1 | |
---|
2 | #define MAX(a,b) ((a) >= (b)) ?(a):(b) |
---|
3 | #define MIN(b,c) ((b) < (c)) ?(b):(c) |
---|
4 | #define abs(x) ((x) >= 0 ) ?(x):(-x) |
---|
5 | #define dabs(y) (double)abs(y) |
---|
6 | #define DSQRT(d) (double)pow(d,0.5) |
---|
7 | #define signum(x)((x) >= 0 ) ?(1):(-1) |
---|
8 | |
---|
9 | |
---|
10 | |
---|
11 | void (*forfun)(int,KPP_REAL,KPP_REAL [],KPP_REAL []); |
---|
12 | void (*forjac)(int,KPP_REAL,KPP_REAL [],KPP_REAL []); |
---|
13 | |
---|
14 | |
---|
15 | |
---|
16 | |
---|
17 | void FUNC_CHEM(int N,KPP_REAL T,KPP_REAL Y[NVAR],KPP_REAL P[NVAR]) |
---|
18 | { |
---|
19 | KPP_REAL Told; |
---|
20 | Told = TIME; |
---|
21 | TIME = T; |
---|
22 | Update_SUN(); |
---|
23 | Update_RCONST(); |
---|
24 | Fun( Y, FIX, RCONST, P ); |
---|
25 | TIME = Told; |
---|
26 | } |
---|
27 | |
---|
28 | void JAC_CHEM(int N,KPP_REAL T,KPP_REAL Y[NVAR],KPP_REAL J[LU_NONZERO]) |
---|
29 | { |
---|
30 | KPP_REAL Told; |
---|
31 | Told = TIME; |
---|
32 | TIME = T; |
---|
33 | Update_SUN(); |
---|
34 | Update_RCONST(); |
---|
35 | Jac_SP( Y, FIX, RCONST, J ); |
---|
36 | TIME = Told; |
---|
37 | } |
---|
38 | |
---|
39 | |
---|
40 | |
---|
41 | |
---|
42 | |
---|
43 | INTEGRATE(KPP_REAL TIN,KPP_REAL TOUT ) |
---|
44 | { |
---|
45 | |
---|
46 | /* TIN - Start Time */ |
---|
47 | /* TOUT - End Time */ |
---|
48 | |
---|
49 | |
---|
50 | int INFO[5]; |
---|
51 | forfun = &FUNC_CHEM; |
---|
52 | forjac = &JAC_CHEM; |
---|
53 | INFO[0] = Autonomous; |
---|
54 | ROS2(NVAR,TIN,TOUT,STEPMIN,STEPMAX,STEPMIN,VAR,ATOL |
---|
55 | ,RTOL,INFO,forfun,forjac); |
---|
56 | |
---|
57 | } |
---|
58 | |
---|
59 | |
---|
60 | int ROS2(int N,KPP_REAL T, KPP_REAL Tnext,KPP_REAL Hmin,KPP_REAL Hmax, |
---|
61 | KPP_REAL Hstart,KPP_REAL y[NVAR],KPP_REAL AbsTol[NVAR],KPP_REAL RelTol[NVAR], |
---|
62 | int INFO[5],void (*forfun)(int,KPP_REAL,KPP_REAL [],KPP_REAL []), |
---|
63 | void (*forjac)(int,KPP_REAL,KPP_REAL [],KPP_REAL []) ) |
---|
64 | { |
---|
65 | |
---|
66 | |
---|
67 | /* |
---|
68 | All the arguments aggree with the KPP syntax. |
---|
69 | |
---|
70 | INPUT ARGUMENTS: |
---|
71 | y = Vector of (NVAR) concentrations, contains the |
---|
72 | initial values on input |
---|
73 | [T, Tnext] = the integration interval |
---|
74 | Hmin, Hmax = lower and upper bounds for the selected step-size. |
---|
75 | Note that for Step = Hmin the current computed |
---|
76 | solution is unconditionally accepted by the error |
---|
77 | control mechanism. |
---|
78 | AbsTol, RelTol = (NVAR) dimensional vectors of |
---|
79 | componentwise absolute and relative tolerances. |
---|
80 | FUNC_CHEM = name of routine of derivatives. KPP syntax. |
---|
81 | See the header below. |
---|
82 | JAC_CHEM = name of routine that computes the Jacobian, in |
---|
83 | sparse format. KPP syntax. See the header below. |
---|
84 | Info(1) = 1 for autonomous system |
---|
85 | = 0 for nonautonomous system |
---|
86 | |
---|
87 | OUTPUT ARGUMENTS: |
---|
88 | y = the values of concentrations at Tend. |
---|
89 | T = equals Tend on output. |
---|
90 | Info(2) = # of FUNC_CHEM calls. |
---|
91 | Info(3) = # of JAC_CHEM calls. |
---|
92 | Info(4) = # of accepted steps. |
