[973] | 1 | %$Id: topography.tex 973 2012-08-07 16:03:47Z heinze $ |
---|
| 2 | \input{header_tmp.tex} |
---|
| 3 | %\input{../header_lectures.tex} |
---|
| 4 | |
---|
| 5 | \usepackage[utf8]{inputenc} |
---|
| 6 | \usepackage{ngerman} |
---|
| 7 | \usepackage{pgf} |
---|
| 8 | \usetheme{Dresden} |
---|
| 9 | \usepackage{subfigure} |
---|
| 10 | \usepackage{units} |
---|
| 11 | \usepackage{multimedia} |
---|
| 12 | \usepackage{hyperref} |
---|
| 13 | \newcommand{\event}[1]{\newcommand{\eventname}{#1}} |
---|
| 14 | \usepackage{xmpmulti} |
---|
| 15 | \usepackage{tikz} |
---|
| 16 | \usetikzlibrary{shapes,arrows,positioning,decorations.pathreplacing} |
---|
| 17 | \def\Tiny{\fontsize{4pt}{4pt}\selectfont} |
---|
| 18 | |
---|
| 19 | %---------- neue Pakete |
---|
| 20 | \usepackage{amsmath} |
---|
| 21 | \usepackage{amssymb} |
---|
| 22 | \usepackage{multicol} |
---|
| 23 | \usepackage{pdfcomment} |
---|
| 24 | \usepackage{xcolor} |
---|
| 25 | |
---|
| 26 | \institute{Institut fÌr Meteorologie und Klimatologie, Leibniz UniversitÀt Hannover} |
---|
| 27 | \date{last update: \today} |
---|
| 28 | \event{PALM Seminar} |
---|
| 29 | \setbeamertemplate{navigation symbols}{} |
---|
| 30 | \setbeamersize{text margin left=.5cm,text margin right=.2cm} |
---|
| 31 | \setbeamertemplate{footline} |
---|
| 32 | {% |
---|
| 33 | \begin{beamercolorbox}[rightskip=-0.1cm]& |
---|
| 34 | {\includegraphics[height=0.65cm]{imuk_logo.pdf}\hfill \includegraphics[height=0.65cm]{luh_logo.pdf}} |
---|
| 35 | \end{beamercolorbox} |
---|
| 36 | \begin{beamercolorbox}[ht=2.5ex,dp=1.125ex,% |
---|
| 37 | leftskip=.3cm,rightskip=0.3cm plus1fil]{title in head/foot}% |
---|
| 38 | {\leavevmode{\usebeamerfont{author in head/foot}\insertshortauthor} \hfill \eventname \hfill \insertframenumber \; / \inserttotalframenumber}% |
---|
| 39 | \end{beamercolorbox}% |
---|
| 40 | % \begin{beamercolorbox}[colsep=1.5pt]{lower separation line foot}% |
---|
| 41 | % \end{beamercolorbox} |
---|
| 42 | }%\logo{\includegraphics[width=0.3\textwidth]{luhimuk_logo.eps}} |
---|
| 43 | |
---|
| 44 | \title[PALM - Using Topography]{PALM - Using Topography} |
---|
| 45 | \author{Siegfried Raasch} |
---|
| 46 | |
---|
| 47 | % Notes: |
---|
| 48 | % jede subsection bekommt einen punkt im menu (vertikal ausgerichtet. |
---|
| 49 | % jeder frame in einer subsection bekommt einen punkt (horizontal ausgerichtet) |
---|
| 50 | \begin{document} |
---|
| 51 | % Folie 1 |
---|
| 52 | \begin{frame} |
---|
| 53 | \titlepage |
---|
| 54 | \end{frame} |
---|
| 55 | |
---|
| 56 | % Folie 2 |
---|
| 57 | \begin{frame} |
---|
| 58 | \frametitle{Contents â Using Topography (I)} |
---|
| 59 | \begin{itemize} |
---|
| 60 | \item{Purpose of topography in PALM} |
---|
| 61 | \item{Definition} |
---|
| 62 | \item{Realization} |
---|
| 63 | \begin{itemize} |
---|
| 64 | \item{Physical concept} |
---|
| 65 | \item{Technical / numerical implementation} |
---|
| 66 | \end{itemize} |
---|
| 67 | \item{Strengths and limitations} |
---|
| 68 | \item{Control parameters} |
---|
| 69 | \begin{itemize} |
---|
| 70 | \item{Required / optional topography parameters} |
---|
| 71 | \item{Topography-related general control parameters} |
---|
| 72 | \begin{itemize} |
---|
| 73 | \item{Suitable driving methods, initial and boundary conditions} |
---|
| 74 | \item{Pressure solver} |
---|
| 75 | \end{itemize} |
---|
| 76 | \end{itemize} |
---|
| 77 | \item{Data output} |
---|
| 78 | \end{itemize} |
---|
| 79 | \end{frame} |
---|
| 80 | |
---|
| 81 | % Folie 3 |
---|
| 82 | \begin{frame} |
---|
| 83 | \frametitle{Purpose of Topography} |
---|
| 84 | \begin{itemize} |
---|
| 85 | \item{Optional feature to simulate flow around/above obstacles} |
---|
| 86 | \par\bigskip |
---|
| 87 | \item{Application fields} |
---|
| 88 | \begin{itemize} |
---|
| 89 | \item{Urban meteorology, wind engineering} |
---|
| 90 | \item{Mesoscale meteorology} |
---|
| 91 | \item{Oceanography} |
---|
| 92 | \item{...} |
---|
| 93 | \end{itemize} |
---|
| 94 | \end{itemize} |
---|
| 95 | \end{frame} |
---|
| 96 | |
---|
| 97 | % Folie 4 |
---|
| 98 | \begin{frame} |
---|
| 99 | \frametitle{Definition} |
---|
| 100 | \begin{itemize} |
---|
| 101 | \item{The topography definition in PALM covers solid, impermeable, fixed flow obstacles with a volume of at least one grid box.} |
---|
| 102 | \par\bigskip |
---|
| 103 | \item{The following qualifies as topography: \textcolor{green!50!black!100}{\checkmark}} |
---|
| 104 | \begin{itemize} |
---|
| 105 | \footnotesize |
---|
| 106 | \item{Human-made obstacles (buildings)} |
---|
