1 | MODULE wall_fluxes_mod |
---|
2 | !------------------------------------------------------------------------------! |
---|
3 | ! Current revisions: |
---|
4 | ! ----------------- |
---|
5 | ! |
---|
6 | ! |
---|
7 | ! Former revisions: |
---|
8 | ! ----------------- |
---|
9 | ! $Id: wall_fluxes.f90 484 2010-02-05 07:36:54Z helmke $ |
---|
10 | ! |
---|
11 | ! 187 2008-08-06 16:25:09Z letzel |
---|
12 | ! Bugfix: Modification of the evaluation of the vertical turbulent momentum |
---|
13 | ! fluxes u'w' and v'w (see prandtl_fluxes), this requires the calculation of |
---|
14 | ! us_wall (and vel_total, u_i, v_i, ws) also in wall_fluxes_e. |
---|
15 | ! Bugfix: change definition of us_wall from 1D to 2D |
---|
16 | ! Bugfix: storage of rifs to rifs_wall in wall_fluxes_e removed |
---|
17 | ! Change: add 'minus' sign to fluxes produced by subroutine wall_fluxes_e for |
---|
18 | ! consistency with subroutine wall_fluxes |
---|
19 | ! Change: Modification of the integrated version of the profile function for |
---|
20 | ! momentum for unstable stratification |
---|
21 | ! |
---|
22 | ! Initial version (2007/03/07) |
---|
23 | ! |
---|
24 | ! Description: |
---|
25 | ! ------------ |
---|
26 | ! Calculates momentum fluxes at vertical walls assuming Monin-Obukhov |
---|
27 | ! similarity. |
---|
28 | ! Indices: usvs a=1, vsus b=1, wsvs c1=1, wsus c2=1 (other=0). |
---|
29 | ! The all-gridpoint version of wall_fluxes_e is not used so far, because |
---|
30 | ! it gives slightly different results from the ij-version for some unknown |
---|
31 | ! reason. |
---|
32 | !------------------------------------------------------------------------------! |
---|
33 | PRIVATE |
---|
34 | PUBLIC wall_fluxes, wall_fluxes_e |
---|
35 | |
---|
36 | INTERFACE wall_fluxes |
---|
37 | MODULE PROCEDURE wall_fluxes |
---|
38 | MODULE PROCEDURE wall_fluxes_ij |
---|
39 | END INTERFACE wall_fluxes |
---|
40 | |
---|
41 | INTERFACE wall_fluxes_e |
---|
42 | MODULE PROCEDURE wall_fluxes_e |
---|
43 | MODULE PROCEDURE wall_fluxes_e_ij |
---|
44 | END INTERFACE wall_fluxes_e |
---|
45 | |
---|
46 | CONTAINS |
---|
47 | |
---|
48 | !------------------------------------------------------------------------------! |
---|
49 | ! Call for all grid points |
---|
50 | !------------------------------------------------------------------------------! |
---|
51 | SUBROUTINE wall_fluxes( wall_flux, a, b, c1, c2, nzb_uvw_inner, & |
---|
52 | nzb_uvw_outer, wall ) |
---|
53 | |
---|
54 | USE arrays_3d |
---|
55 | USE control_parameters |
---|
56 | USE grid_variables |
---|
57 | USE indices |
---|
58 | USE statistics |
---|
59 | |
---|
60 | IMPLICIT NONE |
---|
61 | |
---|
62 | INTEGER :: i, j, k, wall_index |
