1 | %$Id: topography.tex 1226 2013-09-18 13:19:19Z hoffmann $ |
---|
2 | \input{header_tmp.tex} |
---|
3 | %\input{../header_lectures.tex} |
---|
4 | |
---|
5 | \usepackage[utf8]{inputenc} |
---|
6 | \usepackage{ngerman} |
---|
7 | \usepackage{pgf} |
---|
8 | \usetheme{Dresden} |
---|
9 | \usepackage{subfigure} |
---|
10 | \usepackage{units} |
---|
11 | \usepackage{multimedia} |
---|
12 | \usepackage{hyperref} |
---|
13 | \newcommand{\event}[1]{\newcommand{\eventname}{#1}} |
---|
14 | \usepackage{xmpmulti} |
---|
15 | \usepackage{tikz} |
---|
16 | \usetikzlibrary{shapes,arrows,positioning,decorations.pathreplacing} |
---|
17 | \def\Tiny{\fontsize{4pt}{4pt}\selectfont} |
---|
18 | |
---|
19 | %---------- neue Pakete |
---|
20 | \usepackage{amsmath} |
---|
21 | \usepackage{amssymb} |
---|
22 | \usepackage{multicol} |
---|
23 | \usepackage{pdfcomment} |
---|
24 | \usepackage{xcolor} |
---|
25 | |
---|
26 | \institute{Institut fÌr Meteorologie und Klimatologie, Leibniz UniversitÀt Hannover} |
---|
27 | \date{last update: \today} |
---|
28 | \event{PALM Seminar} |
---|
29 | \setbeamertemplate{navigation symbols}{} |
---|
30 | \setbeamersize{text margin left=.5cm,text margin right=.2cm} |
---|
31 | \setbeamertemplate{footline} |
---|
32 | {% |
---|
33 | \begin{beamercolorbox}[rightskip=-0.1cm]& |
---|
34 | {\includegraphics[height=0.65cm]{imuk_logo.pdf}\hfill \includegraphics[height=0.65cm]{luh_logo.pdf}} |
---|
35 | \end{beamercolorbox} |
---|
36 | \begin{beamercolorbox}[ht=2.5ex,dp=1.125ex,% |
---|
37 | leftskip=.3cm,rightskip=0.3cm plus1fil]{title in head/foot}% |
---|
38 | {\leavevmode{\usebeamerfont{author in head/foot}\insertshortauthor} \hfill \eventname \hfill \insertframenumber \; / \inserttotalframenumber}% |
---|
39 | \end{beamercolorbox}% |
---|
40 | % \begin{beamercolorbox}[colsep=1.5pt]{lower separation line foot}% |
---|
41 | % \end{beamercolorbox} |
---|
42 | }%\logo{\includegraphics[width=0.3\textwidth]{luhimuk_logo.eps}} |
---|
43 | |
---|
44 | \title[PALM - Using Topography]{PALM - Using Topography} |
---|
45 | \author{Siegfried Raasch} |
---|
46 | |
---|
47 | % Notes: |
---|
48 | % jede subsection bekommt einen punkt im menu (vertikal ausgerichtet. |
---|
49 | % jeder frame in einer subsection bekommt einen punkt (horizontal ausgerichtet) |
---|
50 | \begin{document} |
---|
51 | % Folie 1 |
---|
52 | \begin{frame} |
---|
53 | \titlepage |
---|
54 | \end{frame} |
---|
55 | |
---|
56 | % Folie 2 |
---|
57 | \begin{frame} |
---|
58 | \frametitle{Contents â Using Topography (I)} |
---|
59 | \begin{itemize} |
---|
60 | \item{Purpose of topography in PALM} |
---|
61 | \item{Definition} |
---|
62 | \item{Realization} |
---|
63 | \begin{itemize} |
---|
64 | \item{Physical concept} |
---|
65 | \item{Technical / numerical implementation} |
---|
66 | \end{itemize} |
---|
67 | \item{Strengths and limitations} |
---|
68 | \item{Control parameters} |
---|
69 | \begin{itemize} |
---|
70 | \item{Required / optional topography parameters} |
---|
71 | \item{Topography-related general control parameters} |
---|
72 | \begin{itemize} |
---|
73 | \item{Suitable driving methods, initial and boundary conditions} |
---|
74 | \item{Pressure solver} |
---|
75 | \end{itemize} |
---|
76 | \end{itemize} |
---|
77 | \item{Data output} |
---|
78 | \end{itemize} |
---|
79 | \end{frame} |
---|
80 | |
---|
81 | % Folie 3 |
---|
82 | \begin{frame} |
---|
83 | \frametitle{Purpose of Topography} |
---|
84 | \begin{itemize} |
---|
85 | \item{Optional feature to simulate flow around/above obstacles} |
---|
86 | \par\bigskip |
---|
87 | \item{Application fields} |
---|
88 | \begin{itemize} |
---|
89 | \item{Urban meteorology, wind engineering} |
---|
90 | \item{Mesoscale meteorology} |
---|
91 | \item{Oceanography} |
---|
92 | \item{...} |
---|
93 | \end{itemize} |
---|
94 | \end{itemize} |
---|
95 | \end{frame} |
---|
96 | |
---|
97 | % Folie 4 |
---|
98 | \begin{frame} |
---|
99 | \frametitle{Definition} |
---|
100 | \begin{itemize} |
---|
101 | \item{The topography definition in PALM covers solid, impermeable, fixed flow obstacles with a volume of at least one grid box.} |
---|
102 | \par\bigskip |
---|
103 | \item{The following qualifies as topography: \textcolor{green!50!black!100}{\checkmark}} |
---|
104 | \begin{itemize} |
---|
105 | \footnotesize |
---|
106 | \item{Human-made obstacles (buildings)} |
---|
107 | \item{Natural obstacles (hills, mountains)} |
---|
108 | \end{itemize} |
---|
