[1532] | 1 | % $Id: exercise_cbl.tex 1515 2015-01-02 11:35:51Z boeske $ |
---|
| 2 | \input{header_tmp.tex} |
---|
| 3 | %\input{header_lectures.tex} |
---|
| 4 | |
---|
[1537] | 5 | %\usepackage[utf8]{inputenc} |
---|
| 6 | \usepackage[T1]{fontenc} |
---|
[1532] | 7 | \usepackage{ngerman} |
---|
| 8 | \usepackage{pgf} |
---|
| 9 | \usepackage{subfigure} |
---|
| 10 | \usepackage{units} |
---|
| 11 | \usepackage{multimedia} |
---|
| 12 | \usepackage{hyperref} |
---|
| 13 | \newcommand{\event}[1]{\newcommand{\eventname}{#1}} |
---|
| 14 | \usepackage{xmpmulti} |
---|
| 15 | \usepackage{tikz} |
---|
| 16 | \usetikzlibrary{shapes,arrows,positioning} |
---|
| 17 | \usetikzlibrary{calc} %neues paket |
---|
| 18 | \usetikzlibrary{decorations.markings} %neues paket |
---|
| 19 | \usetikzlibrary{decorations.pathreplacing} %neues paket |
---|
| 20 | \def\Tiny{\fontsize{4pt}{4pt}\selectfont} |
---|
| 21 | \usepackage{amsmath} |
---|
| 22 | \usepackage{amssymb} |
---|
| 23 | \usepackage{multicol} |
---|
| 24 | \usepackage{pdfcomment} |
---|
| 25 | \usepackage{graphicx} |
---|
| 26 | \usepackage{listings} |
---|
| 27 | \lstset{showspaces=false,language=fortran,basicstyle= |
---|
| 28 | \ttfamily,showstringspaces=false,captionpos=b} |
---|
| 29 | |
---|
| 30 | \institute{Institute of Meteorology and Climatology, Leibniz Universit{\"a}t Hannover} |
---|
| 31 | \selectlanguage{english} |
---|
| 32 | \date{last update: \today} |
---|
| 33 | \event{PALM Seminar} |
---|
| 34 | \setbeamertemplate{navigation symbols}{} |
---|
| 35 | |
---|
| 36 | \setbeamertemplate{footline} |
---|
| 37 | { |
---|
| 38 | \begin{beamercolorbox}[rightskip=-0.1cm]& |
---|
| 39 | {\includegraphics[height=0.65cm]{imuk_logo.pdf}\hfill \includegraphics[height=0.65cm]{luh_logo.pdf}} |
---|
| 40 | \end{beamercolorbox} |
---|
| 41 | \begin{beamercolorbox}[ht=2.5ex,dp=1.125ex, |
---|
| 42 | leftskip=.3cm,rightskip=0.3cm plus1fil]{title in head/foot} |
---|
| 43 | {\leavevmode{\usebeamerfont{author in head/foot}\insertshortauthor} \hfill \eventname \hfill \insertframenumber \; / \inserttotalframenumber} |
---|
| 44 | \end{beamercolorbox} |
---|
| 45 | \begin{beamercolorbox}[colsep=1.5pt]{lower separation line foot} |
---|
| 46 | \end{beamercolorbox} |
---|
| 47 | } |
---|
| 48 | %\logo{\includegraphics[width=0.3\textwidth]{luhimuk_logo.pdf}} |
---|
| 49 | |
---|
| 50 | |
---|
[1533] | 51 | \title[Exercise 10: Cumulus Cloud]{Exercise 10: \\Cumulus Cloud With Bulk Cloud Physics} |
---|
[1532] | 52 | \author{PALM group} |
---|
| 53 | |
---|
| 54 | \begin{document} |
---|
| 55 | |
---|
| 56 | % Folie 1 |
---|
| 57 | \begin{frame} |
---|
| 58 | \titlepage |
---|
| 59 | \end{frame} |
---|
| 60 | |
---|
| 61 | \section{Exercise} |
---|
| 62 | \subsection{Exercise} |
---|
| 63 | |
---|
| 64 | % Folie 2 |
---|
| 65 | \begin{frame} |
---|
[1544] | 66 | \frametitle{Exercise 10: Cumulus Cloud With Bulk Cloud Physics} |
---|
[1532] | 67 | |
---|
| 68 | Simulate a cumulus cloud: |
---|
