1 | !> @file wall_fluxes.f90 |
---|
2 | !--------------------------------------------------------------------------------! |
---|
3 | ! This file is part of PALM. |
---|
4 | ! |
---|
5 | ! PALM is free software: you can redistribute it and/or modify it under the terms |
---|
6 | ! of the GNU General Public License as published by the Free Software Foundation, |
---|
7 | ! either version 3 of the License, or (at your option) any later version. |
---|
8 | ! |
---|
9 | ! PALM is distributed in the hope that it will be useful, but WITHOUT ANY |
---|
10 | ! WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR |
---|
11 | ! A PARTICULAR PURPOSE. See the GNU General Public License for more details. |
---|
12 | ! |
---|
13 | ! You should have received a copy of the GNU General Public License along with |
---|
14 | ! PALM. If not, see <http://www.gnu.org/licenses/>. |
---|
15 | ! |
---|
16 | ! Copyright 1997-2016 Leibniz Universitaet Hannover |
---|
17 | !--------------------------------------------------------------------------------! |
---|
18 | ! |
---|
19 | ! Current revisions: |
---|
20 | ! ----------------- |
---|
21 | ! |
---|
22 | ! |
---|
23 | ! Former revisions: |
---|
24 | ! ----------------- |
---|
25 | ! $Id: wall_fluxes.f90 1818 2016-04-06 15:53:27Z witha $ |
---|
26 | ! |
---|
27 | ! 1691 2015-10-26 16:17:44Z maronga |
---|
28 | ! Renamed rif_min and rif_max with zeta_min and zeta_max, respectively. |
---|
29 | ! |
---|
30 | ! 1682 2015-10-07 23:56:08Z knoop |
---|
31 | ! Code annotations made doxygen readable |
---|
32 | ! |
---|
33 | ! 1374 2014-04-25 12:55:07Z raasch |
---|
34 | ! pt removed from acc-present-list |
---|
35 | ! |
---|
36 | ! 1353 2014-04-08 15:21:23Z heinze |
---|
37 | ! REAL constants provided with KIND-attribute |
---|
38 | ! |
---|
39 | ! 1320 2014-03-20 08:40:49Z raasch |
---|
40 | ! ONLY-attribute added to USE-statements, |
---|
41 | ! kind-parameters added to all INTEGER and REAL declaration statements, |
---|
42 | ! kinds are defined in new module kinds, |
---|
43 | ! old module precision_kind is removed, |
---|
44 | ! revision history before 2012 removed, |
---|
45 | ! comment fields (!:) to be used for variable explanations added to |
---|
46 | ! all variable declaration statements |
---|
47 | ! |
---|
48 | ! 1257 2013-11-08 15:18:40Z raasch |
---|
49 | ! openacc loop and loop vector clauses removed |
---|
50 | ! |
---|
51 | ! 1153 2013-05-10 14:33:08Z raasch |
---|
52 | ! code adjustments of accelerator version required by PGI 12.3 / CUDA 5.0 |
---|
53 | ! |
---|
54 | ! 1128 2013-04-12 06:19:32Z raasch |
---|
55 | ! loop index bounds in accelerator version replaced by i_left, i_right, j_south, |
---|
56 | ! j_north |
---|
57 | ! |
---|
58 | ! 1036 2012-10-22 13:43:42Z raasch |
---|
59 | ! code put under GPL (PALM 3.9) |
---|
60 | ! |
---|
61 | ! 1015 2012-09-27 09:23:24Z raasch |
---|
62 | ! accelerator version (*_acc) added |
---|
63 | ! |
---|
64 | ! Initial version (2007/03/07) |
---|
65 | ! |
---|
66 | ! Description: |
---|
67 | ! ------------ |
---|
68 | !> Calculates momentum fluxes at vertical walls assuming Monin-Obukhov |
---|
69 | !> similarity. |
---|
70 | !> Indices: usvs a=1, vsus b=1, wsvs c1=1, wsus c2=1 (other=0). |
---|
71 | !> The all-gridpoint version of wall_fluxes_e is not used so far, because |
---|
72 | !> it gives slightly different results from the ij-version for some unknown |
---|
73 | !> reason. |
---|
74 | !> |
---|
75 | !> @todo Rename rif to zeta throughout the routine |
---|
76 | !------------------------------------------------------------------------------! |
---|
77 | MODULE wall_fluxes_mod |
---|
78 | |
---|
79 | PRIVATE |
---|
80 | PUBLIC wall_fluxes, wall_fluxes_acc, wall_fluxes_e, wall_fluxes_e_acc |
---|
81 | |
---|
82 | INTERFACE wall_fluxes |
---|
83 | MODULE PROCEDURE wall_fluxes |
---|
84 | MODULE PROCEDURE wall_fluxes_ij |
---|
85 | END INTERFACE wall_fluxes |
---|
86 | |
---|
87 | INTERFACE wall_fluxes_acc |
---|
88 | MODULE PROCEDURE wall_fluxes_acc |
---|
89 | END INTERFACE wall_fluxes_acc |
---|
90 | |
---|
91 | INTERFACE wall_fluxes_e |
---|
92 | MODULE PROCEDURE wall_fluxes_e |
---|
93 | MODULE PROCEDURE wall_fluxes_e_ij |
---|
94 | END INTERFACE wall_fluxes_e |
---|
95 | |
---|
96 | INTERFACE wall_fluxes_e_acc |
---|
97 | MODULE PROCEDURE wall_fluxes_e_acc |
---|
98 | END INTERFACE wall_fluxes_e_acc |
---|
99 | |
---|
100 | CONTAINS |
---|
101 | |
---|
102 | !------------------------------------------------------------------------------! |
---|
103 | ! Description: |
---|
104 | ! ------------ |
---|
105 | !> Call for all grid points |
---|
106 | !------------------------------------------------------------------------------! |
---|
107 | SUBROUTINE wall_fluxes( wall_flux, a, b, c1, c2, nzb_uvw_inner, & |
---|
108 | nzb_uvw_outer, wall ) |
---|
109 | |
---|
110 | USE arrays_3d, & |
---|
111 | ONLY: rif_wall, u, v, w, z0, pt |
---|
112 | |
---|
113 | USE control_parameters, & |
---|
114 | ONLY: g, kappa, zeta_max, zeta_min |
---|
115 | |
---|
116 | USE grid_variables, & |
---|
117 | ONLY: dx, dy |
---|
118 | |
---|
119 | USE indices, & |
---|
