicator |
---|
405 | & IERR) |
---|
406 | !~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
407 | ! Template for the implementation of a generic Rosenbrock method |
---|
408 | ! defined by ros_S (no of stages) |
---|
409 | ! and its coefficients ros_{A,C,M,E,Alpha,Gamma} |
---|
410 | !~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
411 | |
---|
412 | IMPLICIT NONE |
---|
413 | INCLUDE 'KPP_ROOT_Parameters.h' |
---|
414 | INCLUDE 'KPP_ROOT_Sparse.h' |
---|
415 | |
---|
416 | !~~~> Input: the initial condition at Tstart; Output: the solution at T |
---|
417 | KPP_REAL Y(KPP_NVAR) |
---|
418 | !~~~> Input: integration interval |
---|
419 | KPP_REAL Tstart,Tend |
---|
420 | !~~~> Output: time at which the solution is returned (T=Tend if success) |
---|
421 | KPP_REAL T |
---|
422 | !~~~> Input: tolerances |
---|
423 | KPP_REAL AbsTol(KPP_NVAR), RelTol(KPP_NVAR) |
---|
424 | !~~~> Input: ode function and its Jacobian |
---|
425 | EXTERNAL ode_Fun, ode_Jac |
---|
426 | !~~~> Input: The Rosenbrock method parameters |
---|
427 | INTEGER ros_S |
---|
428 | KPP_REAL ros_M(ros_S), ros_E(ros_S) |
---|
429 | KPP_REAL ros_A(ros_S*(ros_S-1)/2), ros_C(ros_S*(ros_S-1)/2) |
---|
430 | KPP_REAL ros_Alpha(ros_S), ros_Gamma(ros_S), ros_ELO |
---|
431 | LOGICAL ros_NewF(ros_S) |
---|
432 | !~~~> Input: integration parameters |
---|
433 | LOGICAL Autonomous, VectorTol |
---|
434 | KPP_REAL Hstart, Hmin, Hmax |
---|
435 | INTEGER Max_no_steps |
---|
436 | KPP_REAL Roundoff, FacMin, FacMax, FacRej, FacSafe |
---|
437 | !~~~> Output: last accepted step |
---|
438 | KPP_REAL Hexit |
---|
439 | !~~~> Output: Error indicator |
---|
440 | INTEGER IERR |
---|
441 | ! ~~~~ Local variables |
---|
442 | KPP_REAL Ynew(KPP_NVAR), Fcn0(KPP_NVAR), Fcn(KPP_NVAR), |
---|
443 | & K(KPP_NVAR*ros_S), dFdT(KPP_NVAR), |
---|
444 | & Jac0(KPP_LU_NONZERO), Ghimj(KPP_LU_NONZERO) |
---|
445 | KPP_REAL H, Hnew, HC, HG, Fac, Tau |
---|
446 | KPP_REAL Err, Yerr(KPP_NVAR) |
---|
447 | INTEGER Pivot(KPP_NVAR), Direction, ioffset, j, istage |
---|
448 | LOGICAL RejectLastH, RejectMoreH, Singular |
---|
449 | !~~~> Local parameters |
---|
450 | KPP_REAL ZERO, ONE, DeltaMin |
---|
451 | PARAMETER (ZERO = 0.0d0) |
---|
452 | PARAMETER (ONE = 1.0d0) |
---|
453 | PARAMETER (DeltaMin = 1.0d-5) |
---|
454 | !~~~> Locally called functions |
---|
455 | KPP_REAL WLAMCH, ros_ErrorNorm |
---|
456 | EXTERNAL WLAMCH, ros_ErrorNorm |
---|
457 | !~~~> Statistics on the work performed |
---|
458 | INTEGER Nfun,Njac,Nstp,Nacc,Nrej,Ndec,Nsol,Nsng |
---|
459 | COMMON /Statistics/ Nfun,Njac,Nstp,Nacc,Nrej, |
---|
460 | & Ndec,Nsol,Nsng |
---|
461 | !~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
462 | |
---|
463 | |
---|
464 | !~~~> INITIAL PREPARATIONS |
---|
465 | T = Tstart |
---|
466 | Hexit = 0.0d0 |
---|
467 | H = MIN(Hstart,Hmax) |
---|
468 | IF (ABS(H).LE.10.d0*Roundoff) THEN |
---|
469 | H = DeltaMin |
---|
470 | END IF |
---|
471 | |
---|
472 | IF (Tend .GE. Tstart) THEN |
---|
473 | Direction = +1 |
---|
474 | ELSE |
---|
475 | Direction = -1 |
---|
476 | END IF |
---|
477 | |
---|
478 | RejectLastH=.FALSE. |
---|
479 | RejectMoreH=.FALSE. |
---|
480 | |
---|
481 | !~~~> Time loop begins below |
---|
482 | |
---|
483 | DO WHILE ( (Direction.GT.0).AND.((T-Tend)+Roundoff.LE.ZERO) |
---|
484 | & .OR. (Direction.LT.0).AND.((Tend-T)+Roundoff.LE.ZERO) ) |
---|
485 | |
---|
486 | IF ( Nstp.GT.Max_no_steps ) THEN ! Too many steps |
---|
487 | CALL ros_ErrorMsg(-6,T,H,IERR) |
---|
488 | RETURN |
---|
489 | END IF |
---|
490 | IF ( ((T+0.1d0*H).EQ.T).OR.(H.LE.Roundoff) ) THEN ! Step size too small |
---|
491 | CALL ros_ErrorMsg(-7,T,H,IERR) |
---|
492 | RETURN |
---|
493 | END IF |
---|
494 | |
---|
495 | !~~~> Limit H if necessary to avoid going beyond Tend |
---|
496 | Hexit = H |
---|
497 | H = MIN(H,ABS(Tend-T)) |
---|
498 | |
---|
499 | !~~~> Compute the function at current time |
---|
500 | CALL ode_Fun(T,Y,Fcn0) |
---|
501 | |
---|
502 | !~~~> Compute the function derivative with respect to T |
---|
503 | IF (.NOT.Autonomous) THEN |
---|
504 | CALL ros_FunTimeDerivative ( T, Roundoff, Y, |
---|
505 | & Fcn0, ode_Fun, dFdT ) |
---|
506 | END IF |
---|
507 | |
---|
508 | !~~~> Compute the Jacobian at current time |
---|
509 | CALL ode_Jac(T,Y,Jac0) |
---|
510 | |
---|
511 | !~~~> Repeat step calculation until current step accepted |
---|
512 | DO WHILE (.TRUE.) ! WHILE STEP NOT ACCEPTED |
---|
513 | |
---|
514 | |
---|
515 | CALL ros_PrepareMatrix(H,Direction,ros_Gamma(1), |
---|
516 | & Jac0,Ghimj,Pivot,Singular) |
---|
517 | IF (Singular) THEN ! More than 5 consecutive failed decompositions |