---|
93 | Info(5) = # of rejected steps. |
---|
94 | */ |
---|
95 | |
---|
96 | KPP_REAL K1[NVAR], K2[NVAR], K3[NVAR], K4[NVAR]; |
---|
97 | KPP_REAL F1[NVAR], JAC[LU_NONZERO]; |
---|
98 | KPP_REAL ghinv , uround , dround , c43 , tau; |
---|
99 | KPP_REAL ynew[NVAR]; |
---|
100 | KPP_REAL H, Hold, Tplus; |
---|
101 | KPP_REAL ERR, factor, facmax; |
---|
102 | int n,nfcn,njac,Naccept,Nreject,i,j,ier; |
---|
103 | char IsReject,Autonomous; |
---|
104 | |
---|
105 | KPP_REAL gamma, m1, m2, alpha, beta, delta, theta, g[NVAR], x[NVAR]; |
---|
106 | |
---|
107 | /* Initialization of counters, etc. */ |
---|
108 | Autonomous = (INFO[0] == 1); |
---|
109 | uround = (double)(1e-15); |
---|
110 | |
---|
111 | dround = DSQRT(uround); |
---|
112 | c43 = (double)(- 8.e0/3.e0); |
---|
113 | H = MAX( (double)1.e-8, Hmin ); |
---|
114 | Tplus = T; |
---|
115 | IsReject = 0; |
---|
116 | Naccept = 0; |
---|
117 | Nreject = 0; |
---|
118 | nfcn = 0; |
---|
119 | njac = 0; |
---|
120 | gamma = (double)(1.e0 + 1.e0/DSQRT(2.e0)); |
---|
121 | |
---|
122 | /* === Starting the time loop === */ |
---|
123 | while(T < Tnext) |
---|
124 | { |
---|
125 | ten : |
---|
126 | Tplus = T + H; |
---|
127 | |
---|
128 | if ( Tplus > Tnext ) |
---|
129 | { |
---|
130 | H = Tnext - T; |
---|
131 | Tplus = Tnext; |
---|
132 | } |
---|
133 | |
---|
134 | (*forjac)(NVAR, T, y,JAC ); |
---|
135 | |
---|
136 | njac = njac+1; |
---|
137 | ghinv = (double)(-1.0e0/(gamma*H)); |
---|
138 | |
---|
139 | |
---|
140 | |
---|
141 | for(j=0;j<NVAR;j++) |
---|
142 | JAC[LU_DIAG[j]] = JAC[LU_DIAG[j]] + ghinv; |
---|
143 | |
---|
144 | |
---|
145 | |
---|
146 | ier = KppDecomp (JAC); |
---|
147 | |
---|
148 | if ( ier != 0) |
---|
149 | { |
---|
150 | if( H > Hmin ) |
---|
151 | { |
---|
152 | H = (double)(5.0e-1*H); |
---|
153 | goto ten; |
---|
154 | } |
---|
155 | else |
---|
156 | printf("IER <> 0 , H = %d", H); |
---|
157 | |
---|
158 | }/* main ier if ends*/ |
---|
159 | |
---|
160 | |
---|
161 | (*forfun)(NVAR , T, y, F1 ) ; |
---|
162 | |
---|
163 | |
---|
164 | |
---|
165 | |
---|
166 | |
---|
167 | |
---|
168 | /* ====== NONAUTONOMOUS CASE =============== */ |
---|
169 | if(Autonomous == 0) |
---|
170 | { |
---|
171 | tau =( dround*MAX ((double)1.0e-6, dabs(T)) *signum(T) ); |
---|
172 | (*forfun)(NVAR, T+tau, y, K2); |
---|
173 | nfcn=nfcn+1; |
---|
174 | |
---|
175 | for(j = 0;j<NVAR;j++) |
---|
176 | K3[j] = ( K2[j]-F1[j] )/tau; |
---|
177 | |
---|
178 | |
---|
179 | /* ----- STAGE 1 (NON-AUTONOMOUS) ----- */ |
---|
180 | |
---|
181 | delta = (double)(gamma*H); |
---|
182 | |
---|
183 | for(j = 0;j<NVAR;j++) |
---|
184 | K1[j] = F1[j] + delta*K3[j]; |
---|
185 | |
---|
186 | KppSolve (JAC, K1); |
---|
187 | |
---|
188 | |
---|
189 | /* ----- STAGE 2 (NON-AUTONOMOUS) ----- */ |
---|
190 | alpha = (double)(- 1.e0/gamma); |
---|
191 | for(j = 0;j<NVAR;j++) |
---|
192 | ynew[j] = y[j] + alpha*K1[j]; |
---|
193 | |
---|
194 | |
---|
195 | (*forfun)(NVAR, T+H, ynew, F1); |
---|
196 | nfcn=nfcn+1; |
---|
197 | beta = (double)(2.e0/(gamma*H)); |
---|
198 | delta = (double)(-gamma*H); |
---|
199 | for(j = 0;j<NVAR;j++) |
---|
200 | K2[j] = F1[j] + beta*K1[j] + delta*K3[j]; |
