[915] | 1 | % $Id: fundamentals_of_les.tex 915 2012-05-30 15:11:11Z maronga $ |
---|
| 2 | \input{header_tmp.tex} |
---|
| 3 | %\input{../header_lectures.tex} |
---|
| 4 | |
---|
| 5 | \usepackage[utf8]{inputenc} |
---|
| 6 | \usepackage[T1]{fontenc} |
---|
| 7 | \usepackage{pgf} |
---|
| 8 | \usetheme{Dresden} |
---|
| 9 | \usepackage{subfigure} |
---|
| 10 | \usepackage{units} |
---|
| 11 | \usepackage{multimedia} |
---|
| 12 | \usepackage{hyperref} |
---|
| 13 | \newcommand{\event}[1]{\newcommand{\eventname}{#1}} |
---|
| 14 | \usepackage{xmpmulti} |
---|
| 15 | \usepackage{tikz} |
---|
| 16 | \usetikzlibrary{shapes,arrows,positioning} |
---|
| 17 | \def\Tiny{\fontsize{4pt}{4pt}\selectfont} |
---|
| 18 | |
---|
| 19 | %---------- neue Pakete |
---|
| 20 | \usepackage{amsmath} |
---|
| 21 | \usepackage{amssymb} |
---|
| 22 | \usepackage{multicol} |
---|
| 23 | |
---|
| 24 | \institute{Institut fÌr Meteorologie und Klimatologie, Leibniz UniversitÀt Hannover} |
---|
| 25 | \date{last update: \today} |
---|
| 26 | \event{PALM Seminar} |
---|
| 27 | \setbeamertemplate{navigation symbols}{} |
---|
| 28 | |
---|
| 29 | \setbeamertemplate{footline} |
---|
| 30 | {% |
---|
| 31 | \begin{beamercolorbox}[rightskip=-0.1cm]& |
---|
| 32 | {\includegraphics[height=0.65cm]{imuk_logo.pdf}\hfill \includegraphics[height=0.65cm]{luh_logo.pdf}} |
---|
| 33 | \end{beamercolorbox} |
---|
| 34 | \begin{beamercolorbox}[ht=2.5ex,dp=1.125ex,% |
---|
| 35 | leftskip=.3cm,rightskip=0.3cm plus1fil]{title in head/foot}% |
---|
| 36 | {\leavevmode{\usebeamerfont{author in head/foot}\insertshortauthor} \hfill \eventname \hfill \insertframenumber \; / \inserttotalframenumber}% |
---|
| 37 | \end{beamercolorbox}% |
---|
| 38 | % \begin{beamercolorbox}[colsep=1.5pt]{lower separation line foot}% |
---|
| 39 | % \end{beamercolorbox} |
---|
| 40 | }%\logo{\includegraphics[width=0.3\textwidth]{luhimuk_logo.eps}} |
---|
| 41 | |
---|
| 42 | \title[Fundamentals of Large-Eddy Simulation]{Fundamentals of Large-Eddy Simulation} |
---|
| 43 | \author{Siegfried Raasch} |
---|
| 44 | |
---|
| 45 | % Notes: |
---|
| 46 | % jede subsection bekommt einen punkt im menu (vertikal ausgerichtet. |
---|
| 47 | % jeder frame in einer subsection bekommt einen punkt (horizontal ausgerichtet) |
---|
| 48 | \begin{document} |
---|
| 49 | %Folie 1 |
---|
| 50 | \begin{frame} |
---|
| 51 | \titlepage |
---|
| 52 | \pdfnote{maronga}{Welcome to the PALM Tutorial!} |
---|
| 53 | \end{frame} |
---|
| 54 | |
---|
| 55 | \section{The Role of Turbulence} |
---|
| 56 | \subsection{The Role of Turbulence} |
---|
| 57 | |
---|
| 58 | % Folie 2 |
---|
| 59 | \begin{frame} |
---|
| 60 | \frametitle{The Role of Turbulence (I)} |
---|
| 61 | \begin{itemize} |
---|
| 62 | \item<1->{\textbf{Most flows in nature \& technical applications are turbulent}} |
---|
| 63 | \item<2->{\textbf{Significance of Turbulence}} |
---|
| 64 | \begin{itemize} |
---|
| 65 | \item<2->{\underline{Meteorology / Oceanography:} Transport processes of momentum, heat, water vapor as well as other scalars} |
---|
| 66 | \item<2->{\underline{Health care:} Air pollution} |
---|
| 67 | \item<2->{\underline{Aviation, Engineering:} Wind impact on buildings, power output of windfarms} |
---|
| 68 | \end{itemize} |
---|
| 69 | \item<3->{\textbf{Characteristics of turbulence}} |
---|
| 70 | \begin{itemize} |
---|
| 71 | \item<3->{non-periodical, 3D stochastic movements} |
---|
