[1105] | 1 | % $Id: cloud_physics.tex 1515 2015-01-02 11:35:51Z gronemeier $ |
---|
| 2 | \input{header_tmp.tex} |
---|
| 3 | |
---|
| 4 | \usepackage[utf8]{inputenc} |
---|
| 5 | \usepackage{ngerman} |
---|
| 6 | \usepackage{pgf} |
---|
| 7 | \usetheme{Dresden} |
---|
| 8 | \usepackage{subfigure} |
---|
| 9 | \usepackage{units} |
---|
| 10 | \usepackage{multimedia} |
---|
| 11 | \usepackage{hyperref} |
---|
| 12 | \newcommand{\event}[1]{\newcommand{\eventname}{#1}} |
---|
| 13 | \usepackage{xmpmulti} |
---|
| 14 | \usepackage{tikz} |
---|
| 15 | \usetikzlibrary{shapes,arrows,positioning,decorations.pathreplacing} |
---|
| 16 | \def\Tiny{\fontsize{4pt}{4pt}\selectfont} |
---|
| 17 | |
---|
| 18 | %---------- neue Pakete |
---|
| 19 | \usepackage{amsmath} |
---|
| 20 | \usepackage{amssymb} |
---|
| 21 | \usepackage{multicol} |
---|
| 22 | \usepackage{pdfcomment} |
---|
| 23 | \usepackage{xcolor} |
---|
| 24 | \usepackage{siunitx} |
---|
| 25 | \sisetup{% |
---|
| 26 | mode = math, detect-family, detect-weight, |
---|
| 27 | exponent-product = \cdot, |
---|
| 28 | number-unit-separator=\text{\,}, |
---|
| 29 | output-decimal-marker={,}, |
---|
| 30 | } |
---|
| 31 | |
---|
[1515] | 32 | \institute{Institute of Meteorology and Climatology, Leibniz UniversitÀt Hannover} |
---|
| 33 | \selectlanguage{english} |
---|
[1105] | 34 | \date{last update: \today} |
---|
| 35 | \event{PALM Seminar} |
---|
| 36 | \setbeamertemplate{navigation symbols}{} |
---|
| 37 | \setbeamersize{text margin left=.5cm,text margin right=.2cm} |
---|
| 38 | \setbeamertemplate{footline} |
---|
| 39 | {% |
---|
| 40 | \begin{beamercolorbox}[rightskip=-0.1cm]& |
---|
| 41 | {\includegraphics[height=0.65cm]{imuk_logo.pdf}\hfill \includegraphics[height=0.65cm]{luh_logo.pdf}} |
---|
| 42 | \end{beamercolorbox} |
---|
| 43 | \begin{beamercolorbox}[ht=2.5ex,dp=1.125ex,% |
---|
| 44 | leftskip=.3cm,rightskip=0.3cm plus1fil]{title in head/foot}% |
---|
| 45 | {\leavevmode{\usebeamerfont{author in head/foot}\insertshortauthor} \hfill \eventname \hfill \insertframenumber \; / \inserttotalframenumber}% |
---|
| 46 | \end{beamercolorbox}% |
---|
| 47 | % \begin{beamercolorbox}[colsep=1.5pt]{lower separation line foot}% |
---|
| 48 | % \end{beamercolorbox} |
---|
| 49 | }%\logo{\includegraphics[width=0.3\textwidth]{luhimuk_logo.eps}} |
---|
| 50 | |
---|
| 51 | \title[PALM - Cloud Physics]{PALM - Cloud Physics} |
---|
[1515] | 52 | \author{PALM group} |
---|
[1105] | 53 | |
---|
| 54 | % Notes: |
---|
| 55 | % jede subsection bekommt einen punkt im menu (vertikal ausgerichtet. |
---|
| 56 | % jeder frame in einer subsection bekommt einen punkt (horizontal ausgerichtet) |
---|
| 57 | \begin{document} |
---|
| 58 | |
---|
| 59 | % Folie 1 |
---|
| 60 | \begin{frame} |
---|