120 | ONLY: nxl, nxlg, nxr, nxrg, nyn, nyng, nys, nysg, nzb, nzt |
---|
121 | |
---|
122 | USE kinds |
---|
123 | |
---|
124 | USE statistics, & |
---|
125 | ONLY: hom |
---|
126 | |
---|
127 | IMPLICIT NONE |
---|
128 | |
---|
129 | INTEGER(iwp) :: i !< |
---|
130 | INTEGER(iwp) :: j !< |
---|
131 | INTEGER(iwp) :: k !< |
---|
132 | INTEGER(iwp) :: wall_index !< |
---|
133 | |
---|
134 | INTEGER(iwp), & |
---|
135 | DIMENSION(nysg:nyng,nxlg:nxrg) :: & |
---|
136 | nzb_uvw_inner !< |
---|
137 | INTEGER(iwp), & |
---|
138 | DIMENSION(nysg:nyng,nxlg:nxrg) :: & |
---|
139 | nzb_uvw_outer !< |
---|
140 | |
---|
141 | REAL(wp) :: a !< |
---|
142 | REAL(wp) :: b !< |
---|
143 | REAL(wp) :: c1 !< |
---|
144 | REAL(wp) :: c2 !< |
---|
145 | REAL(wp) :: h1 !< |
---|
146 | REAL(wp) :: h2 !< |
---|
147 | REAL(wp) :: zp !< |
---|
148 | REAL(wp) :: pts !< |
---|
149 | REAL(wp) :: pt_i !< |
---|
150 | REAL(wp) :: rifs !< |
---|
151 | REAL(wp) :: u_i !< |
---|
152 | REAL(wp) :: v_i !< |
---|
153 | REAL(wp) :: us_wall !< |
---|
154 | REAL(wp) :: vel_total !< |
---|
155 | REAL(wp) :: ws !< |
---|
156 | REAL(wp) :: wspts !< |
---|
157 | |
---|
158 | REAL(wp), & |
---|
159 | DIMENSION(nysg:nyng,nxlg:nxrg) :: & |
---|
160 | wall !< |
---|
161 | |
---|
162 | REAL(wp), & |
---|
163 | DIMENSION(nzb:nzt+1,nys:nyn,nxl:nxr) :: & |
---|
164 | wall_flux !< |
---|
165 | |
---|
166 | |
---|
167 | zp = 0.5_wp * ( (a+c1) * dy + (b+c2) * dx ) |
---|
168 | wall_flux = 0.0_wp |
---|
169 | wall_index = NINT( a+ 2*b + 3*c1 + 4*c2 ) |
---|
170 | |
---|
171 | DO i = nxl, nxr |
---|
172 | DO j = nys, nyn |
---|
173 | |
---|
174 | IF ( wall(j,i) /= 0.0_wp ) THEN |
---|
175 | ! |
---|
176 | !-- All subsequent variables are computed for the respective |
---|
177 | !-- location where the respective flux is defined. |
---|
178 | DO k = nzb_uvw_inner(j,i)+1, nzb_uvw_outer(j,i) |
---|
179 | |
---|
180 | ! |
---|
181 | !-- (1) Compute rifs, u_i, v_i, ws, pt' and w'pt' |
---|
182 | rifs = rif_wall(k,j,i,wall_index) |
---|
183 | |
---|
184 | u_i = a * u(k,j,i) + c1 * 0.25_wp * & |
---|
185 | ( u(k+1,j,i+1) + u(k+1,j,i) + u(k,j,i+1) + u(k,j,i) ) |
---|
186 | |
---|
187 | v_i = b * v(k,j,i) + c2 * 0.25_wp * & |
---|
188 | ( v(k+1,j+1,i) + v(k+1,j,i) + v(k,j+1,i) + v(k,j,i) ) |
---|
189 | |
---|
190 | ws = ( c1 + c2 ) * w(k,j,i) + 0.25_wp * ( & |
---|
191 | a * ( w(k-1,j,i-1) + w(k-1,j,i) + w(k,j,i-1) + w(k,j,i) ) & |
---|
192 | + b * ( w(k-1,j-1,i) + w(k-1,j,i) + w(k,j-1,i) + w(k,j,i) ) & |
---|
193 | ) |
---|
194 | pt_i = 0.5_wp * ( pt(k,j,i) + a * pt(k,j,i-1) + & |
---|
195 | b * pt(k,j-1,i) + ( c1 + c2 ) * pt(k+1,j,i) ) |
---|
196 | |
---|
197 | pts = pt_i - hom(k,1,4,0) |
---|
198 | wspts = ws * pts |
---|
199 | |
---|
200 | ! |
---|
201 | !-- (2) Compute wall-parallel absolute velocity vel_total |
---|
202 | vel_total = SQRT( ws**2 + (a+c1) * u_i**2 + (b+c2) * v_i**2 ) |
---|
203 | |
---|
204 | ! |
---|
205 | !-- (3) Compute wall friction velocity us_wall |
---|
206 | IF ( rifs >= 0.0_wp ) THEN |
---|
207 | |
---|
208 | ! |
---|
209 | !-- Stable stratification (and neutral) |
---|
210 | us_wall = kappa * vel_total / ( LOG( zp / z0(j,i) ) + & |
---|
211 | 5.0_wp * rifs * ( zp - z0(j,i) ) / zp & |
---|
212 | ) |
---|
213 | ELSE |
---|
214 | |
---|
215 | ! |
---|
216 | !-- Unstable stratification |
---|
217 | h1 = SQRT( SQRT( 1.0_wp - 16.0_wp * rifs ) ) |
---|
218 | h2 = SQRT( SQRT( 1.0_wp - 16.0_wp * rifs * z0(j,i) / zp ) ) |
---|
219 | |
---|
220 | us_wall = kappa * vel_total / ( & |
---|
221 | LOG( zp / z0(j,i) ) - & |
---|
222 | LOG( ( 1.0_wp + h1 )**2 * ( 1.0_wp + h1**2 ) / ( & |
---|
223 | ( 1.0_wp + h2 )**2 * ( 1.0_wp + h2**2 ) ) ) +& |
---|
224 | 2.0_wp * ( ATAN( h1 ) - ATAN( h2 ) ) & |
---|
225 | ) |
---|
226 | ENDIF |
---|
227 | |
---|
228 | ! |
---|
229 | !-- (4) Compute zp/L (corresponds to neutral Richardson flux |
---|
230 | !-- number rifs) |
---|
231 | rifs = -1.0_wp * zp * kappa * g * wspts / & |
---|
232 | ( pt_i * ( us_wall**3 + 1E-30 ) ) |
---|
233 | |
---|
234 | ! |
---|
235 | !-- Limit the value range of the Richardson numbers. |
---|
236 | !-- This is necessary for very small velocities (u,w --> 0), |
---|
237 | !-- because the absolute value of rif can then become very |
---|
238 | !-- large, which in consequence would result in very large |
---|
239 | !-- shear stresses and very small momentum fluxes (both are |
---|
240 | !-- generally unrealistic). |
---|
241 | IF ( rifs < zeta_min ) rifs = zeta_min |
---|
242 | IF ( rifs > zeta_max ) rifs = zeta_max |
---|
243 | |
---|
244 | ! |
---|
245 | !-- (5) Compute wall_flux (u'v', v'u', w'v', or w'u') |
---|
246 | IF ( rifs >= 0.0_wp ) THEN |
---|
247 | |
---|
248 | ! |
---|
249 | !-- Stable stratification (and neutral) |
---|
250 | wall_flux(k,j,i) = kappa * & |
---|
251 | ( a*u(k,j,i) + b*v(k,j,i) + (c1+c2)*w(k,j,i) ) / & |
---|
252 | ( LOG( zp / z0(j,i) ) + & |
---|
253 | 5.0_wp * rifs * ( zp - z0(j,i) ) / zp & |
---|
254 | ) |
---|
255 | ELSE |
---|
256 | |
---|
257 | ! |
---|
258 | !-- Unstable stratification |
---|
259 | h1 = SQRT( SQRT( 1.0_wp - 16.0_wp * rifs ) ) |
---|
260 | h2 = SQRT( SQRT( 1.0_wp - 16.0_wp * rifs * z0(j,i) / zp ) ) |
