1 | SUBROUTINE INTEGRATE( TIN, TOUT ) |
---|
2 | |
---|
3 | USE KPP_ROOT_global |
---|
4 | |
---|
5 | ! TIN - Start Time |
---|
6 | KPP_REAL TIN |
---|
7 | ! TOUT - End Time |
---|
8 | KPP_REAL TOUT |
---|
9 | |
---|
10 | INTEGER INFO(5) |
---|
11 | |
---|
12 | EXTERNAL FUNC_CHEM, JAC_CHEM |
---|
13 | |
---|
14 | INFO(1) = Autonomous |
---|
15 | |
---|
16 | call ROS2(NVAR,TIN,TOUT,STEPMIN,STEPMAX, & |
---|
17 | STEPMIN,VAR,ATOL,RTOL, & |
---|
18 | Info,FUNC_CHEM,JAC_CHEM) |
---|
19 | |
---|
20 | |
---|
21 | END SUBROUTINE INTEGRATE |
---|
22 | |
---|
23 | |
---|
24 | |
---|
25 | |
---|
26 | SUBROUTINE ROS2(N,T,Tnext,Hmin,Hmax,Hstart, & |
---|
27 | y,AbsTol,RelTol, & |
---|
28 | Info,FUNC_CHEM,JAC_CHEM) |
---|
29 | |
---|
30 | USE KPP_ROOT_params |
---|
31 | USE KPP_ROOT_Jacobian_sparsity |
---|
32 | IMPLICIT NONE |
---|
33 | |
---|
34 | ! INPUT ARGUMENTS: |
---|
35 | ! y = Vector of (NVAR) concentrations, contains the |
---|
36 | ! initial values on input |
---|
37 | ! [T, Tnext] = the integration interval |
---|
38 | ! Hmin, Hmax = lower and upper bounds for the selected step-size. |
---|
39 | ! Note that for Step = Hmin the current computed |
---|
40 | ! solution is unconditionally accepted by the error |
---|
41 | ! control mechanism. |
---|
42 | ! AbsTol, RelTol = (NVAR) dimensional vectors of |
---|
43 | ! componentwise absolute and relative tolerances. |
---|
44 | ! FUNC_CHEM = name of routine of derivatives. KPP syntax. |
---|
45 | ! See the header below. |
---|
46 | ! JAC_CHEM = name of routine that computes the Jacobian, in |
---|
47 | ! sparse format. KPP syntax. See the header below. |
---|
48 | ! Info(1) = 1 for autonomous system |
---|
49 | ! = 0 for nonautonomous system |
---|
50 | ! Info(2) = 1 for third order embedded formula |
---|
51 | ! = 0 for first order embedded formula |
---|
52 | ! |
---|
53 | ! Note: Stage 3 used to build strongly A-stable order 3 formula for error control |
---|
54 | ! Embed3 = (Info(2).EQ.1) |
---|
55 | ! if Embed3 = .true. then the third order embedded formula is used |
---|
56 | ! .false. then a first order embedded formula is used |
---|
57 | ! |
---|
58 | ! |
---|
59 | ! OUTPUT ARGUMENTS: |
---|
60 | ! y = the values of concentrations at Tend. |
---|
61 | ! T = equals Tend on output. |
---|
62 | ! Info(2) = # of FUNC_CHEM calls. |
---|
63 | ! Info(3) = # of JAC_CHEM calls. |
---|
64 | ! Info(4) = # of accepted steps. |
---|
65 | ! Info(5) = # of rejected steps. |
---|
66 | |
---|
67 | KPP_REAL K1(NVAR), K2(NVAR), K3(NVAR) |
---|
68 | KPP_REAL F1(NVAR), JAC(LU_NONZERO) |
---|
69 | KPP_REAL DFDT(NVAR) |
---|
70 | KPP_REAL Hmin,Hmax,Hnew,Hstart,ghinv,uround |
---|
71 | KPP_REAL y(NVAR), ynew(NVAR) |
---|
72 | KPP_REAL AbsTol(NVAR), RelTol(NVAR) |
---|
73 | KPP_REAL T, Tnext, H, Hold, Tplus |
---|
74 | KPP_REAL ERR, factor, facmax |
---|
75 | KPP_REAL tau, beta, elo, dround, a21, c31, c32 |
---|
76 | KPP_REAL gamma3, d1, d2, d3, gam |
---|
77 | INTEGER n,nfcn,njac,Naccept,Nreject,i,j,ier |
---|
78 | INTEGER Info(5) |
---|
79 | LOGICAL IsReject, Autonomous, Embed3 |
---|
80 | EXTERNAL FUNC_CHEM, JAC_CHEM |
---|
81 | |
---|
82 | KPP_REAL gamma, m1, m2, alpha, beta1, beta2, delta, w, e |
---|
83 | |
---|
84 | ! Initialization of counters, etc. |
---|
