1 | % $Id: fundamentals_of_les.tex 948 2012-07-17 17:05:33Z letzel $ |
---|
2 | \input{header_tmp.tex} |
---|
3 | %\input{../header_lectures.tex} |
---|
4 | |
---|
5 | \usepackage[utf8]{inputenc} |
---|
6 | \usepackage[T1]{fontenc} |
---|
7 | \usepackage{pgf} |
---|
8 | \usetheme{Dresden} |
---|
9 | \usepackage{subfigure} |
---|
10 | \usepackage{units} |
---|
11 | \usepackage{multimedia} |
---|
12 | \usepackage{hyperref} |
---|
13 | \newcommand{\event}[1]{\newcommand{\eventname}{#1}} |
---|
14 | \usepackage{xmpmulti} |
---|
15 | \usepackage{tikz} |
---|
16 | \usepackage{pdfcomment} |
---|
17 | \usetikzlibrary{shapes,arrows,positioning} |
---|
18 | \def\Tiny{\fontsize{4pt}{4pt}\selectfont} |
---|
19 | |
---|
20 | %---------- neue Pakete |
---|
21 | \usepackage{amsmath} |
---|
22 | \usepackage{amssymb} |
---|
23 | \usepackage{multicol} |
---|
24 | |
---|
25 | \institute{Institut fÌr Meteorologie und Klimatologie, Leibniz UniversitÀt Hannover} |
---|
26 | \date{last update: \today} |
---|
27 | \event{PALM Seminar} |
---|
28 | \setbeamertemplate{navigation symbols}{} |
---|
29 | |
---|
30 | \setbeamertemplate{footline} |
---|
31 | {% |
---|
32 | \begin{beamercolorbox}[rightskip=-0.1cm]& |
---|
33 | {\includegraphics[height=0.65cm]{imuk_logo.pdf}\hfill \includegraphics[height=0.65cm]{luh_logo.pdf}} |
---|
34 | \end{beamercolorbox} |
---|
35 | \begin{beamercolorbox}[ht=2.5ex,dp=1.125ex,% |
---|
36 | leftskip=.3cm,rightskip=0.3cm plus1fil]{title in head/foot}% |
---|
37 | {\leavevmode{\usebeamerfont{author in head/foot}\insertshortauthor} \hfill \eventname \hfill \insertframenumber \; / \inserttotalframenumber}% |
---|
38 | \end{beamercolorbox}% |
---|
39 | % \begin{beamercolorbox}[colsep=1.5pt]{lower separation line foot}% |
---|
40 | % \end{beamercolorbox} |
---|
41 | }%\logo{\includegraphics[width=0.3\textwidth]{luhimuk_logo.eps}} |
---|
42 | |
---|
43 | \title[Fundamentals of Large-Eddy Simulation]{Fundamentals of Large-Eddy Simulation} |
---|
44 | \author{Siegfried Raasch} |
---|
45 | |
---|
46 | % Notes: |
---|
47 | % jede subsection bekommt einen punkt im menu (vertikal ausgerichtet. |
---|
48 | % jeder frame in einer subsection bekommt einen punkt (horizontal ausgerichtet) |
---|
49 | \begin{document} |
---|
50 | %Folie 1 |
---|
51 | \begin{frame} |
---|
52 | \titlepage |
---|
53 | \pdfnote{maronga}{ |
---|
54 | Welcome to the PALM Tutorial!\textCR\textCR |
---|
55 | We have placed many helpful comments throughout the presentations that will hopefully ease your first steps with PALM.\textCR\textCR |
---|
56 | In case you find it hard to follow at specific points that have not been (or insufficiently) commented, please let us know! We appreciate feedback that helps improving the tutorial.\textCR\textCR |
---|
57 | Good luck! - The PALM Group at IMUK |
---|
58 | } |
---|
59 | \end{frame} |
---|
60 | |
---|
61 | \section{The Role of Turbulence} |
---|
62 | \subsection{The Role of Turbulence} |
---|
63 | |
---|
64 | % Folie 2 |
---|
65 | \begin{frame} |
---|
66 | \frametitle{The Role of Turbulence (I)} |
---|
67 | \begin{itemize} |
---|
68 | \item<1->{\textbf{Most flows in nature \& technical applications are turbulent}} |
---|
69 | \item<2->{\textbf{Significance of Turbulence}} |
---|
70 | \begin{itemize} |
---|
71 | \item<2->{\underline{Meteorology / Oceanography:} Transport processes of momentum, heat, water vapor as well as other scalars} |
---|