---|
261 | |
---|
262 | wall_flux(k,j,i) = kappa * & |
---|
263 | ( a*u(k,j,i) + b*v(k,j,i) + (c1+c2)*w(k,j,i) ) / ( & |
---|
264 | LOG( zp / z0(j,i) ) - & |
---|
265 | LOG( ( 1.0_wp + h1 )**2 * ( 1.0_wp + h1**2 ) / ( & |
---|
266 | ( 1.0_wp + h2 )**2 * ( 1.0_wp + h2**2 ) ) ) +& |
---|
267 | 2.0_wp * ( ATAN( h1 ) - ATAN( h2 ) ) & |
---|
268 | ) |
---|
269 | ENDIF |
---|
270 | wall_flux(k,j,i) = -wall_flux(k,j,i) * us_wall |
---|
271 | |
---|
272 | ! |
---|
273 | !-- store rifs for next time step |
---|
274 | rif_wall(k,j,i,wall_index) = rifs |
---|
275 | |
---|
276 | ENDDO |
---|
277 | |
---|
278 | ENDIF |
---|
279 | |
---|
280 | ENDDO |
---|
281 | ENDDO |
---|
282 | |
---|
283 | END SUBROUTINE wall_fluxes |
---|
284 | |
---|
285 | |
---|
286 | !------------------------------------------------------------------------------! |
---|
287 | ! Description: |
---|
288 | ! ------------ |
---|
289 | !> Call for all grid points - accelerator version |
---|
290 | !------------------------------------------------------------------------------! |
---|
291 | SUBROUTINE wall_fluxes_acc( wall_flux, a, b, c1, c2, nzb_uvw_inner, & |
---|
292 | nzb_uvw_outer, wall ) |
---|
293 | |
---|
294 | USE arrays_3d, & |
---|
295 | ONLY: rif_wall, pt, u, v, w, z0 |
---|
296 | |
---|
297 | USE control_parameters, & |
---|
298 | ONLY: g, kappa, zeta_max, zeta_min |
---|
299 | |
---|
300 | USE grid_variables, & |
---|
301 | ONLY: dx, dy |
---|
302 | |
---|
303 | USE indices, & |
---|
304 | ONLY: i_left, i_right, j_north, j_south, nxl, nxlg, nxr, nxrg, & |
---|
305 | nyn, nyng, nys, nysg, nzb, nzt |
---|
306 | |
---|
307 | USE kinds |
---|
308 | |
---|
309 | USE statistics, & |
---|
310 | ONLY: hom |
---|
311 | |
---|
312 | IMPLICIT NONE |
---|
313 | |
---|
314 | INTEGER(iwp) :: i !< |
---|
315 | INTEGER(iwp) :: j !< |
---|
316 | INTEGER(iwp) :: k !< |
---|
317 | INTEGER(iwp) :: max_outer !< |
---|
318 | INTEGER(iwp) :: min_inner !< |
---|
319 | INTEGER(iwp) :: wall_index !< |
---|
320 | |
---|
321 | INTEGER(iwp), & |
---|
322 | DIMENSION(nysg:nyng,nxlg:nxrg) :: & |
---|
323 | nzb_uvw_inner !< |
---|
324 | INTEGER(iwp), & |
---|
325 | DIMENSION(nysg:nyng,nxlg:nxrg) :: & |
---|
326 | nzb_uvw_outer !< |
---|
327 | |
---|
328 | REAL(wp) :: a !< |
---|
329 | REAL(wp) :: b !< |
---|
330 | REAL(wp) :: c1 !< |
---|
331 | REAL(wp) :: c2 !< |
---|
332 | REAL(wp) :: h1 !< |
---|
333 | REAL(wp) :: h2 !< |
---|
334 | REAL(wp) :: zp !< |
---|
335 | REAL(wp) :: pts !< |
---|
336 | REAL(wp) :: pt_i !< |
---|
337 | REAL(wp) :: rifs !< |
---|
338 | REAL(wp) :: u_i !< |
---|
339 | REAL(wp) :: v_i !< |
---|
340 | REAL(wp) :: us_wall !< |
---|
341 | REAL(wp) :: vel_total !< |
---|
342 | REAL(wp) :: ws !< |
---|
343 | REAL(wp) :: wspts !< |
---|
344 | |
---|
345 | REAL(wp), & |
---|
346 | DIMENSION(nysg:nyng,nxlg:nxrg) :: & |
---|
347 | wall !< |
---|
348 | |
---|
349 | REAL(wp), & |
---|
350 | DIMENSION(nzb:nzt+1,nys:nyn,nxl:nxr) :: & |
---|
351 | wall_flux !< |
---|
352 | |
---|
353 | |
---|
354 | zp = 0.5_wp * ( (a+c1) * dy + (b+c2) * dx ) |
---|
355 | wall_flux = 0.0_wp |
---|
356 | wall_index = NINT( a+ 2*b + 3*c1 + 4*c2 ) |
---|
357 | |
---|
358 | min_inner = MINVAL( nzb_uvw_inner(nys:nyn,nxl:nxr) ) + 1 |
---|
359 | max_outer = MINVAL( nzb_uvw_outer(nys:nyn,nxl:nxr) ) |
---|
360 | |
---|
361 | !$acc kernels present( hom, nzb_uvw_inner, nzb_uvw_outer, pt, rif_wall ) & |
---|
362 | !$acc present( u, v, w, wall, wall_flux, z0 ) |
---|
363 | !$acc loop independent |
---|
364 | DO i = i_left, i_right |
---|
365 | DO j = j_south, j_north |
---|
366 | |
---|
367 | IF ( wall(j,i) /= 0.0_wp ) THEN |
---|
368 | ! |
---|
369 | !-- All subsequent variables are computed for the respective |
---|
370 | !-- location where the respective flux is defined. |
---|
371 | !$acc loop independent |
---|
372 | DO k = nzb_uvw_inner(j,i)+1, nzb_uvw_outer(j,i) |
---|
373 | |
---|
374 | ! |
---|
375 | !-- (1) Compute rifs, u_i, v_i, ws, pt' and w'pt' |
---|
376 | rifs = rif_wall(k,j,i,wall_index) |
---|
377 | |
---|
378 | u_i = a * u(k,j,i) + c1 * 0.25_wp * & |
---|
379 | ( u(k+1,j,i+1) + u(k+1,j,i) + u(k,j,i+1) + u(k,j,i) ) |
---|
380 | |
---|
381 | v_i = b * v(k,j,i) + c2 * 0.25_wp * & |
---|
382 | ( v(k+1,j+1,i) + v(k+1,j,i) + v(k,j+1,i) + v(k,j,i) ) |
---|
383 | |
---|
384 | ws = ( c1 + c2 ) * w(k,j,i) + 0.25_wp * ( & |
---|
385 | a * ( w(k-1,j,i-1) + w(k-1,j,i) + w(k,j,i-1) + w(k,j,i) ) & |
---|
386 | + b * ( w(k-1,j-1,i) + w(k-1,j,i) + w(k,j-1,i) + w(k,j,i) ) & |
---|
387 | ) |
---|
388 | pt_i = 0.5_wp * ( pt(k,j,i) + a * pt(k,j,i-1) + & |
---|
389 | b * pt(k,j-1,i) + ( c1 + c2 ) * pt(k+1,j,i) ) |
---|
390 | |
---|
391 | pts = pt_i - hom(k,1,4,0) |
---|
392 | wspts = ws * pts |
---|
393 | |
---|
394 | ! |
---|
395 | !-- (2) Compute wall-parallel absolute velocity vel_total |
---|
396 | vel_total = SQRT( ws**2 + (a+c1) * u_i**2 + (b+c2) * v_i**2 ) |
---|
397 | |
---|
398 | ! |
---|
399 | !-- (3) Compute wall friction velocity us_wall |
---|
400 | IF ( rifs >= 0.0_wp ) THEN |
---|
401 | |
---|
402 | ! |
---|
403 | !-- Stable stratification (and neutral) |
---|
404 | us_wall = kappa * vel_total / ( LOG( zp / z0(j,i) ) + & |
