1 | SUBROUTINE INTEGRATE( TIN, TOUT ) |
---|
2 | |
---|
3 | INCLUDE 'KPP_ROOT_params.h' |
---|
4 | INCLUDE 'KPP_ROOT_global.h' |
---|
5 | |
---|
6 | C TIN - Start Time |
---|
7 | KPP_REAL TIN |
---|
8 | C TOUT - End Time |
---|
9 | KPP_REAL TOUT |
---|
10 | |
---|
11 | INTEGER INFO(5) |
---|
12 | |
---|
13 | EXTERNAL FUNC_CHEM, JAC_CHEM |
---|
14 | |
---|
15 | INFO(1) = Autonomous |
---|
16 | |
---|
17 | CALL ROS4(NVAR,TIN,TOUT,STEPMIN,STEPMAX, |
---|
18 | + STEPMIN,VAR,ATOL,RTOL, |
---|
19 | + Info,FUNC_CHEM,JAC_CHEM) |
---|
20 | |
---|
21 | RETURN |
---|
22 | END |
---|
23 | |
---|
24 | |
---|
25 | |
---|
26 | |
---|
27 | SUBROUTINE ROS4(N,T,Tnext,Hmin,Hmax,Hstart, |
---|
28 | + y,AbsTol,RelTol, |
---|
29 | + Info,FUNC_CHEM,JAC_CHEM) |
---|
30 | IMPLICIT NONE |
---|
31 | INCLUDE 'KPP_ROOT_params.h' |
---|
32 | INCLUDE 'KPP_ROOT_sparse.h' |
---|
33 | C |
---|
34 | C Four Stages, Fourth Order L-stable Rosenbrock Method, |
---|
35 | C with embedded L-stable, third order method for error control |
---|
36 | C Simplified version of E. Hairer's atmros4; the coefficients are slightly |
---|
37 | C different |
---|
38 | C |
---|
39 | C |
---|
40 | C INPUT ARGUMENTS: |
---|
41 | C y = Vector of (NVAR) concentrations, contains the |
---|
42 | C initial values on input |
---|
43 | C [T, Tnext] = the integration interval |
---|
44 | C Hmin, Hmax = lower and upper bounds for the selected step-size. |
---|
45 | C Note that for Step = Hmin the current computed |
---|
46 | C solution is unconditionally accepted by the error |
---|
47 | C control mechanism. |
---|
48 | C AbsTol, RelTol = (NVAR) dimensional vectors of |
---|
49 | C componentwise absolute and relative tolerances. |
---|
50 | C FUNC_CHEM = name of routine of derivatives. KPP syntax. |
---|
51 | C See the header below. |
---|
52 | C JAC_CHEM = name of routine that computes the Jacobian, in |
---|
53 | C sparse format. KPP syntax. See the header below. |
---|
54 | C Info(1) = 1 for Autonomous system |
---|
55 | C = 0 for nonAutonomous system |
---|
56 | C |
---|
57 | C OUTPUT ARGUMENTS: |
---|
58 | C y = the values of concentrations at Tend. |
---|
59 | C T = equals TENDon output. |
---|
60 | C Info(2) = # of FUNC_CHEM CALLs. |
---|
61 | C Info(3) = # of JAC_CHEM CALLs. |
---|
62 | C Info(4) = # of accepted steps. |
---|
63 | C Info(5) = # of rejected steps. |
---|
64 | C Hstart = The last accepted stepsize |
---|
65 | C |
---|
66 | C Adrian Sandu, December 2001 |
---|
67 | C |
---|
68 | KPP_REAL K1(NVAR), K2(NVAR), K3(NVAR), K4(NVAR) |
---|
69 | KPP_REAL F1(NVAR) |
---|
70 | KPP_REAL DFDT(NVAR) |
---|
71 | KPP_REAL JAC(LU_NONZERO) |
---|
72 | KPP_REAL Hmin,Hmax,Hstart |
---|
73 | KPP_REAL y(NVAR), ynew(NVAR) |
---|
74 | KPP_REAL AbsTol(NVAR), RelTol(NVAR) |
---|
75 | KPP_REAL T, Tnext, H, Hnew, Tplus |
---|
76 | KPP_REAL elo,ghinv,uround |
---|
77 | KPP_REAL ERR, factor, facmax |
---|
78 | KPP_REAL w, e, dround, tau |
---|
