1 | % $Id: non_cyclic_boundary_conditions.tex 1531 2015-01-26 13:58:29Z witha $ |
---|
2 | \input{header_tmp.tex} |
---|
3 | %\input{header_lectures.tex} |
---|
4 | |
---|
5 | \usepackage[utf8]{inputenc} |
---|
6 | \usepackage{ngerman} |
---|
7 | \usepackage{pgf} |
---|
8 | \usepackage{subfigure} |
---|
9 | \usepackage{units} |
---|
10 | \usepackage{multimedia} |
---|
11 | \usepackage{hyperref} |
---|
12 | \newcommand{\event}[1]{\newcommand{\eventname}{#1}} |
---|
13 | \usepackage{xmpmulti} |
---|
14 | \usepackage{tikz} |
---|
15 | \usetikzlibrary{shapes,arrows,positioning} |
---|
16 | \def\Tiny{\fontsize{4pt}{4pt}\selectfont} |
---|
17 | |
---|
18 | %---------- neue Pakete |
---|
19 | \usepackage{amsmath} |
---|
20 | \usepackage{amssymb} |
---|
21 | \usepackage{multicol} |
---|
22 | \usepackage{pdfcomment} |
---|
23 | |
---|
24 | \institute{Institute of Meteorology and Climatology, Leibniz UniversitÀt Hannover} |
---|
25 | \selectlanguage{english} |
---|
26 | \date{last update: \today} |
---|
27 | \event{PALM Seminar} |
---|
28 | \setbeamertemplate{navigation symbols}{} |
---|
29 | |
---|
30 | \setbeamertemplate{footline} |
---|
31 | {% |
---|
32 | \begin{beamercolorbox}[rightskip=-0.1cm]& |
---|
33 | {\includegraphics[height=0.65cm]{imuk_logo.pdf}\hfill \includegraphics[height=0.65cm]{luh_logo.pdf}} |
---|
34 | \end{beamercolorbox} |
---|
35 | \begin{beamercolorbox}[ht=2.5ex,dp=1.125ex,% |
---|
36 | leftskip=.3cm,rightskip=0.3cm plus1fil]{title in head/foot}% |
---|
37 | {\leavevmode{\usebeamerfont{author in head/foot}\insertshortauthor} \hfill \eventname \hfill \insertframenumber \; / \inserttotalframenumber}% |
---|
38 | \end{beamercolorbox}% |
---|
39 | % \begin{beamercolorbox}[colsep=1.5pt]{lower separation line foot}% |
---|
40 | % \end{beamercolorbox} |
---|
41 | }%\logo{\includegraphics[width=0.3\textwidth]{luhimuk_logo.eps}} |
---|
42 | |
---|
43 | \title[PALM - Using Non-Cyclic Boundary Conditions]{PALM - Using Non-Cyclic Boundary Conditions} |
---|
44 | \author{PALM group} |
---|
45 | |
---|
46 | % Notes: |
---|
47 | % jede subsection bekommt einen punkt im menu (vertikal ausgerichtet. |
---|
48 | % jeder frame in einer subsection bekommt einen punkt (horizontal ausgerichtet) |
---|
49 | \begin{document} |
---|
50 | |
---|
51 | % Folie 1 |
---|
52 | \begin{frame} |
---|
53 | \titlepage |
---|
54 | \end{frame} |
---|
55 | |
---|
56 | % Folie 2 |
---|
57 | \begin{frame} |
---|
58 | \frametitle{Cyclic Horizontal Boundary Conditions} |
---|
59 | In many cases, LES models are using cyclic horizontal boundary conditions. |
---|
60 | \par\bigskip |
---|
61 | \textbf{Why?} |
---|
62 | \par\bigskip |
---|
63 | \begin{itemize} |
---|
64 | \item<2->{LES requires that the main energy containing eddies are resolved by the model.} |
---|
65 | \item<3->{With cyclic boundary conditions, turbulence can freely develop and is not effected by the side walls (because there are no walls!).} |
---|
66 | \item<4->{Non-cyclic boundary conditions give problems:} |
---|
67 | \begin{itemize} |
---|
68 | \par\smallskip |
---|
69 | \item<5->{If Dirichlet conditions (fixed vertical profiles) are used at the inflow, the inflow is laminar and some (significant) domain space is needed in order to develop turbulence.} |
---|
70 | \par\smallskip |
---|
71 | \item<6->{At the outflow, a boundary condition is required which allows the eddies to freely leave the domain.} |