---|
63 | |
---|
64 | INTEGER, DIMENSION(nys-1:nyn+1,nxl-1:nxr+1) :: nzb_uvw_inner, & |
---|
65 | nzb_uvw_outer |
---|
66 | REAL :: a, b, c1, c2, h1, h2, zp |
---|
67 | REAL :: pts, pt_i, rifs, u_i, v_i, us_wall, vel_total, ws, wspts |
---|
68 | |
---|
69 | REAL, DIMENSION(nys-1:nyn+1,nxl-1:nxr+1) :: wall |
---|
70 | REAL, DIMENSION(nzb:nzt+1,nys:nyn,nxl:nxr) :: wall_flux |
---|
71 | |
---|
72 | |
---|
73 | zp = 0.5 * ( (a+c1) * dy + (b+c2) * dx ) |
---|
74 | wall_flux = 0.0 |
---|
75 | wall_index = NINT( a+ 2*b + 3*c1 + 4*c2 ) |
---|
76 | |
---|
77 | DO i = nxl, nxr |
---|
78 | DO j = nys, nyn |
---|
79 | |
---|
80 | IF ( wall(j,i) /= 0.0 ) THEN |
---|
81 | ! |
---|
82 | !-- All subsequent variables are computed for the respective |
---|
83 | !-- location where the respective flux is defined. |
---|
84 | DO k = nzb_uvw_inner(j,i)+1, nzb_uvw_outer(j,i) |
---|
85 | |
---|
86 | ! |
---|
87 | !-- (1) Compute rifs, u_i, v_i, ws, pt' and w'pt' |
---|
88 | rifs = rif_wall(k,j,i,wall_index) |
---|
89 | |
---|
90 | u_i = a * u(k,j,i) + c1 * 0.25 * & |
---|
91 | ( u(k+1,j,i+1) + u(k+1,j,i) + u(k,j,i+1) + u(k,j,i) ) |
---|
92 | |
---|
93 | v_i = b * v(k,j,i) + c2 * 0.25 * & |
---|
94 | ( v(k+1,j+1,i) + v(k+1,j,i) + v(k,j+1,i) + v(k,j,i) ) |
---|
95 | |
---|
96 | ws = ( c1 + c2 ) * w(k,j,i) + 0.25 * ( & |
---|
97 | a * ( w(k-1,j,i-1) + w(k-1,j,i) + w(k,j,i-1) + w(k,j,i) ) & |
---|
98 | + b * ( w(k-1,j-1,i) + w(k-1,j,i) + w(k,j-1,i) + w(k,j,i) ) & |
---|
99 | ) |
---|
100 | pt_i = 0.5 * ( pt(k,j,i) + a * pt(k,j,i-1) + & |
---|
101 | b * pt(k,j-1,i) + ( c1 + c2 ) * pt(k+1,j,i) ) |
---|
102 | |
---|
103 | pts = pt_i - hom(k,1,4,0) |
---|
104 | wspts = ws * pts |
---|
105 | |
---|
106 | ! |
---|
107 | !-- (2) Compute wall-parallel absolute velocity vel_total |
---|
108 | vel_total = SQRT( ws**2 + (a+c1) * u_i**2 + (b+c2) * v_i**2 ) |
---|
109 | |
---|
110 | ! |
---|
111 | !-- (3) Compute wall friction velocity us_wall |
---|
112 | IF ( rifs >= 0.0 ) THEN |
---|
113 | |
---|
114 | ! |
---|
115 | !-- Stable stratification (and neutral) |
---|
116 | us_wall = kappa * vel_total / ( LOG( zp / z0(j,i) ) + & |
---|
117 | 5.0 * rifs * ( zp - z0(j,i) ) / zp & |
---|
118 | ) |
---|
119 | ELSE |
---|
120 | |
---|
121 | ! |
---|
122 | !-- Unstable stratification |
---|
123 | h1 = SQRT( SQRT( 1.0 - 16.0 * rifs ) ) |
---|
124 | h2 = SQRT( SQRT( 1.0 - 16.0 * rifs * z0(j,i) / zp ) ) |
---|
125 | |
---|
126 | us_wall = kappa * vel_total / ( & |
---|
127 | LOG( zp / z0(j,i) ) - & |
---|
128 | LOG( ( 1.0 + h1 )**2 * ( 1.0 + h1**2 ) / ( & |
---|
129 | ( 1.0 + h2 )**2 * ( 1.0 + h2**2 ) ) ) + & |
---|
130 | 2.0 * ( ATAN( h1 ) - ATAN( h2 ) ) & |
---|
131 | ) |
---|
132 | ENDIF |
