1 | % $Id: basic_equations.tex 1413 2014-05-28 12:21:01Z maronga $ |
---|
2 | \input{header_tmp.tex} |
---|
3 | %\input{../header_lectures.tex} |
---|
4 | |
---|
5 | \usepackage[utf8]{inputenc} |
---|
6 | \usepackage{ngerman} |
---|
7 | \usepackage{pgf} |
---|
8 | \usetheme{Dresden} |
---|
9 | \usepackage{subfigure} |
---|
10 | \usepackage{units} |
---|
11 | \usepackage{multimedia} |
---|
12 | \usepackage{hyperref} |
---|
13 | \newcommand{\event}[1]{\newcommand{\eventname}{#1}} |
---|
14 | \usepackage{xmpmulti} |
---|
15 | \usepackage{tikz} |
---|
16 | \usetikzlibrary{shapes,arrows,positioning} |
---|
17 | \def\Tiny{\fontsize{4pt}{4pt}\selectfont} |
---|
18 | \usepackage{amsmath} |
---|
19 | \usepackage{amssymb} |
---|
20 | \usepackage{multicol} |
---|
21 | |
---|
22 | |
---|
23 | \institute{Institut fÌr Meteorologie und Klimatologie, Leibniz UniversitÀt Hannover} |
---|
24 | \date{last update: \today} |
---|
25 | \event{PALM Seminar} |
---|
26 | \setbeamertemplate{navigation symbols}{} |
---|
27 | |
---|
28 | \setbeamertemplate{footline} |
---|
29 | { |
---|
30 | \begin{beamercolorbox}[rightskip=-0.1cm]& |
---|
31 | {\includegraphics[height=0.65cm]{imuk_logo.pdf}\hfill \includegraphics[height=0.65cm]{luh_logo.pdf}} |
---|
32 | \end{beamercolorbox} |
---|
33 | \begin{beamercolorbox}[ht=2.5ex,dp=1.125ex, |
---|
34 | leftskip=.3cm,rightskip=0.3cm plus1fil]{title in head/foot} |
---|
35 | {\leavevmode{\usebeamerfont{author in head/foot}\insertshortauthor} \hfill \eventname \hfill \insertframenumber \; / \inserttotalframenumber} |
---|
36 | \end{beamercolorbox} |
---|
37 | \begin{beamercolorbox}[colsep=1.5pt]{lower separation line foot} |
---|
38 | \end{beamercolorbox} |
---|
39 | } |
---|
40 | %\logo{\includegraphics[width=0.3\textwidth]{luhimuk_logo.pdf}} |
---|
41 | |
---|
42 | \title[Basic Equations]{Basic Equations} |
---|
43 | \author{Siegfried Raasch} |
---|
44 | |
---|
45 | \begin{document} |
---|
46 | |
---|
47 | %Folie 1 |
---|
48 | \begin{frame} |
---|
49 | \titlepage |
---|
50 | \end{frame} |
---|
51 | |
---|
52 | |
---|
53 | \section{Basic equations} |
---|
54 | \subsection{Basic equations, Unfiltered} |
---|
55 | |
---|
56 | % Folie 2 |
---|
57 | \begin{frame} |
---|
58 | \frametitle{Basic equations, Unfiltered} |
---|
59 | \setlength{\leftmargini}{0.3cm} |
---|
60 | \begin{itemize} |
---|
61 | \item<2->Navier-Stokes equations |
---|
62 | \begin{equation*} |
---|
63 | \rho \frac{\partial u_i}{\partial t} + \rho u_k |
---|
64 | \frac{\partial u_i}{\partial x_k} = |
---|
65 | - \frac{\partial p}{\partial x_i} - \rho \varepsilon_{ijk} |
---|
66 | f_j u_k - \rho \frac{\partial \phi}{\partial x_i} + \mu |
---|
67 | \left\{ \frac{\partial^2 u_i}{\partial x_k^2} + \frac{1}{3} |
---|
68 | \frac{\partial}{\partial x_i} \left( |
---|
69 | \frac{\partial u_k}{\partial x_k} \right) \right\} |
---|
70 | \end{equation*} |