---|
201 | |
---|
202 | KppSolve (JAC, K2); |
---|
203 | |
---|
204 | }/* if for non - autonomous case ends here */ |
---|
205 | |
---|
206 | /* ====== AUTONOMOUS CASE =============== */ |
---|
207 | else |
---|
208 | { |
---|
209 | |
---|
210 | /* ----- STAGE 1 (AUTONOMOUS) ----- */ |
---|
211 | for(j = 0;j<NVAR;j++) |
---|
212 | K1[j] = F1[j]; |
---|
213 | |
---|
214 | KppSolve (JAC, K1); |
---|
215 | |
---|
216 | /* ----- STAGE 2 (AUTONOMOUS) ----- */ |
---|
217 | alpha = (double)(- 1.e0/gamma); |
---|
218 | |
---|
219 | for(j = 0;j<NVAR;j++) |
---|
220 | ynew[j] = y[j] + alpha*K1[j]; |
---|
221 | |
---|
222 | (*forfun)(NVAR, T+H, ynew, F1); |
---|
223 | |
---|
224 | nfcn=nfcn+1; |
---|
225 | beta = (double)(2.e0/(gamma*H)); |
---|
226 | for(j = 0;j < NVAR;j++) |
---|
227 | K2[j] = F1[j] + beta*K1[j]; |
---|
228 | |
---|
229 | KppSolve (JAC, K2); |
---|
230 | |
---|
231 | }/* else autonomous case ends here */ |
---|
232 | |
---|
233 | |
---|
234 | |
---|
235 | /* ---- The Solution --- */ |
---|
236 | m1 = (double)(-3.e0/(2.e0*gamma)); |
---|
237 | m2 = (double)(-1.e0/(2.e0*gamma)); |
---|
238 | for(j = 0;j<NVAR;j++) |
---|
239 | ynew[j] = y[j] + m1*K1[j] + m2*K2[j]; |
---|
240 | |
---|
241 | |
---|
242 | |
---|
243 | /* ====== Error estimation ======== */ |
---|
244 | |
---|
245 | ERR=(double)0.e0; |
---|
246 | theta = (double)(1.e0/(2.e0*gamma)); |
---|
247 | |
---|
248 | for(i=0;i<NVAR;i++) |
---|
249 | { |
---|
250 | g[i] = AbsTol[i] + RelTol[i]*dabs(ynew[i]); |
---|
251 | ERR = (double)( ERR + pow( ( theta*(K1[i]+K2[i])/g[i] ) , 2.0 ) ); |
---|
252 | } |
---|
253 | ERR = MAX( uround, DSQRT( ERR/NVAR ) ); |
---|
254 | |
---|
255 | /* ======= Choose the stepsize ================== */ |
---|
256 | |
---|
257 | |
---|
258 | factor = (double)(0.9/pow( ERR,(1.e0/2.e0) )); |
---|
259 | if (IsReject == 1) |
---|
260 | facmax=(double)1.0; |
---|
261 | |
---|
262 | else |
---|
263 | facmax=(double)10.0; |
---|
264 | |
---|
265 | |
---|
266 | factor =(double) MAX( 1.0e-1, MIN(factor,facmax) ); |
---|
267 | Hold = H; |
---|
268 | H = (double)MIN( Hmax, MAX(Hmin,factor*H) ); |
---|
269 | |
---|
270 | /* ======= Rejected/Accepted Step ================== */ |
---|
271 | |
---|
272 | |
---|
273 | if( (ERR>1) && (Hold>Hmin) ) |
---|
274 | { |
---|
275 | IsReject = 1; |
---|
276 | Nreject = Nreject + 1; |
---|
277 | } |
---|
278 | else |
---|
279 | { |
---|
280 | IsReject = 0; |
---|
281 | for(i=0;i<NVAR;i++) |
---|
282 | { |
---|
283 | y[i] = ynew[i]; |
---|
284 | } |
---|
285 | T = Tplus; |
---|
286 | Naccept = Naccept+1; |
---|
287 | |
---|
288 | }/* else ends here */ |
---|
289 | |
---|
290 | |
---|
291 | |
---|
292 | |
---|
293 | |
---|
294 | /* ======= End of the time loop ================= */ |
---|
295 | |
---|
296 | } /* while loop (T < Tnext) ends here */ |
---|
297 | |
---|
298 | |
---|
299 | /* ======= Output Information ================ */ |
---|
300 | INFO[1] = nfcn; |
---|
301 | INFO[2] = njac; |
---|
302 | INFO[3] = Naccept; |
---|
303 | INFO[4] = Nreject; |
---|
304 | |
---|
305 | return 0; |
---|
306 | |
---|
307 | } /* function ros2 ends here */ |
---|
308 | |
---|
309 | |
---|
310 | |
---|
311 | |
---|