| 61 | \titlepage |
---|
| 62 | \end{frame} |
---|
| 63 | |
---|
| 64 | % Folie 2 |
---|
| 65 | \begin{frame} |
---|
| 66 | \frametitle{Contents} |
---|
| 67 | |
---|
| 68 | \begin{itemize} |
---|
| 69 | \item<1->{Motivation} |
---|
| 70 | \item<1->{Approach} |
---|
| 71 | \item<1->{Extension if basic equations and SGS-model} |
---|
| 72 | \item<1->{Additional Sources / Sinks in prognostic equations} |
---|
| 73 | \item<1->{Control parameters} |
---|
| 74 | \item<1->{Example of shallow cumulus clouds} |
---|
| 75 | \end{itemize} |
---|
| 76 | \end{frame} |
---|
| 77 | |
---|
| 78 | % Folie 3 |
---|
| 79 | \begin{frame} |
---|
| 80 | \frametitle{Why simulating clouds?} |
---|
| 81 | |
---|
| 82 | \begin{itemize} |
---|
| 83 | \item<2->{Atmospheric boundary layers are usually covered with shallow clouds like cumulus or stratocumulus which are the inherent characteristic of more realistic boundary layers.}\\ \par\medskip |
---|
| 84 | \item<3->{Optional feature to account for:}\\ \par\medskip |
---|
| 85 | \begin{itemize} |
---|
| 86 | \item<4->{Microphysical processes} |
---|
| 87 | \begin{itemize} |
---|
| 88 | \item<4->{Evaporation / condensation of cloud droplets} |
---|
| 89 | \item<4->{Precipitation} |
---|
| 90 | \item<4->{Transport of humidity and liquid water}\\ \par\medskip |
---|
| 91 | \end{itemize} |
---|
| 92 | \item<5->{Radiation processes} |
---|
| 93 | \begin{itemize} |
---|
| 94 | \item<5->{Short-wave radiation} |
---|
| 95 | \item<5->{Long-wave radiation} |
---|
| 96 | \end{itemize} |
---|
| 97 | \end{itemize} |
---|
| 98 | \end{itemize} |
---|
| 99 | \end{frame} |
---|
| 100 | |
---|
| 101 | % Folie 4 |
---|
| 102 | \begin{frame} |
---|
| 103 | \frametitle{Approach} |
---|
| 104 | |
---|
| 105 | \begin{itemize} |
---|
| 106 | \item<1->{One-moment bulk model $\Rightarrow$ in contrast to PALM's Lagrangian cloud model (LCM) (see also particle\_model\_cloud\_physics.pdf, Riechelmann et al., 2012)} |
---|
| 107 | \item<2->{Dynamics like advection and diffusion are covered by Navier-Stokes equations (see basic\_equations.pdf)} |
---|
| 108 | \item<3->{Thermodynamics are considered by parameterizations $\Rightarrow$ non explicit treatment of microphysical processes} |
---|
| 109 | \item<4->{Total water specific humidity $q$ is prognosed as an additional variable $\Rightarrow$ one-moment} |
---|
| 110 | \item<5->{Liquid water specific humidity $q_l$ is determined diagnostically} |
---|
| 111 | \end{itemize} |
---|
| 112 | \uncover<6->{PALM's basic equations are extended to account for cloud microphysics} |
---|
| 113 | \end{frame} |
---|
| 114 | |
---|
| 115 | % Folie 5 |
---|
| 116 | \begin{frame} |
---|
| 117 | \frametitle{Definitions (I)} |
---|
| 118 | |
---|
| 119 | \begin{itemize} |
---|
