[56] | 1 | MODULE wall_fluxes_mod |
---|
[1036] | 2 | |
---|
| 3 | !--------------------------------------------------------------------------------! |
---|
| 4 | ! This file is part of PALM. |
---|
| 5 | ! |
---|
| 6 | ! PALM is free software: you can redistribute it and/or modify it under the terms |
---|
| 7 | ! of the GNU General Public License as published by the Free Software Foundation, |
---|
| 8 | ! either version 3 of the License, or (at your option) any later version. |
---|
| 9 | ! |
---|
| 10 | ! PALM is distributed in the hope that it will be useful, but WITHOUT ANY |
---|
| 11 | ! WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR |
---|
| 12 | ! A PARTICULAR PURPOSE. See the GNU General Public License for more details. |
---|
| 13 | ! |
---|
| 14 | ! You should have received a copy of the GNU General Public License along with |
---|
| 15 | ! PALM. If not, see <http://www.gnu.org/licenses/>. |
---|
| 16 | ! |
---|
[1310] | 17 | ! Copyright 1997-2014 Leibniz Universitaet Hannover |
---|
[1036] | 18 | !--------------------------------------------------------------------------------! |
---|
| 19 | ! |
---|
[484] | 20 | ! Current revisions: |
---|
[52] | 21 | ! ----------------- |
---|
[1321] | 22 | ! |
---|
| 23 | ! |
---|
| 24 | ! Former revisions: |
---|
| 25 | ! ----------------- |
---|
| 26 | ! $Id: wall_fluxes.f90 1321 2014-03-20 09:40:40Z suehring $ |
---|
| 27 | ! |
---|
| 28 | ! 1320 2014-03-20 08:40:49Z raasch |
---|
[1320] | 29 | ! ONLY-attribute added to USE-statements, |
---|
| 30 | ! kind-parameters added to all INTEGER and REAL declaration statements, |
---|
| 31 | ! kinds are defined in new module kinds, |
---|
| 32 | ! old module precision_kind is removed, |
---|
| 33 | ! revision history before 2012 removed, |
---|
| 34 | ! comment fields (!:) to be used for variable explanations added to |
---|
| 35 | ! all variable declaration statements |
---|
[198] | 36 | ! |
---|
[1258] | 37 | ! 1257 2013-11-08 15:18:40Z raasch |
---|
| 38 | ! openacc loop and loop vector clauses removed |
---|
| 39 | ! |
---|
[1154] | 40 | ! 1153 2013-05-10 14:33:08Z raasch |
---|
| 41 | ! code adjustments of accelerator version required by PGI 12.3 / CUDA 5.0 |
---|
| 42 | ! |
---|
[1132] | 43 | ! 1128 2013-04-12 06:19:32Z raasch |
---|
| 44 | ! loop index bounds in accelerator version replaced by i_left, i_right, j_south, |
---|
| 45 | ! j_north |
---|
| 46 | ! |
---|
[1037] | 47 | ! 1036 2012-10-22 13:43:42Z raasch |
---|
| 48 | ! code put under GPL (PALM 3.9) |
---|
| 49 | ! |
---|
[1017] | 50 | ! 1015 2012-09-27 09:23:24Z raasch |
---|
