[56] | 1 | MODULE wall_fluxes_mod |
---|
[52] | 2 | !------------------------------------------------------------------------------! |
---|
| 3 | ! Actual revisions: |
---|
| 4 | ! ----------------- |
---|
[187] | 5 | ! Bugfix: change definition of us_wall from 1D to 2D: |
---|
| 6 | ! Modification of the evaluation of the vertical turbulent momentum |
---|
| 7 | ! fluxes u'w' and v'w'; the first usws that is computed corresponds |
---|
| 8 | ! to -u'w'/u* and not as priorily assumed to (-u'w')**0.5, the first |
---|
| 9 | ! vsws that is computed corresponds to -v'w'/u* and not as priorily |
---|
| 10 | ! assumed to (-v'w')**0.5. Therefore, the intermediate result for |
---|
| 11 | ! usws has to be multiplied by -u* instead by itself in order to |
---|
| 12 | ! get u'w'. Accordingly, the intermediate result for vsws has to be |
---|
| 13 | ! multiplied by -u* instead by itself in order to get v'w'. |
---|
| 14 | ! This requires the calculation of us_wall (and vel_total, u_i, v_i, ws) |
---|
| 15 | ! also in wall_fluxes_e. |
---|
| 16 | ! Bugfix: storage of rifs to rifs_wall in wall_fluxes_e removed |
---|
| 17 | ! Change: add 'minus' sign to fluxes produced by subroutine wall_fluxes_e for |
---|
| 18 | ! consistency with subroutine wall_fluxes |
---|
| 19 | ! Change: Modification of the integrated version of the profile function for |
---|
| 20 | ! momentum for unstable stratification |
---|
[52] | 21 | ! |
---|
| 22 | ! Former revisions: |
---|
| 23 | ! ----------------- |
---|
| 24 | ! $Id: wall_fluxes.f90 187 2008-08-06 16:25:09Z letzel $ |
---|
| 25 | ! Initial version (2007/03/07) |
---|
| 26 | ! |
---|
| 27 | ! Description: |
---|
| 28 | ! ------------ |
---|
| 29 | ! Calculates momentum fluxes at vertical walls assuming Monin-Obukhov |
---|
| 30 | ! similarity. |
---|
| 31 | ! Indices: usvs a=1, vsus b=1, wsvs c1=1, wsus c2=1 (other=0). |
---|
[56] | 32 | ! The all-gridpoint version of wall_fluxes_e is not used so far, because |
---|
| 33 | ! it gives slightly different results from the ij-version for some unknown |
---|
| 34 | ! reason. |
---|
[52] | 35 | !------------------------------------------------------------------------------! |
---|
[56] | 36 | PRIVATE |
---|
| 37 | PUBLIC wall_fluxes, wall_fluxes_e |
---|
| 38 | |
---|
| 39 | INTERFACE wall_fluxes |
---|
| 40 | MODULE PROCEDURE wall_fluxes |
---|
| 41 | MODULE PROCEDURE wall_fluxes_ij |
---|
| 42 | END INTERFACE wall_fluxes |
---|
| 43 | |
---|
| 44 | INTERFACE wall_fluxes_e |
---|
| 45 | MODULE PROCEDURE wall_fluxes_e |
---|
| 46 | MODULE PROCEDURE wall_fluxes_e_ij |
---|
| 47 | END INTERFACE wall_fluxes_e |
---|
| 48 | |
---|
| 49 | CONTAINS |
---|
[52] | 50 | |
---|
[56] | 51 | !------------------------------------------------------------------------------! |
---|
| 52 | ! Call for all grid points |
---|
| 53 | !------------------------------------------------------------------------------! |
---|
[75] | 54 | SUBROUTINE wall_fluxes( wall_flux, a, b, c1, c2, nzb_uvw_inner, & |