| 120 | \item<1->{Liquid water potential temperature $\theta_{l}$ (defined by Betts, 1973)\\ |
---|
| 121 | \begin{minipage}[c][1.5cm][c]{0.38\textwidth} |
---|
| 122 | \qquad$\theta_{l}=\theta -\frac{L_{v}}{c_{p}}\left( \frac{\theta}{T} \right) q_{l}$ |
---|
| 123 | \end{minipage} |
---|
| 124 | \begin{minipage}[c][1.5cm][c]{0.52\textwidth} |
---|
| 125 | {\scriptsize $L_{v}$: latent heat of vaporization; $L_{v}=\SI{2,5e6}{J/kg}$\\ |
---|
| 126 | $c_{p}$: specific heat of dry air; $c_{p}=\SI{1005}{J/kg K}$} |
---|
| 127 | \end{minipage}\\ |
---|
| 128 | is the potential temperature of an air parcel if all its liquid water evaporates due to an reversible moist adiabatic descent.} |
---|
| 129 | \item<2->{Total water specific humidity $q$\\ |
---|
| 130 | \begin{minipage}[c][1.5cm][c]{0.38\textwidth} |
---|
| 131 | \qquad$q = q_{v} + q_{l}$ |
---|
| 132 | \end{minipage} |
---|
| 133 | \begin{minipage}[c][1.5cm][c]{0.52\textwidth} |
---|
| 134 | {\scriptsize $q_{v}$: specific humidity\\ |
---|
| 135 | $q_{l}$: liquid water speciffic humidity} |
---|
| 136 | \end{minipage}\\ |
---|
| 137 | } |
---|
| 138 | \item<3->{$\theta_{l}$ and $q$ are the prognostic variables when using PALM's cloud physics model} |
---|
| 139 | \end{itemize} |
---|
| 140 | \end{frame} |
---|
| 141 | |
---|
| 142 | % Folie 6 |
---|
| 143 | \begin{frame} |
---|
| 144 | \frametitle{Definitions (II)} |
---|
| 145 | |
---|
| 146 | |
---|
| 147 | \begin{itemize} |
---|
| 148 | \item<1->{Why using $\theta_{l}$ and $q$?}\\ \par\medskip |
---|
| 149 | \begin{itemize} |
---|
| 150 | \item<2->{$\theta_{l}$ and $q$ are conservative quantities in the absence of precipitation, radiation and freezing processes.} |
---|
| 151 | \item<3->{Phase transitions do not have to be described explicitly in the prognostic equations.} |
---|
| 152 | \item<4->{In case of dry convection (no condensation): $\theta_{l} \rightarrow \theta$ and $q \rightarrow q_{v}$} |
---|
| 153 | \item<5->{Parameterizations of SGS-fluxes can be retained.} |
---|
| 154 | \item<6->{...$\rightarrow$ see also Deardorff, 1976}\\ \par\medskip |
---|
| 155 | \end{itemize} |
---|
| 156 | \item<7->{Virtual potential temperature $\theta_{l}$\\ |
---|
| 157 | \begin{minipage}[c][1.5cm][c]{0.65\textwidth} |
---|
| 158 | \qquad$\theta_{v}=\left[\theta_{l} +\frac{L_{v}}{c_{p}}\left( \frac{\theta}{T} \right) q_{l}\right] \left(1+0,61 q - 1,61q_{l}\right)$ |
---|
| 159 | \end{minipage} |
---|
| 160 | \begin{minipage}[c][1.5cm][c]{0.22\textwidth} |
---|
| 161 | \end{minipage}\\ |
---|
| 162 | } |
---|
| 163 | \end{itemize} |
---|
| 164 | \end{frame} |
---|
| 165 | |
---|
| 166 | % Folie 7 |
---|
| 167 | \begin{frame} |
---|
| 168 | \frametitle{Extension of basic equations (I)} |
---|
| 169 | |
---|
| 170 | \begin{itemize} |
---|