| 107 | \item{Natural obstacles (hills, mountains)} |
---|
| 108 | \end{itemize} |
---|
| 109 | \par\bigskip |
---|
| 110 | \item{The following does NOT qualify as topography: \textcolor{red}{$\times$}} |
---|
| 111 | \begin{itemize} |
---|
| 112 | \footnotesize |
---|
| 113 | \item{\begin{tabbing}Permeable obstacles (vegetation) $\}$ \= Parameterization options in PALM: \\ |
---|
| 114 | \> canopy model, local roughness length \end{tabbing} } |
---|
| 115 | \item{Small obstacles (signposts)} |
---|
| 116 | \item{Moving obstacles (vehicles)} |
---|
| 117 | \end{itemize} |
---|
| 118 | \end{itemize} |
---|
| 119 | \end{frame} |
---|
| 120 | |
---|
| 121 | % Folie 5 |
---|
| 122 | \begin{frame} |
---|
| 123 | \frametitle{Realization - Physical Concept} |
---|
| 124 | \scriptsize |
---|
| 125 | \begin{columns}[c] |
---|
| 126 | \column{0.8\textwidth} |
---|
| 127 | \begin{itemize} |
---|
| 128 | \item{Flow cannot enter topography and is forced around/above it.} |
---|
| 129 | \end{itemize} |
---|
| 130 | \column{0.2\textwidth} |
---|
| 131 | \end{columns} |
---|
| 132 | \begin{columns}[c] |
---|
| 133 | \column{0.6\textwidth} |
---|
| 134 | \begin{itemize} |
---|
| 135 | \item{Grid boxes are} |
---|
| 136 | \begin{itemize} |
---|
| 137 | \item{\begin{minipage}{0.1\textwidth} |
---|
| 138 | \includegraphics[width=0.7\textwidth]{topography_figures/physical_concept_small1.png} |
---|
| 139 | \end{minipage} |
---|
| 140 | \begin{minipage}{0.5\textwidth} \scriptsize |
---|
| 141 | \par\medskip |
---|
| 142 | 100\% free fluid, \\ |
---|
| 143 | \end{minipage}} |
---|
| 144 | \item{\begin{minipage}{0.1\textwidth} |
---|
| 145 | \includegraphics[width=0.7\textwidth]{topography_figures/physical_concept_small2.png} |
---|
| 146 | \end{minipage} |
---|
| 147 | \begin{minipage}{0.5\textwidth} \scriptsize |
---|
| 148 | 100\% fluid adjacent to an obstacle, or |
---|
| 149 | \end{minipage}} |
---|
| 150 | \item{\begin{minipage}{0.1\textwidth} |
---|
| 151 | \includegraphics[width=0.7\textwidth]{topography_figures/physical_concept_small3.png} |
---|
| 152 | \end{minipage} |
---|
| 153 | \begin{minipage}{0.5\textwidth} \scriptsize |
---|
| 154 | \par\medskip |
---|
| 155 | 100\% obstacle. \\ |
---|
| 156 | \end{minipage}} |
---|
| 157 | \end{itemize} |
---|
| 158 | \item{No-slip boundary condition} |
---|
| 159 | \begin{itemize} |
---|
| 160 | \item{\scriptsize Wall-normal velocity component is zero at obstacle surface \textbf{\textcolor{blue}{---------}}} |
---|
| 161 | \end{itemize} |
---|
| 162 | \par\bigskip |
---|
| 163 | \item{\begin{minipage}{0.75\textwidth} \scriptsize |
---|
| 164 | Local surface layer for the first grid box \\adjacent to each obstacle surface |
---|
| 165 | \end{minipage} |
---|
| 166 | \begin{minipage}{0.1\textwidth} |
---|
| 167 | \includegraphics[width=0.7\textwidth]{topography_figures/physical_concept_small2.png} |
---|
| 168 | \end{minipage}} |
---|
| 169 | \par\smallskip |
---|
| 170 | \begin{itemize} |
---|
| 171 | \item{\scriptsize Neutral Monin-Obukhov similarity} |
---|
| 172 | \end{itemize} |
---|
| 173 | \end{itemize} |
---|
| 174 | \column{0.4\textwidth} |
---|
| 175 | \includegraphics[width=\textwidth]{topography_figures/physical_concept.png} |
---|
| 176 | \end{columns} |
---|
| 177 | \end{frame} |
---|
| 178 | |
---|
| 179 | % Folie 6 |
---|
| 180 | \begin{frame} |
---|
| 181 | \frametitle{Realization - \\ Numerical /Technical Implementation (I)} |
---|
| 182 | \small |
---|
| 183 | \begin{columns}[c] |
---|
| 184 | \column{0.5\textwidth} |
---|
| 185 | \begin{itemize} |
---|
| 186 | \item{Obstacles must be surface-mounted} |
---|
| 187 | \item{Overhanging structures \textcolor{blue}{$\times$}, holes \textcolor{red}{$\times$} etc. are not permitted.} |
---|
| 188 | \begin{itemize} |
---|
| 189 | \footnotesize |
---|
| 190 | \item{This simplification allows extra performance optimization by reducing the 3D obstacle dimension to a "'2.5D"' dimension.} |
---|
| 191 | \item{"'2.5D"' means that each horizontal grid cell is assigned only one height level.} |
---|
| 192 | \item{This conforms to the "'2.5D"' format of Digital Elevation Models (DEM).} |
---|
| 193 | \end{itemize} |
---|
| 194 | \end{itemize} |
---|
| 195 | \column{0.4\textwidth} |
---|
| 196 | \par\medskip |
---|
| 197 | \includegraphics[width=1.1\textwidth]{topography_figures/technical_implementation.png} |
---|
| 198 | \end{columns} |
---|
| 199 | \end{frame} |
---|
| 200 | |
---|
| 201 | % Folie 7 |
---|
| 202 | \begin{frame} |
---|
| 203 | \frametitle{Realization - \\ Numerical /Technical Implementation (II)} |
---|
| 204 | \begin{columns}[c] |
---|