---|
72 | \end{itemize} |
---|
73 | \end{itemize} |
---|
74 | \end{frame} |
---|
75 | |
---|
76 | \section{Motivation} |
---|
77 | \subsection{Motivation} |
---|
78 | |
---|
79 | %Folie 3 |
---|
80 | \begin{frame} |
---|
81 | \frametitle{Motivation for Non-Cyclic Boundary Conditions} |
---|
82 | \footnotesize |
---|
83 | The main motivation for non-cyclic boundary conditions are studies of isolated phenomena. |
---|
84 | \begin{tabbing} |
---|
85 | \uncover<2->{\textbf{Example:} \= Turbulence generated by a single obstacle. \\} |
---|
86 | \\ |
---|
87 | \uncover<6->{ \> Cyclic boundary conditions along x would allow the generated turbulence\\ |
---|
88 | \> to enter the domain again, and so finally to modify the turbulence \\ |
---|
89 | \> on the leeward side of the building. \\ } |
---|
90 | \\ |
---|
91 | \uncover<9>{ \> This wouldn't be a simulation of a single building, but of an\\ |
---|
92 | \> infinite row of buildings! } |
---|
93 | \end{tabbing} |
---|
94 | \begin{center} |
---|
95 | \includegraphics<3|handout:0>[width=0.7\textwidth]{non_cyclic_figures/motivation_non_cyclic_1.png} |
---|
96 | \includegraphics<4|handout:0>[width=0.7\textwidth]{non_cyclic_figures/motivation_non_cyclic_2.png} |
---|
97 | \includegraphics<5-6|handout:0>[width=0.7\textwidth]{non_cyclic_figures/motivation_non_cyclic_3.png} |
---|
98 | \includegraphics<7|handout:0>[width=0.7\textwidth]{non_cyclic_figures/motivation_non_cyclic_4.png} |
---|
99 | \uncover<8-|handout:1>{\begin{center} \includegraphics[width=0.7\textwidth]{non_cyclic_figures/motivation_non_cyclic_5.png} \end{center}} |
---|
100 | \end{center} |
---|
101 | \normalsize |
---|
102 | \end{frame} |
---|
103 | |
---|
104 | % Folie 4 |
---|
105 | \begin{frame} |
---|
106 | \frametitle{Implications of Non-Cyclic Boundary Conditions} |
---|
107 | \footnotesize |
---|
108 | \onslide<2->{Using Dirichlet-conditions (e.g u(z) = const.), there is no turbulence at the inflow. \quad $\rightarrow$ the flow is laminar \quad $\rightarrow$ LES approach fails!} |
---|
109 | \par\bigskip |
---|
110 | \includegraphics<3|handout:0>[width=0.8\textwidth]{non_cyclic_figures/implications_non_cyclic_1.png} |
---|
111 | \includegraphics<4|handout:0>[width=0.8\textwidth]{non_cyclic_figures/implications_non_cyclic_2.png} |
---|
112 | \uncover<5-|handout:1>{\includegraphics[width=0.8\textwidth]{non_cyclic_figures/implications_non_cyclic_3.png}} |
---|
113 | \par\bigskip |
---|
114 | \onslide<6->{Flow internal turbulence may develop, but this may require a very long model domain.} |
---|
115 | \par\bigskip |
---|
116 | \includegraphics<7|handout:0>[width=\textwidth]{non_cyclic_figures/implications_non_cyclic_4.png} |
---|
117 | \includegraphics<8|handout:0>[width=\textwidth]{non_cyclic_figures/implications_non_cyclic_5.png} |
---|
118 | \uncover<9-|handout:1>{\includegraphics[width=\textwidth]{non_cyclic_figures/implications_non_cyclic_6.png}} |
---|
119 | \onslide<10->{There is a need to supply turbulence information at the inflow.} |
---|
120 | \end{frame} |
---|
121 | |
---|
122 | \section{How to Create a Turbulent Inflow} |
---|
123 | \subsection{How to Create a Turbulent Inflow} |
---|
124 | |
---|
125 | % Folie 5 |
---|
126 | \begin{frame} |
---|
127 | \frametitle{How to Create a Turbulent Inflow (I)} |
---|
128 | Two methods: |
---|
129 | \begin{itemize} |
---|