---|
133 | |
---|
134 | ! |
---|
135 | !-- (4) Compute zp/L (corresponds to neutral Richardson flux |
---|
136 | !-- number rifs) |
---|
137 | rifs = -1.0 * zp * kappa * g * wspts / ( pt_i * & |
---|
138 | ( us_wall**3 + 1E-30 ) ) |
---|
139 | |
---|
140 | ! |
---|
141 | !-- Limit the value range of the Richardson numbers. |
---|
142 | !-- This is necessary for very small velocities (u,w --> 0), |
---|
143 | !-- because the absolute value of rif can then become very |
---|
144 | !-- large, which in consequence would result in very large |
---|
145 | !-- shear stresses and very small momentum fluxes (both are |
---|
146 | !-- generally unrealistic). |
---|
147 | IF ( rifs < rif_min ) rifs = rif_min |
---|
148 | IF ( rifs > rif_max ) rifs = rif_max |
---|
149 | |
---|
150 | ! |
---|
151 | !-- (5) Compute wall_flux (u'v', v'u', w'v', or w'u') |
---|
152 | IF ( rifs >= 0.0 ) THEN |
---|
153 | |
---|
154 | ! |
---|
155 | !-- Stable stratification (and neutral) |
---|
156 | wall_flux(k,j,i) = kappa * & |
---|
157 | ( a*u(k,j,i) + b*v(k,j,i) + (c1+c2)*w(k,j,i) ) / & |
---|
158 | ( LOG( zp / z0(j,i) ) + & |
---|
159 | 5.0 * rifs * ( zp - z0(j,i) ) / zp & |
---|
160 | ) |
---|
161 | ELSE |
---|
162 | |
---|
163 | ! |
---|
164 | !-- Unstable stratification |
---|
165 | h1 = SQRT( SQRT( 1.0 - 16.0 * rifs ) ) |
---|
166 | h2 = SQRT( SQRT( 1.0 - 16.0 * rifs * z0(j,i) / zp ) ) |
---|
167 | |
---|
168 | wall_flux(k,j,i) = kappa * & |
---|
169 | ( a*u(k,j,i) + b*v(k,j,i) + (c1+c2)*w(k,j,i) ) / ( & |
---|
170 | LOG( zp / z0(j,i) ) - & |
---|
171 | LOG( ( 1.0 + h1 )**2 * ( 1.0 + h1**2 ) / ( & |
---|
172 | ( 1.0 + h2 )**2 * ( 1.0 + h2**2 ) ) ) + & |
---|
173 | 2.0 * ( ATAN( h1 ) - ATAN( h2 ) ) & |
---|
174 | ) |
---|
175 | ENDIF |
---|
176 | wall_flux(k,j,i) = -wall_flux(k,j,i) * us_wall |
---|
177 | |
---|
178 | ! |
---|
179 | !-- store rifs for next time step |
---|
180 | rif_wall(k,j,i,wall_index) = rifs |
---|
181 | |
---|
182 | ENDDO |
---|
183 | |
---|
184 | ENDIF |
---|
185 | |
---|
186 | ENDDO |
---|
187 | ENDDO |
---|
188 | |
---|
189 | END SUBROUTINE wall_fluxes |
---|
190 | |
---|
191 | |
---|
192 | |
---|
193 | !------------------------------------------------------------------------------! |
---|
194 | ! Call for all grid point i,j |
---|
195 | !------------------------------------------------------------------------------! |
---|
196 | SUBROUTINE wall_fluxes_ij( i, j, nzb_w, nzt_w, wall_flux, a, b, c1, c2 ) |
---|
197 | |
---|
198 | USE arrays_3d |
---|
199 | USE control_parameters |
---|
200 | USE grid_variables |
---|
201 | USE indices |
---|
202 | USE statistics |
---|
203 | |
---|
204 | IMPLICIT NONE |
---|
205 | |
---|
206 | INTEGER :: i, j, k, nzb_w, nzt_w, wall_index |