| 205 | \column{0.4\textwidth} |
---|
| 206 | \footnotesize |
---|
| 207 | The location of the wall-normal velocity component defines the location of the impermeable obstacle surface. \\ |
---|
| 208 | \par\smallskip |
---|
| 209 | Obstacle surfaces that do not match the grid are approximated by grid boxes like a step-function. |
---|
| 210 | \par\bigskip |
---|
| 211 | $\bullet$ scalars \\ |
---|
| 212 | \textcolor{red}{$\bullet$ u (staggered)} \\ |
---|
| 213 | \textcolor{green!40!black!100}{\textbf{+} v (staggered)} |
---|
| 214 | % \includegraphics[width=0.4\textwidth]{topography_figures/technical_implementation_grid/technical_implementation_grid_small1.png} \\ |
---|
| 215 | % \includegraphics[width=0.6\textwidth]{topography_figures/technical_implementation_grid/technical_implementation_grid_small2.png} \\ |
---|
| 216 | % \includegraphics[width=0.6\textwidth]{topography_figures/technical_implementation_grid/technical_implementation_grid_small3.png} |
---|
| 217 | \column{0.6\textwidth} |
---|
| 218 | \includegraphics<1>[width=\textwidth]{topography_figures/technical_implementation_grid/technical_implementation_grid_1.png} |
---|
| 219 | \includegraphics<2>[width=\textwidth]{topography_figures/technical_implementation_grid/technical_implementation_grid_2.png} |
---|
| 220 | \includegraphics<3>[width=\textwidth]{topography_figures/technical_implementation_grid/technical_implementation_grid_3.png} |
---|
| 221 | \includegraphics<4>[width=\textwidth]{topography_figures/technical_implementation_grid/technical_implementation_grid_4.png} |
---|
| 222 | \includegraphics<5>[width=\textwidth]{topography_figures/technical_implementation_grid/technical_implementation_grid_5.png} |
---|
| 223 | \end{columns} |
---|
| 224 | \end{frame} |
---|
| 225 | |
---|
| 226 | % Folie 8 |
---|
| 227 | \begin{frame} |
---|
| 228 | \frametitle{Realization - \\ Numerical / Technical Implementation (III)} |
---|
| 229 | \footnotesize |
---|
| 230 | \textbf{Rastering GIS data: \dq from GIS data to ASCII raster data\dq} |
---|
| 231 | \begin{itemize} |
---|
| 232 | \item{In order to process topography from external data sources, the data must be made available |
---|
| 233 | to PALM as a rastered ASCII file, e.g. example\_topo.} |
---|
| 234 | \item{The layout of example\_topo must conform to the computational domain size and to the grid size dx and dy.} |
---|
| 235 | \item{The rastered height data of example\_topo are given in m above ground and do not need to match |
---|
| 236 | the vertical grid, since they are interpolated.} |
---|
| 237 | \par\bigskip |
---|
| 238 | \item{Software known to be able to perfom the rastering process of GIS data in vector and/or raster format to PALM raster format:} |
---|
| 239 | \begin{itemize} |
---|
| 240 | \item{ArcGIS (commercial)} |
---|
| 241 | \item{GRASS GIS (freeware)} |
---|
| 242 | \item{...? (please report to us)} |
---|
| 243 | \end{itemize} |
---|
| 244 | \end{itemize} |
---|
| 245 | \end{frame} |
---|
| 246 | |
---|
| 247 | % Folie 9 |
---|
| 248 | \begin{frame} |
---|
| 249 | \frametitle{Realization â \\ Numerical / Technical Implementation (IV)} |
---|
| 250 | \small |
---|
| 251 | \textbf{Potential issues} |
---|
| 252 | \begin{itemize} |
---|
| 253 | \item{Load imbalance} |
---|
| 254 | \begin{itemize} |
---|
| 255 | \item{Leads to inefficient parallelization: \dq fast\dq CPU(s) must wait for \dq slow\dq CPU(s)} |
---|
| 256 | \item{Occurs if the CPUs do not share the same workload} |
---|
| 257 | \begin{itemize} |
---|
| 258 | \item{E.g. if topography is significantly heterogeneous in a large volume fraction of the computational domain} |
---|
| 259 | \end{itemize} |
---|
| 260 | \end{itemize} |
---|
| 261 | \item{\dq 2 $\Delta$x\dq instabilities} |
---|
| 262 | \begin{itemize} |
---|
| 263 | \item{Upstream of obstacle walls} |
---|
| 264 | \item{Due to second-order finite difference advection scheme} |
---|
| 265 | \item{Model remains stable throughout the simulation} |
---|
| 266 | \end{itemize} |
---|
| 267 | \end{itemize} |
---|
| 268 | \end{frame} |
---|
| 269 | |
---|
| 270 | % Folie 10 |
---|
| 271 | \begin{frame} |
---|
| 272 | \frametitle{Summary: Strengths (+) and Limitations (â)} |
---|
| 273 | \small |
---|
| 274 | \begin{itemize} |
---|
| 275 | \item[+]{Horizontal and vertical surfaces can be exactly resolved (thanks to the finite difference Cartesian model architecture)} |
---|
| 276 | \item[+]{Optimization also for scalar computer architectures} |
---|
| 277 | \item[+]{Conforms with \dq 2.5D\dq format of Digital Elevation Models (DEM)} |
---|
| 278 | \par\bigskip |
---|