| 72 | \item<3->{mixes air and its properties on scales between large-scale advection and molecular diffusion} |
---|
| 73 | \item<3->{non-linear $\rightarrow$ energy is distributed smoothly with wavelength} |
---|
| 74 | \item<3->{wide range of spatial and temporal scales} |
---|
| 75 | \end{itemize} |
---|
| 76 | \end{itemize} |
---|
| 77 | \end{frame} |
---|
| 78 | |
---|
| 79 | % Folie 3 |
---|
| 80 | \begin{frame} |
---|
| 81 | \frametitle{The Role of Turbulence (II)} |
---|
| 82 | \begin{columns}[c] |
---|
| 83 | \column{0.5\textwidth} |
---|
| 84 | \scriptsize |
---|
| 85 | \begin{itemize} |
---|
| 86 | \item<2->{\textbf{Large eddies:} $\unit[10^3]{m}$ ($L$), $\unit[1]{h}$ \\ |
---|
| 87 | \textbf{Small eddies:} $\unit[10^{-3}]{m}$ ($\eta$), \unit[0.1]{s}} |
---|
| 88 | \item<3->{\textbf{Energy production and dissipation on different scales}} |
---|
| 89 | \begin{itemize} |
---|
| 90 | \item<3->{\begin{scriptsize} Large scales: shear and buoyant production \end{scriptsize}} |
---|
| 91 | \item<3->{\begin{scriptsize} Small scales: viscous dissipation \end{scriptsize}} |
---|
| 92 | \end{itemize} |
---|
| 93 | \item<4->{\textbf{Large eddies contain most energy}} |
---|
| 94 | \item<5->{\textbf{Energy-cascade} \\ |
---|
| 95 | Large eddies are broken up by instabilities and their energy is handled down to smaller scales.} |
---|
| 96 | \end{itemize} |
---|
| 97 | \normalsize |
---|
| 98 | \column{0.5\textwidth} |
---|
| 99 | \onslide<3->{ |
---|
| 100 | \includegraphics[width=\textwidth, height=0.9\textheight]{fundamentals_of_les_figures/Role_of_Turbulence_2.png}} |
---|
| 101 | \end{columns} |
---|
| 102 | \end{frame} |
---|
| 103 | |
---|
| 104 | \section{The Reynolds Number} |
---|
| 105 | \subsection{The Reynolds Number} |
---|
| 106 | |
---|
| 107 | % Folie 4 |
---|
| 108 | \begin{frame} |
---|
| 109 | \frametitle{The Reynolds Number (Re)} |
---|
| 110 | \begin{columns}[c] |
---|
| 111 | \column{0.6\textwidth} |
---|
| 112 | \onslide<1->{ |
---|
| 113 | $\frac{L}{\eta} \approx Re^{3/4} \approx 10^6$ \quad \begin{small} (in the atmosphere) \end{small}} |
---|
| 114 | \par\bigskip |
---|
| 115 | \onslide<2->{ |
---|
| 116 | $Re = \frac{\left| \textbf{u} \cdot \nabla \textbf{u} \right|}{\left| \nu \nabla^2 \textbf{u} \right|} \hat{=} \frac{LU}{\nu} \qquad \frac{\textnormal{inertia forces}}{\textnormal{viscous forces}} $} |
---|
| 117 | \column{0.4\textwidth} |
---|
| 118 | \footnotesize |
---|
| 119 | \onslide<1->{ |
---|
| 120 | \textbf{u} 3D wind vector |
---|
| 121 | |
---|
| 122 | $\nu$ kinematic molecular viscosity |
---|
| 123 | |
---|
| 124 | $L$ outer scale of turbulence |
---|
| 125 | |
---|
| 126 | $U$ characteristic velocity scale |
---|
| 127 | |
---|
| 128 | $\eta$ inner scale of turbulence |
---|
| 129 | \begin{scriptsize}(Kolmogorov dissipation length) \end{scriptsize} } |
---|
| 130 | \end{columns} |
---|
| 131 | \normalsize |
---|
| 132 | \par\bigskip |
---|
| 133 | \par\bigskip |
---|
| 134 | \onslide<3->{ |
---|
| 135 | $ \Rightarrow $ \underline{Number of gridpoints for a 3D simulation:} |
---|
| 136 | \par\bigskip |
---|
| 137 | $ \left( \frac{L}{\eta} \right)^3 \approx Re^{9/4} \approx 10^{18}$ (in the atmosphere)} |
---|
| 138 | \end{frame} |
---|
| 139 | |
---|
| 140 | \section{Classes of Turbulence Models} |
---|
| 141 | \subsection{Classes of Turbulence Models} |
---|
| 142 | |
---|
| 143 | % Folie 5 |
---|
| 144 | \begin{frame} |
---|
| 145 | \frametitle{Classes of Turbulence Models (I)} |