109 | \par\bigskip |
---|
110 | \item{The following does NOT qualify as topography: \textcolor{red}{$\times$}} |
---|
111 | \begin{itemize} |
---|
112 | \footnotesize |
---|
113 | \item{\begin{tabbing}Permeable obstacles (vegetation) $\}$ \= Parameterization options in PALM: \\ |
---|
114 | \> canopy model, local roughness length \end{tabbing} } |
---|
115 | \item{Small obstacles (signposts)} |
---|
116 | \item{Moving obstacles (vehicles)} |
---|
117 | \end{itemize} |
---|
118 | \end{itemize} |
---|
119 | \end{frame} |
---|
120 | |
---|
121 | % Folie 5 |
---|
122 | \begin{frame} |
---|
123 | \frametitle{Realization - Physical Concept} |
---|
124 | \scriptsize |
---|
125 | \begin{columns}[c] |
---|
126 | \column{0.8\textwidth} |
---|
127 | \begin{itemize} |
---|
128 | \item{Flow cannot enter topography and is forced around/above it.} |
---|
129 | \end{itemize} |
---|
130 | \column{0.2\textwidth} |
---|
131 | \end{columns} |
---|
132 | \begin{columns}[c] |
---|
133 | \column{0.6\textwidth} |
---|
134 | \begin{itemize} |
---|
135 | \item{Grid boxes are} |
---|
136 | \begin{itemize} |
---|
137 | \item{\begin{minipage}{0.1\textwidth} |
---|
138 | \includegraphics[width=0.7\textwidth]{topography_figures/physical_concept_small1.png} |
---|
139 | \end{minipage} |
---|
140 | \begin{minipage}{0.5\textwidth} \scriptsize |
---|
141 | \par\medskip |
---|
142 | 100\% free fluid, \\ |
---|
143 | \end{minipage}} |
---|
144 | \item{\begin{minipage}{0.1\textwidth} |
---|
145 | \includegraphics[width=0.7\textwidth]{topography_figures/physical_concept_small2.png} |
---|
146 | \end{minipage} |
---|
147 | \begin{minipage}{0.5\textwidth} \scriptsize |
---|
148 | 100\% fluid adjacent to an obstacle, or |
---|
149 | \end{minipage}} |
---|
150 | \item{\begin{minipage}{0.1\textwidth} |
---|
151 | \includegraphics[width=0.7\textwidth]{topography_figures/physical_concept_small3.png} |
---|
152 | \end{minipage} |
---|
153 | \begin{minipage}{0.5\textwidth} \scriptsize |
---|
154 | \par\medskip |
---|
155 | 100\% obstacle. \\ |
---|
156 | \end{minipage}} |
---|
157 | \end{itemize} |
---|
158 | \item{No-slip boundary condition} |
---|
159 | \begin{itemize} |
---|
160 | \item{\scriptsize Wall-normal velocity component is zero at obstacle surface \textbf{\textcolor{blue}{---------}}} |
---|
161 | \end{itemize} |
---|
162 | \par\bigskip |
---|
163 | \item{\begin{minipage}{0.75\textwidth} \scriptsize |
---|
164 | Local surface layer for the first grid box \\adjacent to each obstacle surface |
---|
165 | \end{minipage} |
---|
166 | \begin{minipage}{0.1\textwidth} |
---|
167 | \includegraphics[width=0.7\textwidth]{topography_figures/physical_concept_small2.png} |
---|
168 | \end{minipage}} |
---|
169 | \par\smallskip |
---|
170 | \begin{itemize} |
---|
171 | \item{\scriptsize Neutral Monin-Obukhov similarity} |
---|
172 | \end{itemize} |
---|
173 | \end{itemize} |
---|
174 | \column{0.4\textwidth} |
---|
175 | \includegraphics[width=\textwidth]{topography_figures/physical_concept.png} |
---|
176 | \end{columns} |
---|
177 | \end{frame} |
---|
178 | |
---|
179 | % Folie 6 |
---|
180 | \begin{frame} |
---|
181 | \frametitle{Realization - \\ Numerical /Technical Implementation (I)} |
---|
182 | \small |
---|
183 | \begin{columns}[c] |
---|
184 | \column{0.5\textwidth} |
---|
185 | \begin{itemize} |
---|
186 | \item{Obstacles must be surface-mounted} |
---|
187 | \item{Overhanging structures \textcolor{blue}{$\times$}, holes \textcolor{red}{$\times$} etc. are not permitted.} |
---|
188 | \begin{itemize} |
---|
189 | \footnotesize |
---|
190 | \item{This simplification allows extra performance optimization by reducing the 3D obstacle dimension to a "'2.5D"' dimension.} |
---|
191 | \item{"'2.5D"' means that each horizontal grid cell is assigned only one height level.} |
---|
192 | \item{This conforms to the "'2.5D"' format of Digital Elevation Models (DEM).} |
---|
193 | \end{itemize} |
---|
194 | \end{itemize} |
---|
195 | \column{0.4\textwidth} |
---|
196 | \par\medskip |
---|
197 | \includegraphics[width=1.1\textwidth]{topography_figures/technical_implementation.png} |
---|
198 | \end{columns} |
---|
199 | \end{frame} |
---|
200 | |
---|
201 | % Folie 7 |
---|
202 | \begin{frame} |
---|
203 | \frametitle{Realization - \\ Numerical /Technical Implementation (II)} |
---|
204 | \begin{columns}[c] |
---|
205 | \column{0.4\textwidth} |
---|
206 | \footnotesize |
---|