| 171 | \item<1->{First principle is solved for $\theta_{l}$ (instead of $\theta$)\\ |
---|
| 172 | \begin{minipage}[c][1.5cm][c]{0.46\textwidth} |
---|
| 173 | \qquad$\frac{\partial\bar{\theta}_{l}}{\partial t}= - \frac{\partial\bar{u_{k}} \bar{\theta_{l}}}{\partial x_{k}}- \frac{\partial H_{k}}{\partial x_{k}} + Q_{\theta}$ |
---|
| 174 | \end{minipage} |
---|
| 175 | \begin{minipage}[c][1.5cm][c]{0.46\textwidth} |
---|
| 176 | {\scriptsize SGS flux: $H_{k}=\overline{u_{k} \theta_{l}} - \bar{u}_{k}\bar{\theta}_{l}$} |
---|
| 177 | \end{minipage}\\ \par\medskip |
---|
| 178 | } |
---|
| 179 | \item<2->{Conservation equation for total water specific humidity $q$ (instead of $q_{v}$)\\ |
---|
| 180 | \begin{minipage}[c][1.5cm][c]{0.46\textwidth} |
---|
| 181 | \qquad$\frac{\partial\bar{q}}{\partial t}= - \frac{\partial\bar{u_{k}} \bar{q}}{\partial x_{k}}- \frac{\partial W_{k}}{\partial x_{k}} + Q_{\theta}$ |
---|
| 182 | \end{minipage} |
---|
| 183 | \begin{minipage}[c][1.5cm][c]{0.46\textwidth} |
---|
| 184 | {\scriptsize SGS flux: $W_{k}=\overline{u_{k} q} - \bar{u}_{k}\bar{q}$} |
---|
| 185 | \end{minipage}\\ |
---|
| 186 | } |
---|
| 187 | \end{itemize} |
---|
| 188 | \end{frame} |
---|
| 189 | |
---|
| 190 | % Folie 8 |
---|
| 191 | \begin{frame} |
---|
| 192 | \frametitle{Extension of basic equations (II)} |
---|
| 193 | |
---|
| 194 | \begin{itemize} |
---|
| 195 | \item<1->{Sources / Sinks due to radiation (RAD) and precipitation (PREC) |
---|
| 196 | \begin{minipage}[c][3.0cm][c]{0.46\textwidth} |
---|
| 197 | \begin{align*} |
---|
| 198 | Q_{\theta} &= \left(\frac{\partial\bar{\theta}_{l}}{\partial t}\right)_{\text{RAD}} + \left(\frac{\partial\bar{\theta}_{l}}{\partial t}\right)_{\text{PREC}}\\ |
---|
| 199 | Q_{W} &= \left(\frac{\partial\bar{q}}{\partial t}\right)_{\text{PREC}} |
---|
| 200 | \end{align*} |
---|
| 201 | \end{minipage}\\ \par\medskip |
---|
| 202 | } |
---|
| 203 | \item<2->{Diagnostic approach for $\bar{q}_{l}$ (all-or-nothing schema) |
---|
| 204 | \begin{minipage}[c][1.5cm][c]{0.44\textwidth} |
---|
| 205 | \begin{align*} |
---|
| 206 | \bar{q}_{l} = |
---|
| 207 | \begin{cases} |
---|
| 208 | \bar{q}-\bar{q}_{s} & \text{if } \bar{q} > \bar{q}_{s} \\ |
---|
| 209 | 0 & \text{if } otherwise |
---|
| 210 | \end{cases} |
---|
| 211 | \end{align*} |
---|
| 212 | \end{minipage}\\ \par\medskip |
---|
| 213 | $\bar{q}_{s}$ is the saturation value of the specific humidity which is determined based on Sommeria and Deardorff, 1977 and further described in cloud\_physics.pdf |
---|
| 214 | } |
---|
| 215 | \end{itemize} |
---|
| 216 | \end{frame} |
---|
| 217 | |
---|
| 218 | % Folie 9 |
---|
| 219 | \begin{frame} |
---|
| 220 | \frametitle{Extension of SGS model (I)} |
---|
| 221 | |
---|
| 222 | \begin{itemize} |
---|