---|
71 | \item \onslide<3->First principle |
---|
72 | \begin{equation*} |
---|
73 | \rho \frac{\partial T}{\partial t} + \rho u_k \frac{\partial T}{\partial x_k} = \mu_\mathrm{h} \frac{\partial^2 T}{\partial x_k^2} + Q |
---|
74 | \end{equation*} |
---|
75 | \item \onslide<4->Equation for passive scalar |
---|
76 | \begin{equation*} |
---|
77 | \rho \frac{\partial \psi}{\partial t} + \rho u_k \frac{\partial \psi}{\partial x_k} = \mu_{\psi} \frac{\partial^2 \psi}{\partial x_k^2} + Q_{\psi} |
---|
78 | \end{equation*} |
---|
79 | \item \onslide<5->Continuity equation |
---|
80 | \begin{equation*} |
---|
81 | \frac{\partial \rho}{\partial t} = - \frac{\partial \rho u_k}{\partial x_k} |
---|
82 | \end{equation*} |
---|
83 | \end{itemize} |
---|
84 | \end{frame} |
---|
85 | |
---|
86 | % Folie 3 |
---|
87 | \begin{frame} |
---|
88 | \frametitle{Boussinesq Approximation} |
---|
89 | \footnotesize |
---|
90 | \begin{itemize} |
---|
91 | \item \onslide<2->Splitting thermodynamic variables into a basic state $\psi_0$ and a variation $\psi^{*}$ |
---|
92 | \begin{align*} |
---|
93 | T(x,y,z,t) &= T_0(x,y,z) &+& T^{*}(x,y,z,t)&&\\ |
---|
94 | p(x,y,z,t) &= p_0(x,y,z) &+& p^{*}(x,y,z,t)&&\\ |
---|
95 | \rho(x,y,z,t) &= \rho_0(z) &+& \rho^{*}(x,y,z,t);& & |
---|
96 | &\psi^{*} << \psi_0& |
---|
97 | \end{align*} |
---|
98 | \item \onslide<3->Hydrostatic equilibrium, geostrophic wind (not included in Boussinesq) |
---|
99 | \begin{equation*} |
---|
100 | \frac{\partial p_0}{\partial z} = -g \rho_0 \hspace{10mm} |
---|
101 | \frac{1}{\rho_0} \frac{\partial p_0}{\partial x} = -f v_\mathrm{g}, |
---|
102 | \hspace{5mm} \frac{1}{\rho_0} \frac{\partial p_0}{\partial y} = f u_\mathrm{g} |
---|
103 | \end{equation*} |
---|
104 | \item \onslide<4->Equation of state |
---|
105 | \begin{equation*} |
---|
106 | p = \rho R T \rightarrow \ln{p} = \ln{\rho} + \ln{R} + \ln{T} \rightarrow \frac{d p}{p} = \frac{d \rho}{\rho} + \frac{d T}{T} |
---|
107 | \end{equation*} |
---|
108 | \begin{equation*} |
---|
109 | \frac{\Delta p}{p_0} \approx \frac{\Delta \rho}{\rho_0} + |
---|
110 | \frac{\Delta T}{T_0} \rightarrow \frac{p^{*}}{p_0} \approx |
---|
111 | \frac{\rho^{*}}{\rho_0} + \frac{T^{*}}{T_0} \hspace{10mm} |
---|
112 | \frac{\rho^{*}}{\rho_0} \approx - \frac{T^{*}}{T_0} \hspace{10mm} |
---|
113 | \end{equation*} |
---|
114 | \end{itemize} |
---|
115 | \end{frame} |
---|
116 | |
---|
117 | % Folie 4 |
---|
118 | \begin{frame} |
---|
119 | \frametitle{Continuity Equation} |
---|
120 | \begin{eqnarray*} |
---|
121 | \onslide<2-> \dfrac{\partial \rho_0(z)}{\partial t} = |
---|
122 | - \dfrac{\partial \rho_0(z) u_k}{\partial x_k} & |
---|
123 | \hspace{10mm} \dfrac{\partial \rho_0 u_k}{\partial x_k} = 0 |
---|
124 | \hspace{5mm} & \text{anelastic approximation}\\ |
---|
125 | \\ |
---|
126 | \onslide<3-> \rho_0 = const. & \hspace{10mm} |
