1 | SUBROUTINE INTEGRATE( TIN, TOUT ) |
---|
2 | |
---|
3 | INCLUDE 'KPP_ROOT_params.h' |
---|
4 | INCLUDE 'KPP_ROOT_global.h' |
---|
5 | |
---|
6 | C TIN - Start Time |
---|
7 | KPP_REAL TIN |
---|
8 | C TOUT - End Time |
---|
9 | KPP_REAL TOUT |
---|
10 | |
---|
11 | INTEGER INFO(5) |
---|
12 | |
---|
13 | EXTERNAL FUNC_CHEM, JAC_CHEM |
---|
14 | |
---|
15 | INFO(1) = Autonomous |
---|
16 | |
---|
17 | CALL ROS1(NVAR,TIN,TOUT,STEPMIN,VAR, |
---|
18 | + Info,FUNC_CHEM,JAC_CHEM) |
---|
19 | |
---|
20 | |
---|
21 | RETURN |
---|
22 | END |
---|
23 | |
---|
24 | |
---|
25 | |
---|
26 | |
---|
27 | SUBROUTINE ROS1(N,T,Tnext,Hstart, |
---|
28 | + y,Info,FUNC_CHEM,JAC_CHEM) |
---|
29 | |
---|
30 | INCLUDE 'KPP_ROOT_params.h' |
---|
31 | INCLUDE 'KPP_ROOT_sparse.h' |
---|
32 | C |
---|
33 | C Linearly Implicit Euler |
---|
34 | C A method of theoretical interest but of no practical value |
---|
35 | C |
---|
36 | C INPUT ARGUMENTS: |
---|
37 | C y = Vector of (NVAR) concentrations, contains the |
---|
38 | C initial values on input |
---|
39 | C [T, Tnext] = the integration interval |
---|
40 | C Hmin, Hmax = lower and upper bounds for the selected step-size. |
---|
41 | C Note that for Step = Hmin the current computed |
---|
42 | C solution is unconditionally accepted by the error |
---|
43 | C control mechanism. |
---|
44 | C AbsTol, RelTol = (NVAR) dimensional vectors of |
---|
45 | C componentwise absolute and relative tolerances. |
---|
46 | C FUNC_CHEM = name of routine of derivatives. KPP syntax. |
---|
47 | C See the header below. |
---|
48 | C JAC_CHEM = name of routine that computes the Jacobian, in |
---|
49 | C sparse format. KPP syntax. See the header below. |
---|
50 | C Info(1) = 1 for Autonomous system |
---|
51 | C = 0 for nonAutonomous system |
---|
52 | C |
---|
53 | C OUTPUT ARGUMENTS: |
---|
54 | C y = the values of concentrations at Tend. |
---|
55 | C T = equals TENDon output. |
---|
56 | C Info(2) = # of FUNC_CHEM CALLs. |
---|
57 | C Info(3) = # of JAC_CHEM CALLs. |
---|
58 | C Info(4) = # of accepted steps. |
---|
59 | C Info(5) = # of rejected steps. |
---|
60 | C Hstart = The last accepted stepsize |
---|
61 | C |
---|
62 | C Adrian Sandu, December 2001 |
---|
63 | C |
---|
64 | KPP_REAL Fv(NVAR) |
---|
65 | KPP_REAL JAC(LU_NONZERO) |
---|
66 | KPP_REAL H, Hstart |
---|
67 | KPP_REAL y(NVAR) |
---|
68 | KPP_REAL T, Tnext, Tplus |
---|
69 | KPP_REAL elo,ghinv,uround |
---|
70 | |
---|
71 | INTEGER n,nfcn,njac,Naccept,Nreject,i,j |
---|
72 | INTEGER Info(5) |
---|
73 | LOGICAL IsReject, Autonomous |
---|
74 | EXTERNAL FUNC_CHEM, JAC_CHEM |
---|