---|
[56] | 55 | nzb_uvw_outer, wall ) |
---|
[52] | 56 | |
---|
[56] | 57 | USE arrays_3d |
---|
| 58 | USE control_parameters |
---|
| 59 | USE grid_variables |
---|
| 60 | USE indices |
---|
| 61 | USE statistics |
---|
[52] | 62 | |
---|
[56] | 63 | IMPLICIT NONE |
---|
[52] | 64 | |
---|
[75] | 65 | INTEGER :: i, j, k, wall_index |
---|
[52] | 66 | |
---|
[56] | 67 | INTEGER, DIMENSION(nys-1:nyn+1,nxl-1:nxr+1) :: nzb_uvw_inner, & |
---|
| 68 | nzb_uvw_outer |
---|
| 69 | REAL :: a, b, c1, c2, h1, h2, zp |
---|
| 70 | REAL :: pts, pt_i, rifs, u_i, v_i, us_wall, vel_total, ws, wspts |
---|
[52] | 71 | |
---|
[75] | 72 | REAL, DIMENSION(nys-1:nyn+1,nxl-1:nxr+1) :: wall |
---|
| 73 | REAL, DIMENSION(nzb:nzt+1,nys:nyn,nxl:nxr) :: wall_flux |
---|
[52] | 74 | |
---|
| 75 | |
---|
[56] | 76 | zp = 0.5 * ( (a+c1) * dy + (b+c2) * dx ) |
---|
| 77 | wall_flux = 0.0 |
---|
| 78 | wall_index = NINT( a+ 2*b + 3*c1 + 4*c2 ) |
---|
| 79 | |
---|
[75] | 80 | DO i = nxl, nxr |
---|
| 81 | DO j = nys, nyn |
---|
[56] | 82 | |
---|
| 83 | IF ( wall(j,i) /= 0.0 ) THEN |
---|
[52] | 84 | ! |
---|
[56] | 85 | !-- All subsequent variables are computed for the respective |
---|
[187] | 86 | !-- location where the respective flux is defined. |
---|
[56] | 87 | DO k = nzb_uvw_inner(j,i)+1, nzb_uvw_outer(j,i) |
---|
[53] | 88 | |
---|
[52] | 89 | ! |
---|
[56] | 90 | !-- (1) Compute rifs, u_i, v_i, ws, pt' and w'pt' |
---|
| 91 | rifs = rif_wall(k,j,i,wall_index) |
---|
[53] | 92 | |
---|
[56] | 93 | u_i = a * u(k,j,i) + c1 * 0.25 * & |
---|
| 94 | ( u(k+1,j,i+1) + u(k+1,j,i) + u(k,j,i+1) + u(k,j,i) ) |
---|
[53] | 95 | |
---|
[56] | 96 | v_i = b * v(k,j,i) + c2 * 0.25 * & |
---|
| 97 | ( v(k+1,j+1,i) + v(k+1,j,i) + v(k,j+1,i) + v(k,j,i) ) |
---|
[53] | 98 | |
---|
[56] | 99 | ws = ( c1 + c2 ) * w(k,j,i) + 0.25 * ( & |
---|
| 100 | a * ( w(k-1,j,i-1) + w(k-1,j,i) + w(k,j,i-1) + w(k,j,i) ) & |
---|
| 101 | + b * ( w(k-1,j-1,i) + w(k-1,j,i) + w(k,j-1,i) + w(k,j,i) ) & |
---|
| 102 | ) |
---|
| 103 | pt_i = 0.5 * ( pt(k,j,i) + a * pt(k,j,i-1) + & |
---|
| 104 | b * pt(k,j-1,i) + ( c1 + c2 ) * pt(k+1,j,i) ) |
---|
[53] | 105 | |
---|
[56] | 106 | pts = pt_i - hom(k,1,4,0) |
---|
| 107 | wspts = ws * pts |
---|
[53] | 108 | |
---|
[52] | 109 | ! |
---|
[56] | 110 | !-- (2) Compute wall-parallel absolute velocity vel_total |
---|
| 111 | vel_total = SQRT( ws**2 + (a+c1) * u_i**2 + (b+c2) * v_i**2 ) |
---|
[53] | 112 | |
---|
[52] | 113 | ! |
---|
[56] | 114 | !-- (3) Compute wall friction velocity us_wall |
---|
| 115 | IF ( rifs >= 0.0 ) THEN |
---|
[53] | 116 | |
---|
[52] | 117 | ! |
---|
[56] | 118 | !-- Stable stratification (and neutral) |
---|
| 119 | us_wall = kappa * vel_total / ( LOG( zp / z0(j,i) ) + & |
---|
| 120 | 5.0 * rifs * ( zp - z0(j,i) ) / zp & |
---|
| 121 | ) |
---|
| 122 | ELSE |
---|
[53] | 123 | |
---|
[52] | 124 | ! |
---|
[56] | 125 | !-- Unstable stratification |
---|
[187] | 126 | h1 = SQRT( SQRT( 1.0 - 16.0 * rifs ) ) |
---|
