1 | % $Id: exercise_cbl.tex 1515 2015-01-02 11:35:51Z boeske $ |
---|
2 | \input{header_tmp.tex} |
---|
3 | %\input{header_lectures.tex} |
---|
4 | |
---|
5 | \usepackage[utf8]{inputenc} |
---|
6 | \usepackage{ngerman} |
---|
7 | \usepackage{pgf} |
---|
8 | \usepackage{subfigure} |
---|
9 | \usepackage{units} |
---|
10 | \usepackage{multimedia} |
---|
11 | \usepackage{hyperref} |
---|
12 | \newcommand{\event}[1]{\newcommand{\eventname}{#1}} |
---|
13 | \usepackage{xmpmulti} |
---|
14 | \usepackage{tikz} |
---|
15 | \usetikzlibrary{shapes,arrows,positioning} |
---|
16 | \usetikzlibrary{calc} %neues paket |
---|
17 | \usetikzlibrary{decorations.markings} %neues paket |
---|
18 | \usetikzlibrary{decorations.pathreplacing} %neues paket |
---|
19 | \def\Tiny{\fontsize{4pt}{4pt}\selectfont} |
---|
20 | \usepackage{amsmath} |
---|
21 | \usepackage{amssymb} |
---|
22 | \usepackage{multicol} |
---|
23 | \usepackage{pdfcomment} |
---|
24 | \usepackage{graphicx} |
---|
25 | \usepackage{listings} |
---|
26 | \lstset{showspaces=false,language=fortran,basicstyle= |
---|
27 | \ttfamily,showstringspaces=false,captionpos=b} |
---|
28 | |
---|
29 | \institute{Institute of Meteorology and Climatology, Leibniz Universit{\"a}t Hannover} |
---|
30 | \selectlanguage{english} |
---|
31 | \date{last update: \today} |
---|
32 | \event{PALM Seminar} |
---|
33 | \setbeamertemplate{navigation symbols}{} |
---|
34 | |
---|
35 | \setbeamertemplate{footline} |
---|
36 | { |
---|
37 | \begin{beamercolorbox}[rightskip=-0.1cm]& |
---|
38 | {\includegraphics[height=0.65cm]{imuk_logo.pdf}\hfill \includegraphics[height=0.65cm]{luh_logo.pdf}} |
---|
39 | \end{beamercolorbox} |
---|
40 | \begin{beamercolorbox}[ht=2.5ex,dp=1.125ex, |
---|
41 | leftskip=.3cm,rightskip=0.3cm plus1fil]{title in head/foot} |
---|
42 | {\leavevmode{\usebeamerfont{author in head/foot}\insertshortauthor} \hfill \eventname \hfill \insertframenumber \; / \inserttotalframenumber} |
---|
43 | \end{beamercolorbox} |
---|
44 | \begin{beamercolorbox}[colsep=1.5pt]{lower separation line foot} |
---|
45 | \end{beamercolorbox} |
---|
46 | } |
---|
47 | %\logo{\includegraphics[width=0.3\textwidth]{luhimuk_logo.pdf}} |
---|
48 | |
---|
49 | |
---|
50 | \title[Exercise 11: Cumulus Cloud]{Exercise 11: \\Cumulus Cloud With Bulk Cloud Physics} |
---|
51 | \author{PALM group} |
---|
52 | |
---|
53 | \begin{document} |
---|
54 | |
---|
55 | % Folie 1 |
---|
56 | \begin{frame} |
---|
57 | \titlepage |
---|
58 | \end{frame} |
---|
59 | |
---|
60 | \section{Exercise} |
---|
61 | \subsection{Exercise} |
---|
62 | |
---|
63 | % Folie 2 |
---|
64 | \begin{frame} |
---|
65 | \frametitle{Exercise 11: Cumulus Cloud With Cloud Physics} |
---|
66 | |
---|
67 | Simulate a cumulus cloud: |
---|
68 | \begin{itemize} |
---|
69 | % \scriptsize |
---|
70 | \item<2-> Initialize the simulation with a marine, cumulus-topped, trade-wind region boundary layer. |
---|
71 | \item<3-> Trigger the cloud by a bubble of rising warm air. |
---|
72 | \item<4-> Parameterize condensation using a simple bulk cloud physics scheme. |
---|
73 | \item<5-> Learn how to carry out conditional averages. |
---|
74 | \end{itemize} |
---|
75 | \end{frame} |
---|
76 | |
---|
77 | % Folie 3 |
---|
78 | \section{Hints} |