---|
518 | CALL ros_ErrorMsg(-8,T,H,IERR) |
---|
519 | RETURN |
---|
520 | END IF |
---|
521 | |
---|
522 | !~~~> Compute the stages |
---|
523 | DO istage = 1, ros_S |
---|
524 | |
---|
525 | ! Current istage offset. Current istage vector is K(ioffset+1:ioffset+KPP_NVAR) |
---|
526 | ioffset = KPP_NVAR*(istage-1) |
---|
527 | |
---|
528 | ! For the 1st istage the function has been computed previously |
---|
529 | IF ( istage.EQ.1 ) THEN |
---|
530 | CALL WCOPY(KPP_NVAR,Fcn0,1,Fcn,1) |
---|
531 | ! istage>1 and a new function evaluation is needed at the current istage |
---|
532 | ELSEIF ( ros_NewF(istage) ) THEN |
---|
533 | CALL WCOPY(KPP_NVAR,Y,1,Ynew,1) |
---|
534 | DO j = 1, istage-1 |
---|
535 | CALL WAXPY(KPP_NVAR,ros_A((istage-1)*(istage-2)/2+j), |
---|
536 | & K(KPP_NVAR*(j-1)+1),1,Ynew,1) |
---|
537 | END DO |
---|
538 | Tau = T + ros_Alpha(istage)*Direction*H |
---|
539 | CALL ode_Fun(Tau,Ynew,Fcn) |
---|
540 | END IF ! if istage.EQ.1 elseif ros_NewF(istage) |
---|
541 | CALL WCOPY(KPP_NVAR,Fcn,1,K(ioffset+1),1) |
---|
542 | DO j = 1, istage-1 |
---|
543 | HC = ros_C((istage-1)*(istage-2)/2+j)/(Direction*H) |
---|
544 | CALL WAXPY(KPP_NVAR,HC,K(KPP_NVAR*(j-1)+1),1,K(ioffset+1),1) |
---|
545 | END DO |
---|
546 | IF ((.NOT. Autonomous).AND.(ros_Gamma(istage).NE.ZERO)) THEN |
---|
547 | HG = Direction*H*ros_Gamma(istage) |
---|
548 | CALL WAXPY(KPP_NVAR,HG,dFdT,1,K(ioffset+1),1) |
---|
549 | END IF |
---|
550 | CALL SolveTemplate(Ghimj, Pivot, K(ioffset+1)) |
---|
551 | |
---|
552 | END DO ! istage |
---|
553 | |
---|
554 | |
---|
555 | !~~~> Compute the new solution |
---|
556 | CALL WCOPY(KPP_NVAR,Y,1,Ynew,1) |
---|
557 | DO j=1,ros_S |
---|
558 | CALL WAXPY(KPP_NVAR,ros_M(j),K(KPP_NVAR*(j-1)+1),1,Ynew,1) |
---|
559 | END DO |
---|
560 | |
---|
561 | !~~~> Compute the error estimation |
---|
562 | CALL WSCAL(KPP_NVAR,ZERO,Yerr,1) |
---|
563 | DO j=1,ros_S |
---|
564 | CALL WAXPY(KPP_NVAR,ros_E(j),K(KPP_NVAR*(j-1)+1),1,Yerr,1) |
---|
565 | END DO |
---|
566 | Err = ros_ErrorNorm ( Y, Ynew, Yerr, AbsTol, RelTol, VectorTol ) |
---|
567 | |
---|
568 | !~~~> New step size is bounded by FacMin <= Hnew/H <= FacMax |
---|
569 | Fac = MIN(FacMax,MAX(FacMin,FacSafe/Err**(ONE/ros_ELO))) |
---|
570 | Hnew = H*Fac |
---|
571 | |
---|
572 | !~~~> Check the error magnitude and adjust step size |
---|
573 | Nstp = Nstp+1 |
---|
574 | IF ( (Err.LE.ONE).OR.(H.LE.Hmin) ) THEN !~~~> Accept step |
---|
575 | Nacc = Nacc+1 |
---|
576 | CALL WCOPY(KPP_NVAR,Ynew,1,Y,1) |
---|
577 | T = T + Direction*H |
---|
578 | Hnew = MAX(Hmin,MIN(Hnew,Hmax)) |
---|
579 | IF (RejectLastH) THEN ! No step size increase after a rejected step |
---|
580 | Hnew = MIN(Hnew,H) |
---|
581 | END IF |
---|
582 | RejectLastH = .FALSE. |
---|
583 | RejectMoreH = .FALSE. |
---|
584 | H = Hnew |
---|
585 | GOTO 101 ! EXIT THE LOOP: WHILE STEP NOT ACCEPTED |
---|
586 | ELSE !~~~> Reject step |
---|
587 | IF (RejectMoreH) THEN |
---|
588 | Hnew=H*FacRej |
---|
589 | END IF |
---|
590 | RejectMoreH = RejectLastH |
---|
591 | RejectLastH = .TRUE. |
---|
592 | H = Hnew |
---|
593 | IF (Nacc.GE.1) THEN |
---|
594 | Nrej = Nrej+1 |
---|
595 | END IF |
---|
596 | END IF ! Err <= 1 |
---|
597 | |
---|
598 | END DO ! LOOP: WHILE STEP NOT ACCEPTED |
---|
599 | |
---|
600 | 101 CONTINUE |
---|
601 | |
---|
602 | END DO ! Time loop |
---|
603 | |
---|
604 | !~~~> Succesful exit |
---|
605 | IERR = 1 !~~~> The integration was successful |
---|
606 | |
---|
607 | RETURN |
---|
608 | END ! SUBROUTINE RosenbrockIntegrator |
---|
609 | |
---|
610 | |
---|
611 | !~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
612 | KPP_REAL FUNCTION ros_ErrorNorm ( Y, Ynew, Yerr, |
---|
613 | & AbsTol, RelTol, VectorTol ) |
---|
614 | !~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
615 | !~~~> Computes the "scaled norm" of the error vector Yerr |
---|
616 | !~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
617 | IMPLICIT NONE |
---|
618 | INCLUDE 'KPP_ROOT_Parameters.h' |
---|
619 | |
---|
620 | ! Input arguments |
---|
621 | KPP_REAL Y(KPP_NVAR), Ynew(KPP_NVAR), Yerr(KPP_NVAR) |
---|
622 | KPP_REAL AbsTol(KPP_NVAR), RelTol(KPP_NVAR) |
---|
623 | LOGICAL VectorTol |
---|
624 | ! Local variables |
---|
625 | KPP_REAL Err, Scale, Ymax, ZERO |
---|
626 | INTEGER i |
---|
627 | PARAMETER (ZERO = 0.0d0) |
---|
628 | |
---|
629 | Err = ZERO |
---|
630 | DO i=1,KPP_NVAR |
---|
631 | Ymax = MAX(ABS(Y(i)),ABS(Ynew(i))) |
---|
632 | IF (VectorTol) THEN |
---|
633 | Scale = AbsTol(i)+RelTol(i)*Ymax |
---|
634 | ELSE |
---|
635 | Scale = AbsTol(1)+RelTol(1)*Ymax |