| 51 | ! accelerator version (*_acc) added |
---|
| 52 | ! |
---|
[52] | 53 | ! Initial version (2007/03/07) |
---|
| 54 | ! |
---|
| 55 | ! Description: |
---|
| 56 | ! ------------ |
---|
| 57 | ! Calculates momentum fluxes at vertical walls assuming Monin-Obukhov |
---|
| 58 | ! similarity. |
---|
| 59 | ! Indices: usvs a=1, vsus b=1, wsvs c1=1, wsus c2=1 (other=0). |
---|
[56] | 60 | ! The all-gridpoint version of wall_fluxes_e is not used so far, because |
---|
| 61 | ! it gives slightly different results from the ij-version for some unknown |
---|
| 62 | ! reason. |
---|
[52] | 63 | !------------------------------------------------------------------------------! |
---|
[56] | 64 | PRIVATE |
---|
[1015] | 65 | PUBLIC wall_fluxes, wall_fluxes_acc, wall_fluxes_e, wall_fluxes_e_acc |
---|
[56] | 66 | |
---|
| 67 | INTERFACE wall_fluxes |
---|
| 68 | MODULE PROCEDURE wall_fluxes |
---|
| 69 | MODULE PROCEDURE wall_fluxes_ij |
---|
| 70 | END INTERFACE wall_fluxes |
---|
| 71 | |
---|
[1015] | 72 | INTERFACE wall_fluxes_acc |
---|
| 73 | MODULE PROCEDURE wall_fluxes_acc |
---|
| 74 | END INTERFACE wall_fluxes_acc |
---|
| 75 | |
---|
[56] | 76 | INTERFACE wall_fluxes_e |
---|
| 77 | MODULE PROCEDURE wall_fluxes_e |
---|
| 78 | MODULE PROCEDURE wall_fluxes_e_ij |
---|
| 79 | END INTERFACE wall_fluxes_e |
---|
| 80 | |
---|
[1015] | 81 | INTERFACE wall_fluxes_e_acc |
---|
| 82 | MODULE PROCEDURE wall_fluxes_e_acc |
---|
| 83 | END INTERFACE wall_fluxes_e_acc |
---|
| 84 | |
---|
[56] | 85 | CONTAINS |
---|
[52] | 86 | |
---|
[56] | 87 | !------------------------------------------------------------------------------! |
---|
| 88 | ! Call for all grid points |
---|
| 89 | !------------------------------------------------------------------------------! |
---|
[1320] | 90 | SUBROUTINE wall_fluxes( wall_flux, a, b, c1, c2, nzb_uvw_inner, & |
---|
[56] | 91 | nzb_uvw_outer, wall ) |
---|
[52] | 92 | |
---|
[1320] | 93 | USE arrays_3d, & |
---|
| 94 | ONLY: rif_wall, u, v, w, z0, pt |
---|
| 95 | |
---|
| 96 | USE control_parameters, & |
---|
| 97 | ONLY: g, kappa, rif_max, rif_min |
---|
| 98 | |
---|
| 99 | USE grid_variables, & |
---|
| 100 | ONLY: dx, dy |
---|
| 101 | |
---|
| 102 | USE indices, & |
---|
| 103 | ONLY: nxl, nxlg, nxr, nxrg, nyn, nyng, nys, nysg, nzb, nzt |
---|
| 104 | |
---|
| 105 | USE kinds |
---|
| 106 | |
---|
| 107 | USE statistics, & |
---|
| 108 | ONLY: hom |
---|
[52] | 109 | |
---|
[56] | 110 | IMPLICIT NONE |
---|
[52] | 111 | |
---|
[1320] | 112 | INTEGER(iwp) :: i !: |
---|
| 113 | INTEGER(iwp) :: j !: |
---|
| 114 | INTEGER(iwp) :: k !: |