---|
127 | \dfrac{\partial u_k}{\partial x_k} = 0 \hspace{5mm} & |
---|
128 | \text{incompressible flow} |
---|
129 | \end{eqnarray*} |
---|
130 | \end{frame} |
---|
131 | |
---|
132 | % Folie 5 |
---|
133 | \begin{frame} |
---|
134 | \frametitle{Boussinesq Approximated Equations} |
---|
135 | \begin{itemize} |
---|
136 | \item \onslide<2->Navier-Stokes equations |
---|
137 | \begin{equation*} |
---|
138 | \frac{\partial u_i}{\partial t} |
---|
139 | + \frac{\partial u_k u_i}{\partial x_k} = |
---|
140 | - \frac{1}{\rho_0}\frac{\partial p^{*}}{\partial x_i} |
---|
141 | - \varepsilon_{ijk} f_j u_k + \varepsilon_{i3k} f_3 u_{k_\mathrm{g}} |
---|
142 | + g \frac{T - T_0}{T_0} \delta_{i3} + \nu |
---|
143 | \frac{\partial^2 u_i}{\partial x_k^2} |
---|
144 | \end{equation*} |
---|
145 | \item \onslide<3->First principle |
---|
146 | \begin{equation*} |
---|
147 | \frac{\partial T}{\partial t} + u_k \frac{\partial T}{\partial x_k} = |
---|
148 | \nu_\mathrm{h} \frac{\partial^2 T}{\partial x_k^2} + Q |
---|
149 | \end{equation*} |
---|
150 | \item \onslide<4->Equation for passive scalar |
---|
151 | \begin{equation*} |
---|
152 | \frac{\partial \psi}{\partial t} + u_k |
---|
153 | \frac{\partial \psi}{\partial x_k} = \nu_{\psi} |
---|
154 | \frac{\partial^2 \psi}{\partial x_k^2} + Q_{\psi} |
---|
155 | \end{equation*} |
---|
156 | \item \onslide<5->Continuity equation |
---|
157 | \begin{equation*} |
---|
158 | \frac{\partial u_k}{\partial x_k} = 0 |
---|
159 | \end{equation*} |
---|
160 | \end{itemize} |
---|
161 | \onslide<6-> \tikzstyle{plain} = [rectangle, draw, text width=0.27\textwidth, font=\small] |
---|
162 | |
---|
163 | \begin{tikzpicture}[remember picture, overlay] |
---|
164 | \node at (current page.north west){% |
---|
165 | \begin{tikzpicture}[overlay] |
---|
166 | \node[plain, draw,anchor=west] at (94mm,-55mm) {\noindent This set of equations is valid for almost all kind of CFD models!}; |
---|
167 | \end{tikzpicture} |
---|
168 | }; |
---|
169 | \end{tikzpicture} |
---|
170 | \end{frame} |
---|
171 | |
---|
172 | |
---|
173 | \section{Scale Separation} |
---|
174 | \subsection{Scale Separation by Spatial Filtering} |
---|
175 | |
---|
176 | % Folie 6 |
---|
177 | \begin{frame} |
---|
178 | \frametitle{LES - Scale Separation by Spatial Filtering (I)} |
---|
179 | \footnotesize |
---|
180 | \begin{itemize} |
---|
181 | \item<1->{LES technique is based on scale separation, in order to reduce the number of degrees of freedom of the solution. \begin{math} \boxed{\Psi(x_i , t) = \overline{\Psi}(x_i , t) + \Psi'(x_i , t)} \end{math}} |
---|
182 | \item<2->{Large / low-frequency modes $\Psi$ are calculated directly (resolved scales).} |
---|
183 | \item<3->{Small / high-frequency modes $\Psi'$ are parameterized using a statistical model (subgrid / subfilter scales, SGS model).} |
---|