79 | KPP_REAL hgam1, hgam2, hgam3, hgam4 |
---|
80 | KPP_REAL hc21, hc31, hc32, hc41, hc42, hc43 |
---|
81 | |
---|
82 | INTEGER n,nfcn,njac,Naccept,Nreject,i,j,ier |
---|
83 | INTEGER Info(5) |
---|
84 | LOGICAL IsReject, Autonomous |
---|
85 | EXTERNAL FUNC_CHEM, JAC_CHEM |
---|
86 | |
---|
87 | |
---|
88 | C The method coefficients |
---|
89 | DOUBLE PRECISION gamma, gamma2, gamma3, gamma4 |
---|
90 | PARAMETER ( gamma = 0.5728200000000000D+00 ) |
---|
91 | PARAMETER ( gamma2 = -0.1769193891319233D+01 ) |
---|
92 | PARAMETER ( gamma3 = 0.7592633437920482D+00 ) |
---|
93 | PARAMETER ( gamma4 = -0.1049021087100450D+00 ) |
---|
94 | DOUBLE PRECISION a21, a31, a32, a41, a42, a43 |
---|
95 | PARAMETER ( a21 = 0.2000000000000000D+01 ) |
---|
96 | PARAMETER ( a31 = 0.1867943637803922D+01 ) |
---|
97 | PARAMETER ( a32 = 0.2344449711399156D+00 ) |
---|
98 | DOUBLE PRECISION alpha2, alpha3 |
---|
99 | PARAMETER ( alpha2 = 0.1145640000000000D+01 ) |
---|
100 | PARAMETER ( alpha3 = 0.6552168638155900D+00 ) |
---|
101 | DOUBLE PRECISION c21, c31, c32, c41, c42, c43 |
---|
102 | PARAMETER ( c21 = -0.7137615036412310D+01 ) |
---|
103 | PARAMETER ( c31 = 0.2580708087951457D+01 ) |
---|
104 | PARAMETER ( c32 = 0.6515950076447975D+00 ) |
---|
105 | PARAMETER ( c41 = -0.2137148994382534D+01 ) |
---|
106 | PARAMETER ( c42 = -0.3214669691237626D+00 ) |
---|
107 | PARAMETER ( c43 = -0.6949742501781779D+00 ) |
---|
108 | DOUBLE PRECISION b1, b2, b3, b4 |
---|
109 | PARAMETER ( b1 = 0.2255570073418735D+01 ) |
---|
110 | PARAMETER ( b2 = 0.2870493262186792D+00 ) |
---|
111 | PARAMETER ( b3 = 0.4353179431840180D+00 ) |
---|
112 | PARAMETER ( b4 = 0.1093502252409163D+01 ) |
---|
113 | DOUBLE PRECISION d1, d2, d3, d4 |
---|
114 | PARAMETER ( d1 = -0.2815431932141155D+00 ) |
---|
115 | PARAMETER ( d2 = -0.7276199124938920D-01 ) |
---|
116 | PARAMETER ( d3 = -0.1082196201495311D+00 ) |
---|
117 | PARAMETER ( d4 = -0.1093502252409163D+01 ) |
---|
118 | |
---|
119 | c Initialization of counters, etc. |
---|
120 | Autonomous = Info(1) .EQ. 1 |
---|
121 | uround = 1.d-15 |
---|
122 | dround = DSQRT(uround) |
---|
123 | IF (Hmax.le.0.D0) THEN |
---|
124 | Hmax = DABS(Tnext-T) |
---|
125 | END IF |
---|
126 | H = DMAX1(1.d-8, Hstart) |
---|
127 | Tplus = T |
---|
128 | IsReject = .false. |
---|
129 | Naccept = 0 |
---|
130 | Nreject = 0 |
---|
131 | Nfcn = 0 |
---|
132 | Njac = 0 |
---|
133 | |
---|
134 | C === Starting the time loop === |
---|
135 | 10 CONTINUE |
---|
136 | |
---|
137 | Tplus = T + H |
---|
138 | IF ( Tplus .gt. Tnext ) THEN |
---|
139 | H = Tnext - T |
---|
140 | Tplus = Tnext |
---|
141 | END IF |
---|
142 | |
---|
143 | C Initial Function and Jacobian values |
---|
144 | CALL FUNC_CHEM( T, y, F1 ) |
---|
145 | CALL JAC_CHEM( T, y, JAC ) |
---|
146 | |
---|
147 | C The time derivative for non-Autonomous case |
---|
148 | IF (.not. Autonomous) THEN |
---|
149 | tau = DSIGN(dround*DMAX1( 1.0d-6, DABS(T) ), T) |
---|