| 127 | h2 = SQRT( SQRT( 1.0 - 16.0 * rifs * z0(j,i) / zp ) ) |
---|
[53] | 128 | |
---|
[187] | 129 | us_wall = kappa * vel_total / ( & |
---|
| 130 | LOG( zp / z0(j,i) ) - & |
---|
| 131 | LOG( ( 1.0 + h1 )**2 * ( 1.0 + h1**2 ) / ( & |
---|
| 132 | ( 1.0 + h2 )**2 * ( 1.0 + h2**2 ) ) ) + & |
---|
| 133 | 2.0 * ( ATAN( h1 ) - ATAN( h2 ) ) & |
---|
| 134 | ) |
---|
[56] | 135 | ENDIF |
---|
[53] | 136 | |
---|
[52] | 137 | ! |
---|
[56] | 138 | !-- (4) Compute zp/L (corresponds to neutral Richardson flux |
---|
| 139 | !-- number rifs) |
---|
| 140 | rifs = -1.0 * zp * kappa * g * wspts / ( pt_i * & |
---|
| 141 | ( us_wall**3 + 1E-30 ) ) |
---|
[53] | 142 | |
---|
[52] | 143 | ! |
---|
[56] | 144 | !-- Limit the value range of the Richardson numbers. |
---|
| 145 | !-- This is necessary for very small velocities (u,w --> 0), |
---|
| 146 | !-- because the absolute value of rif can then become very |
---|
| 147 | !-- large, which in consequence would result in very large |
---|
| 148 | !-- shear stresses and very small momentum fluxes (both are |
---|
| 149 | !-- generally unrealistic). |
---|
| 150 | IF ( rifs < rif_min ) rifs = rif_min |
---|
| 151 | IF ( rifs > rif_max ) rifs = rif_max |
---|
[53] | 152 | |
---|
[52] | 153 | ! |
---|
[56] | 154 | !-- (5) Compute wall_flux (u'v', v'u', w'v', or w'u') |
---|
| 155 | IF ( rifs >= 0.0 ) THEN |
---|
[53] | 156 | |
---|
[52] | 157 | ! |
---|
[56] | 158 | !-- Stable stratification (and neutral) |
---|
| 159 | wall_flux(k,j,i) = kappa * & |
---|
| 160 | ( a*u(k,j,i) + b*v(k,j,i) + (c1+c2)*w(k,j,i) ) / & |
---|
| 161 | ( LOG( zp / z0(j,i) ) + & |
---|
| 162 | 5.0 * rifs * ( zp - z0(j,i) ) / zp & |
---|
| 163 | ) |
---|
| 164 | ELSE |
---|
[53] | 165 | |
---|
[52] | 166 | ! |
---|
[56] | 167 | !-- Unstable stratification |
---|
[187] | 168 | h1 = SQRT( SQRT( 1.0 - 16.0 * rifs ) ) |
---|
| 169 | h2 = SQRT( SQRT( 1.0 - 16.0 * rifs * z0(j,i) / zp ) ) |
---|
[53] | 170 | |
---|
[187] | 171 | wall_flux(k,j,i) = kappa * & |
---|
| 172 | ( a*u(k,j,i) + b*v(k,j,i) + (c1+c2)*w(k,j,i) ) / ( & |
---|
| 173 | LOG( zp / z0(j,i) ) - & |
---|
| 174 | LOG( ( 1.0 + h1 )**2 * ( 1.0 + h1**2 ) / ( & |
---|
| 175 | ( 1.0 + h2 )**2 * ( 1.0 + h2**2 ) ) ) + & |
---|
| 176 | 2.0 * ( ATAN( h1 ) - ATAN( h2 ) ) & |
---|
| 177 | ) |
---|
[56] | 178 | ENDIF |
---|
[187] | 179 | wall_flux(k,j,i) = -wall_flux(k,j,i) * us_wall |
---|
[56] | 180 | |
---|
| 181 | ! |
---|
| 182 | !-- store rifs for next time step |
---|
| 183 | rif_wall(k,j,i,wall_index) = rifs |
---|
| 184 | |
---|
| 185 | ENDDO |
---|
| 186 | |
---|
| 187 | ENDIF |
---|
| 188 | |
---|
| 189 | ENDDO |
---|
| 190 | ENDDO |
---|
| 191 | |
---|
| 192 | END SUBROUTINE wall_fluxes |
---|
| 193 | |
---|
| 194 | |
---|
| 195 | |
---|
| 196 | !------------------------------------------------------------------------------! |
---|
| 197 | ! Call for all grid point i,j |
---|
| 198 | !------------------------------------------------------------------------------! |
---|