184 | \item<4->{These two categories of scales are seperated by defining a cutoff length $\Delta$.} |
---|
185 | \end{itemize} |
---|
186 | \normalsize |
---|
187 | \includegraphics[width=\textwidth]{basic_equations_figures/Spatial_Filtering_I.png} |
---|
188 | \end{frame} |
---|
189 | |
---|
190 | |
---|
191 | |
---|
192 | % Folie 7 |
---|
193 | \begin{frame} |
---|
194 | \frametitle{LES - Scale Separation by Spatial Filtering (II)} |
---|
195 | \begin{columns}[T] |
---|
196 | \begin{column}{0.8\textwidth} |
---|
197 | \footnotesize |
---|
198 | \begin{itemize} |
---|
199 | \item<1->The Filter applied is a spatial filter: |
---|
200 | \begin{equation*} |
---|
201 | \overline{\Psi}(x_i) = \int_D G(x_i - x_i') \Psi(x_i')dx_i' |
---|
202 | \end{equation*} |
---|
203 | \begin{equation*} |
---|
204 | \overline{\Psi}'(x_i) = 0 \qquad but \qquad \overline{\overline{\Psi}} \neq \overline{\Psi}(x_i) |
---|
205 | \end{equation*} |
---|
206 | \item<2->Filter applied to the nonlinear advection term: |
---|
207 | \begin{equation*} |
---|
208 | \overline{u_k u_i} = \overline{(\overline{u_k} + u_k')(\overline{u_i} + u_i')} = \overline{\overline{u_k}\,\overline{u_i}} + \underbrace{\overline{\overline{u_k} u_i'} + \overline{u_k' \overline{u_i}}}_{C_{ki}} + \underbrace{\overline{u_k' u_i'}}_{R_{ki}} |
---|
209 | \end{equation*} |
---|
210 | \item<5->Leonard proposes a further decomposition: |
---|
211 | \begin{equation*} |
---|
212 | \overline{\overline{u_k}\,\overline{u_i}} = \overline{u_k}\,\overline{u_i} + \underbrace{\left( \overline{\overline{u_k}\,\overline{u_i}} - \overline{u_k}\,\overline{u_i} \right)}_{L_{ki}} |
---|
213 | \end{equation*} |
---|
214 | \begin{equation*} |
---|
215 | \overline{u_k u_i} = \overline{u_k}\,\overline{u_i} + L_{ki} + C_{ki} + R_{ki} = \overline{u_k}\,\overline{u_i} + \tau_{ki} |
---|
216 | \end{equation*} |
---|
217 | \end{itemize} |
---|
218 | \end{column} |
---|
219 | \begin{column}{0.32\textwidth} |
---|
220 | \vspace{45mm} |
---|
221 | \begin{footnotesize} |
---|
222 | \onslide<3->$R_{ki}$: \textbf{Reynolds-stress} \\ |
---|
223 | $C_{ki}$: \textbf{cross-stress} \\ |
---|
224 | $L_{ki}$: \textbf{Leonard-stress} \\ |
---|
225 | $\tau_{ki}$: \textbf{total stress-tensor} |
---|
226 | \end{footnotesize} |
---|
227 | \end{column} |
---|
228 | \end{columns} |
---|
229 | \onslide<4->\tikzstyle{plain} = [rectangle, draw, text width=0.27\textwidth, font=\small] |
---|
230 | \begin{tikzpicture}[remember picture, overlay] |
---|
231 | \node at (current page.north west){ |
---|
232 | \begin{tikzpicture}[overlay] |
---|
233 | \node[plain, draw,anchor=west] at (94mm,-30mm) { |
---|
234 | \begin{footnotesize} |
---|
235 | \noindent \textbf{Ensemble average:} \\ |
---|
236 | \end{footnotesize} |
---|
237 | $\overline{\overline{\Psi}}(x_i) = \overline{\Psi}(x_i)$\\ |
---|
238 | \vspace{5mm} |
---|