| 69 | \begin{itemize} |
---|
| 70 | % \scriptsize |
---|
| 71 | \item<2-> Initialize the simulation with a marine, cumulus-topped, trade-wind region boundary layer. |
---|
| 72 | \item<3-> Trigger the cloud by a bubble of rising warm air. |
---|
| 73 | \item<4-> Parameterize condensation using a simple bulk cloud physics scheme. |
---|
| 74 | \item<5-> Learn how to carry out conditional averages. |
---|
| 75 | \end{itemize} |
---|
| 76 | \end{frame} |
---|
| 77 | |
---|
| 78 | % Folie 3 |
---|
| 79 | \section{Hints} |
---|
| 80 | \subsection{Hints} |
---|
| 81 | \begin{frame} |
---|
| 82 | \frametitle{Hints I} |
---|
| 83 | |
---|
[1543] | 84 | The setup of this exercise is based on the LES-intercomparison BOMEX (Siebesma et al., 2003, J. Atmos. Sci.): |
---|
[1532] | 85 | % \only<2>{\begin{center} |
---|
| 86 | % \includegraphics[width=0.7\textwidth]{exercise_cumulus_figures/ptq.pdf} |
---|
| 87 | % \end{center}} |
---|
[1537] | 88 | % \only<2->{ |
---|
[1532] | 89 | \begin{itemize} |
---|
| 90 | \scriptsize |
---|
| 91 | |
---|
| 92 | \item<2-> In order to prescribe vertical profiles of temperature and humidity, set:\\ |
---|
| 93 | \texttt{initializing\_actions = 'set\_constant\_profiles',} |
---|
| 94 | \item<3-> \texttt{pt\_surface = 297.9,} |
---|
| 95 | |
---|
| 96 | \texttt{pt\_vertical\_gradient = 0.0, 0.58588957,} |
---|
| 97 | |
---|
| 98 | \texttt{pt\_vertical\_gradient\_level = 0.0, 740.0,} |
---|
| 99 | \item<4-> \texttt{q\_surface = 0.016,} |
---|
| 100 | |
---|
| 101 | \texttt{q\_vertical\_gradient = -2.97297E-4, -4.5238095E-4, -8.108108E-5,} |
---|
| 102 | |
---|
| 103 | \texttt{q\_vertical\_gradient\_level = 0.0, 740.0, 3260.0,} |
---|
| 104 | |
---|
| 105 | \item<5-> \texttt{surface\_pressure = 1015.4,} |
---|
| 106 | |
---|
| 107 | \item<6-> Note that contrary to BOMEX, no geostrophic wind, no surface fluxes, and no subsidence is prescribed in this setup. |
---|
| 108 | |
---|
| 109 | \item<7-> domain size: about $\unit[1000 \times 3600 \times 3000]{m^3}$ ($x$/$y$/$z$) |
---|
| 110 | \item<8-> grid size: $\unit[50]{m}$ equidistant |
---|
| 111 | \item<9-> simulated time: $\unit[1800]{s}$ |
---|
| 112 | \end{itemize} |
---|
[1537] | 113 | % } |
---|
[1532] | 114 | \end{frame} |
---|
| 115 | |
---|
| 116 | |
---|
| 117 | % Folie 4 |
---|
| 118 | \begin{frame} |
---|
| 119 | \frametitle{Hints II} |
---|
| 120 | |
---|
| 121 | How to initialize a bubble of warm air? |
---|
| 122 | \begin{itemize} |
---|
| 123 | \scriptsize |
---|
| 124 | \item<2-> In the subroutine \texttt{user\_init}, initialize the bubble of warm air by a temperature excess at the first time step (\texttt{current\_timestep\_number == 0}) |
---|
| 125 | \item<3-> The temperature excess can be added directly to the three-dimensional field of liquid water potential temperature: |
---|
| 126 | |
---|
| 127 | \texttt{pt(k,j,i) = pt(k,j,i) + EXP( -0.5 * ( y / bubble\_sigma\_y )**2 ) * \&} |
---|
| 128 | |
---|