| 199 | SUBROUTINE wall_fluxes_ij( i, j, nzb_w, nzt_w, wall_flux, a, b, c1, c2 ) |
---|
| 200 | |
---|
| 201 | USE arrays_3d |
---|
| 202 | USE control_parameters |
---|
| 203 | USE grid_variables |
---|
| 204 | USE indices |
---|
| 205 | USE statistics |
---|
| 206 | |
---|
| 207 | IMPLICIT NONE |
---|
| 208 | |
---|
| 209 | INTEGER :: i, j, k, nzb_w, nzt_w, wall_index |
---|
| 210 | REAL :: a, b, c1, c2, h1, h2, zp |
---|
| 211 | |
---|
| 212 | REAL :: pts, pt_i, rifs, u_i, v_i, us_wall, vel_total, ws, wspts |
---|
| 213 | |
---|
| 214 | REAL, DIMENSION(nzb:nzt+1) :: wall_flux |
---|
| 215 | |
---|
| 216 | |
---|
| 217 | zp = 0.5 * ( (a+c1) * dy + (b+c2) * dx ) |
---|
| 218 | wall_flux = 0.0 |
---|
| 219 | wall_index = NINT( a+ 2*b + 3*c1 + 4*c2 ) |
---|
| 220 | |
---|
| 221 | ! |
---|
| 222 | !-- All subsequent variables are computed for the respective location where |
---|
[187] | 223 | !-- the respective flux is defined. |
---|
[56] | 224 | DO k = nzb_w, nzt_w |
---|
| 225 | |
---|
| 226 | ! |
---|
| 227 | !-- (1) Compute rifs, u_i, v_i, ws, pt' and w'pt' |
---|
| 228 | rifs = rif_wall(k,j,i,wall_index) |
---|
| 229 | |
---|
| 230 | u_i = a * u(k,j,i) + c1 * 0.25 * & |
---|
| 231 | ( u(k+1,j,i+1) + u(k+1,j,i) + u(k,j,i+1) + u(k,j,i) ) |
---|
| 232 | |
---|
| 233 | v_i = b * v(k,j,i) + c2 * 0.25 * & |
---|
| 234 | ( v(k+1,j+1,i) + v(k+1,j,i) + v(k,j+1,i) + v(k,j,i) ) |
---|
| 235 | |
---|
| 236 | ws = ( c1 + c2 ) * w(k,j,i) + 0.25 * ( & |
---|
| 237 | a * ( w(k-1,j,i-1) + w(k-1,j,i) + w(k,j,i-1) + w(k,j,i) ) & |
---|
| 238 | + b * ( w(k-1,j-1,i) + w(k-1,j,i) + w(k,j-1,i) + w(k,j,i) ) & |
---|
| 239 | ) |
---|
| 240 | pt_i = 0.5 * ( pt(k,j,i) + a * pt(k,j,i-1) + b * pt(k,j-1,i) & |
---|
| 241 | + ( c1 + c2 ) * pt(k+1,j,i) ) |
---|
| 242 | |
---|
| 243 | pts = pt_i - hom(k,1,4,0) |
---|
| 244 | wspts = ws * pts |
---|
| 245 | |
---|
| 246 | ! |
---|
| 247 | !-- (2) Compute wall-parallel absolute velocity vel_total |
---|
| 248 | vel_total = SQRT( ws**2 + ( a+c1 ) * u_i**2 + ( b+c2 ) * v_i**2 ) |
---|
| 249 | |
---|
| 250 | ! |
---|
| 251 | !-- (3) Compute wall friction velocity us_wall |
---|
| 252 | IF ( rifs >= 0.0 ) THEN |
---|
| 253 | |
---|
| 254 | ! |
---|
| 255 | !-- Stable stratification (and neutral) |
---|
| 256 | us_wall = kappa * vel_total / ( LOG( zp / z0(j,i) ) + & |
---|
| 257 | 5.0 * rifs * ( zp - z0(j,i) ) / zp & |
---|
| 258 | ) |
---|
| 259 | ELSE |
---|
| 260 | |
---|
| 261 | ! |
---|
| 262 | !-- Unstable stratification |
---|
[187] | 263 | h1 = SQRT( SQRT( 1.0 - 16.0 * rifs ) ) |
---|
| 264 | h2 = SQRT( SQRT( 1.0 - 16.0 * rifs * z0(j,i) / zp ) ) |
---|
[56] | 265 | |
---|
[187] | 266 | us_wall = kappa * vel_total / ( & |
---|
| 267 | LOG( zp / z0(j,i) ) - & |
---|
| 268 | LOG( ( 1.0 + h1 )**2 * ( 1.0 + h1**2 ) / ( & |
---|
| 269 | ( 1.0 + h2 )**2 * ( 1.0 + h2**2 ) ) ) + & |
---|
| 270 | 2.0 * ( ATAN( h1 ) - ATAN( h2 ) ) & |
---|
| 271 | ) |
---|
[56] | 272 | ENDIF |
---|
| 273 | |
---|
| 274 | ! |
---|
| 275 | !-- (4) Compute zp/L (corresponds to neutral Richardson flux number |