---|
| 146 | \begin{itemize} |
---|
| 147 | \item{\textbf{Direct numerical Simulation (DNS)}} |
---|
| 148 | \begin{itemize} |
---|
| 149 | \item<2->{\textbf{Most straight-forward approach:}} |
---|
| 150 | \begin{itemize} |
---|
| 151 | \item<2->{Resolve all scales of turbulent flow explicitly.} |
---|
| 152 | \end{itemize} |
---|
| 153 | \item<3->{\textbf{Advantage:}} |
---|
| 154 | \begin{itemize} |
---|
| 155 | \item<3->{(In principle) a very accurate turbulence representation.} |
---|
| 156 | \end{itemize} |
---|
| 157 | \item<4->{\textbf{Problem:}} |
---|
| 158 | \begin{itemize} |
---|
| 159 | \item<4->{Limited computer resources (1996: $\sim$ $10^8$, today: $\sim$ $10^{11}$ gridpoints, |
---|
| 160 | but $\sim$ $10^{18}$ gridpoints needed, see prior slide).} |
---|
| 161 | \item<4->{$\unit[1]{h}$ simulation of $10^9$ ($2048^3$) gridpoints on $512$ processors of the HLRN supercomputer needs $\unit[10]{h}$ CPU time.} |
---|
| 162 | \end{itemize} |
---|
| 163 | \item<5->{\textbf{Consequences:}} |
---|
| 164 | \begin{itemize} |
---|
| 165 | \item<5->{DNS is restricted to moderately turbulent flows (low Reynolds-number flows).} |
---|
| 166 | \item<5->{Highly turbulent atmospheric turbulent flows cannot be simulated.} |
---|
| 167 | \end{itemize} |
---|
| 168 | \end{itemize} |
---|
| 169 | \end{itemize} |
---|
| 170 | \end{frame} |
---|
| 171 | |
---|
| 172 | % Folie 6 |
---|
| 173 | \begin{frame} |
---|
| 174 | \frametitle{Classes of Turbulence Models (II)} |
---|
| 175 | \begin{itemize} |
---|
| 176 | \item{\textbf{Reynolds averaged (Navier-Stokes) simulation (RANS)}} |
---|
| 177 | \begin{itemize} |
---|
| 178 | \item<2->{\textbf{Opposite strategy:}} |
---|
| 179 | \begin{itemize} |
---|
| 180 | \item<2->{Applications that only require average statistics of the flow (i.e. the mean flow).} |
---|
| 181 | \item<2->{Integrate merely the ensemble-averaged equations.} |
---|
| 182 | \item<2->{Parameterize turbulence over the whole eddy spectrum.} |
---|
| 183 | \end{itemize} |
---|
| 184 | \item<3->{\textbf{Advantage:}} |
---|
| 185 | \begin{itemize} |
---|
| 186 | \item<3->{Computationally inexpensive, fast.} |
---|
| 187 | \end{itemize} |
---|
| 188 | \item<4->{\textbf{Problem:}} |
---|
| 189 | \begin{itemize} |
---|
| 190 | \item<4->{Turbulent fluctuations not explicitly captured.} |
---|
| 191 | \item<4->{Parameterizations are very sensitive to large-eddy structure that depends on |
---|
| 192 | environmental conditions such as geometry and stratification $\rightarrow$ |
---|
| 193 | Parameterizations are not valid for a wide range of different flows.} |
---|
| 194 | \end{itemize} |
---|
| 195 | \item<5->{\textbf{Consequence:}} |
---|
| 196 | \begin{itemize} |
---|
| 197 | \item<5->{Not suitable for detailed turbulence studies.} |
---|
| 198 | \end{itemize} |
---|
| 199 | \end{itemize} |
---|
| 200 | \end{itemize} |
---|
| 201 | \end{frame} |
---|
| 202 | |
---|
| 203 | % Folie 7 |
---|
| 204 | \begin{frame} |
---|
| 205 | \frametitle{Classes of Turbulence Models (III)} |
---|
| 206 | \begin{itemize} |
---|
| 207 | \item{\textbf{Large eddy simulation (LES)}} |
---|
| 208 | \begin{itemize} |
---|
| 209 | \item<2->{Seeks to combine advantages and avoid disadvantages of DNS and RANS by \underline{treating |
---|
| 210 | large scales and small scales separately}, based on Kolmogorov's (1941) similarity theory of turbulence.} |
---|