207 | The location of the wall-normal velocity component defines the location of the impermeable obstacle surface. \\ |
---|
208 | \par\smallskip |
---|
209 | Obstacle surfaces that do not match the grid are approximated by grid boxes like a step-function. |
---|
210 | \par\bigskip |
---|
211 | $\bullet$ scalars \\ |
---|
212 | \textcolor{red}{$\bullet$ u (staggered)} \\ |
---|
213 | \textcolor{green!40!black!100}{\textbf{+} v (staggered)} |
---|
214 | % \includegraphics[width=0.4\textwidth]{topography_figures/technical_implementation_grid/technical_implementation_grid_small1.png} \\ |
---|
215 | % \includegraphics[width=0.6\textwidth]{topography_figures/technical_implementation_grid/technical_implementation_grid_small2.png} \\ |
---|
216 | % \includegraphics[width=0.6\textwidth]{topography_figures/technical_implementation_grid/technical_implementation_grid_small3.png} |
---|
217 | \column{0.6\textwidth} |
---|
218 | \includegraphics<1|handout:0>[width=\textwidth]{topography_figures/technical_implementation_grid/technical_implementation_grid_1.png} |
---|
219 | \includegraphics<2|handout:0>[width=\textwidth]{topography_figures/technical_implementation_grid/technical_implementation_grid_2.png} |
---|
220 | \includegraphics<3|handout:0>[width=\textwidth]{topography_figures/technical_implementation_grid/technical_implementation_grid_3.png} |
---|
221 | \includegraphics<4|handout:0>[width=\textwidth]{topography_figures/technical_implementation_grid/technical_implementation_grid_4.png} |
---|
222 | \includegraphics<5|handout:1>[width=\textwidth]{topography_figures/technical_implementation_grid/technical_implementation_grid_5.png} |
---|
223 | \end{columns} |
---|
224 | \end{frame} |
---|
225 | |
---|
226 | % Folie 8 |
---|
227 | \begin{frame} |
---|
228 | \frametitle{Realization - \\ Numerical / Technical Implementation (III)} |
---|
229 | \footnotesize |
---|
230 | \textbf{Rastering GIS data: \dq from GIS data to ASCII raster data\dq} |
---|
231 | \begin{itemize} |
---|
232 | \item{In order to process topography from external data sources, the data must be made available |
---|
233 | to PALM as a rastered ASCII file, e.g. example\_topo.} |
---|
234 | \item{The layout of example\_topo must conform to the computational domain size and to the grid size dx and dy.} |
---|
235 | \item{The rastered height data of example\_topo are given in m above ground and do not need to match |
---|
236 | the vertical grid, since they will be interpolated, if required.} |
---|
237 | \par\bigskip |
---|
238 | \item{Software known to be able to perfom the rastering process of GIS data in vector and/or raster format to PALM raster format:} |
---|
239 | \begin{itemize} |
---|
240 | \item{ArcGIS (commercial)} |
---|
241 | \item{GRASS GIS (freeware)} |
---|
242 | \item{...? (please report to us)} |
---|
243 | \end{itemize} |
---|
244 | \end{itemize} |
---|
245 | \end{frame} |
---|
246 | |
---|
247 | % Folie 9 |
---|
248 | \begin{frame} |
---|
249 | \frametitle{Realization â \\ Numerical / Technical Implementation (IV)} |
---|
250 | \small |
---|
251 | \textbf{Potential issues} |
---|
252 | \begin{itemize} |
---|
253 | \item{Load imbalance} |
---|
254 | \begin{itemize} |
---|
255 | \item{Leads to inefficient parallelization: \dq fast\dq CPU(s) must wait for \dq slow\dq CPU(s)} |
---|
256 | \item{Occurs if the CPUs do not share the same workload} |
---|
257 | \begin{itemize} |
---|
258 | \item{E.g. if topography is significantly heterogeneous in a large volume fraction of the computational domain} |
---|
259 | \end{itemize} |
---|
260 | \end{itemize} |
---|
261 | \item{\dq 2 $\Delta$x\dq instabilities (only if Piacsek-Williams advection scheme is used)} |
---|
262 | \begin{itemize} |
---|
263 | \item{Upstream of obstacle walls} |
---|
264 | \item{Due to second-order finite difference advection scheme} |
---|
265 | \item{Model remains stable throughout the simulation} |
---|
266 | \item{The default Wicker-Skamarock scheme does not show any instabilities} |
---|
267 | \end{itemize} |
---|
268 | \end{itemize} |
---|
269 | \end{frame} |
---|
270 | |
---|
271 | % Folie 10 |
---|
272 | \begin{frame} |
---|
273 | \frametitle{Summary: Strengths (+) and Limitations (â)} |
---|
274 | \small |
---|
275 | \begin{itemize} |
---|
276 | \item[+]{Horizontal and vertical surfaces can be exactly resolved (thanks to the finite difference Cartesian model architecture)} |
---|
277 | \item[+]{Optimization also for scalar computer architectures} |
---|