---|
405 | 5.0_wp * rifs * ( zp - z0(j,i) ) / zp & |
---|
406 | ) |
---|
407 | ELSE |
---|
408 | |
---|
409 | ! |
---|
410 | !-- Unstable stratification |
---|
411 | h1 = SQRT( SQRT( 1.0_wp - 16.0_wp * rifs ) ) |
---|
412 | h2 = SQRT( SQRT( 1.0_wp - 16.0_wp * rifs * z0(j,i) / zp ) ) |
---|
413 | |
---|
414 | us_wall = kappa * vel_total / ( & |
---|
415 | LOG( zp / z0(j,i) ) - & |
---|
416 | LOG( ( 1.0_wp + h1 )**2 * ( 1.0_wp + h1**2 ) / ( & |
---|
417 | ( 1.0_wp + h2 )**2 * ( 1.0_wp + h2**2 ) ) ) +& |
---|
418 | 2.0_wp * ( ATAN( h1 ) - ATAN( h2 ) ) & |
---|
419 | ) |
---|
420 | ENDIF |
---|
421 | |
---|
422 | ! |
---|
423 | !-- (4) Compute zp/L (corresponds to neutral Richardson flux |
---|
424 | !-- number rifs) |
---|
425 | rifs = -1.0_wp * zp * kappa * g * wspts / & |
---|
426 | ( pt_i * ( us_wall**3 + 1E-30 ) ) |
---|
427 | |
---|
428 | ! |
---|
429 | !-- Limit the value range of the Richardson numbers. |
---|
430 | !-- This is necessary for very small velocities (u,w --> 0), |
---|
431 | !-- because the absolute value of rif can then become very |
---|
432 | !-- large, which in consequence would result in very large |
---|
433 | !-- shear stresses and very small momentum fluxes (both are |
---|
434 | !-- generally unrealistic). |
---|
435 | IF ( rifs < zeta_min ) rifs = zeta_min |
---|
436 | IF ( rifs > zeta_max ) rifs = zeta_max |
---|
437 | |
---|
438 | ! |
---|
439 | !-- (5) Compute wall_flux (u'v', v'u', w'v', or w'u') |
---|
440 | IF ( rifs >= 0.0_wp ) THEN |
---|
441 | |
---|
442 | ! |
---|
443 | !-- Stable stratification (and neutral) |
---|
444 | wall_flux(k,j,i) = kappa * & |
---|
445 | ( a*u(k,j,i) + b*v(k,j,i) + (c1+c2)*w(k,j,i) ) / & |
---|
446 | ( LOG( zp / z0(j,i) ) + & |
---|
447 | 5.0_wp * rifs * ( zp - z0(j,i) ) / zp & |
---|
448 | ) |
---|
449 | ELSE |
---|
450 | |
---|
451 | ! |
---|
452 | !-- Unstable stratification |
---|
453 | h1 = SQRT( SQRT( 1.0_wp - 16.0_wp * rifs ) ) |
---|
454 | h2 = SQRT( SQRT( 1.0_wp - 16.0_wp * rifs * z0(j,i) / zp ) ) |
---|
455 | |
---|
456 | wall_flux(k,j,i) = kappa * & |
---|
457 | ( a*u(k,j,i) + b*v(k,j,i) + (c1+c2)*w(k,j,i) ) / ( & |
---|
458 | LOG( zp / z0(j,i) ) - & |
---|
459 | LOG( ( 1.0_wp + h1 )**2 * ( 1.0_wp + h1**2 ) / ( & |
---|
460 | ( 1.0_wp + h2 )**2 * ( 1.0_wp + h2**2 ) ) ) +& |
---|
461 | 2.0_wp * ( ATAN( h1 ) - ATAN( h2 ) ) & |
---|
462 | ) |
---|
463 | ENDIF |
---|
464 | wall_flux(k,j,i) = -wall_flux(k,j,i) * us_wall |
---|
465 | |
---|
466 | ! |
---|
467 | !-- store rifs for next time step |
---|
468 | rif_wall(k,j,i,wall_index) = rifs |
---|
469 | |
---|
470 | ENDDO |
---|
471 | |
---|
472 | ENDIF |
---|
473 | |
---|
474 | ENDDO |
---|
475 | ENDDO |
---|
476 | !$acc end kernels |
---|
477 | |
---|
478 | END SUBROUTINE wall_fluxes_acc |
---|
479 | |
---|
480 | |
---|
481 | !------------------------------------------------------------------------------! |
---|
482 | ! Description: |
---|
483 | ! ------------ |
---|
484 | !> Call for all grid point i,j |
---|
485 | !------------------------------------------------------------------------------! |
---|
486 | SUBROUTINE wall_fluxes_ij( i, j, nzb_w, nzt_w, wall_flux, a, b, c1, c2 ) |
---|
487 | |
---|
488 | USE arrays_3d, & |
---|
489 | ONLY: rif_wall, pt, u, v, w, z0 |
---|
490 | |
---|
491 | USE control_parameters, & |
---|
492 | ONLY: g, kappa, zeta_max, zeta_min |
---|
493 | |
---|
494 | USE grid_variables, & |
---|
495 | ONLY: dx, dy |
---|
496 | |
---|
497 | USE indices, & |
---|
498 | ONLY: nzb, nzt |
---|
499 | |
---|
500 | USE kinds |
---|
501 | |
---|
502 | USE statistics, & |
---|
503 | ONLY: hom |
---|
504 | |
---|
505 | IMPLICIT NONE |
---|
506 | |
---|
507 | INTEGER(iwp) :: i !< |
---|
508 | INTEGER(iwp) :: j !< |
---|
509 | INTEGER(iwp) :: k !< |
---|
510 | INTEGER(iwp) :: nzb_w !< |
---|
511 | INTEGER(iwp) :: nzt_w !< |
---|
512 | INTEGER(iwp) :: wall_index !< |
---|
513 | |
---|
514 | REAL(wp) :: a !< |
---|
515 | REAL(wp) :: b !< |
---|
516 | REAL(wp) :: c1 !< |
---|
517 | REAL(wp) :: c2 !< |
---|
518 | REAL(wp) :: h1 !< |
---|
519 | REAL(wp) :: h2 !< |
---|
520 | REAL(wp) :: zp !< |
---|
521 | REAL(wp) :: pts !< |
---|
522 | REAL(wp) :: pt_i !< |
---|
523 | REAL(wp) :: rifs !< |
---|
524 | REAL(wp) :: u_i !< |
---|
525 | REAL(wp) :: v_i !< |
---|
526 | REAL(wp) :: us_wall !< |
---|
527 | REAL(wp) :: vel_total !< |
---|
528 | REAL(wp) :: ws !< |
---|
529 | REAL(wp) :: wspts !< |
---|
530 | |
---|
531 | REAL(wp), DIMENSION(nzb:nzt+1) :: wall_flux !< |
---|
532 | |
---|
533 | |
---|
534 | zp = 0.5_wp * ( (a+c1) * dy + (b+c2) * dx ) |
---|
535 | wall_flux = 0.0_wp |
---|
536 | wall_index = NINT( a+ 2*b + 3*c1 + 4*c2 ) |
---|
537 | |
---|
538 | ! |
---|
539 | !-- All subsequent variables are computed for the respective location where |
---|
540 | !-- the respective flux is defined. |
---|
541 | DO k = nzb_w, nzt_w |
---|
542 | |
---|
543 | ! |
---|
544 | !-- (1) Compute rifs, u_i, v_i, ws, pt' and w'pt' |
---|
545 | rifs = rif_wall(k,j,i,wall_index) |
---|
546 | |
---|
547 | u_i = a * u(k,j,i) + c1 * 0.25_wp * & |
---|
548 | ( u(k+1,j,i+1) + u(k+1,j,i) + u(k,j,i+1) + u(k,j,i) ) |