---|
| 115 | INTEGER(iwp) :: wall_index !: |
---|
[52] | 116 | |
---|
[1320] | 117 | INTEGER(iwp), & |
---|
| 118 | DIMENSION(nysg:nyng,nxlg:nxrg) :: & |
---|
| 119 | nzb_uvw_inner !: |
---|
| 120 | INTEGER(iwp), & |
---|
| 121 | DIMENSION(nysg:nyng,nxlg:nxrg) :: & |
---|
| 122 | nzb_uvw_outer !: |
---|
| 123 | |
---|
| 124 | REAL(wp) :: a !: |
---|
| 125 | REAL(wp) :: b !: |
---|
| 126 | REAL(wp) :: c1 !: |
---|
| 127 | REAL(wp) :: c2 !: |
---|
| 128 | REAL(wp) :: h1 !: |
---|
| 129 | REAL(wp) :: h2 !: |
---|
| 130 | REAL(wp) :: zp !: |
---|
| 131 | REAL(wp) :: pts !: |
---|
| 132 | REAL(wp) :: pt_i !: |
---|
| 133 | REAL(wp) :: rifs !: |
---|
| 134 | REAL(wp) :: u_i !: |
---|
| 135 | REAL(wp) :: v_i !: |
---|
| 136 | REAL(wp) :: us_wall !: |
---|
| 137 | REAL(wp) :: vel_total !: |
---|
| 138 | REAL(wp) :: ws !: |
---|
| 139 | REAL(wp) :: wspts !: |
---|
[52] | 140 | |
---|
[1320] | 141 | REAL(wp), & |
---|
| 142 | DIMENSION(nysg:nyng,nxlg:nxrg) :: & |
---|
| 143 | wall !: |
---|
| 144 | |
---|
| 145 | REAL(wp), & |
---|
| 146 | DIMENSION(nzb:nzt+1,nys:nyn,nxl:nxr) :: & |
---|
| 147 | wall_flux !: |
---|
[52] | 148 | |
---|
| 149 | |
---|
[56] | 150 | zp = 0.5 * ( (a+c1) * dy + (b+c2) * dx ) |
---|
| 151 | wall_flux = 0.0 |
---|
| 152 | wall_index = NINT( a+ 2*b + 3*c1 + 4*c2 ) |
---|
| 153 | |
---|
[75] | 154 | DO i = nxl, nxr |
---|
| 155 | DO j = nys, nyn |
---|
[56] | 156 | |
---|
| 157 | IF ( wall(j,i) /= 0.0 ) THEN |
---|
[52] | 158 | ! |
---|
[56] | 159 | !-- All subsequent variables are computed for the respective |
---|
[187] | 160 | !-- location where the respective flux is defined. |
---|
[56] | 161 | DO k = nzb_uvw_inner(j,i)+1, nzb_uvw_outer(j,i) |
---|
[53] | 162 | |
---|
[52] | 163 | ! |
---|
[56] | 164 | !-- (1) Compute rifs, u_i, v_i, ws, pt' and w'pt' |
---|
| 165 | rifs = rif_wall(k,j,i,wall_index) |
---|
[53] | 166 | |
---|
[1320] | 167 | u_i = a * u(k,j,i) + c1 * 0.25 * & |
---|
[56] | 168 | ( u(k+1,j,i+1) + u(k+1,j,i) + u(k,j,i+1) + u(k,j,i) ) |
---|
[53] | 169 | |
---|
[1320] | 170 | v_i = b * v(k,j,i) + c2 * 0.25 * & |
---|
[56] | 171 | ( v(k+1,j+1,i) + v(k+1,j,i) + v(k,j+1,i) + v(k,j,i) ) |
---|
[53] | 172 | |
---|
[56] | 173 | ws = ( c1 + c2 ) * w(k,j,i) + 0.25 * ( & |
---|
| 174 | a * ( w(k-1,j,i-1) + w(k-1,j,i) + w(k,j,i-1) + w(k,j,i) ) & |
---|
| 175 | + b * ( w(k-1,j-1,i) + w(k-1,j,i) + w(k,j-1,i) + w(k,j,i) ) & |
---|
| 176 | ) |
---|
[1320] | 177 | pt_i = 0.5 * ( pt(k,j,i) + a * pt(k,j,i-1) + & |
---|
[56] | 178 | b * pt(k,j-1,i) + ( c1 + c2 ) * pt(k+1,j,i) ) |
---|
[53] | 179 | |
---|
[56] | 180 | pts = pt_i - hom(k,1,4,0) |