278 | \item[+]{Conforms with \dq 2.5D\dq format of Digital Elevation Models (DEM)} |
---|
279 | \par\bigskip |
---|
280 | \item[-]{Obstacles must be surface-mounted} |
---|
281 | \item[-]{Grid boxes can only be 100\% fluid or 100\% obstacle \\ \par\smallskip |
---|
282 | \begin{footnotesize} Obstacle surfaces that do not match the grid are approximated by grid boxes like a step-function, which |
---|
283 | modifies the real obstacle size \end{footnotesize}} |
---|
284 | \item[-]{Overhanging structures, holes etc. are not permitted due to the \dq 2.5D\dq format} |
---|
285 | \end{itemize} |
---|
286 | \end{frame} |
---|
287 | |
---|
288 | % Folie 11 |
---|
289 | \begin{frame} |
---|
290 | \frametitle{Take a Short Break... Urban Flow Visualization} |
---|
291 | \begin{columns}[c] |
---|
292 | \column{0.42\textwidth} |
---|
293 | \includegraphics<1>[width=\textwidth]{topography_figures/hannover_1.png} |
---|
294 | \href{.html}{\includegraphics<2>[width=\textwidth]{topography_figures/hannover_2.png}} |
---|
295 | \column{0.58\textwidth} |
---|
296 | Set-up: neutral boundary layer |
---|
297 | \begin{itemize} |
---|
298 | \item{Particle = passive tracer} |
---|
299 | \item{Colour $\sim$ particle height} |
---|
300 | \item{Tail length ~ particle velocity} |
---|
301 | \end{itemize} |
---|
302 | \par\bigskip |
---|
303 | \begin{itemize} |
---|
304 | \item{Flow past office tower:} |
---|
305 | \begin{itemize} |
---|
306 | \item{initially laminar: not yet an LES} |
---|
307 | \item{intermittent: different episodes} |
---|
308 | \end{itemize} |
---|
309 | \item{Broad street canyon flow:} |
---|
310 | \begin{itemize} |
---|
311 | \item{channeling} |
---|
312 | \item{low-level upstream flow} |
---|
313 | \end{itemize} |
---|
314 | \end{itemize} |
---|
315 | \end{columns} |
---|
316 | \end{frame} |
---|
317 | |
---|
318 | % Folie 12 |
---|
319 | \begin{frame} |
---|
320 | \frametitle{Required Topography Control Parameters} |
---|
321 | \footnotesize |
---|
322 | {\tt topography =} |
---|
323 | \begin{itemize} |
---|
324 | \item{{\tt 'flat'} \hspace{3cm} no topography (default)} |
---|
325 | \item{{\tt 'single\_building'} \hspace{1.2cm} \textcolor{red}{generic} single building} |
---|
326 | \item{{\tt 'single\_street\_canyon'} \hspace{0.4cm} \textcolor{red}{generic} single quasi-2D street canyon} |
---|
327 | \item{{\tt 'read\_from\_file'} \hspace{1.4cm} \textcolor{blue}{rastered} ASCII file, e.g. {\tt example\_topo}} |
---|
328 | \item{any other string \hspace{1.8cm} processed by user subroutine user\_init\_grid} |
---|
329 | \end{itemize} |
---|
330 | {\tt topography\_grid\_convention =} |
---|
331 | \begin{itemize} |
---|
332 | \item{{\tt '\textcolor{red}{cell\_edge}'} \hspace{2.2cm} default for \textcolor{red}{generic} topography: \textcolor{red}{$\leftrightarrow$}} |
---|
333 | \item{{\tt '\textcolor{blue}{cell\_center}'} \hspace{1.9cm} default for \textcolor{blue}{rastered} topography: \textcolor{blue}{$\bigcirc$ $\leftrightarrow$}} |
---|
334 | \end{itemize} |
---|
335 | \includegraphics<1|handout:0>[width=0.5\textwidth]{topography_figures/control_parameters_1.png} |
---|
336 | \includegraphics<2|handout:0>[width=0.5\textwidth]{topography_figures/control_parameters_2.png} |
---|
337 | \includegraphics<3|handout:0>[width=0.5\textwidth]{topography_figures/control_parameters_3.png} |
---|
338 | \includegraphics<4|handout:1>[width=0.5\textwidth]{topography_figures/control_parameters_4.png} |
---|
339 | \end{frame} |
---|
340 | |
---|
341 | % Folie 13 |
---|
342 | \begin{frame} |
---|
343 | \frametitle{Optional Topography Control Parameters (I)} |
---|
344 | \small |
---|
345 | \textbf{Generic topography} |
---|
346 | \scriptsize |
---|
347 | \begin{itemize} |
---|
348 | \item{topography = {\tt 'single\_building'}} |
---|
349 | \begin{itemize} |
---|
350 | \scriptsize |
---|
351 | \item{building\_height = 50.0 \hspace{0.67cm} height of the building} |
---|
352 | \item{building\_length\_x = 50.0 \hspace{0.43cm} length of the building in x-direction} |
---|
353 | \item{building\_length\_y = 50.0 \hspace{0.43cm} length of the building in y-direction} |
---|
354 | \item{building\_wall\_left \hspace{1.4cm} (default is building centered in x-direction)} |
---|
355 | \item{building\_wall\_south \hspace{1.13cm} (default is building centered in y-direction)} |
---|
356 | \end{itemize} |
---|
357 | \item{topography = {\tt 'single\_street\_canyon'}} |
---|
358 | \begin{itemize} |
---|
359 | \scriptsize |
---|