---|
549 | |
---|
550 | v_i = b * v(k,j,i) + c2 * 0.25_wp * & |
---|
551 | ( v(k+1,j+1,i) + v(k+1,j,i) + v(k,j+1,i) + v(k,j,i) ) |
---|
552 | |
---|
553 | ws = ( c1 + c2 ) * w(k,j,i) + 0.25_wp * ( & |
---|
554 | a * ( w(k-1,j,i-1) + w(k-1,j,i) + w(k,j,i-1) + w(k,j,i) ) & |
---|
555 | + b * ( w(k-1,j-1,i) + w(k-1,j,i) + w(k,j-1,i) + w(k,j,i) ) & |
---|
556 | ) |
---|
557 | pt_i = 0.5_wp * ( pt(k,j,i) + a * pt(k,j,i-1) + b * pt(k,j-1,i) & |
---|
558 | + ( c1 + c2 ) * pt(k+1,j,i) ) |
---|
559 | |
---|
560 | pts = pt_i - hom(k,1,4,0) |
---|
561 | wspts = ws * pts |
---|
562 | |
---|
563 | ! |
---|
564 | !-- (2) Compute wall-parallel absolute velocity vel_total |
---|
565 | vel_total = SQRT( ws**2 + ( a+c1 ) * u_i**2 + ( b+c2 ) * v_i**2 ) |
---|
566 | |
---|
567 | ! |
---|
568 | !-- (3) Compute wall friction velocity us_wall |
---|
569 | IF ( rifs >= 0.0_wp ) THEN |
---|
570 | |
---|
571 | ! |
---|
572 | !-- Stable stratification (and neutral) |
---|
573 | us_wall = kappa * vel_total / ( LOG( zp / z0(j,i) ) + & |
---|
574 | 5.0_wp * rifs * ( zp - z0(j,i) ) / zp & |
---|
575 | ) |
---|
576 | ELSE |
---|
577 | |
---|
578 | ! |
---|
579 | !-- Unstable stratification |
---|
580 | h1 = SQRT( SQRT( 1.0_wp - 16.0_wp * rifs ) ) |
---|
581 | h2 = SQRT( SQRT( 1.0_wp - 16.0_wp * rifs * z0(j,i) / zp ) ) |
---|
582 | |
---|
583 | us_wall = kappa * vel_total / ( & |
---|
584 | LOG( zp / z0(j,i) ) - & |
---|
585 | LOG( ( 1.0_wp + h1 )**2 * ( 1.0_wp + h1**2 ) / ( & |
---|
586 | ( 1.0_wp + h2 )**2 * ( 1.0_wp + h2**2 ) ) ) + & |
---|
587 | 2.0_wp * ( ATAN( h1 ) - ATAN( h2 ) ) & |
---|
588 | ) |
---|
589 | ENDIF |
---|
590 | |
---|
591 | ! |
---|
592 | !-- (4) Compute zp/L (corresponds to neutral Richardson flux number |
---|
593 | !-- rifs) |
---|
594 | rifs = -1.0_wp * zp * kappa * g * wspts / & |
---|
595 | ( pt_i * (us_wall**3 + 1E-30) ) |
---|
596 | |
---|
597 | ! |
---|
598 | !-- Limit the value range of the Richardson numbers. |
---|
599 | !-- This is necessary for very small velocities (u,w --> 0), because |
---|
600 | !-- the absolute value of rif can then become very large, which in |
---|
601 | !-- consequence would result in very large shear stresses and very |
---|
602 | !-- small momentum fluxes (both are generally unrealistic). |
---|
603 | IF ( rifs < zeta_min ) rifs = zeta_min |
---|
604 | IF ( rifs > zeta_max ) rifs = zeta_max |
---|
605 | |
---|
606 | ! |
---|
607 | !-- (5) Compute wall_flux (u'v', v'u', w'v', or w'u') |
---|
608 | IF ( rifs >= 0.0_wp ) THEN |
---|
609 | |
---|
610 | ! |
---|
611 | !-- Stable stratification (and neutral) |
---|
612 | wall_flux(k) = kappa * & |
---|
613 | ( a*u(k,j,i) + b*v(k,j,i) + (c1+c2)*w(k,j,i) ) / & |
---|
614 | ( LOG( zp / z0(j,i) ) + & |
---|
615 | 5.0_wp * rifs * ( zp - z0(j,i) ) / zp & |
---|
616 | ) |
---|
617 | ELSE |
---|
618 | |
---|
619 | ! |
---|
620 | !-- Unstable stratification |
---|
621 | h1 = SQRT( SQRT( 1.0_wp - 16.0_wp * rifs ) ) |
---|
622 | h2 = SQRT( SQRT( 1.0_wp - 16.0_wp * rifs * z0(j,i) / zp ) ) |
---|
623 | |
---|
624 | wall_flux(k) = kappa * & |
---|
625 | ( a*u(k,j,i) + b*v(k,j,i) + (c1+c2)*w(k,j,i) ) / ( & |
---|
626 | LOG( zp / z0(j,i) ) - & |
---|
627 | LOG( ( 1.0_wp + h1 )**2 * ( 1.0_wp + h1**2 ) / ( & |
---|
628 | ( 1.0_wp + h2 )**2 * ( 1.0_wp + h2**2 ) ) ) + & |
---|
629 | 2.0_wp * ( ATAN( h1 ) - ATAN( h2 ) ) & |
---|
630 | ) |
---|
631 | ENDIF |
---|
632 | wall_flux(k) = -wall_flux(k) * us_wall |
---|
633 | |
---|
634 | ! |
---|
635 | !-- store rifs for next time step |
---|
636 | rif_wall(k,j,i,wall_index) = rifs |
---|
637 | |
---|
638 | ENDDO |
---|
639 | |
---|
640 | END SUBROUTINE wall_fluxes_ij |
---|
641 | |
---|
642 | |
---|
643 | |
---|
644 | !------------------------------------------------------------------------------! |
---|
645 | ! Description: |
---|
646 | ! ------------ |
---|
647 | !> Call for all grid points |
---|
648 | !> Calculates momentum fluxes at vertical walls for routine production_e |
---|
649 | !> assuming Monin-Obukhov similarity. |
---|
650 | !> Indices: usvs a=1, vsus b=1, wsvs c1=1, wsus c2=1 (other=0). |
---|
651 | !------------------------------------------------------------------------------! |
---|
652 | |
---|
653 | SUBROUTINE wall_fluxes_e( wall_flux, a, b, c1, c2, wall ) |
---|
654 | |
---|
655 | |
---|
656 | USE arrays_3d, & |
---|
657 | ONLY: rif_wall, u, v, w, z0 |
---|
658 | |
---|
659 | USE control_parameters, & |
---|
660 | ONLY: kappa |
---|
661 | |
---|
662 | USE grid_variables, & |
---|
663 | ONLY: dx, dy |
---|
664 | |
---|
665 | USE indices, & |
---|
666 | ONLY: nxl, nxlg, nxr, nxrg, nyn, nyng, nys, nysg, nzb, & |
---|
667 | nzb_diff_s_inner, nzb_diff_s_outer, nzt |
---|
668 | |
---|
669 | USE kinds |
---|
670 | |
---|
671 | IMPLICIT NONE |
---|
672 | |
---|
673 | INTEGER(iwp) :: i !< |
---|
674 | INTEGER(iwp) :: j !< |
---|
675 | INTEGER(iwp) :: k !< |
---|
676 | INTEGER(iwp) :: kk !< |
---|
677 | INTEGER(iwp) :: wall_index !< |
---|
678 | |
---|
679 | REAL(wp) :: a !< |
---|
680 | REAL(wp) :: b !< |
---|
681 | REAL(wp) :: c1 !< |
---|
682 | REAL(wp) :: c2 !< |
---|
683 | REAL(wp) :: h1 !< |
---|
684 | REAL(wp) :: h2 !< |