---|
636 | END IF |
---|
637 | Err = Err+(Yerr(i)/Scale)**2 |
---|
638 | END DO |
---|
639 | Err = SQRT(Err/KPP_NVAR) |
---|
640 | |
---|
641 | ros_ErrorNorm = Err |
---|
642 | |
---|
643 | RETURN |
---|
644 | END ! FUNCTION ros_ErrorNorm |
---|
645 | |
---|
646 | !~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
647 | SUBROUTINE ros_FunTimeDerivative ( T, Roundoff, Y, |
---|
648 | & Fcn0, ode_Fun, dFdT ) |
---|
649 | !~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
650 | !~~~> The time partial derivative of the function by finite differences |
---|
651 | !~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
652 | IMPLICIT NONE |
---|
653 | INCLUDE 'KPP_ROOT_Parameters.h' |
---|
654 | |
---|
655 | !~~~> Input arguments |
---|
656 | KPP_REAL T, Roundoff, Y(KPP_NVAR), Fcn0(KPP_NVAR) |
---|
657 | EXTERNAL ode_Fun |
---|
658 | !~~~> Output arguments |
---|
659 | KPP_REAL dFdT(KPP_NVAR) |
---|
660 | !~~~> Global variables |
---|
661 | INTEGER Nfun,Njac,Nstp,Nacc,Nrej,Ndec,Nsol,Nsng |
---|
662 | COMMON /Statistics/ Nfun,Njac,Nstp,Nacc,Nrej, |
---|
663 | & Ndec,Nsol,Nsng |
---|
664 | !~~~> Local variables |
---|
665 | KPP_REAL Delta, DeltaMin, ONE |
---|
666 | PARAMETER ( DeltaMin = 1.0d-6 ) |
---|
667 | PARAMETER ( ONE = 1.0d0 ) |
---|
668 | |
---|
669 | Delta = SQRT(Roundoff)*MAX(DeltaMin,ABS(T)) |
---|
670 | CALL ode_Fun(T+Delta,Y,dFdT) |
---|
671 | CALL WAXPY(KPP_NVAR,(-ONE),Fcn0,1,dFdT,1) |
---|
672 | CALL WSCAL(KPP_NVAR,(ONE/Delta),dFdT,1) |
---|
673 | |
---|
674 | RETURN |
---|
675 | END ! SUBROUTINE ros_FunTimeDerivative |
---|
676 | |
---|
677 | |
---|
678 | !~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
679 | SUBROUTINE ros_PrepareMatrix ( H, Direction, gam, |
---|
680 | & Jac0, Ghimj, Pivot, Singular ) |
---|
681 | ! --- --- --- --- --- --- --- --- --- --- --- --- --- |
---|
682 | ! Prepares the LHS matrix for stage calculations |
---|
683 | ! 1. Construct Ghimj = 1/(H*ham) - Jac0 |
---|
684 | ! "(Gamma H) Inverse Minus Jacobian" |
---|
685 | ! 2. Repeat LU decomposition of Ghimj until successful. |
---|
686 | ! -half the step size if LU decomposition fails and retry |
---|
687 | ! -exit after 5 consecutive fails |
---|
688 | ! --- --- --- --- --- --- --- --- --- --- --- --- --- |
---|
689 | IMPLICIT NONE |
---|
690 | INCLUDE 'KPP_ROOT_Parameters.h' |
---|
691 | INCLUDE 'KPP_ROOT_Sparse.h' |
---|
692 | |
---|
693 | !~~~> Input arguments |
---|
694 | KPP_REAL gam, Jac0(KPP_LU_NONZERO) |
---|
695 | INTEGER Direction |
---|
696 | !~~~> Output arguments |
---|
697 | KPP_REAL Ghimj(KPP_LU_NONZERO) |
---|
698 | LOGICAL Singular |
---|
699 | INTEGER Pivot(KPP_NVAR) |
---|
700 | !~~~> Inout arguments |
---|
701 | KPP_REAL H ! step size is decreased when LU fails |
---|
702 | !~~~> Global variables |
---|
703 | INTEGER Nfun,Njac,Nstp,Nacc,Nrej,Ndec,Nsol,Nsng |
---|
704 | COMMON /Statistics/ Nfun,Njac,Nstp,Nacc,Nrej, |
---|
705 | & Ndec,Nsol,Nsng |
---|
706 | !~~~> Local variables |
---|
707 | INTEGER i, ising, Nconsecutive |
---|
708 | KPP_REAL ghinv, ONE, HALF |
---|
709 | PARAMETER ( ONE = 1.0d0 ) |
---|
710 | PARAMETER ( HALF = 0.5d0 ) |
---|
711 | |
---|
712 | Nconsecutive = 0 |
---|
713 | Singular = .TRUE. |
---|
714 | |
---|
715 | DO WHILE (Singular) |
---|
716 | |
---|
717 | !~~~> Construct Ghimj = 1/(H*ham) - Jac0 |
---|
718 | CALL WCOPY(KPP_LU_NONZERO,Jac0,1,Ghimj,1) |
---|
719 | CALL WSCAL(KPP_LU_NONZERO,(-ONE),Ghimj,1) |
---|
720 | ghinv = ONE/(Direction*H*gam) |
---|
721 | DO i=1,KPP_NVAR |
---|
722 | Ghimj(LU_DIAG(i)) = Ghimj(LU_DIAG(i))+ghinv |
---|
723 | END DO |
---|
724 | !~~~> Compute LU decomposition |
---|
725 | CALL DecompTemplate( Ghimj, Pivot, ising ) |
---|
726 | IF (ising .EQ. 0) THEN |
---|
727 | !~~~> If successful done |
---|
728 | Singular = .FALSE. |
---|
729 | ELSE ! ising .ne. 0 |
---|
730 | !~~~> If unsuccessful half the step size; if 5 consecutive fails then return |
---|
731 | Nsng = Nsng+1 |
---|
732 | Nconsecutive = Nconsecutive+1 |
---|
733 | Singular = .TRUE. |
---|
734 | PRINT*,'Warning: LU Decomposition returned ising = ',ising |
---|
735 | IF (Nconsecutive.LE.5) THEN ! Less than 5 consecutive failed decompositions |
---|
736 | H = H*HALF |
---|
737 | ELSE ! More than 5 consecutive failed decompositions |
---|
738 | RETURN |
---|
739 | END IF ! Nconsecutive |
---|
740 | END IF ! ising |
---|
741 | |
---|
742 | END DO ! WHILE Singular |
---|
743 | |
---|
744 | RETURN |
---|
745 | END ! SUBROUTINE ros_PrepareMatrix |
---|
746 | |
---|
747 | |
---|
748 | !~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
749 | SUBROUTINE ros_ErrorMsg(Code,T,H,IERR) |