| 279 | \item[-]{Obstacles must be surface-mounted} |
---|
| 280 | \item[-]{Grid boxes can only be 100\% fluid or 100\% obstacle \\ \par\smallskip |
---|
| 281 | \begin{footnotesize} Obstacle surfaces that do not match the grid are approximated by grid boxes like a step-function, which |
---|
| 282 | modifies the real obstacle size \end{footnotesize}} |
---|
| 283 | \item[-]{Overhanging structures, holes etc. are not permitted due to the \dq 2.5D\dq format} |
---|
| 284 | \end{itemize} |
---|
| 285 | \end{frame} |
---|
| 286 | |
---|
| 287 | % Folie 11 |
---|
| 288 | \begin{frame} |
---|
| 289 | \frametitle{Take a Short Break... Urban Flow Visualization} |
---|
| 290 | \begin{columns}[c] |
---|
| 291 | \column{0.42\textwidth} |
---|
| 292 | \includegraphics<1>[width=\textwidth]{topography_figures/hannover_1.png} |
---|
| 293 | \href{.html}{\includegraphics<2>[width=\textwidth]{topography_figures/hannover_2.png}} |
---|
| 294 | \column{0.58\textwidth} |
---|
| 295 | Set-up: neutral boundary layer |
---|
| 296 | \begin{itemize} |
---|
| 297 | \item{Particle = passive tracer} |
---|
| 298 | \item{Colour $\sim$ particle height} |
---|
| 299 | \item{Tail length ~ particle velocity} |
---|
| 300 | \end{itemize} |
---|
| 301 | \par\bigskip |
---|
| 302 | \begin{itemize} |
---|
| 303 | \item{Flow past office tower:} |
---|
| 304 | \begin{itemize} |
---|
| 305 | \item{initially laminar: not yet an LES} |
---|
| 306 | \item{intermittent: different episodes} |
---|
| 307 | \end{itemize} |
---|
| 308 | \item{Broad street canyon flow:} |
---|
| 309 | \begin{itemize} |
---|
| 310 | \item{channeling} |
---|
| 311 | \item{low-level upstream flow} |
---|
| 312 | \end{itemize} |
---|
| 313 | \end{itemize} |
---|
| 314 | \end{columns} |
---|
| 315 | \end{frame} |
---|
| 316 | |
---|
| 317 | % Folie 12 |
---|
| 318 | \begin{frame} |
---|
| 319 | \frametitle{Required Topography Control Parameters} |
---|
| 320 | \footnotesize |
---|
| 321 | {\tt topography =} |
---|
| 322 | \begin{itemize} |
---|
| 323 | \item{{\tt 'flat'} \hspace{3cm} no topography (default)} |
---|
| 324 | \item{{\tt 'single\_building'} \hspace{1.2cm} \textcolor{red}{generic} single building} |
---|
| 325 | \item{{\tt 'single\_street\_canyon'} \hspace{0.4cm} \textcolor{red}{generic} single quasi-2D street canyon} |
---|
| 326 | \item{{\tt 'read\_from\_file'} \hspace{1.4cm} \textcolor{blue}{rastered} ASCII file, e.g. {\tt example\_topo}} |
---|
| 327 | \item{any other string \hspace{1.8cm} processed by user subroutine user\_init\_grid} |
---|
| 328 | \end{itemize} |
---|
| 329 | {\tt topography\_grid\_convention =} |
---|
| 330 | \begin{itemize} |
---|
| 331 | \item{{\tt '\textcolor{red}{cell\_edge}'} \hspace{2.2cm} default for \textcolor{red}{generic} topography: \textcolor{red}{$\leftrightarrow$}} |
---|
| 332 | \item{{\tt '\textcolor{blue}{cell\_center}'} \hspace{1.9cm} default for \textcolor{blue}{rastered} topography: \textcolor{blue}{$\bigcirc$ $\leftrightarrow$}} |
---|
| 333 | \end{itemize} |
---|
| 334 | \includegraphics<1>[width=0.5\textwidth]{topography_figures/control_parameters_1.png} |
---|
| 335 | \includegraphics<2>[width=0.5\textwidth]{topography_figures/control_parameters_2.png} |
---|
| 336 | \includegraphics<3>[width=0.5\textwidth]{topography_figures/control_parameters_3.png} |
---|
| 337 | \includegraphics<4>[width=0.5\textwidth]{topography_figures/control_parameters_4.png} |
---|
| 338 | \end{frame} |
---|
| 339 | |
---|
| 340 | % Folie 13 |
---|
| 341 | \begin{frame} |
---|
| 342 | \frametitle{Optional Topography Control Parameters (I)} |
---|
| 343 | \small |
---|
| 344 | \textbf{Generic topography} |
---|
| 345 | \scriptsize |
---|
| 346 | \begin{itemize} |
---|
| 347 | \item{topography = {\tt 'single\_building'}} |
---|
| 348 | \begin{itemize} |
---|
| 349 | \scriptsize |
---|
| 350 | \item{building\_height = 50.0 \hspace{0.67cm} height of the building} |
---|
| 351 | \item{building\_length\_x = 50.0 \hspace{0.43cm} length of the building in x-direction} |
---|
| 352 | \item{building\_length\_y = 50.0 \hspace{0.43cm} length of the building in y-direction} |
---|
| 353 | \item{building\_wall\_left \hspace{1.4cm} (default is building centered in x-direction)} |
---|
| 354 | \item{building\_wall\_south \hspace{1.13cm} (default is building centered in y-direction)} |
---|
| 355 | \end{itemize} |
---|
| 356 | \item{topography = {\tt 'single\_street\_canyon'}} |
---|
| 357 | \begin{itemize} |
---|
| 358 | \scriptsize |
---|
| 359 | \item{canyon\_height = 50.0 \hspace{0.45cm} height of the canyon \\ |
---|
| 360 | and} |
---|