360 | \item{canyon\_height = 50.0 \hspace{0.45cm} height of the canyon \\ |
---|
361 | and} |
---|
362 | \item{canyon\_width\_x = 50.0 \hspace{0.3cm} implies canyon axis orientation in y-direction} |
---|
363 | \item{canyon\_wall\_left \hspace{1.17cm} (default is canyon centered in x-direction) \\ |
---|
364 | or} |
---|
365 | \item{canyon\_width\_y = 50.0 \hspace{0.3cm} implies canyon axis orientation in x-direction} |
---|
366 | \item{canyon\_wall\_south \hspace{0.9cm} (default is canyon centered in y-direction)} |
---|
367 | \end{itemize} |
---|
368 | \end{itemize} |
---|
369 | \end{frame} |
---|
370 | |
---|
371 | % Folie 14 |
---|
372 | \begin{frame} |
---|
373 | \frametitle{Optional Topography Control Parameters (II)} |
---|
374 | \scriptsize |
---|
375 | \textbf{Rastered topography}\\ |
---|
376 | \begin{minipage}{0.7\textwidth} |
---|
377 | \begin{itemize} |
---|
378 | \scriptsize |
---|
379 | \item{{\tt topography} = 'read\_from\_file'} |
---|
380 | \begin{itemize} |
---|
381 | \footnotesize |
---|
382 | \item{requires an external ASCII file, e.g. {\tt example\_topo:}} |
---|
383 | \end{itemize} |
---|
384 | \end{itemize} |
---|
385 | \end{minipage} |
---|
386 | \begin{minipage}{0.2\textwidth} |
---|
387 | \includegraphics[width=0.5\textwidth]{topography_figures/optional_control_parameters_1.png} |
---|
388 | \end{minipage} |
---|
389 | \begin{center} |
---|
390 | \includegraphics[width=0.85\textwidth]{topography_figures/optional_control_parameters_2.png} |
---|
391 | \end{center} |
---|
392 | \begin{itemize} |
---|
393 | \item[]{} |
---|
394 | \begin{itemize} |
---|
395 | \scriptsize |
---|
396 | \item{layout must conform to domain size and grid size dx and dy.} |
---|
397 | \item{height data} |
---|
398 | \begin{itemize} |
---|
399 | \scriptsize |
---|
400 | \item{in m above ground (INTEGER or REAL)} |
---|
401 | \item{do not need to match the vertical grid} |
---|
402 | \end{itemize} |
---|
403 | \end{itemize} |
---|
404 | \end{itemize} |
---|
405 | \end{frame} |
---|
406 | |
---|
407 | % Folie 15 |
---|
408 | \begin{frame} |
---|
409 | \frametitle{Optional Topography Control Parameters (III)} |
---|
410 | \small |
---|
411 | \textbf{Rastered topography} |
---|
412 | \begin{itemize} |
---|
413 | \item{{\tt topography} = 'read\_from\_file'} |
---|
414 | \par\smallskip |
---|
415 | \begin{itemize} |
---|
416 | \item{\textbf{mrun}-call: \\ |
---|
417 | {\tt mrun ... -r 'd3\# ...'}} |
---|
418 | \par\medskip |
---|
419 | \item{{\tt .mrun.config:}} |
---|
420 | \end{itemize} |
---|
421 | \end{itemize} |
---|
422 | \begin{center} \includegraphics[width=0.7\textwidth]{topography_figures/optional_control_parameters_3.png} \end{center} |
---|
423 | \end{frame} |
---|
424 | |
---|
425 | % Folie 16 |
---|
426 | \begin{frame} |
---|
427 | \frametitle{General Control Parameters (I): Suitable Driving Methods} |
---|
428 | \scriptsize |
---|
429 | \begin{itemize} |
---|
430 | \item{\textbf{\dq Meteorological\dq set-up M: geostrophic wind / Coriolis force}} |
---|
431 | \begin{itemize} |
---|
432 | \scriptsize |
---|
433 | \item{Set {\tt omega $ \neq$ 0.0}} |
---|
434 | \item{Construct a non-zero profile of geostrophic wind $u_g$ and/or $v_g$ using {\tt ug\_surface}, {\tt ug\_vertical\_gradient} |
---|
435 | and {\tt ug\_vertical\_gradient\_level} and/or the respective parameter set for $v_g$} |
---|
436 | \end{itemize} |
---|
437 | \par\bigskip |
---|
438 | \item{\textbf{\dq Engineering\dq set-up E: direct external pressure gradient / no Coriolis force}} |
---|
439 | \begin{itemize} |
---|
440 | \scriptsize |
---|
441 | \item{Set {\tt omega = 0.0}} |
---|
442 | \item{Set-up E1: direct external pressure gradient that does not change with time |
---|
443 | (the bulk velocity fluctuates with time)} |
---|
444 | \begin{itemize} |
---|
445 | \scriptsize |
---|
446 | \item{Parameters: {\tt dp\_external}, {\tt dp\_smooth}, {\tt dp\_level\_b}, {\tt dpdxy}} |
---|
447 | \end{itemize} |
---|
448 | \item{Set-up E2: maintain a constant bulk velocity |
---|
449 | (the direct external pressure gradient fluctuates with time)} |
---|
450 | \begin{itemize} |
---|
451 | \scriptsize |
---|
452 | \item{Parameters: {\tt conserve\_volume\_flow}, {\tt conserve\_volume\_flow\_mode}, {\tt u\_bulk}, {\tt v\_bulk}} |
---|
453 | \end{itemize} |
---|
454 | \end{itemize} |
---|
455 | \par\bigskip |
---|
456 | \item{\textbf{\dq Thermal\dq set-up T: directly prescribe sensible heatflux}} |
---|
457 | \begin{itemize} |
---|