---|
| 181 | wspts = ws * pts |
---|
[53] | 182 | |
---|
[52] | 183 | ! |
---|
[56] | 184 | !-- (2) Compute wall-parallel absolute velocity vel_total |
---|
| 185 | vel_total = SQRT( ws**2 + (a+c1) * u_i**2 + (b+c2) * v_i**2 ) |
---|
[53] | 186 | |
---|
[52] | 187 | ! |
---|
[56] | 188 | !-- (3) Compute wall friction velocity us_wall |
---|
| 189 | IF ( rifs >= 0.0 ) THEN |
---|
[53] | 190 | |
---|
[52] | 191 | ! |
---|
[56] | 192 | !-- Stable stratification (and neutral) |
---|
| 193 | us_wall = kappa * vel_total / ( LOG( zp / z0(j,i) ) + & |
---|
| 194 | 5.0 * rifs * ( zp - z0(j,i) ) / zp & |
---|
| 195 | ) |
---|
| 196 | ELSE |
---|
[53] | 197 | |
---|
[52] | 198 | ! |
---|
[56] | 199 | !-- Unstable stratification |
---|
[187] | 200 | h1 = SQRT( SQRT( 1.0 - 16.0 * rifs ) ) |
---|
| 201 | h2 = SQRT( SQRT( 1.0 - 16.0 * rifs * z0(j,i) / zp ) ) |
---|
[53] | 202 | |
---|
[187] | 203 | us_wall = kappa * vel_total / ( & |
---|
| 204 | LOG( zp / z0(j,i) ) - & |
---|
| 205 | LOG( ( 1.0 + h1 )**2 * ( 1.0 + h1**2 ) / ( & |
---|
| 206 | ( 1.0 + h2 )**2 * ( 1.0 + h2**2 ) ) ) + & |
---|
| 207 | 2.0 * ( ATAN( h1 ) - ATAN( h2 ) ) & |
---|
| 208 | ) |
---|
[56] | 209 | ENDIF |
---|
[53] | 210 | |
---|
[52] | 211 | ! |
---|
[56] | 212 | !-- (4) Compute zp/L (corresponds to neutral Richardson flux |
---|
| 213 | !-- number rifs) |
---|
[1320] | 214 | rifs = -1.0 * zp * kappa * g * wspts / ( pt_i * & |
---|
[56] | 215 | ( us_wall**3 + 1E-30 ) ) |
---|
[53] | 216 | |
---|
[52] | 217 | ! |
---|
[56] | 218 | !-- Limit the value range of the Richardson numbers. |
---|
| 219 | !-- This is necessary for very small velocities (u,w --> 0), |
---|
| 220 | !-- because the absolute value of rif can then become very |
---|
| 221 | !-- large, which in consequence would result in very large |
---|
| 222 | !-- shear stresses and very small momentum fluxes (both are |
---|
| 223 | !-- generally unrealistic). |
---|
| 224 | IF ( rifs < rif_min ) rifs = rif_min |
---|
| 225 | IF ( rifs > rif_max ) rifs = rif_max |
---|
[53] | 226 | |
---|
[52] | 227 | ! |
---|
[56] | 228 | !-- (5) Compute wall_flux (u'v', v'u', w'v', or w'u') |
---|
| 229 | IF ( rifs >= 0.0 ) THEN |
---|
[53] | 230 | |
---|
[52] | 231 | ! |
---|
[56] | 232 | !-- Stable stratification (and neutral) |
---|
| 233 | wall_flux(k,j,i) = kappa * & |
---|
| 234 | ( a*u(k,j,i) + b*v(k,j,i) + (c1+c2)*w(k,j,i) ) / & |
---|
| 235 | ( LOG( zp / z0(j,i) ) + & |
---|
| 236 | 5.0 * rifs * ( zp - z0(j,i) ) / zp & |
---|
| 237 | ) |
---|
| 238 | ELSE |
---|
[53] | 239 | |
---|
[52] | 240 | ! |
---|
[56] | 241 | !-- Unstable stratification |