| 361 | \item{canyon\_width\_x = 50.0 \hspace{0.3cm} implies canyon axis orientation in y-direction} |
---|
| 362 | \item{canyon\_wall\_left \hspace{1.17cm} (default is canyon centered in x-direction) \\ |
---|
| 363 | or} |
---|
| 364 | \item{canyon\_width\_y = 50.0 \hspace{0.3cm} implies canyon axis orientation in x-direction} |
---|
| 365 | \item{canyon\_wall\_south \hspace{0.9cm} (default is canyon centered in y-direction)} |
---|
| 366 | \end{itemize} |
---|
| 367 | \end{itemize} |
---|
| 368 | \end{frame} |
---|
| 369 | |
---|
| 370 | % Folie 14 |
---|
| 371 | \begin{frame} |
---|
| 372 | \frametitle{Optional Topography Control Parameters (II)} |
---|
| 373 | \scriptsize |
---|
| 374 | \textbf{Rastered topography}\\ |
---|
| 375 | \begin{minipage}{0.7\textwidth} |
---|
| 376 | \begin{itemize} |
---|
| 377 | \scriptsize |
---|
| 378 | \item{{\tt topography} = 'read\_from\_file'} |
---|
| 379 | \begin{itemize} |
---|
| 380 | \footnotesize |
---|
| 381 | \item{requires an external ASCII file, e.g. {\tt example\_topo:}} |
---|
| 382 | \end{itemize} |
---|
| 383 | \end{itemize} |
---|
| 384 | \end{minipage} |
---|
| 385 | \begin{minipage}{0.2\textwidth} |
---|
| 386 | \includegraphics[width=0.5\textwidth]{topography_figures/optional_control_parameters_1.png} |
---|
| 387 | \end{minipage} |
---|
| 388 | \begin{center} |
---|
| 389 | \includegraphics[width=0.85\textwidth]{topography_figures/optional_control_parameters_2.png} |
---|
| 390 | \end{center} |
---|
| 391 | \begin{itemize} |
---|
| 392 | \item[]{} |
---|
| 393 | \begin{itemize} |
---|
| 394 | \scriptsize |
---|
| 395 | \item{layout must conform to domain size and grid size dx and dy.} |
---|
| 396 | \item{height data} |
---|
| 397 | \begin{itemize} |
---|
| 398 | \scriptsize |
---|
| 399 | \item{in m above ground (INTEGER or REAL)} |
---|
| 400 | \item{do not need to match the vertical grid} |
---|
| 401 | \end{itemize} |
---|
| 402 | \end{itemize} |
---|
| 403 | \end{itemize} |
---|
| 404 | \end{frame} |
---|
| 405 | |
---|
| 406 | % Folie 15 |
---|
| 407 | \begin{frame} |
---|
| 408 | \frametitle{Optional Topography Control Parameters (III)} |
---|
| 409 | \small |
---|
| 410 | \textbf{Rastered topography} |
---|
| 411 | \begin{itemize} |
---|
| 412 | \item{{\tt topography} = 'read\_from\_file'} |
---|
| 413 | \par\smallskip |
---|
| 414 | \begin{itemize} |
---|
| 415 | \item{\textbf{mrun}-call: \\ |
---|
| 416 | {\tt mrun ... -r 'd3\# ...'}} |
---|
| 417 | \par\medskip |
---|
| 418 | \item{{\tt .mrun.config:}} |
---|
| 419 | \end{itemize} |
---|
| 420 | \end{itemize} |
---|
| 421 | \begin{center} \includegraphics[width=0.7\textwidth]{topography_figures/optional_control_parameters_3.png} \end{center} |
---|
| 422 | \end{frame} |
---|
| 423 | |
---|
| 424 | % Folie 16 |
---|
| 425 | \begin{frame} |
---|
| 426 | \frametitle{General Control Parameters (I): Suitable Driving Methods} |
---|
| 427 | \scriptsize |
---|
| 428 | \begin{itemize} |
---|
| 429 | \item{\textbf{\dq Meteorological\dq set-up M: geostrophic wind / Coriolis force}} |
---|
| 430 | \begin{itemize} |
---|
| 431 | \scriptsize |
---|
| 432 | \item{Set {\tt omega $ \neq$ 0.0}} |
---|
| 433 | \item{Construct a non-zero profile of geostrophic wind $u_g$ and/or $v_g$ using {\tt ug\_surface}, {\tt ug\_vertical\_gradient} |
---|
| 434 | and {\tt ug\_vertical\_gradient\_level} and/or the respective parameter set for $v_g$} |
---|
| 435 | \end{itemize} |
---|
| 436 | \par\bigskip |
---|
| 437 | \item{\textbf{\dq Engineering\dq set-up E: direct external pressure gradient / no Coriolis force}} |
---|
| 438 | \begin{itemize} |
---|
| 439 | \scriptsize |
---|
| 440 | \item{Set {\tt omega = 0.0}} |
---|
| 441 | \item{Set-up E1: direct external pressure gradient that does not change with time |
---|
| 442 | (the bulk velocity fluctuates with time)} |
---|
| 443 | \begin{itemize} |
---|
| 444 | \scriptsize |
---|
| 445 | \item{Parameters: {\tt dp\_external}, {\tt dp\_smooth}, {\tt dp\_level\_b}, {\tt dpdxy}} |
---|
| 446 | \end{itemize} |
---|
| 447 | \item{Set-up E2: maintain a constant bulk velocity |
---|
| 448 | (the direct external pressure gradient fluctuates with time)} |
---|
| 449 | \begin{itemize} |
---|
| 450 | \scriptsize |
---|
| 451 | \item{Parameters: {\tt conserve\_volume\_flow}, {\tt conserve\_volume\_flow\_mode}, {\tt u\_bulk}, {\tt v\_bulk}} |
---|
| 452 | \end{itemize} |
---|
| 453 | \end{itemize} |
---|
| 454 | \par\bigskip |
---|
| 455 | \item{\textbf{\dq Thermal\dq set-up T: directly prescribe sensible heatflux}} |
---|
| 456 | \begin{itemize} |
---|
| 457 | \item[]{} |
---|
| 458 | \begin{itemize} |
---|
| 459 | \scriptsize |
---|