458 | \item[]{} |
---|
459 | \begin{itemize} |
---|
460 | \scriptsize |
---|
461 | \item{surface\_heatflux at ground level only} |
---|
462 | \item{wall\_heatflux(0:4) at top/left/right/South/North obstacle face} |
---|
463 | \end{itemize} |
---|
464 | \end{itemize} |
---|
465 | \end{itemize} |
---|
466 | \end{frame} |
---|
467 | |
---|
468 | % Folie 17 |
---|
469 | \begin{frame} |
---|
470 | \frametitle{General Control Parameters (II): Initialization} |
---|
471 | \scriptsize |
---|
472 | \begin{itemize} |
---|
473 | \item{\textbf{\dq Meteorological\dq set-up M }\\ |
---|
474 | Initialize a non-zero profile of geostrophic wind $u_g$ and/or $v_g$ using} |
---|
475 | \begin{itemize} |
---|
476 | \scriptsize |
---|
477 | \item{{\tt initializing\_actions =} \textbf{'set\_constant\_profiles' (e.g. for convective BL)}} |
---|
478 | \begin{itemize} |
---|
479 | \scriptsize |
---|
480 | \item{Parameters: {\tt ug\_surface $ \neq $ 0.0} and/or {\tt vg\_surface $\neq $ 0.0}} |
---|
481 | \end{itemize} |
---|
482 | \item{{\tt initializing\_actions =} \textbf{'set\_1d-model\_profiles' (e.g. for neutral BL)}} |
---|
483 | \begin{itemize} |
---|
484 | \scriptsize |
---|
485 | \item{1D model prerun parameters with suffix {\tt \_1d} (e.g. {\tt end\_time\_1d}, {\tt damp\_level\_1d)}} |
---|
486 | \end{itemize} |
---|
487 | \end{itemize} |
---|
488 | \par\bigskip |
---|
489 | \item{\textbf{\dq Engineering\dq set-up E} \\ |
---|
490 | Good initialization may require a priori knowlegde, e.g. from previous test runs. |
---|
491 | Here, {\tt ug\_}... and {\tt vg\_}... don't refer to geostrophic wind but to the initial wind profile.} |
---|
492 | \begin{itemize} |
---|
493 | \scriptsize |
---|
494 | \item{{\tt initializing\_actions} = \textbf{'set\_constant\_profiles'}} |
---|
495 | \begin{itemize} |
---|
496 | \scriptsize |
---|
497 | \item{Parameter set: {\tt ug\_surface}, {\tt ug\_vertical\_gradient}[{\tt \_level}] and/or the respective set for $v_g$} |
---|
498 | \end{itemize} |
---|
499 | \item{{\tt initializing\_actions} = \textbf{'set\_1d-model\_profiles'}} |
---|
500 | \item{{\tt initializing\_actions} = \textbf{'by\_user' â processed by user\_init\_3d\_model}} |
---|
501 | \end{itemize} |
---|
502 | \par\bigskip |
---|
503 | \item{\textbf{\dq Thermal\dq set-up T} \\ |
---|
504 | Any of the above may apply} |
---|
505 | \end{itemize} |
---|
506 | \end{frame} |
---|
507 | |
---|
508 | % Folie 18 |
---|
509 | \begin{frame} |
---|
510 | \frametitle{General Control Parameters (III): Boundary Conditions} |
---|
511 | \footnotesize |
---|
512 | \begin{itemize} |
---|
513 | \item{Lateral boundary conditions} |
---|
514 | \begin{itemize} |
---|
515 | \item{Cyclic / non-cyclic: cf. lecture on \dq non-cyclic boundary conditions\dq} |
---|
516 | \end{itemize} |
---|
517 | \item{Bottom boundary conditions} |
---|
518 | \begin{itemize} |
---|
519 | \item{Cf. lecture on \dq numerics and boundary conditions\dq} |
---|
520 | \end{itemize} |
---|
521 | \item{Top boundary conditions} |
---|
522 | \begin{itemize} |
---|
523 | \footnotesize |
---|
524 | \item{\textbf{Channel}: {\tt bc\_uv\_t =} \textbf{'dirichlet\_0' (no-slip)}} |
---|
525 | \item{\textbf{Open channel}: {\tt bc\_uv\_t =} \textbf{'neumann' (slip)}} |
---|
526 | \item{\textbf{\dq Constant flux\dq layer} (not yet published): {\tt bc\_uv\_t =} \textbf{'neumann' (slip)} \\ |
---|
527 | with set-up E1 where {\tt dp\_level\_b >> 0} and {\tt dp\_smooth = .T.}} |
---|
528 | \end{itemize} |
---|
529 | \end{itemize} |
---|
530 | \end{frame} |
---|
531 | |
---|
532 | % Folie 19 |
---|
533 | \begin{frame} |
---|
534 | \frametitle{General Control Parameters (IV): Pressure Solver} |
---|
535 | {\tt psolver =} |
---|
536 | \par\medskip |
---|
537 | \begin{itemize} |
---|
538 | \item{'poisfft' (FFT scheme)} |
---|
539 | \begin{itemize} |
---|
540 | \item{Good performance for urban PALM version} |
---|
541 | \item{Cannot be used with non-cyclic boundary conditions} |
---|
542 | \end{itemize} |
---|
543 | \par\bigskip |
---|
544 | \item{'multigrid' (Multigrid scheme)} |
---|
545 | \begin{itemize} |
---|
546 | \item{Performance for very large number of grid points may be better than FFT} |
---|
547 | \item{This is the only possible choice for non-cyclic boundary conditions} |
---|
548 | \end{itemize} |
---|
549 | \end{itemize} |
---|
550 | \end{frame} |
---|
551 | |
---|
552 | % Folie 20 |
---|
553 | \begin{frame} |
---|
554 | \frametitle{Data Analysis / Output â Some Considerations (I)} |