---|
[187] | 242 | h1 = SQRT( SQRT( 1.0 - 16.0 * rifs ) ) |
---|
| 243 | h2 = SQRT( SQRT( 1.0 - 16.0 * rifs * z0(j,i) / zp ) ) |
---|
[53] | 244 | |
---|
[187] | 245 | wall_flux(k,j,i) = kappa * & |
---|
| 246 | ( a*u(k,j,i) + b*v(k,j,i) + (c1+c2)*w(k,j,i) ) / ( & |
---|
| 247 | LOG( zp / z0(j,i) ) - & |
---|
| 248 | LOG( ( 1.0 + h1 )**2 * ( 1.0 + h1**2 ) / ( & |
---|
| 249 | ( 1.0 + h2 )**2 * ( 1.0 + h2**2 ) ) ) + & |
---|
| 250 | 2.0 * ( ATAN( h1 ) - ATAN( h2 ) ) & |
---|
| 251 | ) |
---|
[56] | 252 | ENDIF |
---|
[187] | 253 | wall_flux(k,j,i) = -wall_flux(k,j,i) * us_wall |
---|
[56] | 254 | |
---|
| 255 | ! |
---|
| 256 | !-- store rifs for next time step |
---|
| 257 | rif_wall(k,j,i,wall_index) = rifs |
---|
| 258 | |
---|
| 259 | ENDDO |
---|
| 260 | |
---|
| 261 | ENDIF |
---|
| 262 | |
---|
| 263 | ENDDO |
---|
| 264 | ENDDO |
---|
| 265 | |
---|
| 266 | END SUBROUTINE wall_fluxes |
---|
| 267 | |
---|
| 268 | |
---|
[1015] | 269 | !------------------------------------------------------------------------------! |
---|
| 270 | ! Call for all grid points - accelerator version |
---|
| 271 | !------------------------------------------------------------------------------! |
---|
[1320] | 272 | SUBROUTINE wall_fluxes_acc( wall_flux, a, b, c1, c2, nzb_uvw_inner, & |
---|
[1015] | 273 | nzb_uvw_outer, wall ) |
---|
[56] | 274 | |
---|
[1320] | 275 | USE arrays_3d, & |
---|
| 276 | ONLY: rif_wall, pt, u, v, w, z0 |
---|
| 277 | |
---|
| 278 | USE control_parameters, & |
---|
| 279 | ONLY: g, kappa, rif_max, rif_min |
---|
| 280 | |
---|
| 281 | USE grid_variables, & |
---|
| 282 | ONLY: dx, dy |
---|
| 283 | |
---|
| 284 | USE indices, & |
---|
| 285 | ONLY: i_left, i_right, j_north, j_south, nxl, nxlg, nxr, nxrg, & |
---|
| 286 | nyn, nyng, nys, nysg, nzb, nzt |
---|
| 287 | |
---|
| 288 | USE kinds |
---|
| 289 | |
---|
| 290 | USE statistics, & |
---|
| 291 | ONLY: hom |
---|
[1015] | 292 | |
---|
| 293 | IMPLICIT NONE |
---|
| 294 | |
---|
[1320] | 295 | INTEGER(iwp) :: i !: |
---|
| 296 | INTEGER(iwp) :: j !: |
---|
| 297 | INTEGER(iwp) :: k !: |
---|
| 298 | INTEGER(iwp) :: max_outer !: |
---|
| 299 | INTEGER(iwp) :: min_inner !: |
---|
| 300 | INTEGER(iwp) :: wall_index !: |
---|
[1015] | 301 | |
---|
[1320] | 302 | INTEGER(iwp), & |
---|
| 303 | DIMENSION(nysg:nyng,nxlg:nxrg) :: & |
---|
| 304 | nzb_uvw_inner !: |
---|
| 305 | INTEGER(iwp), & |
---|
| 306 | DIMENSION(nysg:nyng,nxlg:nxrg) :: & |
---|
| 307 | nzb_uvw_outer !: |
---|
| 308 | |
---|
| 309 | REAL(wp) :: a !: |
---|
| 310 | REAL(wp) :: b !: |
---|
| 311 | REAL(wp) :: c1 !: |
---|