85 | Autonomous = Info(1) .EQ. 1 |
---|
86 | Embed3 = Info(2) .EQ. 1 |
---|
87 | uround = 1.d-15 |
---|
88 | dround = dsqrt(uround) |
---|
89 | H = DMAX1(1.d-8, Hmin) |
---|
90 | Tplus = T |
---|
91 | IsReject = .false. |
---|
92 | Naccept = 0 |
---|
93 | Nreject = 0 |
---|
94 | Nfcn = 0 |
---|
95 | Njac = 0 |
---|
96 | |
---|
97 | ! Method Parameters |
---|
98 | gamma = 1.d0 + 1.d0/sqrt(2.d0) |
---|
99 | a21 = - 1.d0/gamma |
---|
100 | m1 = -3.d0/(2.d0*gamma) |
---|
101 | m2 = -1.d0/(2.d0*gamma) |
---|
102 | c31 = -1.0D0/gamma**2*(1.0D0-7.0D0*gamma+9.0D0*gamma**2) & |
---|
103 | /(-1.0D0+2.0D0*gamma) |
---|
104 | c32 = -1.0D0/gamma**2*(1.0D0-6.0D0*gamma+6.0D0*gamma**2) & |
---|
105 | /(-1.0D0+2.0D0*gamma)/2 |
---|
106 | gamma3 = 0.5D0 - 2*gamma |
---|
107 | d1 = ((-9.0D0*gamma+8.0D0*gamma**2+2.0D0)/gamma**2/ & |
---|
108 | (-1.0D0+2*gamma))/6.0D0 |
---|
109 | d2 = ((-1.0D0+3.0D0*gamma)/gamma**2/(-1.0D0+2.0D0*gamma))/6.0D0 |
---|
110 | d3 = -1.0D0/(3.0D0*gamma) |
---|
111 | |
---|
112 | ! === Starting the time loop === |
---|
113 | 10 CONTINUE |
---|
114 | Tplus = T + H |
---|
115 | if ( Tplus .gt. Tnext ) then |
---|
116 | H = Tnext - T |
---|
117 | Tplus = Tnext |
---|
118 | end if |
---|
119 | |
---|
120 | call JAC_CHEM(NVAR, T, y, JAC) |
---|
121 | |
---|
122 | Njac = Njac+1 |
---|
123 | ghinv = -1.0d0/(gamma*H) |
---|
124 | DO j=1,NVAR |
---|
125 | JAC(LU_DIAG(j)) = JAC(LU_DIAG(j)) + ghinv |
---|
126 | END DO |
---|
127 | CALL KppDecomp (JAC, ier) |
---|
128 | |
---|
129 | if (ier.ne.0) then |
---|
130 | if ( H.gt.Hmin) then |
---|
131 | H = 5.0d-1*H |
---|
132 | go to 10 |
---|
133 | else |
---|
134 | print *,'IER <> 0, H=',H |
---|
135 | stop |
---|
136 | end if |
---|
137 | end if |
---|
138 | |
---|
139 | call FUNC_CHEM(NVAR, T, y, F1) |
---|
140 | |
---|
141 | ! ====== NONAUTONOMOUS CASE =============== |
---|
142 | IF (.not. Autonomous) THEN |
---|
143 | tau = dsign(dround*dmax1( 1.0d-6, dabs(T) ), T) |
---|
144 | call FUNC_CHEM(NVAR, T+tau, y, K2) |
---|
145 | nfcn=nfcn+1 |
---|
146 | DO j = 1,NVAR |
---|
147 | DFDT(j) = ( K2(j)-F1(j) )/tau |
---|
148 | END DO |
---|
149 | END IF ! .NOT.Autonomous |
---|
150 | |
---|
151 | ! ----- STAGE 1 ----- |
---|
152 | DO j = 1,NVAR |
---|
153 | K1(j) = F1(j) |
---|
154 | END DO |
---|
155 | IF (.NOT.Autonomous) THEN |
---|
156 | delta = gamma*H |
---|
157 | DO j = 1,NVAR |
---|
158 | K1(j) = K1(j) + delta*DFDT(j) |
---|
159 | END DO |
---|
160 | END IF ! .NOT.Autonomous |
---|
161 | call KppSolve (JAC, K1) |
---|
162 | |
---|
163 | ! ----- STAGE 2 ----- |
---|
164 | DO j = 1,NVAR |
---|
165 | ynew(j) = y(j) + a21*K1(j) |
---|
166 | END DO |
---|
167 | call FUNC_CHEM(NVAR, T+H, ynew, F1) |
---|
168 | nfcn=nfcn+1 |
---|
169 | beta = 2.d0/(gamma*H) |
---|
170 | DO j = 1,NVAR |
---|
171 | K2(j) = F1(j) + beta*K1(j) |
---|
172 | END DO |
---|
173 | IF (.NOT. Autonomous) THEN |
---|
174 | delta = -gamma*H |
---|
175 | DO j = 1,NVAR |
---|
176 | K2(j) = K2(j) + delta*DFDT(j) |
---|
177 | END DO |
---|
178 | END IF ! .NOT.Autonomous |
---|
179 | call KppSolve (JAC, K2) |
---|
180 | |
---|
181 | ! ----- STAGE 3 ----- |
---|
182 | IF (Embed3) THEN |
---|
183 | beta1 = -c31/H |
---|
184 | beta2 = -c32/H |
---|
185 | delta = gamma3*H |
---|
186 | DO j = 1,NVAR |
---|