---|
750 | KPP_REAL T, H |
---|
751 | INTEGER IERR, Code |
---|
752 | |
---|
753 | IERR = Code |
---|
754 | WRITE(6,*) |
---|
755 | & 'Forced exit from Rosenbrock due to the following error:' |
---|
756 | |
---|
757 | IF (Code .EQ. -1) THEN |
---|
758 | WRITE(6,*) '--> Improper value for maximal no of steps' |
---|
759 | ELSEIF (Code .EQ. -2) THEN |
---|
760 | WRITE(6,*) '--> Selected Rosenbrock method not implemented' |
---|
761 | ELSEIF (Code .EQ. -3) THEN |
---|
762 | WRITE(6,*) '--> Hmin/Hmax/Hstart must be positive' |
---|
763 | ELSEIF (Code .EQ. -4) THEN |
---|
764 | WRITE(6,*) '--> FacMin/FacMax/FacRej must be positive' |
---|
765 | ELSEIF (Code .EQ. -5) THEN |
---|
766 | WRITE(6,*) '--> Improper tolerance values' |
---|
767 | ELSEIF (Code .EQ. -6) THEN |
---|
768 | WRITE(6,*) '--> No of steps exceeds maximum bound' |
---|
769 | ELSEIF (Code .EQ. -7) THEN |
---|
770 | WRITE(6,*) '--> Step size too small: T + 10*H = T', |
---|
771 | & ' or H < Roundoff' |
---|
772 | ELSEIF (Code .EQ. -8) THEN |
---|
773 | WRITE(6,*) '--> Matrix is repeatedly singular' |
---|
774 | ELSE |
---|
775 | WRITE(6,102) 'Unknown Error code: ',Code |
---|
776 | END IF |
---|
777 | |
---|
778 | 102 FORMAT(' ',A,I4) |
---|
779 | WRITE(6,103) T, H |
---|
780 | |
---|
781 | 103 FORMAT(' T=',E15.7,' and H=',E15.7) |
---|
782 | |
---|
783 | RETURN |
---|
784 | END |
---|
785 | |
---|
786 | |
---|
787 | |
---|
788 | !~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
789 | SUBROUTINE Ros2 (ros_S,ros_A,ros_C,ros_M,ros_E,ros_Alpha, |
---|
790 | & ros_Gamma,ros_NewF,ros_ELO,ros_Name) |
---|
791 | !~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
792 | ! --- AN L-STABLE METHOD, 2 stages, order 2 |
---|
793 | !~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
794 | IMPLICIT NONE |
---|
795 | INTEGER S |
---|
796 | PARAMETER (S=2) |
---|
797 | INTEGER ros_S |
---|
798 | KPP_REAL ros_M(S), ros_E(S), ros_A(S*(S-1)/2), ros_C(S*(S-1)/2) |
---|
799 | KPP_REAL ros_Alpha(S), ros_Gamma(S), ros_ELO |
---|
800 | LOGICAL ros_NewF(S) |
---|
801 | CHARACTER*12 ros_Name |
---|
802 | DOUBLE PRECISION g |
---|
803 | |
---|
804 | g = 1.0d0 + 1.0d0/SQRT(2.0d0) |
---|
805 | |
---|
806 | !~~~> Name of the method |
---|
807 | ros_Name = 'ROS-2' |
---|
808 | !~~~> Number of stages |
---|
809 | ros_S = 2 |
---|
810 | |
---|
811 | !~~~> The coefficient matrices A and C are strictly lower triangular. |
---|
812 | ! The lower triangular (subdiagonal) elements are stored in row-wise order: |
---|
813 | ! A(2,1) = ros_A(1), A(3,1)=ros_A(2), A(3,2)=ros_A(3), etc. |
---|
814 | ! The general mapping formula is: |
---|
815 | ! A(i,j) = ros_A( (i-1)*(i-2)/2 + j ) |
---|
816 | ! C(i,j) = ros_C( (i-1)*(i-2)/2 + j ) |
---|
817 | |
---|
818 | ros_A(1) = (1.d0)/g |
---|
819 | ros_C(1) = (-2.d0)/g |
---|
820 | !~~~> Does the stage i require a new function evaluation (ros_NewF(i)=TRUE) |
---|
821 | ! or does it re-use the function evaluation from stage i-1 (ros_NewF(i)=FALSE) |
---|
822 | ros_NewF(1) = .TRUE. |
---|
823 | ros_NewF(2) = .TRUE. |
---|
824 | !~~~> M_i = Coefficients for new step solution |
---|
825 | ros_M(1)= (3.d0)/(2.d0*g) |
---|
826 | ros_M(2)= (1.d0)/(2.d0*g) |
---|
827 | ! E_i = Coefficients for error estimator |
---|
828 | ros_E(1) = 1.d0/(2.d0*g) |
---|
829 | ros_E(2) = 1.d0/(2.d0*g) |
---|
830 | !~~~> ros_ELO = estimator of local order - the minimum between the |
---|
831 | ! main and the embedded scheme orders plus one |
---|
832 | ros_ELO = 2.0d0 |
---|
833 | !~~~> Y_stage_i ~ Y( T + H*Alpha_i ) |
---|
834 | ros_Alpha(1) = 0.0d0 |
---|
835 | ros_Alpha(2) = 1.0d0 |
---|
836 | !~~~> Gamma_i = \sum_j gamma_{i,j} |
---|
837 | ros_Gamma(1) = g |
---|
838 | ros_Gamma(2) =-g |
---|
839 | |
---|
840 | RETURN |
---|
841 | END ! SUBROUTINE Ros2 |
---|
842 | |
---|
843 | |
---|
844 | !~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
845 | SUBROUTINE Ros3 (ros_S,ros_A,ros_C,ros_M,ros_E,ros_Alpha, |
---|
846 | & ros_Gamma,ros_NewF,ros_ELO,ros_Name) |
---|
847 | !~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
848 | ! --- AN L-STABLE METHOD, 3 stages, order 3, 2 function evaluations |
---|
849 | !~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
850 | IMPLICIT NONE |
---|
851 | INTEGER S |
---|
852 | PARAMETER (S=3) |
---|
853 | INTEGER ros_S |
---|
854 | KPP_REAL ros_M(S), ros_E(S), ros_A(S*(S-1)/2), ros_C(S*(S-1)/2) |
---|
855 | KPP_REAL ros_Alpha(S), ros_Gamma(S), ros_ELO |
---|
856 | LOGICAL ros_NewF(S) |
---|
857 | CHARACTER*12 ros_Name |
---|
858 | |
---|
859 | !~~~> Name of the method |
---|
860 | ros_Name = 'ROS-3' |
---|
