1 | |
---|
2 | #define MAX(a,b) ((a) >= (b)) ?(a):(b) |
---|
3 | #define MIN(b,c) ((b) < (c)) ?(b):(c) |
---|
4 | #define abs(x) ((x) >= 0 ) ?(x):(-x) |
---|
5 | #define dabs(y) (double)abs(y) |
---|
6 | #define DSQRT(d) (double)pow(d,0.5) |
---|
7 | #define signum(x)((x) >= 0 ) ?(1):(-1) |
---|
8 | |
---|
9 | void (*forfun)(int,KPP_REAL,KPP_REAL [],KPP_REAL []); |
---|
10 | void (*forjac)(int,KPP_REAL,KPP_REAL [],KPP_REAL []); |
---|
11 | |
---|
12 | |
---|
13 | |
---|
14 | void FUNC_CHEM(int N,KPP_REAL T,KPP_REAL Y[NVAR],KPP_REAL P[NVAR]) |
---|
15 | { |
---|
16 | KPP_REAL Told; |
---|
17 | Told = TIME; |
---|
18 | TIME = T; |
---|
19 | Update_SUN(); |
---|
20 | Update_PHOTO(); |
---|
21 | Fun( Y, FIX, RCONST, P ); |
---|
22 | TIME = Told; |
---|
23 | }/* function fun ends here */ |
---|
24 | |
---|
25 | |
---|
26 | void JAC_CHEM(int N,KPP_REAL T,KPP_REAL Y[NVAR],KPP_REAL J[LU_NONZERO]) |
---|
27 | { |
---|
28 | KPP_REAL Told; |
---|
29 | Told = TIME; |
---|
30 | TIME = T; |
---|
31 | Update_SUN(); |
---|
32 | Update_PHOTO(); |
---|
33 | Jac_SP( Y, FIX, RCONST, J ); |
---|
34 | TIME = Told; |
---|
35 | } |
---|
36 | |
---|
37 | |
---|
38 | INTEGRATE( KPP_REAL TIN, KPP_REAL TOUT ) |
---|
39 | { |
---|
40 | |
---|
41 | /* TIN - Start Time */ |
---|
42 | /* TOUT - End Time */ |
---|
43 | |
---|
44 | int INFO[5]; |
---|
45 | forfun = &FUNC_CHEM; |
---|
46 | forjac = &JAC_CHEM; |
---|
47 | INFO[0] = Autonomous; |
---|
48 | ROS3(NVAR,TIN,TOUT,STEPMIN,STEPMAX,STEPMIN,VAR,ATOL,RTOL,INFO |
---|
49 | ,forfun,forjac); |
---|
50 | } /* function integrate ends here */ |
---|
51 | |
---|
52 | |
---|
53 | |
---|
54 | int ROS3(int N,KPP_REAL T,KPP_REAL Tnext,KPP_REAL Hmin,KPP_REAL Hmax, |
---|
55 | KPP_REAL Hstart,KPP_REAL y[NVAR],KPP_REAL AbsTol[NVAR],KPP_REAL RelTol[NVAR], |
---|
56 | int INFO[5],void (*forfun)(int,KPP_REAL,KPP_REAL [],KPP_REAL []) , |
---|
57 | void (*forjac)(int,KPP_REAL,KPP_REAL [],KPP_REAL []) ) |
---|
58 | { |
---|
59 | |
---|
60 | /* |
---|
61 | |
---|
62 | L-stable Rosenbrock 3(2), with |
---|
63 | strongly A-stable embedded formula for error control. |
---|
64 | |
---|
65 | All the arguments aggree with the KPP syntax. |
---|
66 | |
---|
67 | INPUT ARGUMENTS: |
---|
68 | y = Vector of (NVAR) concentrations, contains the |
---|
69 | initial values on input |
---|
70 | [T, Tnext] = the integration interval |
---|
71 | Hmin, Hmax = lower and upper bounds for the selected step-size. |
---|
72 | Note that for Step = Hmin the current computed |
---|
73 | solution is unconditionally accepted by the error |
---|
74 | control mechanism. |
---|
75 | AbsTol, RelTol = (NVAR) dimensional vectors of |
---|
76 | componentwise absolute and relative tolerances. |
---|
77 | FUNC_CHEM = name of routine of derivatives. KPP syntax. |
---|
78 | See the header below. |
---|
79 | JAC_CHEM = name of routine that computes the Jacobian, in |