72 | \item<2->{\underline{Health care:} Air pollution} |
---|
73 | \item<2->{\underline{Aviation, Engineering:} Wind impact on buildings, power output of windfarms} |
---|
74 | \end{itemize} |
---|
75 | \item<3->{\textbf{Characteristics of turbulence}} |
---|
76 | \begin{itemize} |
---|
77 | \item<3->{non-periodical, 3D stochastic movements} |
---|
78 | \item<3->{mixes air and its properties on scales between large-scale advection and molecular diffusion} |
---|
79 | \item<3->{non-linear $\rightarrow$ energy is distributed smoothly with wavelength} |
---|
80 | \item<3->{wide range of spatial and temporal scales} |
---|
81 | \end{itemize} |
---|
82 | \end{itemize} |
---|
83 | \end{frame} |
---|
84 | |
---|
85 | % Folie 3 |
---|
86 | \begin{frame} |
---|
87 | \frametitle{The Role of Turbulence (II)} |
---|
88 | \begin{columns}[c] |
---|
89 | \column{0.5\textwidth} |
---|
90 | \scriptsize |
---|
91 | \begin{itemize} |
---|
92 | \item<2->{\textbf{Large eddies:} $\unit[10^3]{m}$ ($L$), $\unit[1]{h}$ \\ |
---|
93 | \textbf{Small eddies:} $\unit[10^{-3}]{m}$ ($\eta$), \unit[0.1]{s}} |
---|
94 | \item<3->{\textbf{Energy production and dissipation on different scales}} |
---|
95 | \begin{itemize} |
---|
96 | \item<3->{\begin{scriptsize} Large scales: shear and buoyant production \end{scriptsize}} |
---|
97 | \item<3->{\begin{scriptsize} Small scales: viscous dissipation \end{scriptsize}} |
---|
98 | \end{itemize} |
---|
99 | \item<4->{\textbf{Large eddies contain most energy}} |
---|
100 | \item<5->{\textbf{Energy-cascade} \\ |
---|
101 | Large eddies are broken up by instabilities and their energy is handled down to smaller scales.} |
---|
102 | \end{itemize} |
---|
103 | \normalsize |
---|
104 | \column{0.5\textwidth} |
---|
105 | \onslide<3->{ |
---|
106 | \includegraphics[width=\textwidth, height=0.9\textheight]{fundamentals_of_les_figures/Role_of_Turbulence_2.png}} |
---|
107 | \end{columns} |
---|
108 | \end{frame} |
---|
109 | |
---|
110 | \section{The Reynolds Number} |
---|
111 | \subsection{The Reynolds Number} |
---|
112 | |
---|
113 | % Folie 4 |
---|
114 | \begin{frame} |
---|
115 | \frametitle{The Reynolds Number (Re)} |
---|
116 | \begin{columns}[c] |
---|
117 | \column{0.6\textwidth} |
---|
118 | \onslide<1->{ |
---|
119 | $\frac{L}{\eta} \approx Re^{3/4} \approx 10^6$ \quad \begin{small} (in the atmosphere) \end{small}} |
---|
120 | \par\bigskip |
---|
121 | \onslide<2->{ |
---|
122 | $Re = \frac{\left| \textbf{u} \cdot \nabla \textbf{u} \right|}{\left| \nu \nabla^2 \textbf{u} \right|} \hat{=} \frac{LU}{\nu} \qquad \frac{\textnormal{inertia forces}}{\textnormal{viscous forces}} $} |
---|
123 | \column{0.4\textwidth} |
---|
124 | \footnotesize |
---|
125 | \onslide<1->{ |
---|
126 | \textbf{u} 3D wind vector |
---|
127 | |
---|
128 | $\nu$ kinematic molecular viscosity |
---|
129 | |
---|
130 | $L$ outer scale of turbulence |
---|
131 | |
---|
132 | $U$ characteristic velocity scale |
---|
133 | |
---|
134 | $\eta$ inner scale of turbulence |
---|
135 | \begin{scriptsize}(Kolmogorov dissipation length) \end{scriptsize} } |
---|
136 | \end{columns} |
---|
137 | \normalsize |
---|
138 | \par\bigskip |
---|
139 | \par\bigskip |
---|
140 | \onslide<3->{ |
---|
141 | $ \Rightarrow $ \underline{Number of gridpoints for a 3D simulation:} |
---|
142 | \par\bigskip |
---|
143 | $ \left( \frac{L}{\eta} \right)^3 \approx Re^{9/4} \approx 10^{18}$ (in the atmosphere)} |
---|
144 | \end{frame} |