861 | !~~~> Number of stages |
---|
862 | ros_S = 3 |
---|
863 | |
---|
864 | !~~~> The coefficient matrices A and C are strictly lower triangular. |
---|
865 | ! The lower triangular (subdiagonal) elements are stored in row-wise order: |
---|
866 | ! A(2,1) = ros_A(1), A(3,1)=ros_A(2), A(3,2)=ros_A(3), etc. |
---|
867 | ! The general mapping formula is: |
---|
868 | ! A(i,j) = ros_A( (i-1)*(i-2)/2 + j ) |
---|
869 | ! C(i,j) = ros_C( (i-1)*(i-2)/2 + j ) |
---|
870 | |
---|
871 | ros_A(1)= 1.d0 |
---|
872 | ros_A(2)= 1.d0 |
---|
873 | ros_A(3)= 0.d0 |
---|
874 | |
---|
875 | ros_C(1) = -0.10156171083877702091975600115545d+01 |
---|
876 | ros_C(2) = 0.40759956452537699824805835358067d+01 |
---|
877 | ros_C(3) = 0.92076794298330791242156818474003d+01 |
---|
878 | !~~~> Does the stage i require a new function evaluation (ros_NewF(i)=TRUE) |
---|
879 | ! or does it re-use the function evaluation from stage i-1 (ros_NewF(i)=FALSE) |
---|
880 | ros_NewF(1) = .TRUE. |
---|
881 | ros_NewF(2) = .TRUE. |
---|
882 | ros_NewF(3) = .FALSE. |
---|
883 | !~~~> M_i = Coefficients for new step solution |
---|
884 | ros_M(1) = 0.1d+01 |
---|
885 | ros_M(2) = 0.61697947043828245592553615689730d+01 |
---|
886 | ros_M(3) = -0.42772256543218573326238373806514d+00 |
---|
887 | ! E_i = Coefficients for error estimator |
---|
888 | ros_E(1) = 0.5d+00 |
---|
889 | ros_E(2) = -0.29079558716805469821718236208017d+01 |
---|
890 | ros_E(3) = 0.22354069897811569627360909276199d+00 |
---|
891 | !~~~> ros_ELO = estimator of local order - the minimum between the |
---|
892 | ! main and the embedded scheme orders plus 1 |
---|
893 | ros_ELO = 3.0d0 |
---|
894 | !~~~> Y_stage_i ~ Y( T + H*Alpha_i ) |
---|
895 | ros_Alpha(1)= 0.0d+00 |
---|
896 | ros_Alpha(2)= 0.43586652150845899941601945119356d+00 |
---|
897 | ros_Alpha(3)= 0.43586652150845899941601945119356d+00 |
---|
898 | !~~~> Gamma_i = \sum_j gamma_{i,j} |
---|
899 | ros_Gamma(1)= 0.43586652150845899941601945119356d+00 |
---|
900 | ros_Gamma(2)= 0.24291996454816804366592249683314d+00 |
---|
901 | ros_Gamma(3)= 0.21851380027664058511513169485832d+01 |
---|
902 | RETURN |
---|
903 | END ! SUBROUTINE Ros3 |
---|
904 | |
---|
905 | !~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
906 | |
---|
907 | |
---|
908 | !~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
909 | SUBROUTINE Ros4 (ros_S,ros_A,ros_C,ros_M,ros_E,ros_Alpha, |
---|
910 | & ros_Gamma,ros_NewF,ros_ELO,ros_Name) |
---|
911 | !~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
912 | ! L-STABLE ROSENBROCK METHOD OF ORDER 4, WITH 4 STAGES |
---|
913 | ! L-STABLE EMBEDDED ROSENBROCK METHOD OF ORDER 3 |
---|
914 | ! |
---|
915 | ! E. HAIRER AND G. WANNER, SOLVING ORDINARY DIFFERENTIAL |
---|
916 | ! EQUATIONS II. STIFF AND DIFFERENTIAL-ALGEBRAIC PROBLEMS. |
---|
917 | ! SPRINGER SERIES IN COMPUTATIONAL MATHEMATICS, |
---|
918 | ! SPRINGER-VERLAG (1990) |
---|
919 | !~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
920 | |
---|
921 | IMPLICIT NONE |
---|
922 | INTEGER S |
---|
923 | PARAMETER (S=4) |
---|
924 | INTEGER ros_S |
---|
925 | KPP_REAL ros_M(S), ros_E(S), ros_A(S*(S-1)/2), ros_C(S*(S-1)/2) |
---|
926 | KPP_REAL ros_Alpha(S), ros_Gamma(S), ros_ELO |
---|
927 | LOGICAL ros_NewF(S) |
---|
928 | CHARACTER*12 ros_Name |
---|
929 | |
---|
930 | !~~~> Name of the method |
---|
931 | ros_Name = 'ROS-4' |
---|
932 | !~~~> Number of stages |
---|
933 | ros_S = 4 |
---|
934 | |
---|
935 | !~~~> The coefficient matrices A and C are strictly lower triangular. |
---|
936 | ! The lower triangular (subdiagonal) elements are stored in row-wise order: |
---|
937 | ! A(2,1) = ros_A(1), A(3,1)=ros_A(2), A(3,2)=ros_A(3), etc. |
---|
938 | ! The general mapping formula is: |
---|
939 | ! A(i,j) = ros_A( (i-1)*(i-2)/2 + j ) |
---|
940 | ! C(i,j) = ros_C( (i-1)*(i-2)/2 + j ) |
---|
941 | |
---|
942 | ros_A(1) = 0.2000000000000000d+01 |
---|
943 | ros_A(2) = 0.1867943637803922d+01 |
---|
944 | ros_A(3) = 0.2344449711399156d+00 |
---|
945 | ros_A(4) = ros_A(2) |
---|
946 | ros_A(5) = ros_A(3) |
---|
947 | ros_A(6) = 0.0D0 |
---|
948 | |
---|
949 | ros_C(1) =-0.7137615036412310d+01 |
---|
950 | ros_C(2) = 0.2580708087951457d+01 |
---|
951 | ros_C(3) = 0.6515950076447975d+00 |
---|
952 | ros_C(4) =-0.2137148994382534d+01 |
---|
953 | ros_C(5) =-0.3214669691237626d+00 |
---|
954 | ros_C(6) =-0.6949742501781779d+00 |
---|
955 | !~~~> Does the stage i require a new function evaluation (ros_NewF(i)=TRUE) |
---|
956 | ! or does it re-use the function evaluation from stage i-1 (ros_NewF(i)=FALSE) |
---|
957 | ros_NewF(1) = .TRUE. |
---|