---|
80 | sparse format. KPP syntax. See the header below. |
---|
81 | Info(1) = 1 for autonomous system |
---|
82 | = 0 for nonautonomous system |
---|
83 | |
---|
84 | OUTPUT ARGUMENTS: |
---|
85 | y = the values of concentrations at Tend. |
---|
86 | T = equals Tend on output. |
---|
87 | Info(2) = # of FUNC_CHEM calls. |
---|
88 | Info(3) = # of JAC_CHEM calls. |
---|
89 | Info(4) = # of accepted steps. |
---|
90 | Info(5) = # of rejected steps. |
---|
91 | |
---|
92 | Adrian Sandu, April 1996 |
---|
93 | The Center for Global and Regional Environmental Research |
---|
94 | */ |
---|
95 | |
---|
96 | KPP_REAL K1[NVAR], K2[NVAR], K3[NVAR]; |
---|
97 | KPP_REAL F1[NVAR], JAC[LU_NONZERO]; |
---|
98 | KPP_REAL ghinv,uround,dround,c43,x1,x2,x3,ytol; |
---|
99 | KPP_REAL gam,c21,c31,c32,b1,b2,b3,d1,d2,d3,a21,a31,a32,alpha2,alpha3, |
---|
100 | g1,g2,g3; |
---|
101 | KPP_REAL ynew[NVAR]; |
---|
102 | KPP_REAL H, Hold, Tplus,tau; |
---|
103 | KPP_REAL ERR, factor, facmax; |
---|
104 | int n,nfcn,njac,Naccept,Nreject,i,j,ier; |
---|
105 | char IsReject,Autonomous; |
---|
106 | |
---|
107 | |
---|
108 | /* Initialization of counters, etc. */ |
---|
109 | Autonomous = (INFO[0] == 1); |
---|
110 | uround = (double)1.e-15; |
---|
111 | dround = DSQRT(uround); |
---|
112 | H = MAX( (double)1.e-8, Hstart); |
---|
113 | Tplus = T; |
---|
114 | IsReject = 0; |
---|
115 | Naccept = 0; |
---|
116 | Nreject = 0; |
---|
117 | nfcn = 0; |
---|
118 | njac = 0; |
---|
119 | gam = (double) (.43586652150845899941601945119356e+00); |
---|
120 | c21 = (double) -(.10156171083877702091975600115545e+01); |
---|
121 | c31 = (double) (.40759956452537699824805835358067e+01); |
---|
122 | c32 = (double) (.92076794298330791242156818474003e+01); |
---|
123 | b1 = (double) (.10000000000000000000000000000000e+01); |
---|
124 | b2 = (double) (.61697947043828245592553615689730e+01); |
---|
125 | b3 = (double) -(.42772256543218573326238373806514e+00); |
---|
126 | d1 = (double) (.50000000000000000000000000000000e+00); |
---|
127 | d2 = (double) -(.29079558716805469821718236208017e+01); |
---|
128 | d3 = (double) (.22354069897811569627360909276199e+00); |
---|
129 | a21 = (double) 1.e0; |
---|
130 | a31 = (double) 1.e0; |
---|
131 | a32 = (double) 0.e0; |
---|
132 | alpha2 = gam; |
---|
133 | alpha3 = gam; |
---|
134 | g1 = (double) (.43586652150845899941601945119356e+00); |
---|
135 | g2 = (double) (.24291996454816804366592249683314e+00); |
---|
136 | g3 = (double) (.21851380027664058511513169485832e+01); |
---|
137 | |
---|
138 | |
---|
139 | /* === Starting the time loop === */ |
---|
140 | |
---|
141 | while( T < Tnext ) |
---|
142 | { |
---|
143 | ten : |
---|
144 | Tplus = T + H; |
---|
145 | |
---|
146 | if ( Tplus > Tnext ) |
---|
147 | { |
---|
148 | H = Tnext - T; |
---|
149 | Tplus = Tnext; |
---|
150 | } |
---|