239 | $\overline{u_k u_i} = \overline{u_k}\,\overline{u_i} + \overline{u_k' u_i'}$ |
---|
240 | }; |
---|
241 | \end{tikzpicture} |
---|
242 | }; |
---|
243 | \end{tikzpicture} |
---|
244 | \end{frame} |
---|
245 | |
---|
246 | % Folie 8 |
---|
247 | \begin{frame} |
---|
248 | \frametitle{LES - Scale Separation by Spatial Filtering (III)} |
---|
249 | \small |
---|
250 | \begin{itemize} |
---|
251 | \item<2-> Volume-balance approach (Schumann, 1975)\\ advantage: numerical discretization acts as a\\ Reynolds operator |
---|
252 | \begin{flalign*} |
---|
253 | &\Psi(V,t)=\frac{1}{\Delta x \cdot \Delta y \cdot \Delta z} = \int \int \int_V \Psi(V',t) dV'&\\ |
---|
254 | &\overline{\Psi'}(x_i)=0 \hspace{5mm} \text{and} \hspace{5mm} \overline{\overline{\Psi}} = \overline{\Psi}\\ |
---|
255 | &V=\left[ x - \frac{\Delta x}{2}, x + \frac{\Delta x}{2} \right] \times \left[ y - \frac{\Delta y}{2}, y + \frac{\Delta y}{2} \right] \times \left[ z - \frac{\Delta z}{2}, z + \frac{\Delta z}{2} \right] |
---|
256 | \end{flalign*} |
---|
257 | \item<3-> Filter applied to the nonlinear advection term: |
---|
258 | \begin{equation*} |
---|
259 | \overline{u_k u_i} = \overline{(\overline{u_k}+u'_k)(\overline{u_i}+u'_i)}= |
---|
260 | \overline{u_k}\,\overline{u_i}+\overline{u'_k u'_i} |
---|
261 | \end{equation*} |
---|
262 | \end{itemize} |
---|
263 | \onslide<1->\tikzstyle{plain} = [rectangle, draw, text width=0.27\textwidth, font=\small] |
---|
264 | \begin{tikzpicture}[remember picture, overlay] |
---|
265 | \node at (current page.north west){ |
---|
266 | \begin{tikzpicture}[overlay] |
---|
267 | \node[plain, draw,anchor=west] at (94mm,-30mm) { |
---|
268 | \begin{footnotesize} |
---|
269 | \noindent \textbf{Ensemble average:} \\ |
---|
270 | \end{footnotesize} |
---|
271 | $\overline{\overline{\Psi}}(x_i) = \overline{\Psi}(x_i)$\\ |
---|
272 | \vspace{5mm} |
---|
273 | $\overline{u_k u_i} = \overline{u_k}\,\overline{u_i} + \overline{u_k' u_i'}$ |
---|
274 | }; |
---|
275 | \end{tikzpicture} |
---|
276 | }; |
---|
277 | \end{tikzpicture} |
---|
278 | \end{frame} |
---|
279 | |
---|
280 | |
---|
281 | \section{Filtered equations} |
---|
282 | \subsection{The Filtered Equations} |
---|
283 | |
---|
284 | % Folie 9 |
---|
285 | \begin{frame} |
---|
286 | \frametitle{The Filtered Equations} |
---|
287 | \onslide<2-> |
---|
288 | \begin{equation*} |
---|
289 | \frac{\partial \overline{u_i}}{\partial t} |
---|
290 | + \frac{\partial \overline{u_k}\,\overline{u_i}}{\partial x_k} = |
---|
291 | - \frac{1}{\rho_0} \frac{\partial \overline{p}^*}{\partial x_i} |
---|
292 | - \varepsilon_{ijk}f_j \overline{u_k} + \varepsilon_{i3k} f_3 \overline{u}_{k_\mathrm{g}} |
---|
293 | + g \frac{\overline{T}-T_0}{T_0} \delta_{i3} |
---|
294 | + \nu \frac{\partial^2 \overline{u_i}}{\partial x_k^2} |
---|
295 | - \frac{\partial \tau_{ki}}{\partial x_k} |
---|
296 | \end{equation*} |
---|