| 312 | REAL(wp) :: c2 !: |
---|
| 313 | REAL(wp) :: h1 !: |
---|
| 314 | REAL(wp) :: h2 !: |
---|
| 315 | REAL(wp) :: zp !: |
---|
| 316 | REAL(wp) :: pts !: |
---|
| 317 | REAL(wp) :: pt_i !: |
---|
| 318 | REAL(wp) :: rifs !: |
---|
| 319 | REAL(wp) :: u_i !: |
---|
| 320 | REAL(wp) :: v_i !: |
---|
| 321 | REAL(wp) :: us_wall !: |
---|
| 322 | REAL(wp) :: vel_total !: |
---|
| 323 | REAL(wp) :: ws !: |
---|
| 324 | REAL(wp) :: wspts !: |
---|
[1015] | 325 | |
---|
[1320] | 326 | REAL(wp), & |
---|
| 327 | DIMENSION(nysg:nyng,nxlg:nxrg) :: & |
---|
| 328 | wall !: |
---|
| 329 | |
---|
| 330 | REAL(wp), & |
---|
| 331 | DIMENSION(nzb:nzt+1,nys:nyn,nxl:nxr) :: & |
---|
| 332 | wall_flux !: |
---|
[1015] | 333 | |
---|
| 334 | |
---|
| 335 | zp = 0.5 * ( (a+c1) * dy + (b+c2) * dx ) |
---|
| 336 | wall_flux = 0.0 |
---|
| 337 | wall_index = NINT( a+ 2*b + 3*c1 + 4*c2 ) |
---|
| 338 | |
---|
| 339 | min_inner = MINVAL( nzb_uvw_inner(nys:nyn,nxl:nxr) ) + 1 |
---|
| 340 | max_outer = MINVAL( nzb_uvw_outer(nys:nyn,nxl:nxr) ) |
---|
| 341 | |
---|
| 342 | !$acc kernels present( hom, nzb_uvw_inner, nzb_uvw_outer, pt, rif_wall ) & |
---|
| 343 | !$acc present( u, v, w, wall, wall_flux, z0 ) |
---|
[1153] | 344 | !$acc loop independent |
---|
[1128] | 345 | DO i = i_left, i_right |
---|
| 346 | DO j = j_south, j_north |
---|
[1153] | 347 | |
---|
| 348 | IF ( wall(j,i) /= 0.0 ) THEN |
---|
[1015] | 349 | ! |
---|
| 350 | !-- All subsequent variables are computed for the respective |
---|
| 351 | !-- location where the respective flux is defined. |
---|
[1257] | 352 | !$acc loop independent |
---|
[1153] | 353 | DO k = nzb_uvw_inner(j,i)+1, nzb_uvw_outer(j,i) |
---|
| 354 | |
---|
[1015] | 355 | ! |
---|
| 356 | !-- (1) Compute rifs, u_i, v_i, ws, pt' and w'pt' |
---|
| 357 | rifs = rif_wall(k,j,i,wall_index) |
---|
| 358 | |
---|
[1320] | 359 | u_i = a * u(k,j,i) + c1 * 0.25 * & |
---|
[1015] | 360 | ( u(k+1,j,i+1) + u(k+1,j,i) + u(k,j,i+1) + u(k,j,i) ) |
---|
| 361 | |
---|
[1320] | 362 | v_i = b * v(k,j,i) + c2 * 0.25 * & |
---|
[1015] | 363 | ( v(k+1,j+1,i) + v(k+1,j,i) + v(k,j+1,i) + v(k,j,i) ) |
---|
| 364 | |
---|
| 365 | ws = ( c1 + c2 ) * w(k,j,i) + 0.25 * ( & |
---|
| 366 | a * ( w(k-1,j,i-1) + w(k-1,j,i) + w(k,j,i-1) + w(k,j,i) ) & |
---|
| 367 | + b * ( w(k-1,j-1,i) + w(k-1,j,i) + w(k,j-1,i) + w(k,j,i) ) & |
---|
| 368 | ) |
---|
[1320] | 369 | pt_i = 0.5 * ( pt(k,j,i) + a * pt(k,j,i-1) + & |
---|
[1015] | 370 | b * pt(k,j-1,i) + ( c1 + c2 ) * pt(k+1,j,i) ) |
---|
| 371 | |
---|
| 372 | pts = pt_i - hom(k,1,4,0) |
---|
| 373 | wspts = ws * pts |
---|
| 374 | |