958 | ros_NewF(2) = .TRUE. |
---|
959 | ros_NewF(3) = .TRUE. |
---|
960 | ros_NewF(4) = .FALSE. |
---|
961 | !~~~> M_i = Coefficients for new step solution |
---|
962 | ros_M(1) = 0.2255570073418735d+01 |
---|
963 | ros_M(2) = 0.2870493262186792d+00 |
---|
964 | ros_M(3) = 0.4353179431840180d+00 |
---|
965 | ros_M(4) = 0.1093502252409163d+01 |
---|
966 | !~~~> E_i = Coefficients for error estimator |
---|
967 | ros_E(1) =-0.2815431932141155d+00 |
---|
968 | ros_E(2) =-0.7276199124938920d-01 |
---|
969 | ros_E(3) =-0.1082196201495311d+00 |
---|
970 | ros_E(4) =-0.1093502252409163d+01 |
---|
971 | !~~~> ros_ELO = estimator of local order - the minimum between the |
---|
972 | ! main and the embedded scheme orders plus 1 |
---|
973 | ros_ELO = 4.0d0 |
---|
974 | !~~~> Y_stage_i ~ Y( T + H*Alpha_i ) |
---|
975 | ros_Alpha(1) = 0.D0 |
---|
976 | ros_Alpha(2) = 0.1145640000000000d+01 |
---|
977 | ros_Alpha(3) = 0.6552168638155900d+00 |
---|
978 | ros_Alpha(4) = ros_Alpha(3) |
---|
979 | !~~~> Gamma_i = \sum_j gamma_{i,j} |
---|
980 | ros_Gamma(1) = 0.5728200000000000d+00 |
---|
981 | ros_Gamma(2) =-0.1769193891319233d+01 |
---|
982 | ros_Gamma(3) = 0.7592633437920482d+00 |
---|
983 | ros_Gamma(4) =-0.1049021087100450d+00 |
---|
984 | RETURN |
---|
985 | END ! SUBROUTINE Ros4 |
---|
986 | |
---|
987 | !~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
988 | SUBROUTINE Rodas3 (ros_S,ros_A,ros_C,ros_M,ros_E,ros_Alpha, |
---|
989 | & ros_Gamma,ros_NewF,ros_ELO,ros_Name) |
---|
990 | !~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
991 | ! --- A STIFFLY-STABLE METHOD, 4 stages, order 3 |
---|
992 | !~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
993 | IMPLICIT NONE |
---|
994 | INTEGER S |
---|
995 | PARAMETER (S=4) |
---|
996 | INTEGER ros_S |
---|
997 | KPP_REAL ros_M(S), ros_E(S), ros_A(S*(S-1)/2), ros_C(S*(S-1)/2) |
---|
998 | KPP_REAL ros_Alpha(S), ros_Gamma(S), ros_ELO |
---|
999 | LOGICAL ros_NewF(S) |
---|
1000 | CHARACTER*12 ros_Name |
---|
1001 | |
---|
1002 | !~~~> Name of the method |
---|
1003 | ros_Name = 'RODAS-3' |
---|
1004 | !~~~> Number of stages |
---|
1005 | ros_S = 4 |
---|
1006 | |
---|
1007 | !~~~> The coefficient matrices A and C are strictly lower triangular. |
---|
1008 | ! The lower triangular (subdiagonal) elements are stored in row-wise order: |
---|
1009 | ! A(2,1) = ros_A(1), A(3,1)=ros_A(2), A(3,2)=ros_A(3), etc. |
---|
1010 | ! The general mapping formula is: |
---|
1011 | ! A(i,j) = ros_A( (i-1)*(i-2)/2 + j ) |
---|
1012 | ! C(i,j) = ros_C( (i-1)*(i-2)/2 + j ) |
---|
1013 | |
---|
1014 | ros_A(1) = 0.0d+00 |
---|
1015 | ros_A(2) = 2.0d+00 |
---|
1016 | ros_A(3) = 0.0d+00 |
---|
1017 | ros_A(4) = 2.0d+00 |
---|
1018 | ros_A(5) = 0.0d+00 |
---|
1019 | ros_A(6) = 1.0d+00 |
---|
1020 | |
---|
1021 | ros_C(1) = 4.0d+00 |
---|
1022 | ros_C(2) = 1.0d+00 |
---|
1023 | ros_C(3) =-1.0d+00 |
---|
1024 | ros_C(4) = 1.0d+00 |
---|
1025 | ros_C(5) =-1.0d+00 |
---|
1026 | ros_C(6) =-(8.0d+00/3.0d+00) |
---|
1027 | |
---|
1028 | !~~~> Does the stage i require a new function evaluation (ros_NewF(i)=TRUE) |
---|
1029 | ! or does it re-use the function evaluation from stage i-1 (ros_NewF(i)=FALSE) |
---|
1030 | ros_NewF(1) = .TRUE. |
---|
1031 | ros_NewF(2) = .FALSE. |
---|
1032 | ros_NewF(3) = .TRUE. |
---|
1033 | ros_NewF(4) = .TRUE. |
---|
1034 | !~~~> M_i = Coefficients for new step solution |
---|
1035 | ros_M(1) = 2.0d+00 |
---|
1036 | ros_M(2) = 0.0d+00 |
---|
1037 | ros_M(3) = 1.0d+00 |
---|
1038 | ros_M(4) = 1.0d+00 |
---|
1039 | !~~~> E_i = Coefficients for error estimator |
---|
1040 | ros_E(1) = 0.0d+00 |
---|
1041 | ros_E(2) = 0.0d+00 |
---|
1042 | ros_E(3) = 0.0d+00 |
---|
1043 | ros_E(4) = 1.0d+00 |
---|
1044 | !~~~> ros_ELO = estimator of local order - the minimum between the |
---|
1045 | ! main and the embedded scheme orders plus 1 |
---|
1046 | ros_ELO = 3.0d+00 |
---|
1047 | !~~~> Y_stage_i ~ Y( T + H*Alpha_i ) |
---|
1048 | ros_Alpha(1) = 0.0d+00 |
---|
1049 | ros_Alpha(2) = 0.0d+00 |
---|
1050 | ros_Alpha(3) = 1.0d+00 |
---|
1051 | ros_Alpha(4) = 1.0d+00 |
---|
1052 | !~~~> Gamma_i = \sum_j gamma_{i,j} |
---|
1053 | ros_Gamma(1) = 0.5d+00 |
---|
1054 | ros_Gamma(2) = 1.5d+00 |
---|
1055 | ros_Gamma(3) = 0.0d+00 |
---|
1056 | ros_Gamma(4) = 0.0d+00 |
---|
1057 | RETURN |
---|
1058 | END ! SUBROUTINE Rodas3 |
---|
1059 | |
---|
1060 | !~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
1061 | SUBROUTINE Rodas4 (ros_S,ros_A,ros_C,ros_M,ros_E,ros_Alpha, |
---|
1062 | & ros_Gamma,ros_NewF,ros_ELO,ros_Name) |
---|
1063 | !~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