150 | CALL FUNC_CHEM( T+tau, y, K2 ) |
---|
151 | nfcn=nfcn+1 |
---|
152 | DO 20 j = 1,NVAR |
---|
153 | DFDT(j) = ( K2(j)-F1(j) )/tau |
---|
154 | 20 CONTINUE |
---|
155 | END IF |
---|
156 | |
---|
157 | C Form the Prediction matrix and compute its LU factorization |
---|
158 | Njac = Njac+1 |
---|
159 | ghinv = 1.0d0/(gamma*H) |
---|
160 | DO 30 j=1,LU_NONZERO |
---|
161 | JAC(j) = -JAC(j) |
---|
162 | 30 CONTINUE |
---|
163 | DO 40 j=1,NVAR |
---|
164 | JAC(LU_DIAG(j)) = JAC(LU_DIAG(j)) + ghinv |
---|
165 | 40 CONTINUE |
---|
166 | CALL KppDecomp (JAC, ier) |
---|
167 | C |
---|
168 | IF (ier.ne.0) THEN |
---|
169 | IF ( H.gt.Hmin) THEN |
---|
170 | H = 5.0d-1*H |
---|
171 | GO TO 10 |
---|
172 | ELSE |
---|
173 | PRINT *,'ROS4: Singular factorization at T=',T,'; H=',H |
---|
174 | STOP |
---|
175 | END IF |
---|
176 | END IF |
---|
177 | |
---|
178 | |
---|
179 | C ------------ STAGE 1------------------------- |
---|
180 | DO 50 j = 1,NVAR |
---|
181 | K1(j) = F1(j) |
---|
182 | 50 CONTINUE |
---|
183 | IF (.NOT. Autonomous) THEN |
---|
184 | hgam1 = H*gamma |
---|
185 | DO 60 j=1,NVAR |
---|
186 | K1(j) = K1(j) + hgam1*DFDT(j) |
---|
187 | 60 CONTINUE |
---|
188 | END IF |
---|
189 | CALL KppSolve (JAC, K1) |
---|
190 | |
---|
191 | C ----------- STAGE 2 ------------------------- |
---|
192 | DO 70 j = 1,NVAR |
---|
193 | ynew(j) = y(j) + a21*K1(j) |
---|
194 | 70 CONTINUE |
---|
195 | CALL FUNC_CHEM( T+alpha2*H, ynew, F1) |
---|
196 | nfcn=nfcn+1 |
---|
197 | hc21 = c21/H |
---|
198 | DO 80 j = 1,NVAR |
---|
199 | K2(j) = F1(j) + hc21*K1(j) |
---|
200 | 80 CONTINUE |
---|
201 | IF (.NOT. Autonomous) THEN |
---|
202 | hgam2 = H*gamma2 |
---|
203 | DO 90 j=1,NVAR |
---|
204 | K2(j) = K2(j) + hgam2*DFDT(j) |
---|
205 | 90 CONTINUE |
---|
206 | END IF |
---|
207 | CALL KppSolve (JAC, K2) |
---|
208 | |
---|
209 | |
---|
210 | C ------------ STAGE 3 ------------------------- |
---|
211 | DO 100 j = 1,NVAR |
---|
212 | ynew(j) = y(j) + a31*K1(j) + a32*K2(j) |
---|
213 | 100 CONTINUE |
---|
214 | CALL FUNC_CHEM( T+alpha3*H, ynew, F1) |
---|
215 | nfcn=nfcn+1 |
---|
216 | hc31 = c31/H |
---|
217 | hc32 = c32/H |
---|
218 | DO 110 j = 1,NVAR |
---|
219 | K3(j) = F1(j) + hc31*K1(j) + hc32*K2(j) |
---|
220 | 110 CONTINUE |
---|
221 | IF (.NOT. Autonomous) THEN |
---|
222 | hgam3 = H*gamma3 |
---|
223 | DO 120 j=1,NVAR |
---|
224 | K3(j) = K3(j) + hgam3*DFDT(j) |
---|
225 | 120 CONTINUE |
---|
226 | END IF |
---|
227 | CALL KppSolve (JAC, K3) |
---|
228 | |
---|
229 | C ------------ STAGE 4 ------------------------- |
---|
230 | C Note: uses the same function value as stage 3 |
---|
231 | hc41 = c41/H |
---|
232 | hc42 = c42/H |
---|
233 | hc43 = c43/H |
---|
234 | DO 140 j = 1,NVAR |
---|
235 | K4(j) = F1(j) + hc41*K1(j) + hc42*K2(j) + hc43*K3(j) |
---|
236 | 140 CONTINUE |
---|
237 | IF (.NOT. Autonomous) THEN |
---|
238 | hgam4 = H*gamma4 |
---|
239 | DO 150 j=1,NVAR |
---|
240 | K4(j) = K4(j) + hgam4*DFDT(j) |