| 223 | \item<1->{SGS fluxes are modelled by means of a down-gradient approximation |
---|
| 224 | \begin{minipage}[c][1.5cm][c]{0.6\textwidth} |
---|
| 225 | \begin{equation*} |
---|
| 226 | H_{k} = - K_{h} \frac{\partial\bar{\theta}_{l}}{\partial x_{k}} \qquad \text{;} \qquad W_{k} = - K_{h} \frac{\partial\bar{q}}{\partial x_{k}} |
---|
| 227 | \end{equation*} |
---|
| 228 | \end{minipage}\\ \par\medskip |
---|
| 229 | } |
---|
| 230 | \item<2->{SGS flux of potential temperature $\overline{u_{3}' \theta'}$ in prognostic equation of the SGS-TKE $\bar{e}$ is replaced by the flux of the virtual potential temperature $\overline{u_{3}' \theta_{v}'}$ which is modelled according to Deardorff, 1980 as: |
---|
| 231 | \begin{minipage}[c][1.2cm][c]{0.44\textwidth} |
---|
| 232 | \begin{equation*} |
---|
| 233 | \overline{u_{3}' \theta_{v}'} = K_{1} \cdot H_{3} + K_{2} \cdot W_{3} |
---|
| 234 | \end{equation*} |
---|
| 235 | \end{minipage}\\ \par\medskip |
---|
| 236 | } |
---|
| 237 | \end{itemize} |
---|
| 238 | \end{frame} |
---|
| 239 | |
---|
| 240 | % Folie 10 |
---|
| 241 | \begin{frame} |
---|
| 242 | \frametitle{Extension of SGS model (II)} |
---|
| 243 | |
---|
| 244 | \begin{itemize} |
---|
| 245 | \item<1->{The coefficients $K_{1}$ and $K_{2}$ depend on the saturation state of the grid volume (see also Cuijpers u. Duynkerke, 1993)\\ \par\medskip |
---|
| 246 | \begin{itemize} |
---|
| 247 | \item<2->{Unsaturated grid box ($\bar{q}_{l} = 0$)\\ |
---|
| 248 | \begin{minipage}[c][1.5cm][c]{0.35\textwidth} |
---|
| 249 | \begin{align*} |
---|
| 250 | K_{1} &= 1,0 + 0,61\cdot\bar{q}\\ |
---|
| 251 | K_{2} &= 0,61\cdot\bar{\theta} |
---|
| 252 | \end{align*} |
---|
| 253 | \end{minipage}\\ \par\medskip |
---|
| 254 | } |
---|
| 255 | \item<3->{Saturated grid box ($\bar{q}_{l} \neq 0$)\\ \par\medskip |
---|
| 256 | \begin{minipage}[c][2.2cm][c]{0.64\textwidth} |
---|
| 257 | \begin{align*} |
---|
| 258 | K_{1} &= \frac{1,0 - \bar{q} + 1,61\cdot\bar{q}_{s}\left(1,0 + 0,622\frac{L_{v}}{R T}\right)}{1,0 + 0,622\frac{L_{v}}{R T}\frac{L_{v}}{c_{p} T} \bar{q}_{s}}\\ |
---|
| 259 | K_{2} &= \theta \left(\frac{L_{v}}{c_{p} T}\cdot K_{1} -1,0\right) |
---|
| 260 | \end{align*} |
---|
| 261 | \end{minipage} |
---|
| 262 | } |
---|
| 263 | \end{itemize} |
---|
| 264 | } |
---|
| 265 | \end{itemize} |
---|
| 266 | \end{frame} |
---|
| 267 | |
---|
| 268 | % Folie 11 |
---|
| 269 | \begin{frame} |
---|
| 270 | \frametitle{Sources / Sinks (I)} |
---|
| 271 | |
---|
| 272 | \begin{itemize} |
---|
| 273 | \item<1->{Radiation model (based on Cox, 1976) $\Rightarrow$ scheme of effective emissivity\\ \par\medskip |
---|
| 274 | \begin{itemize} |
---|
| 275 | \item<2->Very simple, accounts only for absorbtion and emission of long-wave radiation due to water vapour and cloud droplets and neglects horizontal divergences of radiation\\ |