| 129 | \texttt{\hphantom{pt(k,j,i) = pt(k,j,i) + }EXP( -0.5 * ( z / bubble\_sigma\_z )**2 ) * \&} |
---|
| 130 | |
---|
| 131 | \texttt{\hphantom{pt(k,j,i) = pt(k,j,i) + }initial\_temperature\_difference} |
---|
| 132 | |
---|
| 133 | |
---|
| 134 | with the locations: |
---|
| 135 | |
---|
| 136 | \texttt{y = j * dy - bubble\_center\_y} |
---|
| 137 | |
---|
| 138 | \texttt{z = zu(k) - bubble\_center\_z} |
---|
| 139 | |
---|
| 140 | \item<4-> Initialize the bubble by the following parameters: |
---|
| 141 | |
---|
| 142 | \texttt{bubble\_center\_y = 1800.0, bubble\_center\_z = 170.0,} |
---|
| 143 | |
---|
| 144 | \texttt{bubble\_sigma\_y = 300.0, bubble\_sigma\_z = 150.0,} |
---|
| 145 | |
---|
| 146 | \texttt{initial\_temperature\_difference = 0.4} |
---|
[1543] | 147 | \item<5-> Think parallel: Mind that the domain of each PE extends only from \texttt{nxlg} to \texttt{nxrg} and \texttt{nysg} to \texttt{nyng}! (Note that the just mentioned dimensions include ghost points) |
---|
[1532] | 148 | \end{itemize} |
---|
| 149 | \end{frame} |
---|
| 150 | |
---|
| 151 | % Folie 5 |
---|
| 152 | \begin{frame} |
---|
| 153 | \frametitle{Hints III} |
---|
| 154 | Bulk cloud physics in PALM: |
---|
| 155 | \begin{itemize} |
---|
| 156 | \scriptsize |
---|
[1543] | 157 | \item<2-> PALM offers two bulk cloud physics schemes: A very simple, one-moment scheme by Kessler (1969, Meteor. Monogr.) and a state-of-the-art two-moment scheme by Seifert and Beheng (2006, Meteor. Atmos. Phys.). |
---|
[1532] | 158 | |
---|
| 159 | \item<3-> You will use the saturation adjustment scheme, as applied in the Kessler-scheme, for parameterizing condensation. (Note that this kind of scheme is used in the vast majority of today's bulk cloud physics parameterizations.) |
---|
| 160 | |
---|
| 161 | \item<4-> The liquid water is diagnosed by $q_\text{l} = \max(0, q_\text{t} - q_\text{s})$: If the total water content $q_\text{t}$ exceeds the saturation water content $q_\text{s}$, all supersaturations condensate immediately to liquid water. On the other hand, no liquid water is present in subsaturated conditions. |
---|
| 162 | |
---|
| 163 | \end{itemize} |
---|
| 164 | |
---|
| 165 | \onslide<4-> Turn on simple cloud microphysics in your parameter file (\texttt{inipar} namelist): |
---|
| 166 | |
---|
| 167 | \begin{itemize} |
---|
| 168 | \scriptsize |
---|
| 169 | \item<5-> \texttt{humidity = .TRUE., cloud\_physics = .TRUE.,} |
---|
| 170 | |
---|
| 171 | \item<6-> \texttt{cloud\_scheme = 'kessler', precipitation = .FALSE.} |
---|
| 172 | \end{itemize} |
---|
| 173 | \end{frame} |
---|
| 174 | |
---|
| 175 | |
---|
| 176 | % Folie 6 |
---|
| 177 | \begin{frame} |
---|
| 178 | \frametitle{Hints IV} |
---|
| 179 | |
---|
| 180 | What is conditional averaging? |
---|
| 181 | \begin{itemize} |
---|
| 182 | \scriptsize |
---|
| 183 | \item<2-> A horizontal average (e.\,g., for retrieving vertical profiles) might be inappropriate for the analysis of a heterogeneous phenomenon (e.\,g., cumulus clouds). |