130 | \item<2->{by a statistical model} |
---|
131 | \item<3->{by recycling-method (Lund et al., 1998)} |
---|
132 | \end{itemize} |
---|
133 | \includegraphics<4|handout:0>[width=\textwidth]{non_cyclic_figures/create_turbulent_inflow_1/create_turbulent_inflow_1_neu.png} |
---|
134 | \includegraphics<5|handout:0>[width=\textwidth]{non_cyclic_figures/create_turbulent_inflow_1/create_turbulent_inflow_2_neu.png} |
---|
135 | \includegraphics<6|handout:0>[width=\textwidth]{non_cyclic_figures/create_turbulent_inflow_1/create_turbulent_inflow_3_neu.png} |
---|
136 | \includegraphics<7|handout:0>[width=\textwidth]{non_cyclic_figures/create_turbulent_inflow_1/create_turbulent_inflow_4_neu.png} |
---|
137 | \includegraphics<8|handout:0>[width=\textwidth]{non_cyclic_figures/create_turbulent_inflow_1/create_turbulent_inflow_5_neu.png} |
---|
138 | \uncover<9-|handout:1>{\includegraphics[width=\textwidth]{non_cyclic_figures/create_turbulent_inflow_1/create_turbulent_inflow_6.png}} |
---|
139 | \par\bigskip |
---|
140 | \uncover<10>{How do we get the initial turbulence in the recycle area? \\ |
---|
141 | If there is no turbulence, there is nothing to recycle!} |
---|
142 | \end{frame} |
---|
143 | |
---|
144 | %Folie 6 |
---|
145 | \begin{frame} |
---|
146 | \frametitle{How to Create a Turbulent Inflow (II)} |
---|
147 | \footnotesize |
---|
148 | Initial turbulence is created by a precursor run with cyclic boundary conditions and much smaller domain size than used for the main run. |
---|
149 | \tikzstyle{line} = [draw, blue, thick, dashed, -latex'] |
---|
150 | \begin{tikzpicture} |
---|
151 | \uncover<1>{\node(picture) {\includegraphics[width=0.4\textwidth]{non_cyclic_figures/create_turbulent_inflow_2/create_turbulent_inflow_1.png}};} |
---|
152 | \uncover<2>{\node(picture) {\includegraphics[width=0.4\textwidth]{non_cyclic_figures/create_turbulent_inflow_2/create_turbulent_inflow_2.png}};} |
---|
153 | \uncover<3->{\node(picture) {\includegraphics[width=0.4\textwidth]{non_cyclic_figures/create_turbulent_inflow_2/create_turbulent_inflow_3.png}};} |
---|
154 | \node(text) [right=0.1cm of picture]{ |
---|
155 | \parbox{5cm}{ |
---|
156 | \scriptsize |
---|
157 | \begin{itemize} |
---|
158 | \item<4->{When the precursor run is finished, data of the last timestep are stored on disc.} |
---|
159 | \item<5->{These data are then read by the main run and repeatedly mapped to the main run domain, until it is completely filled.} |
---|
160 | \end{itemize}}}; |
---|
161 | \uncover<6>{\node(picture2) [below=1.8cm of picture.east] {\includegraphics[width=0.9\textwidth]{non_cyclic_figures/create_turbulent_inflow_2/create_turbulent_inflow_4.png}};} |
---|
162 | \uncover<7>{\node(picture2) [below=1.8cm of picture.east] {\includegraphics[width=0.9\textwidth]{non_cyclic_figures/create_turbulent_inflow_2/create_turbulent_inflow_5.png}};} |
---|
163 | \uncover<8>{\node(picture2) [below=1.8cm of picture.east] {\includegraphics[width=0.9\textwidth]{non_cyclic_figures/create_turbulent_inflow_2/create_turbulent_inflow_6.png}};} |
---|
164 | \uncover<9>{\node(picture2) [below=1.8cm of picture.east] {\includegraphics[width=0.9\textwidth]{non_cyclic_figures/create_turbulent_inflow_2/create_turbulent_inflow_7.png}};} |
---|
165 | \uncover<10>{\node(picture2) [below=1.8cm of picture.east] {\includegraphics[width=0.9\textwidth]{non_cyclic_figures/create_turbulent_inflow_2/create_turbulent_inflow_8.png}};} |