---|
79 | \subsection{Hints} |
---|
80 | \begin{frame} |
---|
81 | \frametitle{Hints I} |
---|
82 | |
---|
83 | The setup of this exercise is based on the LES-intercomparison BOMEX (Siebesma et al., 2003, JAS): |
---|
84 | % \only<2>{\begin{center} |
---|
85 | % \includegraphics[width=0.7\textwidth]{exercise_cumulus_figures/ptq.pdf} |
---|
86 | % \end{center}} |
---|
87 | \only<2->{ |
---|
88 | \begin{itemize} |
---|
89 | \scriptsize |
---|
90 | |
---|
91 | \item<2-> In order to prescribe vertical profiles of temperature and humidity, set:\\ |
---|
92 | \texttt{initializing\_actions = 'set\_constant\_profiles',} |
---|
93 | \item<3-> \texttt{pt\_surface = 297.9,} |
---|
94 | |
---|
95 | \texttt{pt\_vertical\_gradient = 0.0, 0.58588957,} |
---|
96 | |
---|
97 | \texttt{pt\_vertical\_gradient\_level = 0.0, 740.0,} |
---|
98 | \item<4-> \texttt{q\_surface = 0.016,} |
---|
99 | |
---|
100 | \texttt{q\_vertical\_gradient = -2.97297E-4, -4.5238095E-4, -8.108108E-5,} |
---|
101 | |
---|
102 | \texttt{q\_vertical\_gradient\_level = 0.0, 740.0, 3260.0,} |
---|
103 | |
---|
104 | \item<5-> \texttt{surface\_pressure = 1015.4,} |
---|
105 | |
---|
106 | \item<6-> Note that contrary to BOMEX, no geostrophic wind, no surface fluxes, and no subsidence is prescribed in this setup. |
---|
107 | |
---|
108 | \item<7-> domain size: about $\unit[1000 \times 3600 \times 3000]{m^3}$ ($x$/$y$/$z$) |
---|
109 | \item<8-> grid size: $\unit[50]{m}$ equidistant |
---|
110 | \item<9-> simulated time: $\unit[1800]{s}$ |
---|
111 | \end{itemize} |
---|
112 | } |
---|
113 | \end{frame} |
---|
114 | |
---|
115 | |
---|
116 | % Folie 4 |
---|
117 | \begin{frame} |
---|
118 | \frametitle{Hints II} |
---|
119 | |
---|
120 | How to initialize a bubble of warm air? |
---|
121 | \begin{itemize} |
---|
122 | \scriptsize |
---|
123 | \item<2-> In the subroutine \texttt{user\_init}, initialize the bubble of warm air by a temperature excess at the first time step (\texttt{current\_timestep\_number == 0}) |
---|
124 | \item<3-> The temperature excess can be added directly to the three-dimensional field of liquid water potential temperature: |
---|
125 | |
---|
126 | \texttt{pt(k,j,i) = pt(k,j,i) + EXP( -0.5 * ( y / bubble\_sigma\_y )**2 ) * \&} |
---|
127 | |
---|
128 | \texttt{\hphantom{pt(k,j,i) = pt(k,j,i) + }EXP( -0.5 * ( z / bubble\_sigma\_z )**2 ) * \&} |
---|
129 | |
---|
130 | \texttt{\hphantom{pt(k,j,i) = pt(k,j,i) + }initial\_temperature\_difference} |
---|
131 | |
---|
132 | |
---|
133 | with the locations: |
---|
134 | |
---|
135 | \texttt{y = j * dy - bubble\_center\_y} |
---|
136 | |
---|
137 | \texttt{z = zu(k) - bubble\_center\_z} |
---|
138 | |
---|
139 | \item<4-> Initialize the bubble by the following parameters: |
---|
140 | |
---|
141 | \texttt{bubble\_center\_y = 1800.0, bubble\_center\_z = 170.0,} |
---|
142 | |
---|
143 | \texttt{bubble\_sigma\_y = 300.0, bubble\_sigma\_z = 150.0,} |
---|
144 | |
---|
145 | \texttt{initial\_temperature\_difference = 0.4} |
---|
146 | \item<5-> Think parallel: Mind that the domain of each PE extends only from \texttt{nxlg} to \texttt{nxrg} and \texttt{nysg} to \texttt{nyng}! |
---|
147 | \end{itemize} |
---|
148 | \end{frame} |
---|
149 | |
---|
150 | % Folie 5 |
---|