---|
| 184 | \item<3-> A conditional average can restrict the analysis to the regions of interest (e.\,g., cloudy and non-cloudy regions). |
---|
| 185 | \end{itemize} |
---|
| 186 | \onslide<4->What kind of conditional average are you going to derive? |
---|
| 187 | \begin{itemize} |
---|
| 188 | \scriptsize |
---|
| 189 | \item<5-> You will derive vertical profiles of \textbf{cloud cover} and \textbf{cloud core cover}. These profiles are the basis for more complex profiles (e.\,g., the cloud core vertical velocity). |
---|
| 190 | \item<6-> Cloudy grid cells are defined as grid cells with a non-zero liquid water content ($q_\text{l}>0$, \texttt{ql(k,j,i) > 0.0}). Cloud core grid cells are defined as cloudy grid cells, which are also positively buoyant with respect to the slab average ($\theta_\text{v}>\langle \theta_\text{v} \rangle$, \texttt{vpt(k,j,i) > hom(k,1,44,sr)}). |
---|
| 191 | \end{itemize} |
---|
| 192 | \end{frame} |
---|
| 193 | |
---|
| 194 | % Folie 7 |
---|
| 195 | \begin{frame} |
---|
| 196 | \frametitle{Hints V} |
---|
| 197 | |
---|
[1537] | 198 | PALM offers a convenient way to compute and output user-profiles: |
---|
[1532] | 199 | \begin{itemize} |
---|
| 200 | \scriptsize |
---|
| 201 | \item<2-> In the subroutine \texttt{user\_statistics}, you can compute the cloud cover profile by counting all cloudy grid cells at a certain grid level \texttt{k}: |
---|
| 202 | |
---|
| 203 | \texttt{IF ( ql(k,j,i) > 0.0 ) THEN} |
---|
| 204 | |
---|
| 205 | \texttt{\hphantom{aaa}sums\_l(k,pr\_palm+1,tn) = sums\_l(k,pr\_palm+1,tn) + 1.0} |
---|
| 206 | |
---|
| 207 | \texttt{ENDIF} |
---|
| 208 | |
---|
| 209 | \item<3-> The computation of the cloud core cover profile is up to you! |
---|
| 210 | |
---|
| 211 | |
---|
| 212 | \item<4-> PALM automatically cares for the summation across the PE's boundaries and the normalization of the profiles (i.\,e., dividing it by the total amount of grid cells in horizontal directions). |
---|
| 213 | |
---|
| 214 | \item<5-> Do not forget to adapt \texttt{user\_check\_data\_output\_pr} (for defining your user-profiles) and your parameter file (\texttt{userpar} namelist) for the output (with the parameter \texttt{data\_output\_pr\_user = 'your\_profile'})! |
---|
[1537] | 215 | \item<6-> Check the online documentation of PALM for more detailed information on the implementation of user profiles:\\ |
---|
[1649] | 216 | \texttt{\hphantom{aaa}http://palm.muk.uni-hannover.de/trac/wiki/doc/app/userint/output\#part\_1}\\ |
---|
[1537] | 217 | Further examples are also provided within the subroutines \texttt{user\_statistics} and \texttt{user\_check\_data\_output\_pr}. |
---|
[1532] | 218 | |
---|
| 219 | \end{itemize} |
---|
| 220 | \end{frame} |
---|
| 221 | |
---|
| 222 | \section{Tasks} |
---|
| 223 | \subsection{Tasks} |
---|
| 224 | % Folie 8 |
---|
| 225 | \begin{frame} |
---|
| 226 | \frametitle{Tasks to be done:} |
---|
| 227 | |
---|
| 228 | \begin{itemize} |
---|