---|
166 | \uncover<11>{\node(picture2) [below=1.8cm of picture.east] {\includegraphics[width=0.9\textwidth]{non_cyclic_figures/create_turbulent_inflow_2/create_turbulent_inflow_9.png}};} |
---|
167 | \path<7->[line] (-0.45,-1) -- (-0.7,-2.6); |
---|
168 | \path<7->[line] (1.78,-1) -- (1.68,-2.6); |
---|
169 | \path<8->[line] (-0.45,-1) -- (1.68,-2.6); |
---|
170 | \path<8->[line] (1.78,-1) -- (4,-2.6); |
---|
171 | \path<9->[line] (-0.45,-1) -- (4,-2.6); |
---|
172 | \path<9->[line] (1.78,-1) -- (6.4,-2.6); |
---|
173 | \path<10->[line] (-0.45,-1) -- (6.4,-2.6); |
---|
174 | \path<10->[line] (1.78,-1) -- (6.9,-2.6); |
---|
175 | \end{tikzpicture} |
---|
176 | \end{frame} |
---|
177 | |
---|
178 | % Folie 7 |
---|
179 | \begin{frame} |
---|
180 | \frametitle{How to Create a Turbulent Inflow (III)} |
---|
181 | \scriptsize |
---|
182 | \begin{itemize} |
---|
183 | \item{Inflow profiles for the main run have to be taken from the precursor run. It is recommended to use the horizontally averaged profiles from |
---|
184 | the last time step of the precursor run.} |
---|
185 | \item<2->{Alternatively, $u$,$v$-profiles can be prescribed by parameters \texttt{u\_profile}, \texttt{v\_profile}. They should match the turbulence state of the flow.} |
---|
186 | \end{itemize} |
---|
187 | \vspace{-4mm} |
---|
188 | \tikzstyle{line1} = [draw, red, thick, -latex'] |
---|
189 | \tikzstyle{line2} = [draw, red, thick, -] |
---|
190 | \begin{tikzpicture} |
---|
191 | \uncover<3>{\node(picture) {\includegraphics[width=0.4\textwidth]{non_cyclic_figures/create_turbulent_inflow_3/create_turbulent_inflow_1.png}};} |
---|
192 | \uncover<4->{\node(picture) {\includegraphics[width=0.4\textwidth]{non_cyclic_figures/create_turbulent_inflow_3/create_turbulent_inflow_2.png}};} |
---|
193 | \node(text) [right=0.1cm of picture]{ |
---|
194 | \parbox{6.5cm}{ |
---|
195 | \scriptsize |
---|
196 | \vspace{3mm} |
---|
197 | \begin{itemize} |
---|
198 | \item<7->{Since the height of the turbulent boundary layer may increase with increasing distance from the inflow boundary, recycling has |
---|
199 | to be limited to the height of the turbulent boundary layer at the inflow. Otherwise, the boundary layer height will continuously increase with time.} |
---|
200 | \end{itemize}}}; |
---|
201 | \uncover<5>{\node(picture2) [below=1.8cm of picture.east] {\includegraphics[width=0.8\textwidth]{non_cyclic_figures/create_turbulent_inflow_3/create_turbulent_inflow_3.png}};} |
---|
202 | \uncover<6-7>{\node(picture2) [below=1.8cm of picture.east] {\includegraphics[width=0.8\textwidth]{non_cyclic_figures/create_turbulent_inflow_3/create_turbulent_inflow_4.png}};} |
---|
203 | \uncover<8>{\node(picture2) [below=1.8cm of picture.east] {\includegraphics[width=0.8\textwidth]{non_cyclic_figures/create_turbulent_inflow_3/create_turbulent_inflow_5.png}};} |
---|
204 | \uncover<9>{\node(picture2) [below=1.8cm of picture.east] {\includegraphics[width=0.8\textwidth]{non_cyclic_figures/create_turbulent_inflow_3/create_turbulent_inflow_6.png}};} |
---|
205 | \uncover<10>{\node(picture2) [below=1.8cm of picture.east] {\includegraphics[width=0.8\textwidth]{non_cyclic_figures/create_turbulent_inflow_3/create_turbulent_inflow_7.png}};} |
---|
206 | |
---|
207 | \path<6->[line2] (picture.east) -- (2.25,-1.3); |
---|