---|
145 | |
---|
146 | \section{Classes of Turbulence Models} |
---|
147 | \subsection{Classes of Turbulence Models} |
---|
148 | |
---|
149 | % Folie 5 |
---|
150 | \begin{frame} |
---|
151 | \frametitle{Classes of Turbulence Models (I)} |
---|
152 | \begin{itemize} |
---|
153 | \item{\textbf{Direct numerical Simulation (DNS)}} |
---|
154 | \begin{itemize} |
---|
155 | \item<2->{\textbf{Most straight-forward approach:}} |
---|
156 | \begin{itemize} |
---|
157 | \item<2->{Resolve all scales of turbulent flow explicitly.} |
---|
158 | \end{itemize} |
---|
159 | \item<3->{\textbf{Advantage:}} |
---|
160 | \begin{itemize} |
---|
161 | \item<3->{(In principle) a very accurate turbulence representation.} |
---|
162 | \end{itemize} |
---|
163 | \item<4->{\textbf{Problem:}} |
---|
164 | \begin{itemize} |
---|
165 | \item<4->{Limited computer resources (1996: $\sim$ $10^8$, today: $\sim$ $10^{11}$ gridpoints, |
---|
166 | but $\sim$ $10^{18}$ gridpoints needed, see prior slide).} |
---|
167 | \item<4->{$\unit[1]{h}$ simulation of $10^9$ ($2048^3$) gridpoints on $512$ processors of the HLRN supercomputer needs $\unit[10]{h}$ CPU time.} |
---|
168 | \end{itemize} |
---|
169 | \item<5->{\textbf{Consequences:}} |
---|
170 | \begin{itemize} |
---|
171 | \item<5->{DNS is restricted to moderately turbulent flows (low Reynolds-number flows).} |
---|
172 | \item<5->{Highly turbulent atmospheric turbulent flows cannot be simulated.} |
---|
173 | \end{itemize} |
---|
174 | \end{itemize} |
---|
175 | \end{itemize} |
---|
176 | \end{frame} |
---|
177 | |
---|
178 | % Folie 6 |
---|
179 | \begin{frame} |
---|
180 | \frametitle{Classes of Turbulence Models (II)} |
---|
181 | \begin{itemize} |
---|
182 | \item{\textbf{Reynolds averaged (Navier-Stokes) simulation (RANS)}} |
---|
183 | \begin{itemize} |
---|
184 | \item<2->{\textbf{Opposite strategy:}} |
---|
185 | \begin{itemize} |
---|
186 | \item<2->{Applications that only require average statistics of the flow (i.e. the mean flow).} |
---|
187 | \item<2->{Integrate merely the ensemble-averaged equations.} |
---|
188 | \item<2->{Parameterize turbulence over the whole eddy spectrum.} |
---|
189 | \end{itemize} |
---|
190 | \item<3->{\textbf{Advantage:}} |
---|
191 | \begin{itemize} |
---|
192 | \item<3->{Computationally inexpensive, fast.} |
---|
193 | \end{itemize} |
---|
194 | \item<4->{\textbf{Problem:}} |
---|
195 | \begin{itemize} |
---|
196 | \item<4->{Turbulent fluctuations not explicitly captured.} |
---|
197 | \item<4->{Parameterizations are very sensitive to large-eddy structure that depends on |
---|
198 | environmental conditions such as geometry and stratification $\rightarrow$ |
---|
199 | Parameterizations are not valid for a wide range of different flows.} |
---|
200 | \end{itemize} |
---|
201 | \item<5->{\textbf{Consequence:}} |
---|
202 | \begin{itemize} |
---|
203 | \item<5->{Not suitable for detailed turbulence studies.} |
---|
204 | \end{itemize} |
---|
205 | \end{itemize} |
---|
206 | \end{itemize} |
---|
207 | \end{frame} |
---|
208 | |
---|
209 | % Folie 7 |
---|
210 | \begin{frame} |
---|
211 | \frametitle{Classes of Turbulence Models (III)} |
---|
212 | \begin{itemize} |
---|
213 | \item{\textbf{Large eddy simulation (LES)}} |
---|
214 | \begin{itemize} |
---|
215 | \item<2->{Seeks to combine advantages and avoid disadvantages of DNS and RANS by \underline{treating |
---|