---|
207 | REAL :: a, b, c1, c2, h1, h2, zp |
---|
208 | |
---|
209 | REAL :: pts, pt_i, rifs, u_i, v_i, us_wall, vel_total, ws, wspts |
---|
210 | |
---|
211 | REAL, DIMENSION(nzb:nzt+1) :: wall_flux |
---|
212 | |
---|
213 | |
---|
214 | zp = 0.5 * ( (a+c1) * dy + (b+c2) * dx ) |
---|
215 | wall_flux = 0.0 |
---|
216 | wall_index = NINT( a+ 2*b + 3*c1 + 4*c2 ) |
---|
217 | |
---|
218 | ! |
---|
219 | !-- All subsequent variables are computed for the respective location where |
---|
220 | !-- the respective flux is defined. |
---|
221 | DO k = nzb_w, nzt_w |
---|
222 | |
---|
223 | ! |
---|
224 | !-- (1) Compute rifs, u_i, v_i, ws, pt' and w'pt' |
---|
225 | rifs = rif_wall(k,j,i,wall_index) |
---|
226 | |
---|
227 | u_i = a * u(k,j,i) + c1 * 0.25 * & |
---|
228 | ( u(k+1,j,i+1) + u(k+1,j,i) + u(k,j,i+1) + u(k,j,i) ) |
---|
229 | |
---|
230 | v_i = b * v(k,j,i) + c2 * 0.25 * & |
---|
231 | ( v(k+1,j+1,i) + v(k+1,j,i) + v(k,j+1,i) + v(k,j,i) ) |
---|
232 | |
---|
233 | ws = ( c1 + c2 ) * w(k,j,i) + 0.25 * ( & |
---|
234 | a * ( w(k-1,j,i-1) + w(k-1,j,i) + w(k,j,i-1) + w(k,j,i) ) & |
---|
235 | + b * ( w(k-1,j-1,i) + w(k-1,j,i) + w(k,j-1,i) + w(k,j,i) ) & |
---|
236 | ) |
---|
237 | pt_i = 0.5 * ( pt(k,j,i) + a * pt(k,j,i-1) + b * pt(k,j-1,i) & |
---|
238 | + ( c1 + c2 ) * pt(k+1,j,i) ) |
---|
239 | |
---|
240 | pts = pt_i - hom(k,1,4,0) |
---|
241 | wspts = ws * pts |
---|
242 | |
---|
243 | ! |
---|
244 | !-- (2) Compute wall-parallel absolute velocity vel_total |
---|
245 | vel_total = SQRT( ws**2 + ( a+c1 ) * u_i**2 + ( b+c2 ) * v_i**2 ) |
---|
246 | |
---|
247 | ! |
---|
248 | !-- (3) Compute wall friction velocity us_wall |
---|
249 | IF ( rifs >= 0.0 ) THEN |
---|
250 | |
---|
251 | ! |
---|
252 | !-- Stable stratification (and neutral) |
---|
253 | us_wall = kappa * vel_total / ( LOG( zp / z0(j,i) ) + & |
---|
254 | 5.0 * rifs * ( zp - z0(j,i) ) / zp & |
---|
255 | ) |
---|
256 | ELSE |
---|
257 | |
---|
258 | ! |
---|
259 | !-- Unstable stratification |
---|
260 | h1 = SQRT( SQRT( 1.0 - 16.0 * rifs ) ) |
---|
261 | h2 = SQRT( SQRT( 1.0 - 16.0 * rifs * z0(j,i) / zp ) ) |
---|
262 | |
---|
263 | us_wall = kappa * vel_total / ( & |
---|
264 | LOG( zp / z0(j,i) ) - & |
---|
265 | LOG( ( 1.0 + h1 )**2 * ( 1.0 + h1**2 ) / ( & |
---|
266 | ( 1.0 + h2 )**2 * ( 1.0 + h2**2 ) ) ) + & |
---|
267 | 2.0 * ( ATAN( h1 ) - ATAN( h2 ) ) & |
---|
268 | ) |
---|
269 | ENDIF |
---|
270 | |
---|
271 | ! |
---|
272 | !-- (4) Compute zp/L (corresponds to neutral Richardson flux number |
---|
273 | !-- rifs) |
---|
274 | rifs = -1.0 * zp * kappa * g * wspts / ( pt_i * (us_wall**3 + 1E-30) ) |
---|
275 | |
---|
276 | ! |
---|