187 | K3(j) = F1(j) + beta1*K1(j) + beta2*K2(j) |
---|
188 | END DO |
---|
189 | IF (.NOT.Autonomous) THEN |
---|
190 | DO j = 1,NVAR |
---|
191 | K3(j) = K3(j) + delta*DFDT(j) |
---|
192 | END DO |
---|
193 | END IF ! .NOT.Autonomous |
---|
194 | CALL KppSolve (JAC, K3) |
---|
195 | END IF ! Embed3 |
---|
196 | |
---|
197 | |
---|
198 | |
---|
199 | ! ---- The Solution --- |
---|
200 | DO j = 1,NVAR |
---|
201 | ynew(j) = y(j) + m1*K1(j) + m2*K2(j) |
---|
202 | END DO |
---|
203 | |
---|
204 | |
---|
205 | ! ====== Error estimation ======== |
---|
206 | |
---|
207 | ERR=0.d0 |
---|
208 | DO i=1,NVAR |
---|
209 | w = AbsTol(i) + RelTol(i)*DMAX1(DABS(y(i)),DABS(ynew(i))) |
---|
210 | IF ( Embed3 ) THEN |
---|
211 | e = d1*K1(i) + d2*K2(i) + d3*K3(i) |
---|
212 | ELSE |
---|
213 | e = 1.d0/(2.d0*gamma)*(K1(i)+K2(i)) |
---|
214 | END IF ! Embed3 |
---|
215 | ERR = ERR + ( e/w )**2 |
---|
216 | END DO |
---|
217 | ERR = DMAX1( uround, DSQRT( ERR/NVAR ) ) |
---|
218 | |
---|
219 | ! ======= Choose the stepsize =============================== |
---|
220 | |
---|
221 | IF ( Embed3 ) THEN |
---|
222 | elo = 3.0D0 ! estimator local order |
---|
223 | ELSE |
---|
224 | elo = 2.0D0 |
---|
225 | END IF |
---|
226 | factor = DMAX1(2.0D-1,DMIN1(6.0D0,ERR**(1.0D0/elo)/.9D0)) |
---|
227 | Hnew = DMIN1(Hmax,DMAX1(Hmin, H/factor)) |
---|
228 | |
---|
229 | ! ======= Rejected/Accepted Step ============================ |
---|
230 | |
---|
231 | IF ( (ERR.gt.1).and.(H.gt.Hmin) ) THEN |
---|
232 | IsReject = .true. |
---|
233 | H = DMIN1(H/10,Hnew) |
---|
234 | Nreject = Nreject+1 |
---|
235 | ELSE |
---|
236 | DO i=1,NVAR |
---|
237 | y(i) = ynew(i) |
---|
238 | END DO |
---|
239 | T = Tplus |
---|
240 | IF (.NOT. IsReject) THEN |
---|
241 | H = Hnew ! Do not increase stepsize if previous step was rejected |
---|
242 | END IF |
---|
243 | IsReject = .false. |
---|
244 | Naccept = Naccept+1 |
---|
245 | END IF |
---|
246 | |
---|
247 | |
---|
248 | ! ======= End of the time loop =============================== |
---|
249 | IF ( T .lt. Tnext ) GO TO 10 |
---|
250 | |
---|
251 | |
---|
252 | |
---|
253 | ! ======= Output Information ================================= |
---|
254 | Info(2) = Nfcn |
---|
255 | Info(3) = Njac |
---|
256 | Info(4) = Naccept |
---|
257 | Info(5) = Nreject |
---|
258 | |
---|
259 | END SUBROUTINE Ros2 |
---|
260 | |
---|
261 | |
---|
262 | |
---|
263 | SUBROUTINE FUNC_CHEM(N, T, Y, P) |
---|
264 | USE KPP_ROOT_global |
---|
265 | INTEGER N |
---|
266 | KPP_REAL T, Told |
---|
267 | KPP_REAL Y(NVAR), P(NVAR) |
---|
268 | Told = TIME |
---|
269 | TIME = T |
---|
270 | CALL Update_SUN() |
---|
271 | CALL Update_RCONST() |
---|
272 | CALL Fun( Y, FIX, RCONST, P ) |
---|
273 | TIME = Told |
---|
274 | END SUBROUTINE FUNC_CHEM |
---|
275 | |
---|
276 | |
---|
277 | SUBROUTINE JAC_CHEM(N, T, Y, J) |
---|
278 | USE KPP_ROOT_global |
---|
279 | INTEGER N |
---|
280 | KPP_REAL Told, T |
---|
281 | KPP_REAL Y(NVAR), J(LU_NONZERO) |
---|
282 | Told = TIME |
---|
283 | TIME = T |
---|
284 | CALL Update_SUN() |
---|
285 | CALL Update_RCONST() |
---|
286 | CALL Jac_SP( Y, FIX, RCONST, J ) |
---|
287 | TIME = Told |
---|
288 | END SUBROUTINE JAC_CHEM |
---|
289 | |
---|
290 | |
---|
291 | |
---|
292 | |
---|
293 | |
---|
294 | |
---|