151 | \begin{frame} |
---|
152 | \frametitle{Hints III} |
---|
153 | Bulk cloud physics in PALM: |
---|
154 | \begin{itemize} |
---|
155 | \scriptsize |
---|
156 | \item<2-> PALM offers two bulk cloud physics schemes: A very simple, one-moment scheme by Kessler (1969, MM) and a state-of-the-art two-moment scheme by Seifert and Beheng (2006, MAP). |
---|
157 | |
---|
158 | \item<3-> You will use the saturation adjustment scheme, as applied in the Kessler-scheme, for parameterizing condensation. (Note that this kind of scheme is used in the vast majority of today's bulk cloud physics parameterizations.) |
---|
159 | |
---|
160 | \item<4-> The liquid water is diagnosed by $q_\text{l} = \max(0, q_\text{t} - q_\text{s})$: If the total water content $q_\text{t}$ exceeds the saturation water content $q_\text{s}$, all supersaturations condensate immediately to liquid water. On the other hand, no liquid water is present in subsaturated conditions. |
---|
161 | |
---|
162 | \end{itemize} |
---|
163 | |
---|
164 | \onslide<4-> Turn on simple cloud microphysics in your parameter file (\texttt{inipar} namelist): |
---|
165 | |
---|
166 | \begin{itemize} |
---|
167 | \scriptsize |
---|
168 | \item<5-> \texttt{humidity = .TRUE., cloud\_physics = .TRUE.,} |
---|
169 | |
---|
170 | \item<6-> \texttt{cloud\_scheme = 'kessler', precipitation = .FALSE.} |
---|
171 | \end{itemize} |
---|
172 | \end{frame} |
---|
173 | |
---|
174 | |
---|
175 | % Folie 6 |
---|
176 | \begin{frame} |
---|
177 | \frametitle{Hints IV} |
---|
178 | |
---|
179 | What is conditional averaging? |
---|
180 | \begin{itemize} |
---|
181 | \scriptsize |
---|
182 | \item<2-> A horizontal average (e.\,g., for retrieving vertical profiles) might be inappropriate for the analysis of a heterogeneous phenomenon (e.\,g., cumulus clouds). |
---|
183 | \item<3-> A conditional average can restrict the analysis to the regions of interest (e.\,g., cloudy and non-cloudy regions). |
---|
184 | \end{itemize} |
---|
185 | \onslide<4->What kind of conditional average are you going to derive? |
---|
186 | \begin{itemize} |
---|
187 | \scriptsize |
---|
188 | \item<5-> You will derive vertical profiles of \textbf{cloud cover} and \textbf{cloud core cover}. These profiles are the basis for more complex profiles (e.\,g., the cloud core vertical velocity). |
---|
189 | \item<6-> Cloudy grid cells are defined as grid cells with a non-zero liquid water content ($q_\text{l}>0$, \texttt{ql(k,j,i) > 0.0}). Cloud core grid cells are defined as cloudy grid cells, which are also positively buoyant with respect to the slab average ($\theta_\text{v}>\langle \theta_\text{v} \rangle$, \texttt{vpt(k,j,i) > hom(k,1,44,sr)}). |
---|
190 | \end{itemize} |
---|
191 | \end{frame} |
---|
192 | |
---|
193 | % Folie 7 |
---|
194 | \begin{frame} |
---|
195 | \frametitle{Hints V} |
---|
196 | |
---|
197 | PALM offers a convenient to compute and output user-profiles: |
---|
198 | \begin{itemize} |
---|
199 | \scriptsize |
---|
200 | \item<2-> In the subroutine \texttt{user\_statistics}, you can compute the cloud cover profile by counting all cloudy grid cells at a certain grid level \texttt{k}: |
---|
201 | |
---|
202 | \texttt{IF ( ql(k,j,i) > 0.0 ) THEN} |
---|
203 | |
---|