277 | !-- Limit the value range of the Richardson numbers. |
---|
278 | !-- This is necessary for very small velocities (u,w --> 0), because |
---|
279 | !-- the absolute value of rif can then become very large, which in |
---|
280 | !-- consequence would result in very large shear stresses and very |
---|
281 | !-- small momentum fluxes (both are generally unrealistic). |
---|
282 | IF ( rifs < rif_min ) rifs = rif_min |
---|
283 | IF ( rifs > rif_max ) rifs = rif_max |
---|
284 | |
---|
285 | ! |
---|
286 | !-- (5) Compute wall_flux (u'v', v'u', w'v', or w'u') |
---|
287 | IF ( rifs >= 0.0 ) THEN |
---|
288 | |
---|
289 | ! |
---|
290 | !-- Stable stratification (and neutral) |
---|
291 | wall_flux(k) = kappa * & |
---|
292 | ( a*u(k,j,i) + b*v(k,j,i) + (c1+c2)*w(k,j,i) ) / & |
---|
293 | ( LOG( zp / z0(j,i) ) + & |
---|
294 | 5.0 * rifs * ( zp - z0(j,i) ) / zp & |
---|
295 | ) |
---|
296 | ELSE |
---|
297 | |
---|
298 | ! |
---|
299 | !-- Unstable stratification |
---|
300 | h1 = SQRT( SQRT( 1.0 - 16.0 * rifs ) ) |
---|
301 | h2 = SQRT( SQRT( 1.0 - 16.0 * rifs * z0(j,i) / zp ) ) |
---|
302 | |
---|
303 | wall_flux(k) = kappa * & |
---|
304 | ( a*u(k,j,i) + b*v(k,j,i) + (c1+c2)*w(k,j,i) ) / ( & |
---|
305 | LOG( zp / z0(j,i) ) - & |
---|
306 | LOG( ( 1.0 + h1 )**2 * ( 1.0 + h1**2 ) / ( & |
---|
307 | ( 1.0 + h2 )**2 * ( 1.0 + h2**2 ) ) ) + & |
---|
308 | 2.0 * ( ATAN( h1 ) - ATAN( h2 ) ) & |
---|
309 | ) |
---|
310 | ENDIF |
---|
311 | wall_flux(k) = -wall_flux(k) * us_wall |
---|
312 | |
---|
313 | ! |
---|
314 | !-- store rifs for next time step |
---|
315 | rif_wall(k,j,i,wall_index) = rifs |
---|
316 | |
---|
317 | ENDDO |
---|
318 | |
---|
319 | END SUBROUTINE wall_fluxes_ij |
---|
320 | |
---|
321 | |
---|
322 | |
---|
323 | !------------------------------------------------------------------------------! |
---|
324 | ! Call for all grid points |
---|
325 | !------------------------------------------------------------------------------! |
---|
326 | SUBROUTINE wall_fluxes_e( wall_flux, a, b, c1, c2, wall ) |
---|
327 | |
---|
328 | !------------------------------------------------------------------------------! |
---|
329 | ! Description: |
---|
330 | ! ------------ |
---|
331 | ! Calculates momentum fluxes at vertical walls for routine production_e |
---|
332 | ! assuming Monin-Obukhov similarity. |
---|
333 | ! Indices: usvs a=1, vsus b=1, wsvs c1=1, wsus c2=1 (other=0). |
---|
334 | !------------------------------------------------------------------------------! |
---|
335 | |
---|
336 | USE arrays_3d |
---|
337 | USE control_parameters |
---|
338 | USE grid_variables |
---|
339 | USE indices |
---|
340 | USE statistics |
---|
341 | |
---|
342 | IMPLICIT NONE |
---|