1064 | ! STIFFLY-STABLE ROSENBROCK METHOD OF ORDER 4, WITH 6 STAGES |
---|
1065 | ! |
---|
1066 | ! E. HAIRER AND G. WANNER, SOLVING ORDINARY DIFFERENTIAL |
---|
1067 | ! EQUATIONS II. STIFF AND DIFFERENTIAL-ALGEBRAIC PROBLEMS. |
---|
1068 | ! SPRINGER SERIES IN COMPUTATIONAL MATHEMATICS, |
---|
1069 | ! SPRINGER-VERLAG (1996) |
---|
1070 | !~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
1071 | |
---|
1072 | IMPLICIT NONE |
---|
1073 | INTEGER S |
---|
1074 | PARAMETER (S=6) |
---|
1075 | INTEGER ros_S |
---|
1076 | KPP_REAL ros_M(S), ros_E(S), ros_A(S*(S-1)/2), ros_C(S*(S-1)/2) |
---|
1077 | KPP_REAL ros_Alpha(S), ros_Gamma(S), ros_ELO |
---|
1078 | LOGICAL ros_NewF(S) |
---|
1079 | CHARACTER*12 ros_Name |
---|
1080 | |
---|
1081 | !~~~> Name of the method |
---|
1082 | ros_Name = 'RODAS-4' |
---|
1083 | !~~~> Number of stages |
---|
1084 | ros_S = 6 |
---|
1085 | |
---|
1086 | !~~~> Y_stage_i ~ Y( T + H*Alpha_i ) |
---|
1087 | ros_Alpha(1) = 0.000d0 |
---|
1088 | ros_Alpha(2) = 0.386d0 |
---|
1089 | ros_Alpha(3) = 0.210d0 |
---|
1090 | ros_Alpha(4) = 0.630d0 |
---|
1091 | ros_Alpha(5) = 1.000d0 |
---|
1092 | ros_Alpha(6) = 1.000d0 |
---|
1093 | |
---|
1094 | !~~~> Gamma_i = \sum_j gamma_{i,j} |
---|
1095 | ros_Gamma(1) = 0.2500000000000000d+00 |
---|
1096 | ros_Gamma(2) =-0.1043000000000000d+00 |
---|
1097 | ros_Gamma(3) = 0.1035000000000000d+00 |
---|
1098 | ros_Gamma(4) =-0.3620000000000023d-01 |
---|
1099 | ros_Gamma(5) = 0.0d0 |
---|
1100 | ros_Gamma(6) = 0.0d0 |
---|
1101 | |
---|
1102 | !~~~> The coefficient matrices A and C are strictly lower triangular. |
---|
1103 | ! The lower triangular (subdiagonal) elements are stored in row-wise order: |
---|
1104 | ! A(2,1) = ros_A(1), A(3,1)=ros_A(2), A(3,2)=ros_A(3), etc. |
---|
1105 | ! The general mapping formula is: A(i,j) = ros_A( (i-1)*(i-2)/2 + j ) |
---|
1106 | ! C(i,j) = ros_C( (i-1)*(i-2)/2 + j ) |
---|
1107 | |
---|
1108 | ros_A(1) = 0.1544000000000000d+01 |
---|
1109 | ros_A(2) = 0.9466785280815826d+00 |
---|
1110 | ros_A(3) = 0.2557011698983284d+00 |
---|
1111 | ros_A(4) = 0.3314825187068521d+01 |
---|
1112 | ros_A(5) = 0.2896124015972201d+01 |
---|
1113 | ros_A(6) = 0.9986419139977817d+00 |
---|
1114 | ros_A(7) = 0.1221224509226641d+01 |
---|
1115 | ros_A(8) = 0.6019134481288629d+01 |
---|
1116 | ros_A(9) = 0.1253708332932087d+02 |
---|
1117 | ros_A(10) =-0.6878860361058950d+00 |
---|
1118 | ros_A(11) = ros_A(7) |
---|
1119 | ros_A(12) = ros_A(8) |
---|
1120 | ros_A(13) = ros_A(9) |
---|
1121 | ros_A(14) = ros_A(10) |
---|
1122 | ros_A(15) = 1.0d+00 |
---|
1123 | |
---|
1124 | ros_C(1) =-0.5668800000000000d+01 |
---|
1125 | ros_C(2) =-0.2430093356833875d+01 |
---|
1126 | ros_C(3) =-0.2063599157091915d+00 |
---|
1127 | ros_C(4) =-0.1073529058151375d+00 |
---|
1128 | ros_C(5) =-0.9594562251023355d+01 |
---|
1129 | ros_C(6) =-0.2047028614809616d+02 |
---|
1130 | ros_C(7) = 0.7496443313967647d+01 |
---|
1131 | ros_C(8) =-0.1024680431464352d+02 |
---|
1132 | ros_C(9) =-0.3399990352819905d+02 |
---|
1133 | ros_C(10) = 0.1170890893206160d+02 |
---|
1134 | ros_C(11) = 0.8083246795921522d+01 |
---|
1135 | ros_C(12) =-0.7981132988064893d+01 |
---|
1136 | ros_C(13) =-0.3152159432874371d+02 |
---|
1137 | ros_C(14) = 0.1631930543123136d+02 |
---|
1138 | ros_C(15) =-0.6058818238834054d+01 |
---|
1139 | |
---|
1140 | !~~~> M_i = Coefficients for new step solution |
---|
1141 | ros_M(1) = ros_A(7) |
---|
1142 | ros_M(2) = ros_A(8) |
---|
1143 | ros_M(3) = ros_A(9) |
---|
1144 | ros_M(4) = ros_A(10) |
---|
1145 | ros_M(5) = 1.0d+00 |
---|
1146 | ros_M(6) = 1.0d+00 |
---|
1147 | |
---|
1148 | !~~~> E_i = Coefficients for error estimator |
---|
1149 | ros_E(1) = 0.0d+00 |
---|
1150 | ros_E(2) = 0.0d+00 |
---|
1151 | ros_E(3) = 0.0d+00 |
---|
1152 | ros_E(4) = 0.0d+00 |
---|
1153 | ros_E(5) = 0.0d+00 |
---|
1154 | ros_E(6) = 1.0d+00 |
---|
1155 | |
---|
1156 | !~~~> Does the stage i require a new function evaluation (ros_NewF(i)=TRUE) |
---|
1157 | ! or does it re-use the function evaluation from stage i-1 (ros_NewF(i)=FALSE) |
---|
1158 | ros_NewF(1) = .TRUE. |
---|
1159 | ros_NewF(2) = .TRUE. |
---|
1160 | ros_NewF(3) = .TRUE. |
---|
1161 | ros_NewF(4) = .TRUE. |
---|
1162 | ros_NewF(5) = .TRUE. |
---|
1163 | ros_NewF(6) = .TRUE. |
---|
1164 | |
---|
1165 | !~~~> ros_ELO = estimator of local order - the minimum between the |
---|
1166 | ! main and the embedded scheme orders plus 1 |
---|
1167 | ros_ELO = 4.0d0 |
---|
1168 | |
---|
1169 | RETURN |
---|
1170 | END ! SUBROUTINE Rodas4 |
---|
1171 | |
---|
1172 | |
---|
1173 | |
---|
1174 | !~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