---|
| 276 | \begin{minipage}[c][1.5cm][c]{0.35\textwidth} |
---|
| 277 | \begin{equation*} |
---|
| 278 | \left(\frac{\partial\bar{\theta}_{l}}{\partial t}\right)_{\text{RAD}} = \left(\frac{\theta}{T}\right) \frac{1}{\varrho c_{p} \Delta z}\left[ \Delta F(z^{+}) - \Delta F(z^{-}) \right] |
---|
| 279 | \end{equation*} |
---|
| 280 | \end{minipage}\\ \par\medskip |
---|
| 281 | \begin{tabbing} |
---|
| 282 | $\Delta F$: \qquad \=Difference between upward and downward irradiance at\\ |
---|
| 283 | \>grid points above ($z^{+}$) and below ($z^{-}$) the level in\\ |
---|
| 284 | \>which $\bar{\theta}_{l}$ is defined. |
---|
| 285 | \end{tabbing} |
---|
| 286 | Further information: cloud\_physics.pdf |
---|
| 287 | |
---|
| 288 | \end{itemize} |
---|
| 289 | } |
---|
| 290 | \end{itemize} |
---|
| 291 | \end{frame} |
---|
| 292 | |
---|
| 293 | % Folie 12 |
---|
| 294 | \begin{frame} |
---|
| 295 | \frametitle{Sources / Sinks (II)} |
---|
| 296 | |
---|
| 297 | \begin{itemize} |
---|
| 298 | \item<1->{Precipitation model (based on Kessler, 1969)\\ \par\medskip |
---|
| 299 | \begin{itemize} |
---|
| 300 | \item<2->{Simplified scheme which accounts only for the process of autoconversion for the formation of rain water.\\ |
---|
| 301 | \begin{minipage}[c][1.5cm][c]{0.44\textwidth} |
---|
| 302 | \begin{align*} |
---|
| 303 | \left(\frac{\partial\bar{q}}{\partial t}\right)_{\text{PREC}} = |
---|
| 304 | \begin{cases} |
---|
| 305 | (\bar{q}_{l}-\bar{q}_{l_{\text{crit}}})/\tau & \text{if } \bar{q}_{l} > \bar{q}_{l_{\text{crit}}} \\ |
---|
| 306 | 0 & \text{if } \bar{q}_{l} \leq \bar{q}_{l_{\text{crit}}} |
---|
| 307 | \end{cases} |
---|
| 308 | \end{align*} |
---|
| 309 | \end{minipage}\\ \par\medskip |
---|
| 310 | } |
---|
| 311 | \item<3->{precipitation leaves grid box immediately if the threshold $\bar{q}_{l_{\text{crit}}} = \SI{0,5}{g/kg}$ is exceeded.}\\ \par\medskip |
---|
| 312 | \item<4->{Timescale $\tau = \SI{1000}{s}$.} |
---|
| 313 | \item<5->{ |
---|
| 314 | \begin{minipage}[c][1.5cm][c]{0.35\textwidth} |
---|
| 315 | \begin{equation*} |
---|
| 316 | \left(\frac{\partial\bar{\theta}_{l}}{\partial t}\right)_{\text{PREC}} = \frac{L_{v}}{c_{p}}\left(\frac{\theta}{T}\right) \left(\frac{\partial\bar{q}}{\partial t}\right)_{\text{PREC}} |
---|
| 317 | \end{equation*} |
---|
| 318 | \end{minipage} |
---|
| 319 | } |
---|
| 320 | \end{itemize} |
---|
| 321 | } |
---|
| 322 | \end{itemize} |
---|
| 323 | \end{frame} |
---|
| 324 | |
---|
| 325 | % Folie 13 |
---|
| 326 | \begin{frame} |
---|
| 327 | \frametitle{Control parameters} |
---|
| 328 | |
---|
| 329 | \begin{itemize} |
---|
| 330 | \item<1->{The following settings in the parameter file enable the use of the bulk cloud model:}\\ \par\medskip |