75 | |
---|
76 | |
---|
77 | H = Hstart |
---|
78 | Tplus = T |
---|
79 | Nfcn = 0 |
---|
80 | Njac = 0 |
---|
81 | |
---|
82 | C === Starting the time loop === |
---|
83 | 10 CONTINUE |
---|
84 | |
---|
85 | Tplus = T + H |
---|
86 | IF ( Tplus .gt. Tnext ) THEN |
---|
87 | H = Tnext - T |
---|
88 | Tplus = Tnext |
---|
89 | END IF |
---|
90 | |
---|
91 | C Initial Function and Jacobian values |
---|
92 | CALL FUNC_CHEM(NVAR, T, y, Fv) |
---|
93 | Nfcn = Nfcn+1 |
---|
94 | CALL JAC_CHEM(NVAR, T, y, JAC) |
---|
95 | Njac = Njac+1 |
---|
96 | |
---|
97 | C Form the Prediction matrix and compute its LU factorization |
---|
98 | DO 40 j=1,NVAR |
---|
99 | JAC(LU_DIAG(j)) = JAC(LU_DIAG(j)) - 1.0d0/H |
---|
100 | 40 CONTINUE |
---|
101 | CALL KppDecomp (JAC, ier) |
---|
102 | C |
---|
103 | IF (ier.ne.0) THEN |
---|
104 | PRINT *,'ROS1: Singular factorization at T=',T,'; H=',H |
---|
105 | STOP |
---|
106 | END IF |
---|
107 | |
---|
108 | C ------------ STAGE 1------------------------- |
---|
109 | CALL KppSolve (JAC, Fv) |
---|
110 | |
---|
111 | C ---- The Solution --- |
---|
112 | DO 160 j = 1,NVAR |
---|
113 | y(j) = y(j) - Fv(j) |
---|
114 | 160 CONTINUE |
---|
115 | T = T + H |
---|
116 | |
---|
117 | C ======= End of the time loop =============================== |
---|
118 | IF ( T .lt. Tnext ) GO TO 10 |
---|
119 | |
---|
120 | C ======= Output Information ================================= |
---|
121 | Info(2) = Nfcn |
---|
122 | Info(3) = Njac |
---|
123 | Info(4) = Njac |
---|
124 | Info(5) = 0 |
---|
125 | Hstart = H |
---|
126 | |
---|
127 | RETURN |
---|
128 | END |
---|
129 | |
---|
130 | |
---|
131 | SUBROUTINE FUNC_CHEM(N, T, Y, P) |
---|
132 | INCLUDE 'KPP_ROOT_params.h' |
---|
133 | INCLUDE 'KPP_ROOT_global.h' |
---|
134 | INTEGER N |
---|
135 | KPP_REAL T, Told |
---|
136 | KPP_REAL Y(NVAR), P(NVAR) |
---|
137 | Told = TIME |
---|
138 | TIME = T |
---|
139 | CALL Update_SUN() |
---|
140 | CALL Update_RCONST() |
---|
141 | CALL Fun( Y, FIX, RCONST, P ) |
---|
142 | TIME = Told |
---|
143 | RETURN |
---|
144 | END |
---|
145 | |
---|
146 | |
---|
147 | SUBROUTINE JAC_CHEM(N, T, Y, J) |
---|
148 | INCLUDE 'KPP_ROOT_params.h' |
---|
149 | INCLUDE 'KPP_ROOT_global.h' |
---|
150 | INTEGER N |
---|
151 | KPP_REAL Told, T |
---|
152 | KPP_REAL Y(NVAR), J(LU_NONZERO) |
---|
153 | Told = TIME |
---|
154 | TIME = T |
---|
155 | CALL Update_SUN() |
---|
156 | CALL Update_RCONST() |
---|
157 | CALL Jac_SP( Y, FIX, RCONST, J ) |
---|
158 | TIME = Told |
---|
159 | RETURN |
---|
160 | END |
---|
161 | |
---|
162 | |
---|
163 | |
---|
164 | |
---|
165 | |
---|
166 | |
---|