---|
685 | REAL(wp) :: u_i !< |
---|
686 | REAL(wp) :: v_i !< |
---|
687 | REAL(wp) :: us_wall !< |
---|
688 | REAL(wp) :: vel_total !< |
---|
689 | REAL(wp) :: vel_zp !< |
---|
690 | REAL(wp) :: ws !< |
---|
691 | REAL(wp) :: zp !< |
---|
692 | REAL(wp) :: rifs !< |
---|
693 | |
---|
694 | REAL(wp), & |
---|
695 | DIMENSION(nysg:nyng,nxlg:nxrg) :: & |
---|
696 | wall !< |
---|
697 | |
---|
698 | REAL(wp), & |
---|
699 | DIMENSION(nzb:nzt+1,nys:nyn,nxl:nxr) :: & |
---|
700 | wall_flux !< |
---|
701 | |
---|
702 | |
---|
703 | zp = 0.5_wp * ( (a+c1) * dy + (b+c2) * dx ) |
---|
704 | wall_flux = 0.0_wp |
---|
705 | wall_index = NINT( a+ 2*b + 3*c1 + 4*c2 ) |
---|
706 | |
---|
707 | DO i = nxl, nxr |
---|
708 | DO j = nys, nyn |
---|
709 | |
---|
710 | IF ( wall(j,i) /= 0.0_wp ) THEN |
---|
711 | ! |
---|
712 | !-- All subsequent variables are computed for scalar locations. |
---|
713 | DO k = nzb_diff_s_inner(j,i)-1, nzb_diff_s_outer(j,i)-2 |
---|
714 | ! |
---|
715 | !-- (1) Compute rifs, u_i, v_i, and ws |
---|
716 | IF ( k == nzb_diff_s_inner(j,i)-1 ) THEN |
---|
717 | kk = nzb_diff_s_inner(j,i)-1 |
---|
718 | ELSE |
---|
719 | kk = k-1 |
---|
720 | ENDIF |
---|
721 | rifs = 0.5_wp * ( rif_wall(k,j,i,wall_index) + & |
---|
722 | a * rif_wall(k,j,i+1,1) + & |
---|
723 | b * rif_wall(k,j+1,i,2) + & |
---|
724 | c1 * rif_wall(kk,j,i,3) + & |
---|
725 | c2 * rif_wall(kk,j,i,4) & |
---|
726 | ) |
---|
727 | |
---|
728 | u_i = 0.5_wp * ( u(k,j,i) + u(k,j,i+1) ) |
---|
729 | v_i = 0.5_wp * ( v(k,j,i) + v(k,j+1,i) ) |
---|
730 | ws = 0.5_wp * ( w(k,j,i) + w(k-1,j,i) ) |
---|
731 | ! |
---|
732 | !-- (2) Compute wall-parallel absolute velocity vel_total and |
---|
733 | !-- interpolate appropriate velocity component vel_zp. |
---|
734 | vel_total = SQRT( ws**2 + (a+c1) * u_i**2 + (b+c2) * v_i**2 ) |
---|
735 | vel_zp = 0.5_wp * ( a * u_i + b * v_i + (c1+c2) * ws ) |
---|
736 | ! |
---|
737 | !-- (3) Compute wall friction velocity us_wall |
---|
738 | IF ( rifs >= 0.0_wp ) THEN |
---|
739 | |
---|
740 | ! |
---|
741 | !-- Stable stratification (and neutral) |
---|
742 | us_wall = kappa * vel_total / ( LOG( zp / z0(j,i) ) + & |
---|
743 | 5.0_wp * rifs * ( zp - z0(j,i) ) / zp & |
---|
744 | ) |
---|
745 | ELSE |
---|
746 | |
---|
747 | ! |
---|
748 | !-- Unstable stratification |
---|
749 | h1 = SQRT( SQRT( 1.0_wp - 16.0_wp * rifs ) ) |
---|
750 | h2 = SQRT( SQRT( 1.0_wp - 16.0_wp * rifs * z0(j,i) / zp ) ) |
---|
751 | |
---|
752 | us_wall = kappa * vel_total / ( & |
---|
753 | LOG( zp / z0(j,i) ) - & |
---|
754 | LOG( ( 1.0_wp + h1 )**2 * ( 1.0_wp + h1**2 ) / ( & |
---|
755 | ( 1.0_wp + h2 )**2 * ( 1.0_wp + h2**2 ) ) ) +& |
---|
756 | 2.0_wp * ( ATAN( h1 ) - ATAN( h2 ) ) & |
---|
757 | ) |
---|
758 | ENDIF |
---|
759 | |
---|
760 | ! |
---|
761 | !-- Skip step (4) of wall_fluxes, because here rifs is already |
---|
762 | !-- available from (1) |
---|
763 | ! |
---|
764 | !-- (5) Compute wall_flux (u'v', v'u', w'v', or w'u') |
---|
765 | |
---|
766 | IF ( rifs >= 0.0_wp ) THEN |
---|
767 | |
---|
768 | ! |
---|
769 | !-- Stable stratification (and neutral) |
---|
770 | wall_flux(k,j,i) = kappa * vel_zp / ( LOG( zp/z0(j,i) ) +& |
---|
771 | 5.0_wp * rifs * ( zp-z0(j,i) ) / zp ) |
---|
772 | ELSE |
---|
773 | |
---|
774 | ! |
---|
775 | !-- Unstable stratification |
---|
776 | h1 = SQRT( SQRT( 1.0_wp - 16.0_wp * rifs ) ) |
---|
777 | h2 = SQRT( SQRT( 1.0_wp - 16.0_wp * rifs * z0(j,i) / zp ) ) |
---|
778 | |
---|
779 | wall_flux(k,j,i) = kappa * vel_zp / ( & |
---|
780 | LOG( zp / z0(j,i) ) - & |
---|
781 | LOG( ( 1.0_wp + h1 )**2 * ( 1.0_wp + h1**2 ) / ( & |
---|
782 | ( 1.0_wp + h2 )**2 * ( 1.0_wp + h2**2 ) ) ) +& |
---|
783 | 2.0_wp * ( ATAN( h1 ) - ATAN( h2 ) ) & |
---|
784 | ) |
---|
785 | ENDIF |
---|
786 | wall_flux(k,j,i) = - wall_flux(k,j,i) * us_wall |
---|
787 | |
---|
788 | ENDDO |
---|
789 | |
---|
790 | ENDIF |
---|
791 | |
---|
792 | ENDDO |
---|
793 | ENDDO |
---|
794 | |
---|
795 | END SUBROUTINE wall_fluxes_e |
---|
796 | |
---|
797 | |
---|
798 | !------------------------------------------------------------------------------! |
---|
799 | ! Description: |
---|
800 | ! ------------ |
---|
801 | !> Call for all grid points - accelerator version |
---|
802 | !> Calculates momentum fluxes at vertical walls for routine production_e |
---|
803 | !> assuming Monin-Obukhov similarity. |
---|
804 | !> Indices: usvs a=1, vsus b=1, wsvs c1=1, wsus c2=1 (other=0). |
---|
805 | !------------------------------------------------------------------------------! |
---|
806 | SUBROUTINE wall_fluxes_e_acc( wall_flux, a, b, c1, c2, wall ) |
---|
807 | |
---|
808 | |
---|
809 | USE arrays_3d, & |
---|
810 | ONLY: rif_wall, u, v, w, z0 |
---|
811 | |
---|
812 | USE control_parameters, & |
---|
813 | ONLY: kappa |
---|
814 | |
---|
815 | USE grid_variables, & |
---|
816 | ONLY: dx, dy |
---|
817 | |
---|
818 | USE indices, & |
---|
819 | ONLY: i_left, i_right, j_north, j_south, nxl, nxlg, nxr, nxrg, & |
---|
820 | nyn, nyng, nys, nysg, nzb, nzb_diff_s_inner, & |
---|
821 | nzb_diff_s_outer, nzt |
---|
822 | |
---|
823 | USE kinds |
---|
824 | |
---|