208 | \path<6->[line2] (2.25,-1.3) -- (-1.2,-1.3); |
---|
209 | \path<6->[line2] (-1.2,-1.3) -- (-1.2,-3.2); |
---|
210 | \path<6->[line1] (-1.2,-3.2) -- (-0.8,-3.2); |
---|
211 | \end{tikzpicture} |
---|
212 | \end{frame} |
---|
213 | |
---|
214 | \section{Implementation in PALM} |
---|
215 | \subsection{Implementation in PALM} |
---|
216 | |
---|
217 | % Folie 8 |
---|
218 | \begin{frame} |
---|
219 | \frametitle{Non-Cyclic Boundary Conditions in PALM (I)} |
---|
220 | \textbf{Status of availability:} |
---|
221 | \begin{itemize} |
---|
222 | \item<2->{Non-cyclic boundary conditions along \textbf{one} of the horizontal directions (\textit{x} \textbf{or} \textit{y}).} |
---|
223 | \begin{itemize} |
---|
224 | \item<3->{Dirichlet conditions at inflow (stationary vertical profiles, \textit{u}(\textit{z}), \textit{v}(\textit{z}), |
---|
225 | \textit{pt}(\textit{z}), \textit{q}(\textit{z}), \textit{w}=0).} |
---|
226 | \item<4->{Radiation conditions at outflow. Tendencies at the boundary are replaced by e.g.} |
---|
227 | \end{itemize} |
---|
228 | \uncover<4->{\begin{math} \frac{\partial u}{\partial t} = -\left(c_g + u\right) \frac{\partial u}{\partial x} = -u^* \frac{\partial u}{\partial x} |
---|
229 | \qquad \textnormal with \qquad u^* = \frac{\Delta x}{\Delta t} \frac{u_{b-1}^t - u_{b-1}^{t-1}}{u_{b-1}^{t-1} - u_{b-2}^{t-1}} \end{math}} |
---|
230 | \par\bigskip |
---|
231 | \item<5->{Turbulence recycling method for inflow \textbf{from left}.} |
---|
232 | \end{itemize} |
---|
233 | \end{frame} |
---|
234 | |
---|
235 | % Folie 9 |
---|
236 | \begin{frame} |
---|
237 | \frametitle{Non-Cyclic Boundary Conditions in PALM (II)} |
---|
238 | \par\bigskip |
---|
239 | \small |
---|
240 | \textbf{Further requirements for PALM runs using non-cyclic boundary conditions:} |
---|
241 | \par\smallskip |
---|
242 | \begin{itemize} |
---|
243 | \item<2->{The \textbf{multigrid-method} has to be used for solving the Poisson-equation.} |
---|
244 | \item<3->{A \textbf{damping zone} has sometimes to be activated in the vicinity of the in- and outflow in order to avoid reflection of gravity waves.} |
---|
245 | \item<4->{\textbf{Volume flow conservation} may have to be activated, because flow acceleration or deceleration may appear along the non-cyclic direction. The resulting horizontal divergence creates a mean vertical velocity.} |
---|
246 | \item<5->{If turbulence recycling is not used, it may be neccessary to \textbf{continuously impose perturbations} on the horizontal velocity field in the vicinity of the |
---|
247 | inflow throughout the whole run, in order to maintain a turbulent state of the flow.} |
---|
248 | \end{itemize} |
---|
249 | \normalsize |
---|
250 | \end{frame} |
---|
251 | |
---|
252 | \section{Current Applications} |
---|
253 | \subsection{Current Applications} |
---|
254 | |
---|
255 | |
---|
256 | % Folie 10 |
---|
257 | \begin{frame} |
---|
258 | \frametitle{Current Applications of Non-Cyclic BCs (I)} |
---|
259 | \textbf{Cold air outbreaks} |
---|
260 | \par\bigskip |
---|
261 | \includegraphics[width=\textwidth]{non_cyclic_figures/cold_air_outbreaks.png} \\ |
---|
262 | \par\bigskip |
---|
263 | \tiny |
---|
264 | \textbf{Gryschka, M., C. Dr\"ue, D. Etling and S. Raasch. 2008}: On the influence of sea-ice inhomogeneities onto roll convection in cold-air outbreaks. Geophys. Res. Lett., |
---|
265 | \textbf{35}, L23804, doi:10.1029/2008GL035845. \\ |