| 229 | \item<1-> Output instantaneous yz-cross sections of \texttt{ql} and \texttt{w} at \texttt{section\_yz = 0}. (\texttt{pt}, \texttt{q} and \texttt{vpt} are also interesting!) An output interval of $60\,\text{s}$ is adequate. |
---|
| 230 | \item<2-> Output instantaneous vertical profiles of cloud cover and cloud core cover! Again, an output interval of $60\,\text{s}$ is adequate. |
---|
| 231 | \item<3-> Answer the following questions: |
---|
| 232 | \begin{itemize} |
---|
| 233 | \item How does the cloud develop? |
---|
| 234 | \item Can you identify the \textit{actively growing} and the \textit{decaying stage} of the cloud's life cycle by comparing the profiles of cloud and cloud core cover profiles? (Mind the profiles' definitions and physical implications!) |
---|
| 235 | \end{itemize} |
---|
| 236 | \item<4-> If you are really fast: What changes during the cloud's development turning on precipitation (\texttt{precipitation = .TRUE.})? |
---|
| 237 | \end{itemize} |
---|
| 238 | |
---|
| 239 | \end{frame} |
---|
| 240 | |
---|
[1657] | 241 | \bgroup |
---|
| 242 | \setbeamercolor{background canvas}{bg=white} |
---|
| 243 | \begin{frame}[plain,noframenumbering]{} |
---|
| 244 | \end{frame} |
---|
| 245 | \egroup |
---|
| 246 | |
---|
[1532] | 247 | % Folie 9 |
---|
| 248 | \section{Results} |
---|
| 249 | \subsection{Results} |
---|
| 250 | |
---|
| 251 | \begin{frame} |
---|
| 252 | \frametitle{$yz$-cross sections at $t \approx \unit[500]{s}$} |
---|
[1543] | 253 | % The bubble of warm air rises, but has not reached its condensation level. |
---|
| 254 | \vspace{-5mm} |
---|
[1532] | 255 | \begin{center} |
---|
[1543] | 256 | \includegraphics[angle=90,width=1.0\textwidth]{exercise_cumulus_figures/500.pdf} |
---|
[1532] | 257 | \end{center} |
---|
| 258 | \end{frame} |
---|
| 259 | |
---|
| 260 | % Folie 8 |
---|
| 261 | \begin{frame} |
---|
| 262 | \frametitle{$yz$-cross sections at $t \approx \unit[800]{s}$} |
---|
| 263 | % Condensation starts, and the cloud appears as the the visible top of the rising bubble. |
---|
[1543] | 264 | \vspace{-5mm} |
---|
[1532] | 265 | \begin{center} |
---|
[1543] | 266 | \includegraphics[angle=90,width=1.0\textwidth]{exercise_cumulus_figures/800.pdf} |
---|
[1532] | 267 | \end{center} |
---|
| 268 | \end{frame} |
---|
| 269 | |
---|
| 270 | % Folie 9 |
---|
| 271 | \begin{frame} |
---|
| 272 | \frametitle{$yz$-cross sections at $t \approx \unit[1200]{s}$} |
---|
| 273 | % The cloud is vigorously growing. |
---|
[1543] | 274 | \vspace{-5mm} |
---|
[1532] | 275 | \begin{center} |
---|
[1543] | 276 | \includegraphics[angle=90,width=1.0\textwidth]{exercise_cumulus_figures/1200.pdf} |
---|
[1532] | 277 | \end{center} |
---|
| 278 | \end{frame} |
---|
| 279 | |
---|
| 280 | % Folie 9 |
---|
| 281 | \begin{frame} |
---|
| 282 | \frametitle{$yz$-cross sections at $t \approx \unit[1500]{s}$} |
---|
| 283 | % The cloud dilutes and dissipates due to turbulent entrainment of environmental air. |