151 | |
---|
152 | (*forjac)(NVAR, T, y, JAC); |
---|
153 | |
---|
154 | njac = njac+1; |
---|
155 | ghinv = (double)-1.0e0/(gam*H); |
---|
156 | |
---|
157 | for(j=0;j<LU_NONZERO;j++) |
---|
158 | JAC[j] = -JAC[j]; |
---|
159 | |
---|
160 | |
---|
161 | |
---|
162 | for(j=0;j<NVAR;j++) |
---|
163 | JAC[LU_DIAG[j]] = JAC[LU_DIAG[j]] - ghinv; |
---|
164 | |
---|
165 | |
---|
166 | |
---|
167 | ier = KppDecomp (JAC); |
---|
168 | |
---|
169 | if ( ier != 0) |
---|
170 | { |
---|
171 | if( H > Hmin ) |
---|
172 | { |
---|
173 | H = (double)5.0e-1*H; |
---|
174 | goto ten; |
---|
175 | } |
---|
176 | else |
---|
177 | { |
---|
178 | printf("IER <> 0 , H = %d", H); |
---|
179 | } |
---|
180 | }/* main ier if ends*/ |
---|
181 | |
---|
182 | |
---|
183 | (*forfun)(NVAR, T, y, F1); |
---|
184 | |
---|
185 | |
---|
186 | /* ====== NONAUTONOMOUS CASE =============== */ |
---|
187 | if( Autonomous == 0 ) |
---|
188 | { |
---|
189 | tau =(double) (dround*MAX( (double)1.0e-6, dabs(T) ) * signum(T) ); |
---|
190 | |
---|
191 | (*forfun)(NVAR, T+tau, y, K2); |
---|
192 | |
---|
193 | nfcn=nfcn+1; |
---|
194 | |
---|
195 | for(j=0;j<NVAR;j++) |
---|
196 | K3[j] = ( K2[j]-F1[j] )/tau; |
---|
197 | |
---|
198 | |
---|
199 | |
---|
200 | /* ----- STAGE 1 (NONAUTONOMOUS) ----- */ |
---|
201 | x1 = (double)g1*H; |
---|
202 | |
---|
203 | for(j=0;j<NVAR;j++) |
---|
204 | K1[j] = F1[j] + x1*K3[j]; |
---|
205 | |
---|
206 | KppSolve (JAC, K1); |
---|
207 | |
---|
208 | /* ----- STAGE 2 (NONAUTONOMOUS) ----- */ |
---|
209 | for(j = 0;j<NVAR;j++) |
---|
210 | ynew[j] = y[j] + K1[j]; |
---|
211 | |
---|
212 | (*forfun)(NVAR, T+gam*H, ynew, F1); |
---|
213 | nfcn=nfcn+1; |
---|
214 | x1 = (double)(c21/H); |
---|
215 | x2 = (double)(g2*H); |
---|
216 | for(j = 0;j<NVAR;j++) |
---|
217 | K2[j] = F1[j] + x1*K1[j] + x2*K3[j]; |
---|
218 | |
---|
219 | KppSolve (JAC, K2); |
---|
220 | |
---|
221 | /* ----- STAGE 3 (NONAUTONOMOUS) ----- */ |
---|
222 | x1 = (double)(c31/H); |
---|
223 | x2 = (double)(c32/H); |
---|
224 | x3 = (double)(g3*H); |
---|
225 | for(j=0;j<NVAR;j++) |
---|
226 | K3[j] = F1[j] + x1*K1[j] + x2*K2[j] + x3*K3[j]; |
---|
227 | |
---|
228 | KppSolve (JAC, K3); |
---|
229 | }/* "if" nonautonomous case ends here */ |
---|
230 | |
---|
231 | |
---|
232 | |
---|
233 | /* ====== AUTONOMOUS CASE =============== */ |
---|
234 | |
---|
235 | else |
---|
236 | { |
---|
237 | |
---|
238 | /* ----- STAGE 1 (AUTONOMOUS) ----- */ |
---|
239 | |
---|
240 | for(j = 0;j < NVAR;j++) |
---|
241 | K1[j] = F1[j]; |
---|
242 | |
---|
243 | KppSolve (JAC, K1); |
---|
244 | |
---|
245 | |
---|
246 | /* ----- STAGE 2 (AUTONOMOUS) ----- */ |
---|
247 | for(j = 0;j < NVAR;j++) |
---|
248 | ynew[j] = y[j] + K1[j]; |
---|
249 | |
---|
250 | |
---|
251 | (*forfun)(NVAR, T + gam*H, ynew, F1); |
---|
252 | nfcn=nfcn+1; |
---|
253 | x1 = (double)c21/H; |