343 | |
---|
344 | INTEGER :: i, j, k, kk, wall_index |
---|
345 | REAL :: a, b, c1, c2, h1, h2, u_i, v_i, us_wall, vel_total, vel_zp, & |
---|
346 | ws, zp |
---|
347 | |
---|
348 | REAL :: rifs |
---|
349 | |
---|
350 | REAL, DIMENSION(nys-1:nyn+1,nxl-1:nxr+1) :: wall |
---|
351 | REAL, DIMENSION(nzb:nzt+1,nys:nyn,nxl:nxr) :: wall_flux |
---|
352 | |
---|
353 | |
---|
354 | zp = 0.5 * ( (a+c1) * dy + (b+c2) * dx ) |
---|
355 | wall_flux = 0.0 |
---|
356 | wall_index = NINT( a+ 2*b + 3*c1 + 4*c2 ) |
---|
357 | |
---|
358 | DO i = nxl, nxr |
---|
359 | DO j = nys, nyn |
---|
360 | |
---|
361 | IF ( wall(j,i) /= 0.0 ) THEN |
---|
362 | ! |
---|
363 | !-- All subsequent variables are computed for scalar locations. |
---|
364 | DO k = nzb_diff_s_inner(j,i)-1, nzb_diff_s_outer(j,i)-2 |
---|
365 | ! |
---|
366 | !-- (1) Compute rifs, u_i, v_i, and ws |
---|
367 | IF ( k == nzb_diff_s_inner(j,i)-1 ) THEN |
---|
368 | kk = nzb_diff_s_inner(j,i)-1 |
---|
369 | ELSE |
---|
370 | kk = k-1 |
---|
371 | ENDIF |
---|
372 | rifs = 0.5 * ( rif_wall(k,j,i,wall_index) + & |
---|
373 | a * rif_wall(k,j,i+1,1) + b * rif_wall(k,j+1,i,2) + & |
---|
374 | c1 * rif_wall(kk,j,i,3) + c2 * rif_wall(kk,j,i,4) & |
---|
375 | ) |
---|
376 | |
---|
377 | u_i = 0.5 * ( u(k,j,i) + u(k,j,i+1) ) |
---|
378 | v_i = 0.5 * ( v(k,j,i) + v(k,j+1,i) ) |
---|
379 | ws = 0.5 * ( w(k,j,i) + w(k-1,j,i) ) |
---|
380 | ! |
---|
381 | !-- (2) Compute wall-parallel absolute velocity vel_total and |
---|
382 | !-- interpolate appropriate velocity component vel_zp. |
---|
383 | vel_total = SQRT( ws**2 + (a+c1) * u_i**2 + (b+c2) * v_i**2 ) |
---|
384 | vel_zp = 0.5 * ( a * u_i + b * v_i + (c1+c2) * ws ) |
---|
385 | ! |
---|
386 | !-- (3) Compute wall friction velocity us_wall |
---|
387 | IF ( rifs >= 0.0 ) THEN |
---|
388 | |
---|
389 | ! |
---|
390 | !-- Stable stratification (and neutral) |
---|
391 | us_wall = kappa * vel_total / ( LOG( zp / z0(j,i) ) + & |
---|
392 | 5.0 * rifs * ( zp - z0(j,i) ) / zp & |
---|
393 | ) |
---|
394 | ELSE |
---|
395 | |
---|
396 | ! |
---|
397 | !-- Unstable stratification |
---|
398 | h1 = SQRT( SQRT( 1.0 - 16.0 * rifs ) ) |
---|
399 | h2 = SQRT( SQRT( 1.0 - 16.0 * rifs * z0(j,i) / zp ) ) |
---|
400 | |
---|
401 | us_wall = kappa * vel_total / ( & |
---|
402 | LOG( zp / z0(j,i) ) - & |
---|
403 | LOG( ( 1.0 + h1 )**2 * ( 1.0 + h1**2 ) / ( & |
---|
404 | ( 1.0 + h2 )**2 * ( 1.0 + h2**2 ) ) ) + & |
---|
405 | 2.0 * ( ATAN( h1 ) - ATAN( h2 ) ) & |
---|
406 | ) |
---|
407 | ENDIF |
---|
408 | |
---|
409 | ! |
---|
410 | !-- Skip step (4) of wall_fluxes, because here rifs is already |
---|
411 | !-- available from (1) |
---|
412 | ! |
---|
413 | !-- (5) Compute wall_flux (u'v', v'u', w'v', or w'u') |