---|
[1543] | 284 | \vspace{-5mm} |
---|
[1532] | 285 | \begin{center} |
---|
[1543] | 286 | \includegraphics[angle=90,width=1.0\textwidth]{exercise_cumulus_figures/1500.pdf} |
---|
[1532] | 287 | \end{center} |
---|
| 288 | \end{frame} |
---|
| 289 | |
---|
| 290 | % Folie 10 |
---|
| 291 | \begin{frame} |
---|
| 292 | \frametitle{Cloud cover (clcov) and cloud core cover (cocov) profiles} |
---|
| 293 | \begin{center} |
---|
| 294 | \includegraphics[width=1.0\textwidth]{exercise_cumulus_figures/prof.pdf} |
---|
| 295 | \end{center} |
---|
| 296 | \end{frame} |
---|
| 297 | |
---|
| 298 | %\section{Answers} |
---|
| 299 | \subsection*{Answers} |
---|
| 300 | % Folie 13 |
---|
| 301 | \begin{frame} |
---|
| 302 | \frametitle{Answers to questions I} |
---|
| 303 | {\footnotesize } |
---|
| 304 | How does the cloud develop? |
---|
| 305 | {\footnotesize } |
---|
| 306 | \begin{itemize} |
---|
[1543] | 307 | \item See frames 9 -- 12: The clouds develops from a rising bubble of warm air ($t \approx \unit[500]{s}$). Reaching the condensation level ($t \approx \unit[800]{s}$), the cloud appears as the bubble's visible top. Afterwards, the cloud starts to grow more vigorously by the release of latent heat ($t \approx \unit[1200]{s}$). In the end of the cloud's life-cycle, the cloud dissipates by turbulent entrainment of environmental air and the subsequent evaporation of the cloud ($t \approx \unit[1500]{s}$). |
---|
[1532] | 308 | \end{itemize} |
---|
| 309 | \end{frame} |
---|
| 310 | |
---|
| 311 | \begin{frame} |
---|
| 312 | \frametitle{Answers to questions II} |
---|
| 313 | {\footnotesize } |
---|
| 314 | Can you identify the (i) actively growing and (ii) decaying stage of the cloud's life cycle by comparing the profiles of cloud and cloud core cover profiles? |
---|
| 315 | {\footnotesize } |
---|
| 316 | \begin{itemize} |
---|
| 317 | \item See Frame 13: As long as the cloud core is present, i.\,e., a positively buoyant region producing upward motion, the cloud grows actively (until $1400\,\text{s}$). From $1500\,\text{s}$ on, no cloud core is visible. As a result, the cloud's upward motion decelerates and the rate of condensation decreases. Thus, the cloud's dilution by the entrainment of environmental air can not be counterbalanced anymore. As a consequence, the cloud decays and finally dissipates. |
---|
| 318 | \end{itemize} |
---|
| 319 | \end{frame} |
---|
| 320 | |
---|
| 321 | \begin{frame} |
---|
| 322 | \frametitle{Answers to questions III} |
---|
| 323 | {\footnotesize } |
---|
| 324 | What changes during the cloud's development turning on precipitation (\texttt{precipitation = .TRUE.})? |
---|
| 325 | {\footnotesize } |
---|
| 326 | \begin{itemize} |
---|
| 327 | \item Almost nothing. The simulated cloud is very shallow, therefore no significant masses of rain are produced that might alter the cloud. |
---|
| 328 | \end{itemize} |
---|
| 329 | \end{frame} |
---|
| 330 | |
---|
| 331 | \end{document} |
---|