---|
| 276 | !-- rifs) |
---|
| 277 | rifs = -1.0 * zp * kappa * g * wspts / ( pt_i * (us_wall**3 + 1E-30) ) |
---|
| 278 | |
---|
| 279 | ! |
---|
| 280 | !-- Limit the value range of the Richardson numbers. |
---|
| 281 | !-- This is necessary for very small velocities (u,w --> 0), because |
---|
| 282 | !-- the absolute value of rif can then become very large, which in |
---|
| 283 | !-- consequence would result in very large shear stresses and very |
---|
| 284 | !-- small momentum fluxes (both are generally unrealistic). |
---|
| 285 | IF ( rifs < rif_min ) rifs = rif_min |
---|
| 286 | IF ( rifs > rif_max ) rifs = rif_max |
---|
| 287 | |
---|
| 288 | ! |
---|
| 289 | !-- (5) Compute wall_flux (u'v', v'u', w'v', or w'u') |
---|
| 290 | IF ( rifs >= 0.0 ) THEN |
---|
| 291 | |
---|
| 292 | ! |
---|
| 293 | !-- Stable stratification (and neutral) |
---|
[53] | 294 | wall_flux(k) = kappa * & |
---|
| 295 | ( a*u(k,j,i) + b*v(k,j,i) + (c1+c2)*w(k,j,i) ) / & |
---|
[56] | 296 | ( LOG( zp / z0(j,i) ) + & |
---|
| 297 | 5.0 * rifs * ( zp - z0(j,i) ) / zp & |
---|
[53] | 298 | ) |
---|
[52] | 299 | ELSE |
---|
[53] | 300 | |
---|
[56] | 301 | ! |
---|
| 302 | !-- Unstable stratification |
---|
[187] | 303 | h1 = SQRT( SQRT( 1.0 - 16.0 * rifs ) ) |
---|
| 304 | h2 = SQRT( SQRT( 1.0 - 16.0 * rifs * z0(j,i) / zp ) ) |
---|
[52] | 305 | |
---|
[187] | 306 | wall_flux(k) = kappa * & |
---|
| 307 | ( a*u(k,j,i) + b*v(k,j,i) + (c1+c2)*w(k,j,i) ) / ( & |
---|
| 308 | LOG( zp / z0(j,i) ) - & |
---|
| 309 | LOG( ( 1.0 + h1 )**2 * ( 1.0 + h1**2 ) / ( & |
---|
| 310 | ( 1.0 + h2 )**2 * ( 1.0 + h2**2 ) ) ) + & |
---|
| 311 | 2.0 * ( ATAN( h1 ) - ATAN( h2 ) ) & |
---|
| 312 | ) |
---|
[56] | 313 | ENDIF |
---|
[187] | 314 | wall_flux(k) = -wall_flux(k) * us_wall |
---|
[53] | 315 | |
---|
[56] | 316 | ! |
---|
| 317 | !-- store rifs for next time step |
---|
| 318 | rif_wall(k,j,i,wall_index) = rifs |
---|
[53] | 319 | |
---|
[56] | 320 | ENDDO |
---|
[53] | 321 | |
---|
[56] | 322 | END SUBROUTINE wall_fluxes_ij |
---|
[53] | 323 | |
---|
[56] | 324 | |
---|
| 325 | |
---|
[53] | 326 | !------------------------------------------------------------------------------! |
---|
[56] | 327 | ! Call for all grid points |
---|
| 328 | !------------------------------------------------------------------------------! |
---|
| 329 | SUBROUTINE wall_fluxes_e( wall_flux, a, b, c1, c2, wall ) |
---|
| 330 | |
---|
| 331 | !------------------------------------------------------------------------------! |
---|
[53] | 332 | ! Description: |
---|
| 333 | ! ------------ |
---|
| 334 | ! Calculates momentum fluxes at vertical walls for routine production_e |
---|
| 335 | ! assuming Monin-Obukhov similarity. |
---|
| 336 | ! Indices: usvs a=1, vsus b=1, wsvs c1=1, wsus c2=1 (other=0). |
---|
| 337 | !------------------------------------------------------------------------------! |
---|
| 338 | |
---|
[56] | 339 | USE arrays_3d |
---|
| 340 | USE control_parameters |
---|