---|
266 | \par\bigskip |
---|
267 | \textbf{Gryschka, M. and S. Raasch, 2005}: Roll Convection During a Cold Air Outbreak: A Large Eddy Simulation with Stationary Model Domain. Geophys. Res. Lett., \textbf{32}, L14805, |
---|
268 | doi:10.1029/2005GL022872. \\ |
---|
269 | \normalsize |
---|
270 | \begin{center} \uncover<2->{\textbf{Turbulence recycling has not been used!}} \end{center} |
---|
271 | \end{frame} |
---|
272 | |
---|
273 | % Folie 11 |
---|
274 | \begin{frame} |
---|
275 | \frametitle{Current Applications of Non-Cyclic BCs (II)} |
---|
276 | \textbf{Cold air outbreaks} |
---|
277 | \begin{center} |
---|
278 | \includegraphics[width=0.85\textwidth]{non_cyclic_figures/cold_air_outbreaks_2.png} \\ |
---|
279 | liquid water content (vertically intgrated) |
---|
280 | \end{center} |
---|
281 | \end{frame} |
---|
282 | |
---|
283 | \section{How to set up} |
---|
284 | \subsection{How to set up} |
---|
285 | |
---|
286 | % Folie 12 |
---|
287 | \begin{frame} |
---|
288 | \frametitle{How to set up non-cyclic runs with PALM} |
---|
289 | \begin{itemize} |
---|
290 | \item{\textbf{required} / recommended parameter settings:} |
---|
291 | \end{itemize} |
---|
292 | \par\bigskip |
---|
293 | \tikzstyle{box} = [rectangle, draw, text width=\textwidth, font=\small] |
---|
294 | \begin{tikzpicture} |
---|
295 | \node[box](inipar){ \begin{tabbing} |
---|
296 | \&inipar \= ....... \\ |
---|
297 | \\ |
---|
298 | \> \textbf{bc\_lr = 'dirichlet/radiation'}, (bc\_ns = 'dirichlet/radiation',) \\ |
---|
299 | \> \textbf{psolver = 'multigrid'}, \\ |
---|
300 | \\ |
---|
301 | \> initializing\_actions = 'set\_1d-model\_profiles', \\ |
---|
302 | \> conserve\_volume\_flow = .T., \\ |
---|
303 | \\ |
---|
304 | \> ...... / \\ \end{tabbing}}; |
---|
305 | \end{tikzpicture} |
---|
306 | \end{frame} |
---|
307 | |
---|
308 | % Folie 13 |
---|
309 | \begin{frame} |
---|
310 | \frametitle{How to set up turbulence recycling with PALM (I)} |
---|
311 | \small |
---|
312 | \begin{itemize} |
---|
313 | \item<1->{First, a prerun has to be carried out. The domain size of the prerun has to be large enough to capture all relevant scales of turbulence.} |
---|
314 | \item<2->{Restart data has to be output and output of instantaneous, horizontally averaged profiles has to be switched on and performed at the end of the run. |
---|
315 | This enables writing of profiles to the restart file, which can then be used by the main run.} |
---|
316 | \item<3->{Instead of using averaged profiles from the prerun, inflow profiles for the main run can also be prescribed using parameters \texttt{u\_profile}, \texttt{v\_profile}, and \texttt{uv\_heights}.} |
---|
317 | \end{itemize} |
---|
318 | \tikzstyle{box} = [rectangle, draw, text width=\textwidth, font=\small] |
---|
319 | \onslide<2->{ |
---|
320 | \begin{tikzpicture} |
---|
321 | \node[box](inipar){ \begin{tabbing} |
---|
322 | \&d3par \= end\_time = 3600.0, \\ |
---|
323 | \> dt\_dopr = 3600.0, data\_output\_pr = 'u', \\ |
---|
324 | \> ....... / \\ \end{tabbing}}; |
---|
325 | \end{tikzpicture}} |
---|
326 | \normalsize |
---|
327 | \end{frame} |
---|
328 | |
---|
329 | % Folie 14 |
---|
330 | \begin{frame} |
---|
331 | \frametitle{How to set up turbulence recycling with PALM (II)} |
---|
332 | \small |
---|
333 | \begin{itemize} |
---|