204 | \texttt{\hphantom{aaa}sums\_l(k,pr\_palm+1,tn) = sums\_l(k,pr\_palm+1,tn) + 1.0} |
---|
205 | |
---|
206 | \texttt{ENDIF} |
---|
207 | |
---|
208 | \item<3-> The computation of the cloud core cover profile is up to you! |
---|
209 | |
---|
210 | |
---|
211 | \item<4-> PALM automatically cares for the summation across the PE's boundaries and the normalization of the profiles (i.\,e., dividing it by the total amount of grid cells in horizontal directions). |
---|
212 | |
---|
213 | \item<5-> Do not forget to adapt \texttt{user\_check\_data\_output\_pr} (for defining your user-profiles) and your parameter file (\texttt{userpar} namelist) for the output (with the parameter \texttt{data\_output\_pr\_user = 'your\_profile'})! |
---|
214 | \item<6-> \textbf{Check also the examples provided in \texttt{user\_statistics} and \texttt{user\_check\_data\_output\_pr} for the implementation of user profiles!} |
---|
215 | |
---|
216 | |
---|
217 | |
---|
218 | |
---|
219 | \end{itemize} |
---|
220 | \end{frame} |
---|
221 | |
---|
222 | \section{Tasks} |
---|
223 | \subsection{Tasks} |
---|
224 | % Folie 8 |
---|
225 | \begin{frame} |
---|
226 | \frametitle{Tasks to be done:} |
---|
227 | |
---|
228 | \begin{itemize} |
---|
229 | \item<1-> Output instantaneous yz-cross sections of \texttt{ql} and \texttt{w} at \texttt{section\_yz = 0}. (\texttt{pt}, \texttt{q} and \texttt{vpt} are also interesting!) An output interval of $60\,\text{s}$ is adequate. |
---|
230 | \item<2-> Output instantaneous vertical profiles of cloud cover and cloud core cover! Again, an output interval of $60\,\text{s}$ is adequate. |
---|
231 | \item<3-> Answer the following questions: |
---|
232 | \begin{itemize} |
---|
233 | \item How does the cloud develop? |
---|
234 | \item Can you identify the \textit{actively growing} and the \textit{decaying stage} of the cloud's life cycle by comparing the profiles of cloud and cloud core cover profiles? (Mind the profiles' definitions and physical implications!) |
---|
235 | \end{itemize} |
---|
236 | \item<4-> If you are really fast: What changes during the cloud's development turning on precipitation (\texttt{precipitation = .TRUE.})? |
---|
237 | \end{itemize} |
---|
238 | |
---|
239 | \end{frame} |
---|
240 | |
---|
241 | % Folie 9 |
---|
242 | \section{Results} |
---|
243 | \subsection{Results} |
---|
244 | |
---|
245 | \begin{frame} |
---|
246 | \frametitle{$yz$-cross sections at $t \approx \unit[500]{s}$} |
---|
247 | % The bubble of warm air rises, but has not reached its condensation level. |
---|
248 | \begin{center} |
---|
249 | \includegraphics[width=1.0\textwidth]{exercise_cumulus_figures/500.pdf} |
---|
250 | \end{center} |
---|
251 | \end{frame} |
---|
252 | |
---|
253 | % Folie 8 |
---|
254 | \begin{frame} |
---|
255 | \frametitle{$yz$-cross sections at $t \approx \unit[800]{s}$} |
---|
256 | % Condensation starts, and the cloud appears as the the visible top of the rising bubble. |
---|
257 | \begin{center} |
---|
258 | \includegraphics[width=1.0\textwidth]{exercise_cumulus_figures/800.pdf} |
---|
259 | \end{center} |
---|
260 | \end{frame} |
---|
261 | |
---|
262 | % Folie 9 |
---|
263 | \begin{frame} |
---|
264 | \frametitle{$yz$-cross sections at $t \approx \unit[1200]{s}$} |