---|
| 331 | \scriptsize |
---|
| 332 | \begin{itemize}\scriptsize |
---|
| 333 | \item<2->{ |
---|
| 334 | $\left. |
---|
| 335 | \begin{array}{ll} % fÌr mehrzeiligen Text nötig |
---|
| 336 | \text{humidity = .TRUE.}\qquad\qquad\qquad |
---|
| 337 | \end{array} |
---|
| 338 | \right\}: |
---|
| 339 | \begin{array}{ll} % fÌr mehrzeiligen Text nötig |
---|
| 340 | \text{prognostic equations for specific} \\ \text{specific humidity } \bar{q} \text{ is solved} |
---|
| 341 | \end{array} |
---|
| 342 | $ |
---|
| 343 | }\\ \par\medskip |
---|
| 344 | \item<3->{ |
---|
| 345 | $\left. |
---|
| 346 | \begin{array}{ll} % fÌr mehrzeiligen Text nötig |
---|
| 347 | \text{humidity = .TRUE.}\qquad\qquad\qquad \\ \text{cloud\_physics = .TRUE.} |
---|
| 348 | \end{array} |
---|
| 349 | \right\}: |
---|
| 350 | \begin{array}{ll} % fÌr mehrzeiligen Text nötig |
---|
| 351 | \text{prognostic equations for liquid water} \\ \text{potential temperature } \bar{\theta}_{l} \text{ and total water} \\ \text{specific humidity } \bar{q} \text{ are solved} |
---|
| 352 | \end{array} |
---|
| 353 | $ |
---|
| 354 | }\\ \par\medskip |
---|
| 355 | \item<4->{ |
---|
| 356 | $\left. |
---|
| 357 | \begin{array}{ll} % fÌr mehrzeiligen Text nötig |
---|
| 358 | \text{humidity = .TRUE.}\qquad\qquad\qquad \\ \text{cloud\_physics = .TRUE.} \\ \text{precipitation = .TRUE.} \\ \text{radiation = .TRUE.} |
---|
| 359 | \end{array} |
---|
| 360 | \right\}: |
---|
| 361 | \begin{array}{ll} % fÌr mehrzeiligen Text nötig |
---|
| 362 | \text{Kessler precipitation scheme and} \\ \text{radiation model are solved} |
---|
| 363 | \end{array} |
---|
| 364 | $ |
---|
| 365 | } |
---|
| 366 | \end{itemize} |
---|
| 367 | \end{itemize} |
---|
| 368 | \end{frame} |
---|
| 369 | |
---|
| 370 | % Folie 12 |
---|
| 371 | \begin{frame} |
---|
| 372 | \frametitle{Example - Setup for a cloudy boundary layer} |
---|
| 373 | |
---|
| 374 | \begin{figure}[H] |
---|
| 375 | \begin{minipage}[c][6.5cm][c]{.50\linewidth} |
---|
| 376 | \centering |
---|
| 377 | CBL with shallow cumulus clouds:\\ \par\bigskip |
---|
| 378 | \includegraphics[width=0.95\linewidth]{cloud_physics_figures/cbl5_preview.png} |
---|
| 379 | \end{minipage} |
---|
| 380 | \begin{minipage}[c][6.5cm][t]{.40\linewidth} |
---|
| 381 | \centering |
---|
| 382 | \includegraphics[width=0.9\linewidth]{cloud_physics_figures/param_clouds.png} |
---|
| 383 | \end{minipage} |
---|
| 384 | \end{figure} |
---|
| 385 | \end{frame} |
---|
| 386 | |
---|
| 387 | % Folie 13 |
---|
| 388 | \begin{frame} |
---|
| 389 | \frametitle{Example - Model output} |
---|
| 390 | |
---|
| 391 | \begin{figure}[H] |
---|
| 392 | \begin{minipage}[c][6cm][c]{.45\linewidth} |
---|
| 393 | \centering |
---|