334 | \item{The main run has to read the data from the precursor run (however, it is not a restart run!). This requires an extra activating string (e.g. turrec) in |
---|
335 | the file connection statement for restart data.} |
---|
336 | \end{itemize} |
---|
337 | \begin{center} |
---|
338 | \includegraphics[width=0.8\textwidth]{non_cyclic_figures/list_of_input_files.png} |
---|
339 | \end{center} |
---|
340 | \begin{itemize} |
---|
341 | \item<2->{The mrun-command to start the main run then has to look like \par\bigskip |
---|
342 | {\tt mrun ... -r \dq d3\# turrec\dq} \par\bigskip |
---|
343 | The main run is allowed to use a different number of processors and a different domain decomposition than the precursor run!} |
---|
344 | \end{itemize} |
---|
345 | \end{frame} |
---|
346 | |
---|
347 | \begin{frame} |
---|
348 | \frametitle{How to set up turbulence recycling with PALM (III)} |
---|
349 | \begin{itemize} |
---|
350 | \item{\textbf{required} / recommended parameter settings for the main run:} |
---|
351 | \end{itemize} |
---|
352 | \tikzstyle{box} = [rectangle, draw, text width=\textwidth, font=\footnotesize] |
---|
353 | \tikzstyle{box2} = [rectangle, draw, text width=0.4\textwidth, font=\tiny] |
---|
354 | \tikzstyle{line} = [draw, -latex'] |
---|
355 | \begin{tikzpicture} |
---|
356 | \node[box](inipar){ \begin{tabbing} |
---|
357 | \&inipar \= ....... \\ |
---|
358 | \\ |
---|
359 | \> \textbf{turbulent\_inflow = .TRUE.}, \\ |
---|
360 | \> \textbf{bc\_lr = 'dirichlet/radiation'}, \\ |
---|
361 | \> \textbf{psolver = 'multigrid'}, \\ |
---|
362 | \> \textbf{initializing\_actions = 'cyclic\_fill'}, \\ |
---|
363 | \> \textbf{recycling\_width = ...}, \\ |
---|
364 | \> inflow\_damping\_height = ..., \\ |
---|
365 | \> conserve\_volume\_flow = .T., \\ |
---|
366 | \\ |
---|
367 | \> ...... / \\ \end{tabbing}}; |
---|
368 | \uncover<2->{\node[box2] (horizontal_width) at (3,-0.6) {\textbf{Horizontal width of the recycling domain.}};} |
---|
369 | \uncover<3->{\node[box2] (vertical_extend) at (3,-2) {\textbf{Vertical extent of the recycling domain. If the precursor run simulated a convective boundary layer, |
---|
370 | information is automatically taken from the precursor data.}};} |
---|
371 | |
---|
372 | \path<2->[line] (horizontal_width.west) -- (-1.2,-0.4); |
---|
373 | \path<3->[line] (vertical_extend.west) -- (-0.4,-0.9); |
---|
374 | \end{tikzpicture} |
---|
375 | \end{frame} |
---|
376 | |
---|
377 | \section{Final remarks} |
---|
378 | \subsection{Final remarks} |
---|
379 | |
---|
380 | % Folie 16 |
---|
381 | \begin{frame} |
---|
382 | \frametitle{Final remarks} |
---|
383 | \begin{itemize} |
---|
384 | \item<1->{Non-cyclic boundary conditions and turbulence recycling method require extreme care with setting of the respective parameters.} |
---|
385 | \item<2->{So far, these methods have been applied only to a few special cases (cold air outbreaks, urban canopy layer for neutral stratification). Other setups may require modifications.} |
---|
386 | \item<3->{Biggest problems are caused by gravity waves in capping inversions. Simulations with pure neutral stratification cause less problems.} |
---|
387 | \item<4->{A synthetic turbulence generator will be available around mid 2015 as an additional option for creating inflow turbulence} |
---|
388 | \end{itemize} |
---|
389 | \end{frame} |
---|
390 | |
---|
391 | \end{document} |
---|