| 460 | \item{surface\_heatflux at ground level only} |
---|
| 461 | \item{wall\_heatflux(0:4) at top/left/right/South/North obstacle face} |
---|
| 462 | \end{itemize} |
---|
| 463 | \end{itemize} |
---|
| 464 | \end{itemize} |
---|
| 465 | \end{frame} |
---|
| 466 | |
---|
| 467 | % Folie 17 |
---|
| 468 | \begin{frame} |
---|
| 469 | \frametitle{General Control Parameters (II): Initialization} |
---|
| 470 | \scriptsize |
---|
| 471 | \begin{itemize} |
---|
| 472 | \item{\textbf{\dq Meteorological\dq set-up M }\\ |
---|
| 473 | Initialize a non-zero profile of geostrophic wind $u_g$ and/or $v_g$ using} |
---|
| 474 | \begin{itemize} |
---|
| 475 | \scriptsize |
---|
| 476 | \item{{\tt initializing\_actions =} \textbf{'set\_constant\_profiles' (e.g. for convective BL)}} |
---|
| 477 | \begin{itemize} |
---|
| 478 | \scriptsize |
---|
| 479 | \item{Parameters: {\tt ug\_surface $ \neq $ 0.0} and/or {\tt vg\_surface $\neq $ 0.0}} |
---|
| 480 | \end{itemize} |
---|
| 481 | \item{{\tt initializing\_actions =} \textbf{'set\_1d-model\_profiles' (e.g. for neutral BL)}} |
---|
| 482 | \begin{itemize} |
---|
| 483 | \scriptsize |
---|
| 484 | \item{1D model prerun parameters with suffix {\tt \_1d} (e.g. {\tt end\_time\_1d}, {\tt damp\_level\_1d)}} |
---|
| 485 | \end{itemize} |
---|
| 486 | \end{itemize} |
---|
| 487 | \par\bigskip |
---|
| 488 | \item{\textbf{\dq Engineering\dq set-up E} \\ |
---|
| 489 | Good initialization may require a priori knowlegde, e.g. from previous test runs. |
---|
| 490 | Here, {\tt ug\_}... and {\tt vg\_}... don't refer to geostrophic wind but to the initial wind profile.} |
---|
| 491 | \begin{itemize} |
---|
| 492 | \scriptsize |
---|
| 493 | \item{{\tt initializing\_actions} = \textbf{'set\_constant\_profiles'}} |
---|
| 494 | \begin{itemize} |
---|
| 495 | \scriptsize |
---|
| 496 | \item{Parameter set: {\tt ug\_surface}, {\tt ug\_vertical\_gradient}[{\tt \_level}] and/or the respective set for $v_g$} |
---|
| 497 | \end{itemize} |
---|
| 498 | \item{{\tt initializing\_actions} = \textbf{'set\_1d-model\_profiles'}} |
---|
| 499 | \item{{\tt initializing\_actions} = \textbf{'by\_user' â processed by user\_init\_3d\_model}} |
---|
| 500 | \end{itemize} |
---|
| 501 | \par\bigskip |
---|
| 502 | \item{\textbf{\dq Thermal\dq set-up T} \\ |
---|
| 503 | Any of the above may apply} |
---|
| 504 | \end{itemize} |
---|
| 505 | \end{frame} |
---|
| 506 | |
---|
| 507 | % Folie 18 |
---|
| 508 | \begin{frame} |
---|
| 509 | \frametitle{General Control Parameters (III): Boundary Conditions} |
---|
| 510 | \footnotesize |
---|
| 511 | \begin{itemize} |
---|
| 512 | \item{Lateral boundary conditions} |
---|
| 513 | \begin{itemize} |
---|
| 514 | \item{Cyclic / non-cyclic: cf. lecture on \dq non-cyclic boundary conditions\dq} |
---|
| 515 | \end{itemize} |
---|
| 516 | \item{Bottom boundary conditions} |
---|
| 517 | \begin{itemize} |
---|
| 518 | \item{Cf. lecture on \dq numerics and boundary conditions\dq} |
---|
| 519 | \end{itemize} |
---|
| 520 | \item{Top boundary conditions} |
---|
| 521 | \begin{itemize} |
---|
| 522 | \footnotesize |
---|
| 523 | \item{\textbf{Channel}: {\tt bc\_uv\_t =} \textbf{'dirichlet\_0' (no-slip)}} |
---|
| 524 | \item{\textbf{Open channel}: {\tt bc\_uv\_t =} \textbf{'neumann' (slip)}} |
---|
| 525 | \item{\textbf{\dq Constant flux\dq layer} (not yet published): {\tt bc\_uv\_t =} \textbf{'neumann' (slip)} \\ |
---|
| 526 | with set-up E1 where {\tt dp\_level\_b >> 0} and {\tt dp\_smooth = .T.}} |
---|
| 527 | \end{itemize} |
---|
| 528 | \end{itemize} |
---|
| 529 | \end{frame} |
---|
| 530 | |
---|
| 531 | % Folie 19 |
---|
| 532 | \begin{frame} |
---|
| 533 | \frametitle{General Control Parameters (IV): Pressure Solver} |
---|
| 534 | {\tt psolver =} |
---|
| 535 | \par\medskip |
---|
| 536 | \begin{itemize} |
---|
| 537 | \item{'poisfft' (FFT scheme)} |
---|
| 538 | \begin{itemize} |
---|
| 539 | \item{Good performance for urban PALM version} |
---|
| 540 | \item{Cannot be used with non-cyclic boundary conditions} |
---|
| 541 | \end{itemize} |
---|
| 542 | \par\bigskip |
---|
| 543 | \item{'multigrid' (Multigrid scheme)} |
---|
| 544 | \begin{itemize} |
---|
| 545 | \item{Performance for very large number of grid points may be better than FFT} |
---|
| 546 | \item{This is the only possible choice for non-cyclic boundary conditions} |
---|
| 547 | \end{itemize} |
---|
| 548 | \end{itemize} |
---|
| 549 | \end{frame} |
---|
| 550 | |
---|
| 551 | % Folie 20 |
---|
| 552 | \begin{frame} |
---|
| 553 | \frametitle{Data Analysis / Output â Some Considerations (I)} |
---|