| 394 | \includegraphics[width=0.95\linewidth]{cloud_physics_figures/profiles_cbl_cloud.png} |
---|
| 395 | \end{minipage} |
---|
| 396 | \begin{minipage}[c][6cm][c]{.45\linewidth} |
---|
| 397 | \centering |
---|
| 398 | \includegraphics[width=0.95\linewidth]{cloud_physics_figures/ql_xy_cbl_cloud.png} |
---|
| 399 | \end{minipage} |
---|
| 400 | \end{figure} |
---|
| 401 | \end{frame} |
---|
| 402 | |
---|
| 403 | % Folie 1$ |
---|
| 404 | \begin{frame} |
---|
| 405 | \frametitle{Bibliography} |
---|
| 406 | |
---|
| 407 | \tiny |
---|
| 408 | \begin{thebibliography}{} |
---|
| 409 | \bibitem[1]{betts1973} |
---|
| 410 | \textsc{Betts, A.K., 1973:} \emph{Non-precipitating cumulus convection and its parameterization.} |
---|
| 411 | \newblock Quart. J. Roy. Meteor. Soc., \textbf{99}, 178-196. |
---|
| 412 | \bibitem[2]{cox1976} |
---|
| 413 | \textsc{Cox, S. K., 1976:} \emph{Observations of cloud infrared effective emissivity.} |
---|
| 414 | \newblock J. Atmos. Sci., \textbf{33}, 287-289. |
---|
| 415 | \bibitem[3]{cuijpers1993} |
---|
| 416 | \textsc{Cuijpers, J.W.M., P.G. Duynkerke, 1993:} \emph{Large eddy simulation of trade wind cumulus clouds.} |
---|
| 417 | \newblock J. Atmos. Sci., \textbf{50}, 3894-3908. |
---|
| 418 | \bibitem[4]{deardorff1976} |
---|
| 419 | \textsc{Deardorff, J. W., 1976:} \emph{Usefullness of liquid-water potential temperature in shallow-cloud model.} |
---|
| 420 | \newblock J. Appl. Meteor., \textbf{15}, 98-102. |
---|
| 421 | \bibitem[5]{deardorff1980} |
---|
| 422 | \textsc{Deardorff, J. W., 1980:} \emph{Stratocumulus-capped mixed layers derived from a three-dimensional model}. |
---|
| 423 | \newblock Bondary-Layer Meteor., \textbf{18}, 495-527. |
---|
| 424 | \bibitem[6]{kessler1969} |
---|
| 425 | \textsc{Kessler, E., 1969:} \emph{On the distribution and continuity of water substance in atmospheric circulations.} |
---|
| 426 | \newblock Meteor. Monogr., \textbf{32}, 84 pp. |
---|
| 427 | \bibitem[7]{riechelmann2012} |
---|
| 428 | \textsc{Riechelmann, T., Y. Noh, S. Raasch, 2012:} \emph{A new method for large-eddy simulations of clouds with Lagrangian droplets including the effects of turbulent collision.} |
---|
| 429 | \newblock New J. Phys., \textbf{14}, 27. |
---|
| 430 | \bibitem[8]{sommeria1977} |
---|
| 431 | \textsc{Sommeria, G., J. W. Deardorff, 1977:} \emph{Subgrid-scale condensation in models of nonprecipitating clouds.} |
---|
| 432 | \newblock J. Atmos. Sci., \textbf{34}, 344-355. |
---|
| 433 | \bibitem[9]{cloudphys} |
---|
| 434 | \textsc{cloud\_physics.pdf:} \emph{Introduction to the cloud physics model of PALM.} |
---|
| 435 | \newblock {\tt trunk/DOC/tec/methods/cloud\_physics/cloud\_physics.pdf}. |
---|
| 436 | \end{thebibliography} |
---|
| 437 | \end{frame} |
---|
| 438 | |
---|
[1515] | 439 | \end{document} |
---|