| 211 | \item<3->{Large eddies are explicitly resolved.} |
---|
| 212 | \item<4->{The impact of small eddies on the large-scale flow is parameterized.} |
---|
| 213 | \item<5->{Advantages:} |
---|
| 214 | \begin{itemize} |
---|
| 215 | \item<5->{Highly turbulent flows can be simulated.} |
---|
| 216 | \item<5->{Local homogeneity and isotropy at large \textit{Re} (Kolmogorov's $1^\mathrm{st}$ hypothesis) leaves |
---|
| 217 | parameterizations uniformly valid for a wide range of different flows.} |
---|
| 218 | \end{itemize} |
---|
| 219 | \end{itemize} |
---|
| 220 | \end{itemize} |
---|
| 221 | \end{frame} |
---|
| 222 | |
---|
| 223 | \section{Concept of LES} |
---|
| 224 | \subsection{Concept of LES} |
---|
| 225 | |
---|
| 226 | % Folie 8 |
---|
| 227 | \begin{frame} |
---|
| 228 | \frametitle{Concept of Large Eddy Simulation (I)} |
---|
| 229 | \begin{columns} |
---|
| 230 | \column{0.55\textwidth} |
---|
| 231 | \begin{itemize} |
---|
| 232 | \item<1->{\textbf{Filtering}} |
---|
| 233 | \begin{footnotesize} |
---|
| 234 | \begin{itemize} |
---|
| 235 | \item<2->{Spectral cut at wavelength $\Delta x$.} |
---|
| 236 | \item<3->{Structures larger than $\Delta x$ are explicitly calculated (resolved scales).} |
---|
| 237 | \item<4->{Structures smaller than $\Delta x$ must be filtered out (subgrid scales), formally known as low-pass filtering.} |
---|
| 238 | \item<5->{Like for Reynolds averaging: split variables in mean part and fluctuation, spatially average the model equations, e.g.:} |
---|
| 239 | \end{itemize} |
---|
| 240 | \end{footnotesize} |
---|
| 241 | \onslide<6->{\begin{center} $w = \overline{w} + w', \theta = \overline{\theta} + \theta'$ \end{center}} |
---|
| 242 | \end{itemize} |
---|
| 243 | \column{0.45\textwidth} |
---|
| 244 | \includegraphics[width=\textwidth]{fundamentals_of_les_figures/Concept_of_LES.png} |
---|
| 245 | \end{columns} |
---|
| 246 | \end{frame} |
---|
| 247 | |
---|
| 248 | % Folie 9 |
---|
| 249 | \begin{frame} |
---|
| 250 | \frametitle{Concept of Large Eddy Simulation (II)} |
---|
| 251 | \begin{itemize} |
---|
| 252 | \item<1->{\textbf{Parameterization}} |
---|
| 253 | \begin{footnotesize} |
---|
| 254 | \begin{itemize} |
---|
| 255 | \item<2->{The filter procedure removes the small scales from the model equations, but it produces new unknowns, mainly averages of fluctuation products.} |
---|
| 256 | \begin{itemize} |
---|
| 257 | \item<2->{eg. $\overline{w'\theta'}$} |
---|
| 258 | \end{itemize} |
---|
| 259 | \item<3->{These unknowns describe the effect of the unresolved, small scales on the resolved, large scales; therefore it is important to include them in the model.} |
---|
| 260 | \item<4->{We do not have information about the variables (e.g., vertical wind component and potential temperature) on these small scales of their fluctuations.} |
---|
| 261 | \item<5->{Therefore, these unknowns have to be parameterized using information from the resolved scales.} |
---|
| 262 | \begin{itemize} |
---|
| 263 | \item<5->{A typical example is the flux-gradient relationship, e.g.,} |
---|
| 264 | \end{itemize} |
---|
| 265 | \end{itemize} |
---|
| 266 | \end{footnotesize} |
---|
| 267 | \end{itemize} |
---|
| 268 | \onslide<5->{ |
---|
| 269 | \begin{center} |
---|
| 270 | $ \overline{w'\theta'} = - \nu_\mathrm{h} \cdot \frac{\partial \overline{\theta}}{\partial z} $ |
---|
| 271 | \end{center}} |
---|
| 272 | \end{frame} |
---|
| 273 | |
---|
| 274 | \end{document} |
---|