---|
555 | \scriptsize |
---|
556 | \begin{itemize} |
---|
557 | \item{How to get turbulence statistics?} |
---|
558 | \begin{itemize} |
---|
559 | \scriptsize |
---|
560 | \item{Phase averaging if a direction of homogeneity exists} |
---|
561 | \item{Temporal averaging} |
---|
562 | \item{Ensemble averaging} |
---|
563 | \end{itemize} |
---|
564 | \item{Definition of turbulent fluctuations}\\ |
---|
565 | \textbf{Spatial fluctuations:} deviation from representative instantaneous spatial average |
---|
566 | \begin{itemize} |
---|
567 | \scriptsize |
---|
568 | \item{PALM: many statistics calculated on-the-fly as time series, 1D vertical profiles} |
---|
569 | \item{Not suitable for topography unless a direction of homogeneity exists} |
---|
570 | \end{itemize} |
---|
571 | \textbf{Temporal fluctuations}: deviation from representative local temporal average |
---|
572 | \begin{itemize} |
---|
573 | \scriptsize |
---|
574 | \item{Suitable for all applications including topography} |
---|
575 | \item{Requires much hard disk space and post-processing CPU time} |
---|
576 | \item{PALM: not natively supported, but following procedure works:} |
---|
577 | \begin{itemize} |
---|
578 | \scriptsize |
---|
579 | \item{Collect time-series during the simulation (2D/3D data output or user-defined time series)} |
---|
580 | \item{Check for (quasi-)steady turbulent state and sufficient averaging time} |
---|
581 | \item{Calculate statistics by post-processing making use of the Reynolds decomposition: \\ \par\medskip |
---|
582 | $\overline{w'\theta'} = \overline{w\theta} - \overline{w} \overline{\theta} $} |
---|
583 | \end{itemize} |
---|
584 | \end{itemize} |
---|
585 | \end{itemize} |
---|
586 | \end{frame} |
---|
587 | |
---|
588 | % Folie 21 |
---|
589 | \begin{frame} |
---|
590 | \frametitle{Your Responsibility and Contribution} |
---|
591 | \footnotesize |
---|
592 | \par\medskip |
---|
593 | In most cases, a new parameter is added to PALM for one specific purpose. |
---|
594 | \par\bigskip |
---|
595 | Beyond this one purpose, each new parameter normally gives many other new feature/parameter combinations in PALM. |
---|
596 | We are unable to check all these combinations by ourselves and rely on your help! |
---|
597 | \par\bigskip |
---|
598 | % For example, the combination of topography and non-cyclic lateral boundary conditions has not yet been tested |
---|
599 | % because both features have originally been introduced separately for different research projects. |
---|
600 | % \par\bigskip |
---|
601 | Therefore, we ask you for your responsibility and contribution: |
---|
602 | \begin{itemize} |
---|
603 | \item{Please always check your PALM setup carefully. PALM is not a black box.} |
---|
604 | \item{For example, design a simple case and test your expectation.} |
---|
605 | \item{Please report potential bugs â thank you!} |
---|
606 | \begin{itemize} |
---|
607 | \item{PALM developer team} |
---|
608 | \item{PALM user community (via trac-system)} |
---|
609 | \end{itemize} |
---|
610 | \end{itemize} |
---|
611 | \end{frame} |
---|
612 | |
---|
613 | % Folie 22 |
---|
614 | \begin{frame} |
---|
615 | \Large |
---|
616 | \begin{center} \textcolor{blue!90!black!100}{Topography - Scenario examples} \end{center} |
---|
617 | \end{frame} |
---|
618 | |
---|
619 | % Folie 23 |
---|
620 | \begin{frame} |
---|
621 | \frametitle{Set-up Scenario: Single Street Canyon (I)} |
---|
622 | \par\smallskip |
---|
623 | \textbf{Single quasi-2D street canyon in neutral open channel flow with constant bulk velocity} |
---|
624 | \par\smallskip |
---|
625 | \begin{itemize} |
---|
626 | \item{{\tt trunk/EXAMPLES/canyon/}} |
---|
627 | \begin{itemize} |
---|
628 | \item{Parameter file \hspace{2cm} {\tt example\_canyon\_p3d}} |
---|
629 | \item{Run-control file \hspace{1.78cm} {\tt example\_canyon\_rc}} |
---|
630 | \item{Some documentation \hspace{0.95cm} {\tt example\_canyon.odt}} |
---|
631 | \end{itemize} |
---|
632 | \end{itemize} |
---|
633 | \begin{center} |
---|
634 | \includegraphics[width=0.85\textwidth]{topography_figures/scenario_ssc_1.png} |
---|
635 | \end{center} |
---|
636 | \end{frame} |
---|
637 | |
---|
638 | % Folie 24 |
---|
639 | \begin{frame} |
---|
640 | \frametitle{Set-up Scenario: Single Street Canyon (II)} |
---|
641 | \textbf{The phase average makes use of homogeneity in y-direction:} \\ |
---|