297 | |
---|
298 | \begin{footnotesize} |
---|
299 | \begin{itemize} |
---|
300 | \item<3->The previous derivation completely ignores the existance of the computational grid. |
---|
301 | \item<4->The computational grid introduces another space scale: the discretization step $\Delta x_i$. |
---|
302 | \item<5->$\Delta x_i$ has to be small enough to be able to apply the filtering process correctly: $\Delta x_i \le \Delta$ |
---|
303 | \item<6-> Two possibilities:\\ |
---|
304 | 1. Pre-filtering technique\\ |
---|
305 | ($\Delta x < \Delta$, explicit filtering)\\ |
---|
306 | 2. Linking the analytical filter\\ |
---|
307 | to the computational grid\\ |
---|
308 | ($\Delta x = \Delta$, implicit filtering) |
---|
309 | \end{itemize} |
---|
310 | \end{footnotesize} |
---|
311 | |
---|
312 | \begin{picture}(0.0,0.0) |
---|
313 | \put(140,13){\uncover<6->{\includegraphics[width=0.6\textwidth]{basic_equations_figures/explicit_implicit.png}}} |
---|
314 | \end{picture} |
---|
315 | \end{frame} |
---|
316 | |
---|
317 | %% Folie 10 |
---|
318 | \begin{frame} |
---|
319 | \frametitle{Explicit Versus Implicit Filtering} |
---|
320 | \begin{itemize} |
---|
321 | \item<2-> Explicit filtering: |
---|
322 | \begin{itemize} |
---|
323 | \small |
---|
324 | \item<2-> Requires that the analytical filter is applied explicitly. |
---|
325 | \item<3-> Rarely used in practice, due to additional computational costs. |
---|
326 | \end{itemize} |
---|
327 | \item<4-> Implicit filtering: |
---|
328 | \begin{itemize} |
---|
329 | \small |
---|
330 | \item<4-> The analytical cutoff length is associated with the grid spacing. |
---|
331 | \item<5-> This method does not require the use of an analytical filter. |
---|
332 | \item<6-> The filter characteristic cannot really be controlled. |
---|
333 | \item<7-> Because of its simplicity, this method is used by nearly all LES models. |
---|
334 | \end{itemize} |
---|
335 | \end{itemize} |
---|
336 | |
---|
337 | \onslide<8-> |
---|
338 | \begin{scriptsize} |
---|
339 | \textbf{Literature:}\\ |
---|
340 | \textbf{Sagaut, P., 2001:} Large eddy simulation for incompressible flows: An introduction. Springer Verlag, Berlin/Heidelberg/New York, 319 pp.\\ |
---|
341 | \textbf{Schumann, U., 1975:} Subgrid scale model for finite difference simulations of turbulent flows in plane channels and annuli. J. Comp. Phys., \textbf{18}, 376-404.\\ |
---|
342 | \end{scriptsize} |
---|
343 | \end{frame} |
---|
344 | |
---|
345 | % Folie 11 |
---|
346 | \begin{frame} |
---|
347 | \frametitle{The Final Set of Equations (PALM)} |
---|
348 | \footnotesize |
---|
349 | \begin{itemize} |
---|
350 | \item<2-> Navier-Stokes equations: |
---|
351 | \onslide<2-> |
---|
352 | \begin{flalign*} |
---|