---|
241 | 150 CONTINUE |
---|
242 | END IF |
---|
243 | CALL KppSolve (JAC, K4) |
---|
244 | |
---|
245 | |
---|
246 | |
---|
247 | C ---- The Solution --- |
---|
248 | DO 160 j = 1,NVAR |
---|
249 | ynew(j) = y(j) + b1*K1(j) + b2*K2(j) + b3*K3(j) + b4*K4(j) |
---|
250 | 160 CONTINUE |
---|
251 | |
---|
252 | |
---|
253 | C ====== Error estimation ======== |
---|
254 | |
---|
255 | ERR=0.d0 |
---|
256 | DO 170 j = 1,NVAR |
---|
257 | w = AbsTol(j) + RelTol(j)*DMAX1(DABS(y(j)),DABS(ynew(j))) |
---|
258 | e = d1*K1(j) + d2*K2(j) + d3*K3(j) + d4*K4(j) |
---|
259 | ERR = ERR + ( e/w )**2 |
---|
260 | 170 CONTINUE |
---|
261 | ERR = DMAX1( uround, DSQRT( ERR/NVAR ) ) |
---|
262 | |
---|
263 | C ======= Choose the stepsize =============================== |
---|
264 | |
---|
265 | elo = 4.0D0 ! estimator local order |
---|
266 | factor = DMAX1(2.0D-1,DMIN1(6.0D0,ERR**(1.0D0/elo)/.9D0)) |
---|
267 | Hnew = DMIN1(Hmax,DMAX1(Hmin, H/factor)) |
---|
268 | |
---|
269 | C ======= Rejected/Accepted Step ============================ |
---|
270 | |
---|
271 | IF ( (ERR.gt.1).and.(H.gt.Hmin) ) THEN |
---|
272 | IsReject = .true. |
---|
273 | H = DMIN1(H/10,Hnew) |
---|
274 | Nreject = Nreject+1 |
---|
275 | ELSE |
---|
276 | DO 180 i=1,NVAR |
---|
277 | y(i) = ynew(i) |
---|
278 | 180 CONTINUE |
---|
279 | T = Tplus |
---|
280 | IF (.NOT.IsReject) THEN |
---|
281 | H = Hnew ! Do not increase stepsize if previos step was rejected |
---|
282 | END IF |
---|
283 | IsReject = .false. |
---|
284 | Naccept = Naccept+1 |
---|
285 | END IF |
---|
286 | |
---|
287 | C ======= End of the time loop =============================== |
---|
288 | IF ( T .lt. Tnext ) GO TO 10 |
---|
289 | |
---|
290 | C ======= Output Information ================================= |
---|
291 | Info(2) = Nfcn |
---|
292 | Info(3) = Njac |
---|
293 | Info(4) = Naccept |
---|
294 | Info(5) = Nreject |
---|
295 | Hstart = H |
---|
296 | |
---|
297 | RETURN |
---|
298 | END |
---|
299 | |
---|
300 | |
---|
301 | SUBROUTINE FUNC_CHEM( T, Y, P ) |
---|
302 | INCLUDE 'KPP_ROOT_params.h' |
---|
303 | INCLUDE 'KPP_ROOT_global.h' |
---|
304 | KPP_REAL T, Told |
---|
305 | KPP_REAL Y(NVAR), P(NVAR) |
---|
306 | Told = TIME |
---|
307 | TIME = T |
---|
308 | CALL Update_SUN() |
---|
309 | CALL Update_RCONST() |
---|
310 | CALL Fun( Y, FIX, RCONST, P ) |
---|
311 | TIME = Told |
---|
312 | RETURN |
---|
313 | END |
---|
314 | |
---|
315 | |
---|
316 | SUBROUTINE JAC_CHEM( T, Y, J ) |
---|
317 | INCLUDE 'KPP_ROOT_params.h' |
---|
318 | INCLUDE 'KPP_ROOT_global.h' |
---|
319 | KPP_REAL Told, T |
---|
320 | KPP_REAL Y(NVAR), J(LU_NONZERO) |
---|
321 | Told = TIME |
---|
322 | TIME = T |
---|
323 | CALL Update_SUN() |
---|
324 | CALL Update_RCONST() |
---|
325 | CALL Jac_SP( Y, FIX, RCONST, J ) |
---|
326 | TIME = Told |
---|
327 | RETURN |
---|
328 | END |
---|
329 | |
---|
330 | |
---|
331 | |
---|
332 | |
---|
333 | |
---|
334 | |
---|