825 | IMPLICIT NONE |
---|
826 | |
---|
827 | INTEGER(iwp) :: i !< |
---|
828 | INTEGER(iwp) :: j !< |
---|
829 | INTEGER(iwp) :: k !< |
---|
830 | INTEGER(iwp) :: kk !< |
---|
831 | INTEGER(iwp) :: max_outer !< |
---|
832 | INTEGER(iwp) :: min_inner !< |
---|
833 | INTEGER(iwp) :: wall_index !< |
---|
834 | |
---|
835 | REAL(wp) :: a !< |
---|
836 | REAL(wp) :: b !< |
---|
837 | REAL(wp) :: c1 !< |
---|
838 | REAL(wp) :: c2 !< |
---|
839 | REAL(wp) :: h1 !< |
---|
840 | REAL(wp) :: h2 !< |
---|
841 | REAL(wp) :: u_i !< |
---|
842 | REAL(wp) :: v_i !< |
---|
843 | REAL(wp) :: us_wall !< |
---|
844 | REAL(wp) :: vel_total !< |
---|
845 | REAL(wp) :: vel_zp !< |
---|
846 | REAL(wp) :: ws !< |
---|
847 | REAL(wp) :: zp !< |
---|
848 | REAL(wp) :: rifs !< |
---|
849 | |
---|
850 | REAL(wp), & |
---|
851 | DIMENSION(nysg:nyng,nxlg:nxrg) :: & |
---|
852 | wall !< |
---|
853 | |
---|
854 | REAL(wp), & |
---|
855 | DIMENSION(nzb:nzt+1,nys:nyn,nxl:nxr) :: & |
---|
856 | wall_flux !< |
---|
857 | |
---|
858 | |
---|
859 | zp = 0.5_wp * ( (a+c1) * dy + (b+c2) * dx ) |
---|
860 | wall_flux = 0.0_wp |
---|
861 | wall_index = NINT( a+ 2*b + 3*c1 + 4*c2 ) |
---|
862 | |
---|
863 | min_inner = MINVAL( nzb_diff_s_inner(nys:nyn,nxl:nxr) ) - 1 |
---|
864 | max_outer = MAXVAL( nzb_diff_s_outer(nys:nyn,nxl:nxr) ) - 2 |
---|
865 | |
---|
866 | !$acc kernels present( nzb_diff_s_inner, nzb_diff_s_outer, rif_wall ) & |
---|
867 | !$acc present( u, v, w, wall, wall_flux, z0 ) |
---|
868 | DO i = i_left, i_right |
---|
869 | DO j = j_south, j_north |
---|
870 | DO k = min_inner, max_outer |
---|
871 | ! |
---|
872 | !-- All subsequent variables are computed for scalar locations |
---|
873 | IF ( k >= nzb_diff_s_inner(j,i)-1 .AND. & |
---|
874 | k <= nzb_diff_s_outer(j,i)-2 .AND. & |
---|
875 | wall(j,i) /= 0.0_wp ) THEN |
---|
876 | ! |
---|
877 | !-- (1) Compute rifs, u_i, v_i, and ws |
---|
878 | IF ( k == nzb_diff_s_inner(j,i)-1 ) THEN |
---|
879 | kk = nzb_diff_s_inner(j,i)-1 |
---|
880 | ELSE |
---|
881 | kk = k-1 |
---|
882 | ENDIF |
---|
883 | rifs = 0.5_wp * ( rif_wall(k,j,i,wall_index) + & |
---|
884 | a * rif_wall(k,j,i+1,1) + & |
---|
885 | b * rif_wall(k,j+1,i,2) + & |
---|
886 | c1 * rif_wall(kk,j,i,3) + & |
---|
887 | c2 * rif_wall(kk,j,i,4) & |
---|
888 | ) |
---|
889 | |
---|
890 | u_i = 0.5_wp * ( u(k,j,i) + u(k,j,i+1) ) |
---|
891 | v_i = 0.5_wp * ( v(k,j,i) + v(k,j+1,i) ) |
---|
892 | ws = 0.5_wp * ( w(k,j,i) + w(k-1,j,i) ) |
---|
893 | ! |
---|
894 | !-- (2) Compute wall-parallel absolute velocity vel_total and |
---|
895 | !-- interpolate appropriate velocity component vel_zp. |
---|
896 | vel_total = SQRT( ws**2 + (a+c1) * u_i**2 + (b+c2) * v_i**2 ) |
---|
897 | vel_zp = 0.5_wp * ( a * u_i + b * v_i + (c1+c2) * ws ) |
---|
898 | ! |
---|
899 | !-- (3) Compute wall friction velocity us_wall |
---|
900 | IF ( rifs >= 0.0_wp ) THEN |
---|
901 | |
---|
902 | ! |
---|
903 | !-- Stable stratification (and neutral) |
---|
904 | us_wall = kappa * vel_total / ( LOG( zp / z0(j,i) ) + & |
---|
905 | 5.0_wp * rifs * ( zp - z0(j,i) ) / zp & |
---|
906 | ) |
---|
907 | ELSE |
---|
908 | |
---|
909 | ! |
---|
910 | !-- Unstable stratification |
---|
911 | h1 = SQRT( SQRT( 1.0_wp - 16.0_wp * rifs ) ) |
---|
912 | h2 = SQRT( SQRT( 1.0_wp - 16.0_wp * rifs * z0(j,i) / zp ) ) |
---|
913 | |
---|
914 | us_wall = kappa * vel_total / ( & |
---|
915 | LOG( zp / z0(j,i) ) - & |
---|
916 | LOG( ( 1.0_wp + h1 )**2 * ( 1.0_wp + h1**2 ) / ( & |
---|
917 | ( 1.0_wp + h2 )**2 * ( 1.0_wp + h2**2 ) ) ) +& |
---|
918 | 2.0_wp * ( ATAN( h1 ) - ATAN( h2 ) ) & |
---|
919 | ) |
---|
920 | ENDIF |
---|
921 | |
---|
922 | ! |
---|
923 | !-- Skip step (4) of wall_fluxes, because here rifs is already |
---|
924 | !-- available from (1) |
---|
925 | ! |
---|
926 | !-- (5) Compute wall_flux (u'v', v'u', w'v', or w'u') |
---|
927 | |
---|
928 | IF ( rifs >= 0.0_wp ) THEN |
---|
929 | |
---|
930 | ! |
---|
931 | !-- Stable stratification (and neutral) |
---|
932 | wall_flux(k,j,i) = kappa * vel_zp / ( & |
---|
933 | LOG( zp/z0(j,i) ) + & |
---|
934 | 5.0_wp * rifs * ( zp-z0(j,i) ) / zp & |
---|
935 | ) |
---|
936 | ELSE |
---|
937 | |
---|
938 | ! |
---|
939 | !-- Unstable stratification |
---|
940 | h1 = SQRT( SQRT( 1.0_wp - 16.0_wp * rifs ) ) |
---|
941 | h2 = SQRT( SQRT( 1.0_wp - 16.0_wp * rifs * z0(j,i) / zp ) ) |
---|
942 | |
---|
943 | wall_flux(k,j,i) = kappa * vel_zp / ( & |
---|
944 | LOG( zp / z0(j,i) ) - & |
---|
945 | LOG( ( 1.0_wp + h1 )**2 * ( 1.0_wp + h1**2 ) / ( & |
---|
946 | ( 1.0_wp + h2 )**2 * ( 1.0_wp + h2**2 ) ) ) +& |
---|
947 | 2.0_wp * ( ATAN( h1 ) - ATAN( h2 ) ) & |
---|
948 | ) |
---|
949 | ENDIF |
---|
950 | wall_flux(k,j,i) = - wall_flux(k,j,i) * us_wall |
---|
951 | |
---|
952 | ENDIF |
---|
953 | |
---|
954 | ENDDO |
---|
955 | ENDDO |
---|
956 | ENDDO |
---|
957 | !$acc end kernels |
---|
958 | |
---|
959 | END SUBROUTINE wall_fluxes_e_acc |
---|
960 | |
---|
961 | |
---|
962 | !------------------------------------------------------------------------------! |
---|
963 | ! Description: |
---|
964 | ! ------------ |
---|
965 | !> Call for grid point i,j |
---|