| 341 | USE grid_variables |
---|
| 342 | USE indices |
---|
| 343 | USE statistics |
---|
[53] | 344 | |
---|
[56] | 345 | IMPLICIT NONE |
---|
[53] | 346 | |
---|
[56] | 347 | INTEGER :: i, j, k, kk, wall_index |
---|
[187] | 348 | REAL :: a, b, c1, c2, h1, h2, u_i, v_i, us_wall, vel_total, vel_zp, & |
---|
| 349 | ws, zp |
---|
[53] | 350 | |
---|
[56] | 351 | REAL :: rifs |
---|
[53] | 352 | |
---|
[56] | 353 | REAL, DIMENSION(nys-1:nyn+1,nxl-1:nxr+1) :: wall |
---|
| 354 | REAL, DIMENSION(nzb:nzt+1,nys:nyn,nxl:nxr) :: wall_flux |
---|
[53] | 355 | |
---|
| 356 | |
---|
[56] | 357 | zp = 0.5 * ( (a+c1) * dy + (b+c2) * dx ) |
---|
| 358 | wall_flux = 0.0 |
---|
| 359 | wall_index = NINT( a+ 2*b + 3*c1 + 4*c2 ) |
---|
[53] | 360 | |
---|
[56] | 361 | DO i = nxl, nxr |
---|
| 362 | DO j = nys, nyn |
---|
| 363 | |
---|
| 364 | IF ( wall(j,i) /= 0.0 ) THEN |
---|
[53] | 365 | ! |
---|
[187] | 366 | !-- All subsequent variables are computed for scalar locations. |
---|
[56] | 367 | DO k = nzb_diff_s_inner(j,i)-1, nzb_diff_s_outer(j,i)-2 |
---|
[53] | 368 | ! |
---|
[187] | 369 | !-- (1) Compute rifs, u_i, v_i, and ws |
---|
[56] | 370 | IF ( k == nzb_diff_s_inner(j,i)-1 ) THEN |
---|
| 371 | kk = nzb_diff_s_inner(j,i)-1 |
---|
| 372 | ELSE |
---|
| 373 | kk = k-1 |
---|
| 374 | ENDIF |
---|
| 375 | rifs = 0.5 * ( rif_wall(k,j,i,wall_index) + & |
---|
| 376 | a * rif_wall(k,j,i+1,1) + b * rif_wall(k,j+1,i,2) + & |
---|
| 377 | c1 * rif_wall(kk,j,i,3) + c2 * rif_wall(kk,j,i,4) & |
---|
| 378 | ) |
---|
[53] | 379 | |
---|
[187] | 380 | u_i = 0.5 * ( u(k,j,i) + u(k,j,i+1) ) |
---|
| 381 | v_i = 0.5 * ( v(k,j,i) + v(k,j+1,i) ) |
---|
| 382 | ws = 0.5 * ( w(k,j,i) + w(k-1,j,i) ) |
---|
[53] | 383 | ! |
---|
[187] | 384 | !-- (2) Compute wall-parallel absolute velocity vel_total and |
---|
| 385 | !-- interpolate appropriate velocity component vel_zp. |
---|
| 386 | vel_total = SQRT( ws**2 + (a+c1) * u_i**2 + (b+c2) * v_i**2 ) |
---|
| 387 | vel_zp = 0.5 * ( a * u_i + b * v_i + (c1+c2) * ws ) |
---|
| 388 | ! |
---|
| 389 | !-- (3) Compute wall friction velocity us_wall |
---|
| 390 | IF ( rifs >= 0.0 ) THEN |
---|
[53] | 391 | |
---|
| 392 | ! |
---|
[187] | 393 | !-- Stable stratification (and neutral) |
---|
| 394 | us_wall = kappa * vel_total / ( LOG( zp / z0(j,i) ) + & |
---|
| 395 | 5.0 * rifs * ( zp - z0(j,i) ) / zp & |
---|
| 396 | ) |
---|
| 397 | ELSE |
---|
| 398 | |
---|
| 399 | ! |
---|
| 400 | !-- Unstable stratification |
---|
| 401 | h1 = SQRT( SQRT( 1.0 - 16.0 * rifs ) ) |
---|
| 402 | h2 = SQRT( SQRT( 1.0 - 16.0 * rifs * z0(j,i) / zp ) ) |
---|
| 403 | |
---|
| 404 | us_wall = kappa * vel_total / ( & |
---|
| 405 | LOG( zp / z0(j,i) ) - & |
---|
| 406 | LOG( ( 1.0 + h1 )**2 * ( 1.0 + h1**2 ) / ( & |
---|
| 407 | ( 1.0 + h2 )**2 * ( 1.0 + h2**2 ) ) ) + & |
---|
| 408 | 2.0 * ( ATAN( h1 ) - ATAN( h2 ) ) & |
---|
| 409 | ) |
---|
| 410 | ENDIF |
---|
| 411 | |
---|
| 412 | ! |
---|
| 413 | !-- Skip step (4) of wall_fluxes, because here rifs is already |