| 554 | \scriptsize |
---|
| 555 | \begin{itemize} |
---|
| 556 | \item{How to get turbulence statistics?} |
---|
| 557 | \begin{itemize} |
---|
| 558 | \scriptsize |
---|
| 559 | \item{Phase averaging if a direction of homogeneity exists} |
---|
| 560 | \item{Temporal averaging} |
---|
| 561 | \item{Ensemble averaging} |
---|
| 562 | \end{itemize} |
---|
| 563 | \item{Definition of turbulent fluctuations}\\ |
---|
| 564 | \textbf{Spatial fluctuations:} deviation from representative instantaneous spatial average |
---|
| 565 | \begin{itemize} |
---|
| 566 | \scriptsize |
---|
| 567 | \item{PALM: many statistics calculated on-the-fly as time series, 1D vertical profiles} |
---|
| 568 | \item{Not suitable for topography unless a direction of homogeneity exists} |
---|
| 569 | \end{itemize} |
---|
| 570 | \textbf{Temporal fluctuations}: deviation from representative local temporal average |
---|
| 571 | \begin{itemize} |
---|
| 572 | \scriptsize |
---|
| 573 | \item{Suitable for all applications including topography} |
---|
| 574 | \item{Requires much hard disk space and post-processing CPU time} |
---|
| 575 | \item{PALM: not natively supported, but following procedure works:} |
---|
| 576 | \begin{itemize} |
---|
| 577 | \scriptsize |
---|
| 578 | \item{Collect time-series during the simulation (2D/3D data output or user-defined time series)} |
---|
| 579 | \item{Check for (quasi-)steady turbulent state and sufficient averaging time} |
---|
| 580 | \item{Calculate statistics by post-processing making use of the Reynolds decomposition: \\ \par\medskip |
---|
| 581 | $\overline{w'\theta'} = \overline{w\theta} - \overline{w} \overline{\theta} $} |
---|
| 582 | \end{itemize} |
---|
| 583 | \end{itemize} |
---|
| 584 | \end{itemize} |
---|
| 585 | \end{frame} |
---|
| 586 | |
---|
| 587 | % Folie 21 |
---|
| 588 | \begin{frame} |
---|
| 589 | \frametitle{Your Responsibility and Contribution} |
---|
| 590 | \footnotesize |
---|
| 591 | \par\medskip |
---|
| 592 | In most cases, a new parameter is added to PALM for one specific purpose. |
---|
| 593 | \par\bigskip |
---|
| 594 | Beyond this one purpose, each new parameter normally gives many other new feature/parameter combinations in PALM. |
---|
| 595 | We are unable to check all these combinations by ourselves and rely on your help! |
---|
| 596 | \par\bigskip |
---|
| 597 | For example, the combination of topography and non-cyclic lateral boundary conditions has not yet been tested |
---|
| 598 | because both features have originally been introduced separately for different research projects. |
---|
| 599 | \par\bigskip |
---|
| 600 | Therefore, we ask you for your responsibility and contribution: |
---|
| 601 | \begin{itemize} |
---|
| 602 | \item{Please always check your PALM setup carefully. PALM is not a black box.} |
---|
| 603 | \item{For example, design a simple case and test your expectation.} |
---|
| 604 | \item{Please report potential bugs â thank you!} |
---|
| 605 | \begin{itemize} |
---|
| 606 | \item{PALM developer team} |
---|
| 607 | \item{PALM user community (via trac-system)} |
---|
| 608 | \end{itemize} |
---|
| 609 | \end{itemize} |
---|
| 610 | \end{frame} |
---|
| 611 | |
---|
| 612 | % Folie 22 |
---|
| 613 | \begin{frame} |
---|
| 614 | \Large |
---|
| 615 | \begin{center} \textcolor{blue!90!black!100}{Topography - Scenario examples} \end{center} |
---|
| 616 | \end{frame} |
---|
| 617 | |
---|
| 618 | % Folie 23 |
---|
| 619 | \begin{frame} |
---|
| 620 | \frametitle{Set-up Scenario: Single Street Canyon (I)} |
---|
| 621 | \par\smallskip |
---|
| 622 | \textbf{Single quasi-2D street canyon in neutral open channel flow with constant bulk velocity} |
---|
| 623 | \par\smallskip |
---|
| 624 | \begin{itemize} |
---|
| 625 | \item{{\tt trunk/EXAMPLES/canyon/}} |
---|
| 626 | \begin{itemize} |
---|
| 627 | \item{Parameter file \hspace{2cm} {\tt example\_canyon\_p3d}} |
---|
| 628 | \item{Run-control file \hspace{1.78cm} {\tt example\_canyon\_rc}} |
---|
| 629 | \item{Some documentation \hspace{0.95cm} {\tt example\_canyon.odt}} |
---|
| 630 | \end{itemize} |
---|
| 631 | \end{itemize} |
---|
| 632 | \begin{center} |
---|
| 633 | \includegraphics[width=0.85\textwidth]{topography_figures/scenario_ssc_1.png} |
---|
| 634 | \end{center} |
---|
| 635 | \end{frame} |
---|
| 636 | |
---|
| 637 | % Folie 24 |
---|
| 638 | \begin{frame} |
---|
| 639 | \frametitle{Set-up Scenario: Single Street Canyon (II)} |
---|
| 640 | \textbf{The phase average makes use of homogeneity in y-direction:} \\ |
---|
| 641 | {\tt section\_xz = -1}, {\tt data\_output = \textbf{'u\_xz\_av'}}, {\tt 'v\_xz\_av'}, {\tt 'w\_xz\_av'} |