353 | &\frac{\partial \overline{u_i}}{\partial t} = - \frac{\partial \overline{u_k}\,\overline{u_i}}{\partial x_k} - \frac{1}{\rho_0} \frac{\partial \overline{\pi}^*}{\partial x_i} - \varepsilon_{ijk}f_j \overline{u_k} + \varepsilon_{i3k} f_3 \overline{u}_{k_\mathrm{g}} + g \frac{\overline{T}-T_0}{T_0} \delta_{i3} + \nu \frac{\partial^2 \overline{u_i}}{\partial x_k^2} - \frac{\partial \tau_{ki}^r}{\partial x_k}& |
---|
354 | \end{flalign*} |
---|
355 | \item<4-> First principle (using potential\\ temperature): |
---|
356 | \onslide<4-> |
---|
357 | \begin{flalign*} |
---|
358 | &\frac{\partial \overline{\theta}}{\partial t} = - \frac{\partial \overline{u_k}\,\overline{\theta}}{\partial x_k} - \frac{\partial H_k}{\partial x_k} + Q_{\theta}& |
---|
359 | \end{flalign*} |
---|
360 | \item<5-> Equation for specific humidity\\ (passive scalar) |
---|
361 | \onslide<5-> |
---|
362 | \begin{flalign*} |
---|
363 | &\frac{\partial \overline{q}}{\partial t} = - \frac{\partial \overline{u_k}\,\overline{q}}{\partial x_k} - \frac{\partial W_k}{\partial x_k} + Q_{w}& |
---|
364 | \end{flalign*} |
---|
365 | \item<6-> |
---|
366 | Continuity equation |
---|
367 | \onslide<6-> |
---|
368 | \begin{flalign*} |
---|
369 | &\frac{\partial \overline{u_k}}{\partial x_k} = 0& |
---|
370 | \end{flalign*} |
---|
371 | \end{itemize} |
---|
372 | |
---|
373 | \onslide<3->\tikzstyle{plain} = [rectangle, draw, text width=0.40\textwidth, font=\small] |
---|
374 | \begin{tikzpicture}[remember picture, overlay] |
---|
375 | \node at (current page.north west){ |
---|
376 | \begin{tikzpicture}[overlay] |
---|
377 | \node[plain, draw,anchor=west] at (75mm,-45mm) { |
---|
378 | \begin{tiny} |
---|
379 | \noindent normal stresses included in the stress tensor are now included in a modified dynamic pressure:\\ |
---|
380 | \end{tiny} |
---|
381 | $\tau_{ki}^r = \tau_{ki} - \frac{1}{3} \tau_{jj} \delta_{ki}$\\ |
---|
382 | \vspace{1mm} |
---|
383 | $\overline{\pi}^* = \overline{p}^* + \frac{1}{3} \tau_{jj} \delta_{ki}$ |
---|
384 | }; |
---|
385 | \end{tikzpicture} |
---|
386 | }; |
---|
387 | \end{tikzpicture} |
---|
388 | |
---|
389 | \onslide<7->\tikzstyle{plain} = [rectangle, draw, text width=0.40\textwidth, font=\small] |
---|
390 | \begin{tikzpicture}[remember picture, overlay] |
---|
391 | \node at (current page.north west){ |
---|
392 | \begin{tikzpicture}[overlay] |
---|
393 | \node[plain, draw,anchor=west] at (75mm,-70mm) { |
---|
394 | \begin{tiny} |
---|
395 | \noindent subgrid-scale stresses (fluxes) to be parameterized in the SGS model:\\ |
---|
396 | \end{tiny} |
---|
397 | $\tau_{ki} = \overline{u_k u_i} - \overline{u_k}\,\overline{u_i}$\\ |
---|
398 | $H_{k} = \overline{u_k \theta} - \overline{u_k}\,\overline{\theta}$\\ |
---|
399 | $W_{k} = \overline{u_k q} - \overline{u_k}\,\overline{q}$ |
---|
400 | }; |
---|
401 | \end{tikzpicture} |
---|
402 | }; |
---|
403 | \end{tikzpicture} |
---|
404 | \end{frame} |
---|
405 | |
---|
406 | |
---|
407 | \end{document} |
---|