---|
| 414 | !-- available from (1) |
---|
| 415 | ! |
---|
[56] | 416 | !-- (5) Compute wall_flux (u'v', v'u', w'v', or w'u') |
---|
[55] | 417 | |
---|
[56] | 418 | IF ( rifs >= 0.0 ) THEN |
---|
[53] | 419 | |
---|
| 420 | ! |
---|
[56] | 421 | !-- Stable stratification (and neutral) |
---|
| 422 | wall_flux(k,j,i) = kappa * vel_zp / & |
---|
| 423 | ( LOG( zp/z0(j,i) ) + 5.0*rifs * ( zp-z0(j,i) ) / zp ) |
---|
| 424 | ELSE |
---|
[53] | 425 | |
---|
| 426 | ! |
---|
[56] | 427 | !-- Unstable stratification |
---|
[187] | 428 | h1 = SQRT( SQRT( 1.0 - 16.0 * rifs ) ) |
---|
| 429 | h2 = SQRT( SQRT( 1.0 - 16.0 * rifs * z0(j,i) / zp ) ) |
---|
[53] | 430 | |
---|
[187] | 431 | wall_flux(k,j,i) = kappa * vel_zp / ( & |
---|
| 432 | LOG( zp / z0(j,i) ) - & |
---|
| 433 | LOG( ( 1.0 + h1 )**2 * ( 1.0 + h1**2 ) / ( & |
---|
| 434 | ( 1.0 + h2 )**2 * ( 1.0 + h2**2 ) ) ) + & |
---|
| 435 | 2.0 * ( ATAN( h1 ) - ATAN( h2 ) ) & |
---|
| 436 | ) |
---|
[56] | 437 | ENDIF |
---|
[187] | 438 | wall_flux(k,j,i) = - wall_flux(k,j,i) * us_wall |
---|
[56] | 439 | |
---|
| 440 | ENDDO |
---|
| 441 | |
---|
| 442 | ENDIF |
---|
| 443 | |
---|
| 444 | ENDDO |
---|
| 445 | ENDDO |
---|
| 446 | |
---|
| 447 | END SUBROUTINE wall_fluxes_e |
---|
| 448 | |
---|
| 449 | |
---|
| 450 | |
---|
| 451 | !------------------------------------------------------------------------------! |
---|
| 452 | ! Call for grid point i,j |
---|
| 453 | !------------------------------------------------------------------------------! |
---|
| 454 | SUBROUTINE wall_fluxes_e_ij( i, j, nzb_w, nzt_w, wall_flux, a, b, c1, c2 ) |
---|
| 455 | |
---|
| 456 | USE arrays_3d |
---|
| 457 | USE control_parameters |
---|
| 458 | USE grid_variables |
---|
| 459 | USE indices |
---|
| 460 | USE statistics |
---|
| 461 | |
---|
| 462 | IMPLICIT NONE |
---|
| 463 | |
---|
| 464 | INTEGER :: i, j, k, kk, nzb_w, nzt_w, wall_index |
---|
[187] | 465 | REAL :: a, b, c1, c2, h1, h2, u_i, v_i, us_wall, vel_total, vel_zp, & |
---|
| 466 | ws, zp |
---|
[56] | 467 | |
---|
| 468 | REAL :: rifs |
---|
| 469 | |
---|
| 470 | REAL, DIMENSION(nzb:nzt+1) :: wall_flux |
---|
| 471 | |
---|
| 472 | |
---|
| 473 | zp = 0.5 * ( (a+c1) * dy + (b+c2) * dx ) |
---|
| 474 | wall_flux = 0.0 |
---|
| 475 | wall_index = NINT( a+ 2*b + 3*c1 + 4*c2 ) |
---|
| 476 | |
---|
| 477 | ! |
---|
[187] | 478 | !-- All subsequent variables are computed for scalar locations. |
---|
[56] | 479 | DO k = nzb_w, nzt_w |
---|
| 480 | |
---|
| 481 | ! |
---|
[187] | 482 | !-- (1) Compute rifs, u_i, v_i, and ws |
---|
[56] | 483 | IF ( k == nzb_w ) THEN |
---|
| 484 | kk = nzb_w |
---|
[53] | 485 | ELSE |
---|
[56] | 486 | kk = k-1 |
---|
| 487 | ENDIF |
---|
| 488 | rifs = 0.5 * ( rif_wall(k,j,i,wall_index) + & |
---|
| 489 | a * rif_wall(k,j,i+1,1) + b * rif_wall(k,j+1,i,2) + & |
---|
| 490 | c1 * rif_wall(kk,j,i,3) + c2 * rif_wall(kk,j,i,4) & |
---|
| 491 | ) |
---|
| 492 | |
---|
[187] | 493 | u_i = 0.5 * ( u(k,j,i) + u(k,j,i+1) ) |