---|
414 | |
---|
415 | IF ( rifs >= 0.0 ) THEN |
---|
416 | |
---|
417 | ! |
---|
418 | !-- Stable stratification (and neutral) |
---|
419 | wall_flux(k,j,i) = kappa * vel_zp / & |
---|
420 | ( LOG( zp/z0(j,i) ) + 5.0*rifs * ( zp-z0(j,i) ) / zp ) |
---|
421 | ELSE |
---|
422 | |
---|
423 | ! |
---|
424 | !-- Unstable stratification |
---|
425 | h1 = SQRT( SQRT( 1.0 - 16.0 * rifs ) ) |
---|
426 | h2 = SQRT( SQRT( 1.0 - 16.0 * rifs * z0(j,i) / zp ) ) |
---|
427 | |
---|
428 | wall_flux(k,j,i) = kappa * vel_zp / ( & |
---|
429 | LOG( zp / z0(j,i) ) - & |
---|
430 | LOG( ( 1.0 + h1 )**2 * ( 1.0 + h1**2 ) / ( & |
---|
431 | ( 1.0 + h2 )**2 * ( 1.0 + h2**2 ) ) ) + & |
---|
432 | 2.0 * ( ATAN( h1 ) - ATAN( h2 ) ) & |
---|
433 | ) |
---|
434 | ENDIF |
---|
435 | wall_flux(k,j,i) = - wall_flux(k,j,i) * us_wall |
---|
436 | |
---|
437 | ENDDO |
---|
438 | |
---|
439 | ENDIF |
---|
440 | |
---|
441 | ENDDO |
---|
442 | ENDDO |
---|
443 | |
---|
444 | END SUBROUTINE wall_fluxes_e |
---|
445 | |
---|
446 | |
---|
447 | |
---|
448 | !------------------------------------------------------------------------------! |
---|
449 | ! Call for grid point i,j |
---|
450 | !------------------------------------------------------------------------------! |
---|
451 | SUBROUTINE wall_fluxes_e_ij( i, j, nzb_w, nzt_w, wall_flux, a, b, c1, c2 ) |
---|
452 | |
---|
453 | USE arrays_3d |
---|
454 | USE control_parameters |
---|
455 | USE grid_variables |
---|
456 | USE indices |
---|
457 | USE statistics |
---|
458 | |
---|
459 | IMPLICIT NONE |
---|
460 | |
---|
461 | INTEGER :: i, j, k, kk, nzb_w, nzt_w, wall_index |
---|
462 | REAL :: a, b, c1, c2, h1, h2, u_i, v_i, us_wall, vel_total, vel_zp, & |
---|
463 | ws, zp |
---|
464 | |
---|
465 | REAL :: rifs |
---|
466 | |
---|
467 | REAL, DIMENSION(nzb:nzt+1) :: wall_flux |
---|
468 | |
---|
469 | |
---|
470 | zp = 0.5 * ( (a+c1) * dy + (b+c2) * dx ) |
---|
471 | wall_flux = 0.0 |
---|
472 | wall_index = NINT( a+ 2*b + 3*c1 + 4*c2 ) |
---|
473 | |
---|
474 | ! |
---|
475 | !-- All subsequent variables are computed for scalar locations. |
---|
476 | DO k = nzb_w, nzt_w |
---|
477 | |
---|
478 | ! |
---|
479 | !-- (1) Compute rifs, u_i, v_i, and ws |
---|
480 | IF ( k == nzb_w ) THEN |
---|
481 | kk = nzb_w |
---|
482 | ELSE |
---|
483 | kk = k-1 |
---|
484 | ENDIF |
---|
485 | rifs = 0.5 * ( rif_wall(k,j,i,wall_index) + & |
---|
486 | a * rif_wall(k,j,i+1,1) + b * rif_wall(k,j+1,i,2) + & |
---|
487 | c1 * rif_wall(kk,j,i,3) + c2 * rif_wall(kk,j,i,4) & |
---|
488 | ) |
---|
489 | |
---|
490 | u_i = 0.5 * ( u(k,j,i) + u(k,j,i+1) ) |
---|
491 | v_i = 0.5 * ( v(k,j,i) + v(k,j+1,i) ) |
---|