966 | !------------------------------------------------------------------------------! |
---|
967 | SUBROUTINE wall_fluxes_e_ij( i, j, nzb_w, nzt_w, wall_flux, a, b, c1, c2 ) |
---|
968 | |
---|
969 | USE arrays_3d, & |
---|
970 | ONLY: rif_wall, u, v, w, z0 |
---|
971 | |
---|
972 | USE control_parameters, & |
---|
973 | ONLY: kappa |
---|
974 | |
---|
975 | USE grid_variables, & |
---|
976 | ONLY: dx, dy |
---|
977 | |
---|
978 | USE indices, & |
---|
979 | ONLY: nzb, nzt |
---|
980 | |
---|
981 | USE kinds |
---|
982 | |
---|
983 | IMPLICIT NONE |
---|
984 | |
---|
985 | INTEGER(iwp) :: i !< |
---|
986 | INTEGER(iwp) :: j !< |
---|
987 | INTEGER(iwp) :: k !< |
---|
988 | INTEGER(iwp) :: kk !< |
---|
989 | INTEGER(iwp) :: nzb_w !< |
---|
990 | INTEGER(iwp) :: nzt_w !< |
---|
991 | INTEGER(iwp) :: wall_index !< |
---|
992 | |
---|
993 | REAL(wp) :: a !< |
---|
994 | REAL(wp) :: b !< |
---|
995 | REAL(wp) :: c1 !< |
---|
996 | REAL(wp) :: c2 !< |
---|
997 | REAL(wp) :: h1 !< |
---|
998 | REAL(wp) :: h2 !< |
---|
999 | REAL(wp) :: u_i !< |
---|
1000 | REAL(wp) :: v_i !< |
---|
1001 | REAL(wp) :: us_wall !< |
---|
1002 | REAL(wp) :: vel_total !< |
---|
1003 | REAL(wp) :: vel_zp !< |
---|
1004 | REAL(wp) :: ws !< |
---|
1005 | REAL(wp) :: zp !< |
---|
1006 | REAL(wp) :: rifs !< |
---|
1007 | |
---|
1008 | REAL(wp), DIMENSION(nzb:nzt+1) :: wall_flux !< |
---|
1009 | |
---|
1010 | |
---|
1011 | zp = 0.5_wp * ( (a+c1) * dy + (b+c2) * dx ) |
---|
1012 | wall_flux = 0.0_wp |
---|
1013 | wall_index = NINT( a+ 2*b + 3*c1 + 4*c2 ) |
---|
1014 | |
---|
1015 | ! |
---|
1016 | !-- All subsequent variables are computed for scalar locations. |
---|
1017 | DO k = nzb_w, nzt_w |
---|
1018 | |
---|
1019 | ! |
---|
1020 | !-- (1) Compute rifs, u_i, v_i, and ws |
---|
1021 | IF ( k == nzb_w ) THEN |
---|
1022 | kk = nzb_w |
---|
1023 | ELSE |
---|
1024 | kk = k-1 |
---|
1025 | ENDIF |
---|
1026 | rifs = 0.5_wp * ( rif_wall(k,j,i,wall_index) + & |
---|
1027 | a * rif_wall(k,j,i+1,1) + & |
---|
1028 | b * rif_wall(k,j+1,i,2) + & |
---|
1029 | c1 * rif_wall(kk,j,i,3) + & |
---|
1030 | c2 * rif_wall(kk,j,i,4) & |
---|
1031 | ) |
---|
1032 | |
---|
1033 | u_i = 0.5_wp * ( u(k,j,i) + u(k,j,i+1) ) |
---|
1034 | v_i = 0.5_wp * ( v(k,j,i) + v(k,j+1,i) ) |
---|
1035 | ws = 0.5_wp * ( w(k,j,i) + w(k-1,j,i) ) |
---|
1036 | ! |
---|
1037 | !-- (2) Compute wall-parallel absolute velocity vel_total and |
---|
1038 | !-- interpolate appropriate velocity component vel_zp. |
---|
1039 | vel_total = SQRT( ws**2 + (a+c1) * u_i**2 + (b+c2) * v_i**2 ) |
---|
1040 | vel_zp = 0.5_wp * ( a * u_i + b * v_i + (c1+c2) * ws ) |
---|
1041 | ! |
---|
1042 | !-- (3) Compute wall friction velocity us_wall |
---|
1043 | IF ( rifs >= 0.0_wp ) THEN |
---|
1044 | |
---|
1045 | ! |
---|
1046 | !-- Stable stratification (and neutral) |
---|
1047 | us_wall = kappa * vel_total / ( LOG( zp / z0(j,i) ) + & |
---|
1048 | 5.0_wp * rifs * ( zp - z0(j,i) ) / zp & |
---|
1049 | ) |
---|
1050 | ELSE |
---|
1051 | |
---|
1052 | ! |
---|
1053 | !-- Unstable stratification |
---|
1054 | h1 = SQRT( SQRT( 1.0_wp - 16.0_wp * rifs ) ) |
---|
1055 | h2 = SQRT( SQRT( 1.0_wp - 16.0_wp * rifs * z0(j,i) / zp ) ) |
---|
1056 | |
---|
1057 | us_wall = kappa * vel_total / ( & |
---|
1058 | LOG( zp / z0(j,i) ) - & |
---|
1059 | LOG( ( 1.0_wp + h1 )**2 * ( 1.0_wp + h1**2 ) / ( & |
---|
1060 | ( 1.0_wp + h2 )**2 * ( 1.0_wp + h2**2 ) ) ) + & |
---|
1061 | 2.0_wp * ( ATAN( h1 ) - ATAN( h2 ) ) & |
---|
1062 | ) |
---|
1063 | ENDIF |
---|
1064 | |
---|
1065 | ! |
---|
1066 | !-- Skip step (4) of wall_fluxes, because here rifs is already |
---|
1067 | !-- available from (1) |
---|
1068 | ! |
---|
1069 | !-- (5) Compute wall_flux (u'v', v'u', w'v', or w'u') |
---|
1070 | !-- First interpolate the velocity (this is different from |
---|
1071 | !-- subroutine wall_fluxes because fluxes in subroutine |
---|
1072 | !-- wall_fluxes_e are defined at scalar locations). |
---|
1073 | vel_zp = 0.5_wp * ( a * ( u(k,j,i) + u(k,j,i+1) ) + & |
---|
1074 | b * ( v(k,j,i) + v(k,j+1,i) ) + & |
---|
1075 | (c1+c2) * ( w(k,j,i) + w(k-1,j,i) ) & |
---|
1076 | ) |
---|
1077 | |
---|
1078 | IF ( rifs >= 0.0_wp ) THEN |
---|
1079 | |
---|
1080 | ! |
---|
1081 | !-- Stable stratification (and neutral) |
---|
1082 | wall_flux(k) = kappa * vel_zp / & |
---|
1083 | ( LOG( zp/z0(j,i) ) + 5.0_wp * rifs * ( zp-z0(j,i) ) / zp ) |
---|
1084 | ELSE |
---|
1085 | |
---|
1086 | ! |
---|
1087 | !-- Unstable stratification |
---|
1088 | h1 = SQRT( SQRT( 1.0_wp - 16.0_wp * rifs ) ) |
---|
1089 | h2 = SQRT( SQRT( 1.0_wp - 16.0_wp * rifs * z0(j,i) / zp ) ) |
---|
1090 | |
---|
1091 | wall_flux(k) = kappa * vel_zp / ( & |
---|
1092 | LOG( zp / z0(j,i) ) - & |
---|
1093 | LOG( ( 1.0_wp + h1 )**2 * ( 1.0_wp + h1**2 ) / ( & |
---|
1094 | ( 1.0_wp + h2 )**2 * ( 1.0_wp + h2**2 ) ) ) + & |
---|
1095 | 2.0_wp * ( ATAN( h1 ) - ATAN( h2 ) ) & |
---|
1096 | ) |
---|
1097 | ENDIF |
---|
1098 | wall_flux(k) = - wall_flux(k) * us_wall |
---|
1099 | |
---|
1100 | ENDDO |
---|
1101 | |
---|
1102 | END SUBROUTINE wall_fluxes_e_ij |
---|
1103 | |
---|
1104 | END MODULE wall_fluxes_mod |
---|