---|
254 | for(j = 0;j < NVAR;j++) |
---|
255 | K2[j] = F1[j] + x1*K1[j]; |
---|
256 | |
---|
257 | KppSolve (JAC, K2); |
---|
258 | |
---|
259 | /* ----- STAGE 3 (AUTONOMOUS) ----- */ |
---|
260 | |
---|
261 | x1 = (double)(c31/H); |
---|
262 | x2 = (double)(c32/H); |
---|
263 | for(j = 0;j < NVAR;j++) |
---|
264 | K3[j] = F1[j] + x1*K1[j] + x2*K2[j]; |
---|
265 | |
---|
266 | KppSolve (JAC, K3); |
---|
267 | |
---|
268 | }/* Autonomousous case ends here */ |
---|
269 | |
---|
270 | |
---|
271 | /* ---- The Solution --- */ |
---|
272 | |
---|
273 | for(j = 0;j < NVAR;j++) |
---|
274 | ynew[j] = y[j] + b1*K1[j] + b2*K2[j] + b3*K3[j]; |
---|
275 | |
---|
276 | |
---|
277 | |
---|
278 | /* ====== Error estimation ======== */ |
---|
279 | |
---|
280 | ERR=(double)0.e0; |
---|
281 | for(i=0;i<NVAR;i++) |
---|
282 | { |
---|
283 | ytol = AbsTol[i] + RelTol[i]*dabs(ynew[i]); |
---|
284 | ERR = (double)(ERR+ pow( (double) ( (d1*K1[i]+d2*K2[i]+d3*K3[i])/ytol ) , 2 )); |
---|
285 | } |
---|
286 | ERR = (double)MAX( uround, DSQRT( ERR/NVAR ) ); |
---|
287 | |
---|
288 | /* |
---|
289 | this is the library i am linkin it to |
---|
290 | [sdmehra@herbert small_strato]$ ldd small_strato |
---|
291 | libm.so.6 => /lib/libm.so.6 (0x40015000) |
---|
292 | libc.so.6 => /lib/libc.so.6 (0x40032000) |
---|
293 | /lib/ld-linux.so.2 => /lib/ld-linux.so.2 (0x40000000) |
---|
294 | */ |
---|
295 | |
---|
296 | /* ======= Choose the stepsize =============================== */ |
---|
297 | |
---|
298 | factor = 0.9/pow( ERR , (1.e0/3.e0) ); |
---|
299 | if(IsReject == 1) |
---|
300 | facmax = (double)1.0; |
---|
301 | |
---|
302 | else |
---|
303 | facmax = (double)10.0; |
---|
304 | |
---|
305 | |
---|
306 | factor = (double)MAX( 1.0e-1, MIN(factor,facmax) ); |
---|
307 | Hold = H; |
---|
308 | H = (double)MIN( Hmax, MAX(Hmin,factor*H) ); |
---|
309 | |
---|
310 | |
---|
311 | /* ======= Rejected/Accepted Step ============================ */ |
---|
312 | |
---|
313 | if ( (ERR > 1) && (Hold > Hmin) ) |
---|
314 | { |
---|
315 | IsReject = 1; |
---|
316 | Nreject = Nreject+1; |
---|
317 | } |
---|
318 | else |
---|
319 | { |
---|
320 | IsReject = 0; |
---|
321 | |
---|
322 | for(i = 0;i < NVAR;i++) |
---|
323 | y[i] = ynew[i]; |
---|
324 | |
---|
325 | T = Tplus; |
---|
326 | Naccept = Naccept+1; |
---|
327 | |
---|
328 | }/* else should end here */ |
---|
329 | |
---|
330 | |
---|
331 | /* ======= End of the time loop =============================== */ |
---|
332 | |
---|
333 | } /* while loop (T < Tnext) ends here */ |
---|
334 | |
---|
335 | |
---|
336 | /* ======= Output Information ================================= */ |
---|
337 | INFO[1] = nfcn; |
---|
338 | INFO[2] = njac; |
---|
339 | INFO[3] = Naccept; |
---|
340 | INFO[4] = Nreject; |
---|
341 | |
---|
342 | } /* function rodas ends here */ |
---|
343 | |
---|
344 | |
---|