---|
265 | % The cloud is vigorously growing. |
---|
266 | \begin{center} |
---|
267 | \includegraphics[width=1.0\textwidth]{exercise_cumulus_figures/1200.pdf} |
---|
268 | \end{center} |
---|
269 | \end{frame} |
---|
270 | |
---|
271 | % Folie 9 |
---|
272 | \begin{frame} |
---|
273 | \frametitle{$yz$-cross sections at $t \approx \unit[1500]{s}$} |
---|
274 | % The cloud dilutes and dissipates due to turbulent entrainment of environmental air. |
---|
275 | \begin{center} |
---|
276 | \includegraphics[width=1.0\textwidth]{exercise_cumulus_figures/1500.pdf} |
---|
277 | \end{center} |
---|
278 | \end{frame} |
---|
279 | |
---|
280 | % Folie 10 |
---|
281 | \begin{frame} |
---|
282 | \frametitle{Cloud cover (clcov) and cloud core cover (cocov) profiles} |
---|
283 | \begin{center} |
---|
284 | \includegraphics[width=1.0\textwidth]{exercise_cumulus_figures/prof.pdf} |
---|
285 | \end{center} |
---|
286 | \end{frame} |
---|
287 | |
---|
288 | %\section{Answers} |
---|
289 | \subsection*{Answers} |
---|
290 | % Folie 13 |
---|
291 | \begin{frame} |
---|
292 | \frametitle{Answers to questions I} |
---|
293 | {\footnotesize } |
---|
294 | How does the cloud develop? |
---|
295 | {\footnotesize } |
---|
296 | \begin{itemize} |
---|
297 | \item See frames 9 -- 12: The clouds develops from a rising bubble of warm air ($t \approx \unit[500]{s}$). Reaching the condensation level ($t \approx \unit[800]{s}$), the cloud appears as the bubbles visible top. Afterwards, the cloud starts to grow more vigorously by the release of latent heat ($t \approx \unit[1200]{s}$). In the end of the cloud's life-cycle, the cloud dissipates by turbulent entrainment of environmental air and the subsequent evaporation of the cloud ($t \approx \unit[1500]{s}$). |
---|
298 | \end{itemize} |
---|
299 | \end{frame} |
---|
300 | |
---|
301 | \begin{frame} |
---|
302 | \frametitle{Answers to questions II} |
---|
303 | {\footnotesize } |
---|
304 | Can you identify the (i) actively growing and (ii) decaying stage of the cloud's life cycle by comparing the profiles of cloud and cloud core cover profiles? |
---|
305 | {\footnotesize } |
---|
306 | \begin{itemize} |
---|
307 | \item See Frame 13: As long as the cloud core is present, i.\,e., a positively buoyant region producing upward motion, the cloud grows actively (until $1400\,\text{s}$). From $1500\,\text{s}$ on, no cloud core is visible. As a result, the cloud's upward motion decelerates and the rate of condensation decreases. Thus, the cloud's dilution by the entrainment of environmental air can not be counterbalanced anymore. As a consequence, the cloud decays and finally dissipates. |
---|
308 | \end{itemize} |
---|
309 | \end{frame} |
---|
310 | |
---|
311 | \begin{frame} |
---|
312 | \frametitle{Answers to questions III} |
---|
313 | {\footnotesize } |
---|
314 | What changes during the cloud's development turning on precipitation (\texttt{precipitation = .TRUE.})? |
---|
315 | {\footnotesize } |
---|
316 | \begin{itemize} |
---|
317 | \item Almost nothing. The simulated cloud is very shallow, therefore no significant masses of rain are produced that might alter the cloud. |
---|
318 | \end{itemize} |
---|
319 | \end{frame} |
---|
320 | |
---|
321 | \end{document} |
---|