642 | {\tt section\_xz = -1}, {\tt data\_output = \textbf{'u\_xz\_av'}}, {\tt 'v\_xz\_av'}, {\tt 'w\_xz\_av'} |
---|
643 | \begin{center} |
---|
644 | \includegraphics[width=0.85\textwidth]{topography_figures/scenario_ssc_2.png} |
---|
645 | \end{center} |
---|
646 | \end{frame} |
---|
647 | |
---|
648 | % Folie 25 |
---|
649 | \begin{frame} |
---|
650 | \begin{tikzpicture}[remember picture, overlay] |
---|
651 | \node [shift={(6.5 cm, 5cm)}] at (current page.south west) |
---|
652 | {% |
---|
653 | \begin{tikzpicture}[remember picture, overlay] |
---|
654 | \uncover<1>{\node at (0,-0.5) {\includegraphics[width=0.7\textwidth]{topography_figures/scenario_ssc_example_1.png}};} |
---|
655 | \uncover<2>{\node at (0,-0.5) {\includegraphics[width=0.7\textwidth]{topography_figures/scenario_ssc_example_2.png}};} |
---|
656 | \uncover<3->{\node at (0,-0.5) {\includegraphics[width=0.7\textwidth]{topography_figures/scenario_ssc_example_3.png}};} |
---|
657 | \uncover<4->{\node at (-3.5,-0.2) {\includegraphics[width=0.48\textwidth]{topography_figures/scenario_ssc_example_4.png}};} |
---|
658 | \uncover<5->{\node at (3.5,-0.2) {\includegraphics[width=0.38\textwidth]{topography_figures/scenario_ssc_example_5.png}};} |
---|
659 | \end{tikzpicture} |
---|
660 | }; |
---|
661 | \end{tikzpicture} |
---|
662 | \end{frame} |
---|
663 | |
---|
664 | % Folie 26 |
---|
665 | \begin{frame} |
---|
666 | \frametitle{Set-up Scenario: Constant Flux Layer} |
---|
667 | \small |
---|
668 | \textbf{Single surface-mounted cube in neutral open channel flow with a constant flux layer} |
---|
669 | \begin{itemize} |
---|
670 | \item{{\tt trunk/EXAMPLES/constant\_flux\_layer/}} |
---|
671 | \begin{itemize} |
---|
672 | \footnotesize |
---|
673 | \item{Parameter file \hspace{2cm} {\tt example\_constant\_flux\_layer\_p3d}} |
---|
674 | \item{Run-control file \hspace{1.79cm} {\tt example\_constant\_flux\_layer\_rc}} |
---|
675 | \item{Some documentation \hspace{1.02cm} {\tt example\_constant\_flux\_layer.odt}} |
---|
676 | \end{itemize} |
---|
677 | \end{itemize} |
---|
678 | \begin{center} |
---|
679 | \includegraphics[width=0.85\textwidth]{topography_figures/scenario_cfl.png} |
---|
680 | \end{center} |
---|
681 | \end{frame} |
---|
682 | |
---|
683 | % Folie 27 |
---|
684 | \begin{frame} |
---|
685 | \begin{tikzpicture}[remember picture, overlay] |
---|
686 | \node [shift={(6.5 cm, 5cm)}] at (current page.south west) |
---|
687 | {% |
---|
688 | \begin{tikzpicture}[remember picture, overlay] |
---|
689 | \uncover<1->{\node at (0,-0.5) {\includegraphics[width=0.7\textwidth]{topography_figures/scenario_cfl_example_1.png}};} |
---|
690 | \uncover<2->{\node at (-3.5,-0.2) {\includegraphics[width=0.45\textwidth]{topography_figures/scenario_cfl_example_2.png}};} |
---|
691 | \uncover<3->{\node at (3.5,-0.2) {\includegraphics[width=0.38\textwidth]{topography_figures/scenario_cfl_example_3.png}};} |
---|
692 | \end{tikzpicture} |
---|
693 | }; |
---|
694 | \end{tikzpicture} |
---|
695 | \end{frame} |
---|
696 | |
---|
697 | % Folie 28 |
---|
698 | \begin{frame} |
---|
699 | \frametitle{Rules of Good Practise} |
---|
700 | \small |
---|
701 | \begin{itemize} |
---|
702 | \item{If you run PALM with topography, make sure that it is really LES...} |
---|
703 | \begin{itemize} |
---|
704 | \item{''Large eddies'' are ''small'' between obstacles} |
---|
705 | \begin{itemize} |
---|
706 | \item{use fine grid length to resolve turbulence there} |
---|
707 | \end{itemize} |
---|
708 | \item{Ratio of resolved to SGS fluxes} |
---|
709 | \end{itemize} |
---|
710 | \item{Check for (quasi-)steady turbulent state and sufficient averaging time.} |
---|
711 | \begin{itemize} |
---|
712 | \item{Fluctuations of time series of E, E*, maximum velocity components etc.} |
---|
713 | \end{itemize} |
---|
714 | \item{Make sure that your PALM result is independent of numerical parameters such as domain size and grid size.} |
---|
715 | \begin{itemize} |
---|
716 | \item{Sensitivity studies} |
---|
717 | \end{itemize} |
---|
718 | \item{If you intend to do a comparison with some kind of reference data, it is essential to configure the set-up of PALM |
---|
719 | in the same way as the reference experiment.} |
---|
720 | \begin{itemize} |
---|
721 | \item{For example, if you compare PALM with wind tunnel results, you have to follow the wind tunnel set-up for setting up PALM.} |
---|
722 | \end{itemize} |
---|
723 | \end{itemize} |
---|
724 | \end{frame} |
---|
725 | |
---|
726 | \end{document} |
---|