216 | large scales and small scales separately}, based on Kolmogorov's (1941) similarity theory of turbulence.} |
---|
217 | \item<3->{Large eddies are explicitly resolved.} |
---|
218 | \item<4->{The impact of small eddies on the large-scale flow is parameterized.} |
---|
219 | \item<5->{Advantages:} |
---|
220 | \begin{itemize} |
---|
221 | \item<5->{Highly turbulent flows can be simulated.} |
---|
222 | \item<5->{Local homogeneity and isotropy at large \textit{Re} (Kolmogorov's $1^\mathrm{st}$ hypothesis) leaves |
---|
223 | parameterizations uniformly valid for a wide range of different flows.} |
---|
224 | \end{itemize} |
---|
225 | \end{itemize} |
---|
226 | \end{itemize} |
---|
227 | \end{frame} |
---|
228 | |
---|
229 | \section{Concept of LES} |
---|
230 | \subsection{Concept of LES} |
---|
231 | |
---|
232 | % Folie 8 |
---|
233 | \begin{frame} |
---|
234 | \frametitle{Concept of Large Eddy Simulation (I)} |
---|
235 | \begin{columns} |
---|
236 | \column{0.55\textwidth} |
---|
237 | \begin{itemize} |
---|
238 | \item<1->{\textbf{Filtering}} |
---|
239 | \begin{footnotesize} |
---|
240 | \begin{itemize} |
---|
241 | \item<2->{Spectral cut at wavelength $\Delta x$.} |
---|
242 | \item<3->{Structures larger than $\Delta x$ are explicitly calculated (resolved scales).} |
---|
243 | \item<4->{Structures smaller than $\Delta x$ must be filtered out (subgrid scales), formally known as low-pass filtering.} |
---|
244 | \item<5->{Like for Reynolds averaging: split variables in mean part and fluctuation, spatially average the model equations, e.g.:} |
---|
245 | \end{itemize} |
---|
246 | \end{footnotesize} |
---|
247 | \onslide<6->{\begin{center} $w = \overline{w} + w', \theta = \overline{\theta} + \theta'$ \end{center}} |
---|
248 | \end{itemize} |
---|
249 | \column{0.45\textwidth} |
---|
250 | \includegraphics[width=\textwidth]{fundamentals_of_les_figures/Concept_of_LES.png} |
---|
251 | \end{columns} |
---|
252 | \end{frame} |
---|
253 | |
---|
254 | % Folie 9 |
---|
255 | \begin{frame} |
---|
256 | \frametitle{Concept of Large Eddy Simulation (II)} |
---|
257 | \begin{itemize} |
---|
258 | \item<1->{\textbf{Parameterization}} |
---|
259 | \begin{footnotesize} |
---|
260 | \begin{itemize} |
---|
261 | \item<2->{The filter procedure removes the small scales from the model equations, but it produces new unknowns, mainly averages of fluctuation products.} |
---|
262 | \begin{itemize} |
---|
263 | \item<2->{eg. $\overline{w'\theta'}$} |
---|
264 | \end{itemize} |
---|
265 | \item<3->{These unknowns describe the effect of the unresolved, small scales on the resolved, large scales; therefore it is important to include them in the model.} |
---|
266 | \item<4->{We do not have information about the variables (e.g., vertical wind component and potential temperature) on these small scales of their fluctuations.} |
---|
267 | \item<5->{Therefore, these unknowns have to be parameterized using information from the resolved scales.} |
---|
268 | \begin{itemize} |
---|
269 | \item<5->{A typical example is the flux-gradient relationship, e.g.,} |
---|
270 | \end{itemize} |
---|
271 | \end{itemize} |
---|
272 | \end{footnotesize} |
---|
273 | \end{itemize} |
---|
274 | \onslide<5->{ |
---|
275 | \begin{center} |
---|
276 | $ \overline{w'\theta'} = - \nu_\mathrm{h} \cdot \frac{\partial \overline{\theta}}{\partial z} $ |
---|
277 | \end{center}} |
---|
278 | \end{frame} |
---|
279 | |
---|
280 | \end{document} |
---|