---|
| 494 | v_i = 0.5 * ( v(k,j,i) + v(k,j+1,i) ) |
---|
| 495 | ws = 0.5 * ( w(k,j,i) + w(k-1,j,i) ) |
---|
[56] | 496 | ! |
---|
[187] | 497 | !-- (2) Compute wall-parallel absolute velocity vel_total and |
---|
| 498 | !-- interpolate appropriate velocity component vel_zp. |
---|
| 499 | vel_total = SQRT( ws**2 + (a+c1) * u_i**2 + (b+c2) * v_i**2 ) |
---|
| 500 | vel_zp = 0.5 * ( a * u_i + b * v_i + (c1+c2) * ws ) |
---|
| 501 | ! |
---|
| 502 | !-- (3) Compute wall friction velocity us_wall |
---|
| 503 | IF ( rifs >= 0.0 ) THEN |
---|
[56] | 504 | |
---|
| 505 | ! |
---|
[187] | 506 | !-- Stable stratification (and neutral) |
---|
| 507 | us_wall = kappa * vel_total / ( LOG( zp / z0(j,i) ) + & |
---|
| 508 | 5.0 * rifs * ( zp - z0(j,i) ) / zp & |
---|
| 509 | ) |
---|
| 510 | ELSE |
---|
| 511 | |
---|
| 512 | ! |
---|
| 513 | !-- Unstable stratification |
---|
| 514 | h1 = SQRT( SQRT( 1.0 - 16.0 * rifs ) ) |
---|
| 515 | h2 = SQRT( SQRT( 1.0 - 16.0 * rifs * z0(j,i) / zp ) ) |
---|
| 516 | |
---|
| 517 | us_wall = kappa * vel_total / ( & |
---|
| 518 | LOG( zp / z0(j,i) ) - & |
---|
| 519 | LOG( ( 1.0 + h1 )**2 * ( 1.0 + h1**2 ) / ( & |
---|
| 520 | ( 1.0 + h2 )**2 * ( 1.0 + h2**2 ) ) ) + & |
---|
| 521 | 2.0 * ( ATAN( h1 ) - ATAN( h2 ) ) & |
---|
| 522 | ) |
---|
| 523 | ENDIF |
---|
| 524 | |
---|
| 525 | ! |
---|
| 526 | !-- Skip step (4) of wall_fluxes, because here rifs is already |
---|
| 527 | !-- available from (1) |
---|
| 528 | ! |
---|
[56] | 529 | !-- (5) Compute wall_flux (u'v', v'u', w'v', or w'u') |
---|
[187] | 530 | !-- First interpolate the velocity (this is different from |
---|
| 531 | !-- subroutine wall_fluxes because fluxes in subroutine |
---|
| 532 | !-- wall_fluxes_e are defined at scalar locations). |
---|
[56] | 533 | vel_zp = 0.5 * ( a * ( u(k,j,i) + u(k,j,i+1) ) + & |
---|
| 534 | b * ( v(k,j,i) + v(k,j+1,i) ) + & |
---|
| 535 | (c1+c2) * ( w(k,j,i) + w(k-1,j,i) ) & |
---|
| 536 | ) |
---|
| 537 | |
---|
| 538 | IF ( rifs >= 0.0 ) THEN |
---|
| 539 | |
---|
| 540 | ! |
---|
| 541 | !-- Stable stratification (and neutral) |
---|
| 542 | wall_flux(k) = kappa * vel_zp / & |
---|
| 543 | ( LOG( zp/z0(j,i) ) + 5.0*rifs * ( zp-z0(j,i) ) / zp ) |
---|
| 544 | ELSE |
---|
| 545 | |
---|
| 546 | ! |
---|
| 547 | !-- Unstable stratification |
---|
[187] | 548 | h1 = SQRT( SQRT( 1.0 - 16.0 * rifs ) ) |
---|
| 549 | h2 = SQRT( SQRT( 1.0 - 16.0 * rifs * z0(j,i) / zp ) ) |
---|
[56] | 550 | |
---|
[187] | 551 | wall_flux(k) = kappa * vel_zp / ( & |
---|
| 552 | LOG( zp / z0(j,i) ) - & |
---|
| 553 | LOG( ( 1.0 + h1 )**2 * ( 1.0 + h1**2 ) / ( & |
---|
| 554 | ( 1.0 + h2 )**2 * ( 1.0 + h2**2 ) ) ) + & |
---|
| 555 | 2.0 * ( ATAN( h1 ) - ATAN( h2 ) ) & |
---|
| 556 | ) |
---|
[53] | 557 | ENDIF |
---|
[187] | 558 | wall_flux(k) = - wall_flux(k) * us_wall |
---|
[53] | 559 | |
---|
[56] | 560 | ENDDO |
---|
[53] | 561 | |
---|
[56] | 562 | END SUBROUTINE wall_fluxes_e_ij |
---|
| 563 | |
---|
| 564 | END MODULE wall_fluxes_mod |
---|