492 | ws = 0.5 * ( w(k,j,i) + w(k-1,j,i) ) |
---|
493 | ! |
---|
494 | !-- (2) Compute wall-parallel absolute velocity vel_total and |
---|
495 | !-- interpolate appropriate velocity component vel_zp. |
---|
496 | vel_total = SQRT( ws**2 + (a+c1) * u_i**2 + (b+c2) * v_i**2 ) |
---|
497 | vel_zp = 0.5 * ( a * u_i + b * v_i + (c1+c2) * ws ) |
---|
498 | ! |
---|
499 | !-- (3) Compute wall friction velocity us_wall |
---|
500 | IF ( rifs >= 0.0 ) THEN |
---|
501 | |
---|
502 | ! |
---|
503 | !-- Stable stratification (and neutral) |
---|
504 | us_wall = kappa * vel_total / ( LOG( zp / z0(j,i) ) + & |
---|
505 | 5.0 * rifs * ( zp - z0(j,i) ) / zp & |
---|
506 | ) |
---|
507 | ELSE |
---|
508 | |
---|
509 | ! |
---|
510 | !-- Unstable stratification |
---|
511 | h1 = SQRT( SQRT( 1.0 - 16.0 * rifs ) ) |
---|
512 | h2 = SQRT( SQRT( 1.0 - 16.0 * rifs * z0(j,i) / zp ) ) |
---|
513 | |
---|
514 | us_wall = kappa * vel_total / ( & |
---|
515 | LOG( zp / z0(j,i) ) - & |
---|
516 | LOG( ( 1.0 + h1 )**2 * ( 1.0 + h1**2 ) / ( & |
---|
517 | ( 1.0 + h2 )**2 * ( 1.0 + h2**2 ) ) ) + & |
---|
518 | 2.0 * ( ATAN( h1 ) - ATAN( h2 ) ) & |
---|
519 | ) |
---|
520 | ENDIF |
---|
521 | |
---|
522 | ! |
---|
523 | !-- Skip step (4) of wall_fluxes, because here rifs is already |
---|
524 | !-- available from (1) |
---|
525 | ! |
---|
526 | !-- (5) Compute wall_flux (u'v', v'u', w'v', or w'u') |
---|
527 | !-- First interpolate the velocity (this is different from |
---|
528 | !-- subroutine wall_fluxes because fluxes in subroutine |
---|
529 | !-- wall_fluxes_e are defined at scalar locations). |
---|
530 | vel_zp = 0.5 * ( a * ( u(k,j,i) + u(k,j,i+1) ) + & |
---|
531 | b * ( v(k,j,i) + v(k,j+1,i) ) + & |
---|
532 | (c1+c2) * ( w(k,j,i) + w(k-1,j,i) ) & |
---|
533 | ) |
---|
534 | |
---|
535 | IF ( rifs >= 0.0 ) THEN |
---|
536 | |
---|
537 | ! |
---|
538 | !-- Stable stratification (and neutral) |
---|
539 | wall_flux(k) = kappa * vel_zp / & |
---|
540 | ( LOG( zp/z0(j,i) ) + 5.0*rifs * ( zp-z0(j,i) ) / zp ) |
---|
541 | ELSE |
---|
542 | |
---|
543 | ! |
---|
544 | !-- Unstable stratification |
---|
545 | h1 = SQRT( SQRT( 1.0 - 16.0 * rifs ) ) |
---|
546 | h2 = SQRT( SQRT( 1.0 - 16.0 * rifs * z0(j,i) / zp ) ) |
---|
547 | |
---|
548 | wall_flux(k) = kappa * vel_zp / ( & |
---|
549 | LOG( zp / z0(j,i) ) - & |
---|
550 | LOG( ( 1.0 + h1 )**2 * ( 1.0 + h1**2 ) / ( & |
---|
551 | ( 1.0 + h2 )**2 * ( 1.0 + h2**2 ) ) ) + & |
---|
552 | 2.0 * ( ATAN( h1 ) - ATAN( h2 ) ) & |
---|
553 | ) |
---|
554 | ENDIF |
---|
555 | wall_flux(k) = - wall_flux(k) * us_wall |
---|
556 | |
---|
557 | ENDDO |
---|
558 | |
---|
559 | END SUBROUTINE wall_fluxes_e_ij |
---|
560 | |
---|
561 | END MODULE wall_fluxes_mod |
---|