1175 | SUBROUTINE DecompTemplate( A, Pivot, ising ) |
---|
1176 | !~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
1177 | ! Template for the LU decomposition |
---|
1178 | !~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
1179 | INCLUDE 'KPP_ROOT_Parameters.h' |
---|
1180 | INCLUDE 'KPP_ROOT_Global.h' |
---|
1181 | !~~~> Inout variables |
---|
1182 | KPP_REAL A(KPP_LU_NONZERO) |
---|
1183 | !~~~> Output variables |
---|
1184 | INTEGER Pivot(KPP_NVAR), ising |
---|
1185 | !~~~> Collect statistics |
---|
1186 | INTEGER Nfun,Njac,Nstp,Nacc,Nrej,Ndec,Nsol,Nsng |
---|
1187 | COMMON /Statistics/ Nfun,Njac,Nstp,Nacc,Nrej, |
---|
1188 | & Ndec,Nsol,Nsng |
---|
1189 | |
---|
1190 | CALL KppDecomp ( A, ising ) |
---|
1191 | !~~~> Note: for a full matrix use Lapack: |
---|
1192 | ! CALL DGETRF( KPP_NVAR, KPP_NVAR, A, KPP_NVAR, Pivot, ising ) |
---|
1193 | |
---|
1194 | Ndec = Ndec + 1 |
---|
1195 | |
---|
1196 | END ! SUBROUTINE DecompTemplate |
---|
1197 | |
---|
1198 | !~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
1199 | SUBROUTINE SolveTemplate( A, Pivot, b ) |
---|
1200 | !~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
1201 | ! Template for the forward/backward substitution (using pre-computed LU decomposition) |
---|
1202 | !~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
1203 | INCLUDE 'KPP_ROOT_Parameters.h' |
---|
1204 | INCLUDE 'KPP_ROOT_Global.h' |
---|
1205 | !~~~> Input variables |
---|
1206 | KPP_REAL A(KPP_LU_NONZERO) |
---|
1207 | INTEGER Pivot(KPP_NVAR) |
---|
1208 | !~~~> InOut variables |
---|
1209 | KPP_REAL b(KPP_NVAR) |
---|
1210 | !~~~> Collect statistics |
---|
1211 | INTEGER Nfun,Njac,Nstp,Nacc,Nrej,Ndec,Nsol,Nsng |
---|
1212 | COMMON /Statistics/ Nfun,Njac,Nstp,Nacc,Nrej, |
---|
1213 | & Ndec,Nsol,Nsng |
---|
1214 | |
---|
1215 | CALL KppSolve( A, b ) |
---|
1216 | !~~~> Note: for a full matrix use Lapack: |
---|
1217 | ! NRHS = 1 |
---|
1218 | ! CALL DGETRS( 'N', KPP_NVAR , NRHS, A, KPP_NVAR, Pivot, b, KPP_NVAR, INFO ) |
---|
1219 | |
---|
1220 | Nsol = Nsol+1 |
---|
1221 | |
---|
1222 | END ! SUBROUTINE SolveTemplate |
---|
1223 | |
---|
1224 | !~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
1225 | SUBROUTINE FunTemplate( T, Y, Ydot ) |
---|
1226 | !~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
1227 | ! Template for the ODE function call. |
---|
1228 | ! Updates the rate coefficients (and possibly the fixed species) at each call |
---|
1229 | !~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
1230 | INCLUDE 'KPP_ROOT_Parameters.h' |
---|
1231 | INCLUDE 'KPP_ROOT_Global.h' |
---|
1232 | !~~~> Input variables |
---|
1233 | KPP_REAL T, Y(KPP_NVAR) |
---|
1234 | !~~~> Output variables |
---|
1235 | KPP_REAL Ydot(KPP_NVAR) |
---|
1236 | !~~~> Local variables |
---|
1237 | KPP_REAL Told |
---|
1238 | !~~~> Collect statistics |
---|
1239 | INTEGER Nfun,Njac,Nstp,Nacc,Nrej,Ndec,Nsol,Nsng |
---|
1240 | COMMON /Statistics/ Nfun,Njac,Nstp,Nacc,Nrej, |
---|
1241 | & Ndec,Nsol,Nsng |
---|
1242 | |
---|
1243 | Told = TIME |
---|
1244 | TIME = T |
---|
1245 | CALL Update_SUN() |
---|
1246 | CALL Update_RCONST() |
---|
1247 | CALL Fun( Y, FIX, RCONST, Ydot ) |
---|
1248 | TIME = Told |
---|
1249 | |
---|
1250 | Nfun = Nfun+1 |
---|
1251 | |
---|
1252 | RETURN |
---|
1253 | END ! SUBROUTINE FunTemplate |
---|
1254 | |
---|
1255 | |
---|
1256 | !~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
1257 | SUBROUTINE JacTemplate( T, Y, Jcb ) |
---|
1258 | !~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
1259 | ! Template for the ODE Jacobian call. |
---|
1260 | ! Updates the rate coefficients (and possibly the fixed species) at each call |
---|
1261 | !~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
1262 | INCLUDE 'KPP_ROOT_Parameters.h' |
---|
1263 | INCLUDE 'KPP_ROOT_Global.h' |
---|
1264 | !~~~> Input variables |
---|
1265 | KPP_REAL T, Y(KPP_NVAR) |
---|
1266 | !~~~> Output variables |
---|
1267 | KPP_REAL Jcb(KPP_LU_NONZERO) |
---|
1268 | !~~~> Local variables |
---|
1269 | KPP_REAL Told |
---|
1270 | !~~~> Collect statistics |
---|
1271 | INTEGER Nfun,Njac,Nstp,Nacc,Nrej,Ndec,Nsol,Nsng |
---|
1272 | COMMON /Statistics/ Nfun,Njac,Nstp,Nacc,Nrej, |
---|
1273 | & Ndec,Nsol,Nsng |
---|
1274 | |
---|
1275 | Told = TIME |
---|
1276 | TIME = T |
---|
1277 | CALL Update_SUN() |
---|
1278 | CALL Update_RCONST() |
---|
1279 | CALL Jac_SP( Y, FIX, RCONST, Jcb ) |
---|
1280 | TIME = Told |
---|
1281 | |
---|
1282 | Njac = Njac+1 |
---|
1283 | |
---|
1284 | RETURN |
---|
1285 | END ! SUBROUTINE JacTemplate |
---|
1286 | |
---|