---|
| 642 | \begin{center} |
---|
| 643 | \includegraphics[width=0.85\textwidth]{topography_figures/scenario_ssc_2.png} |
---|
| 644 | \end{center} |
---|
| 645 | \end{frame} |
---|
| 646 | |
---|
| 647 | % Folie 25 |
---|
| 648 | \begin{frame} |
---|
| 649 | \begin{tikzpicture}[remember picture, overlay] |
---|
| 650 | \node [shift={(6.5 cm, 5cm)}] at (current page.south west) |
---|
| 651 | {% |
---|
| 652 | \begin{tikzpicture}[remember picture, overlay] |
---|
| 653 | \uncover<1>{\node at (0,-0.5) {\includegraphics[width=0.7\textwidth]{topography_figures/scenario_ssc_example_1.png}};} |
---|
| 654 | \uncover<2>{\node at (0,-0.5) {\includegraphics[width=0.7\textwidth]{topography_figures/scenario_ssc_example_2.png}};} |
---|
| 655 | \uncover<3->{\node at (0,-0.5) {\includegraphics[width=0.7\textwidth]{topography_figures/scenario_ssc_example_3.png}};} |
---|
| 656 | \uncover<4->{\node at (-3.5,-0.2) {\includegraphics[width=0.48\textwidth]{topography_figures/scenario_ssc_example_4.png}};} |
---|
| 657 | \uncover<5->{\node at (3.5,-0.2) {\includegraphics[width=0.38\textwidth]{topography_figures/scenario_ssc_example_5.png}};} |
---|
| 658 | \end{tikzpicture} |
---|
| 659 | }; |
---|
| 660 | \end{tikzpicture} |
---|
| 661 | \end{frame} |
---|
| 662 | |
---|
| 663 | % Folie 26 |
---|
| 664 | \begin{frame} |
---|
| 665 | \frametitle{Set-up Scenario: Constant Flux Layer} |
---|
| 666 | \small |
---|
| 667 | \textbf{Single surface-mounted cube in neutral open channel flow with a constant flux layer} |
---|
| 668 | \begin{itemize} |
---|
| 669 | \item{{\tt trunk/EXAMPLES/constant\_flux\_layer/}} |
---|
| 670 | \begin{itemize} |
---|
| 671 | \footnotesize |
---|
| 672 | \item{Parameter file \hspace{2cm} {\tt example\_constant\_flux\_layer\_p3d}} |
---|
| 673 | \item{Run-control file \hspace{1.79cm} {\tt example\_constant\_flux\_layer\_rc}} |
---|
| 674 | \item{Some documentation \hspace{1.02cm} {\tt example\_constant\_flux\_layer.odt}} |
---|
| 675 | \end{itemize} |
---|
| 676 | \end{itemize} |
---|
| 677 | \begin{center} |
---|
| 678 | \includegraphics[width=0.85\textwidth]{topography_figures/scenario_cfl.png} |
---|
| 679 | \end{center} |
---|
| 680 | \end{frame} |
---|
| 681 | |
---|
| 682 | % Folie 27 |
---|
| 683 | \begin{frame} |
---|
| 684 | \begin{tikzpicture}[remember picture, overlay] |
---|
| 685 | \node [shift={(6.5 cm, 5cm)}] at (current page.south west) |
---|
| 686 | {% |
---|
| 687 | \begin{tikzpicture}[remember picture, overlay] |
---|
| 688 | \uncover<1->{\node at (0,-0.5) {\includegraphics[width=0.7\textwidth]{topography_figures/scenario_cfl_example_1.png}};} |
---|
| 689 | \uncover<2->{\node at (-3.5,-0.2) {\includegraphics[width=0.45\textwidth]{topography_figures/scenario_cfl_example_2.png}};} |
---|
| 690 | \uncover<3->{\node at (3.5,-0.2) {\includegraphics[width=0.38\textwidth]{topography_figures/scenario_cfl_example_3.png}};} |
---|
| 691 | \end{tikzpicture} |
---|
| 692 | }; |
---|
| 693 | \end{tikzpicture} |
---|
| 694 | \end{frame} |
---|
| 695 | |
---|
| 696 | % Folie 28 |
---|
| 697 | \begin{frame} |
---|
| 698 | \frametitle{Rules of Good Practise} |
---|
| 699 | \small |
---|
| 700 | \begin{itemize} |
---|
| 701 | \item{If you run PALM with topography, make sure that it is really LES...} |
---|
| 702 | \begin{itemize} |
---|
| 703 | \item{''Large eddies'' are ''small'' between obstacles} |
---|
| 704 | \begin{itemize} |
---|
| 705 | \item{use fine grid length to resolve turbulence there} |
---|
| 706 | \end{itemize} |
---|
| 707 | \item{Ratio of resolved to SGS fluxes} |
---|
| 708 | \end{itemize} |
---|
| 709 | \item{Check for (quasi-)steady turbulent state and sufficient averaging time.} |
---|
| 710 | \begin{itemize} |
---|
| 711 | \item{Fluctuations of time series of E, E*, maximum velocity components etc.} |
---|
| 712 | \end{itemize} |
---|
| 713 | \item{Make sure that your PALM result is independent of numerical parameters such as domain size and grid size.} |
---|
| 714 | \begin{itemize} |
---|
| 715 | \item{Sensitivity studies} |
---|
| 716 | \end{itemize} |
---|
| 717 | \item{If you intend to do a comparison with some kind of reference data, it is essential to configure the set-up of PALM |
---|
| 718 | in the same way as the reference experiment.} |
---|
| 719 | \begin{itemize} |
---|
| 720 | \item{For example, if you compare PALM with wind tunnel results, you have to follow the wind tunnel set-up for setting up PALM.} |
---|
| 721 | \end{itemize} |
---|
| 722 | \end{itemize} |
---|
| 723 | \end{frame} |
---|
| 724 | |
---|
| 725 | \end{document} |
---|