---|
| 375 | ! |
---|
| 376 | !-- (2) Compute wall-parallel absolute velocity vel_total |
---|
| 377 | vel_total = SQRT( ws**2 + (a+c1) * u_i**2 + (b+c2) * v_i**2 ) |
---|
| 378 | |
---|
| 379 | ! |
---|
| 380 | !-- (3) Compute wall friction velocity us_wall |
---|
| 381 | IF ( rifs >= 0.0 ) THEN |
---|
| 382 | |
---|
| 383 | ! |
---|
| 384 | !-- Stable stratification (and neutral) |
---|
| 385 | us_wall = kappa * vel_total / ( LOG( zp / z0(j,i) ) + & |
---|
| 386 | 5.0 * rifs * ( zp - z0(j,i) ) / zp & |
---|
| 387 | ) |
---|
| 388 | ELSE |
---|
| 389 | |
---|
| 390 | ! |
---|
| 391 | !-- Unstable stratification |
---|
| 392 | h1 = SQRT( SQRT( 1.0 - 16.0 * rifs ) ) |
---|
| 393 | h2 = SQRT( SQRT( 1.0 - 16.0 * rifs * z0(j,i) / zp ) ) |
---|
| 394 | |
---|
| 395 | us_wall = kappa * vel_total / ( & |
---|
| 396 | LOG( zp / z0(j,i) ) - & |
---|
| 397 | LOG( ( 1.0 + h1 )**2 * ( 1.0 + h1**2 ) / ( & |
---|
| 398 | ( 1.0 + h2 )**2 * ( 1.0 + h2**2 ) ) ) + & |
---|
| 399 | 2.0 * ( ATAN( h1 ) - ATAN( h2 ) ) & |
---|
| 400 | ) |
---|
| 401 | ENDIF |
---|
| 402 | |
---|
| 403 | ! |
---|
| 404 | !-- (4) Compute zp/L (corresponds to neutral Richardson flux |
---|
| 405 | !-- number rifs) |
---|
[1320] | 406 | rifs = -1.0 * zp * kappa * g * wspts / ( pt_i * & |
---|
[1015] | 407 | ( us_wall**3 + 1E-30 ) ) |
---|
| 408 | |
---|
| 409 | ! |
---|
| 410 | !-- Limit the value range of the Richardson numbers. |
---|
| 411 | !-- This is necessary for very small velocities (u,w --> 0), |
---|
| 412 | !-- because the absolute value of rif can then become very |
---|
| 413 | !-- large, which in consequence would result in very large |
---|
| 414 | !-- shear stresses and very small momentum fluxes (both are |
---|
| 415 | !-- generally unrealistic). |
---|
| 416 | IF ( rifs < rif_min ) rifs = rif_min |
---|
| 417 | IF ( rifs > rif_max ) rifs = rif_max |
---|
| 418 | |
---|
| 419 | ! |
---|
| 420 | !-- (5) Compute wall_flux (u'v', v'u', w'v', or w'u') |
---|
| 421 | IF ( rifs >= 0.0 ) THEN |
---|
| 422 | |
---|
| 423 | ! |
---|
| 424 | !-- Stable stratification (and neutral) |
---|
| 425 | wall_flux(k,j,i) = kappa * & |
---|
| 426 | ( a*u(k,j,i) + b*v(k,j,i) + (c1+c2)*w(k,j,i) ) / & |
---|
| 427 | ( LOG( zp / z0(j,i) ) + & |
---|
| 428 | 5.0 * rifs * ( zp - z0(j,i) ) / zp & |
---|
| 429 | ) |
---|
| 430 | ELSE |
---|
| 431 | |
---|
| 432 | ! |
---|
| 433 | !-- Unstable stratification |
---|
| 434 | h1 = SQRT( SQRT( 1.0 - 16.0 * rifs ) ) |
---|
| 435 | h2 = SQRT( SQRT( 1.0 - 16.0 * rifs * z0(j,i) / zp ) ) |
---|
| 436 | |
---|
| 437 | wall_flux(k,j,i) = kappa * & |
---|
| 438 | ( a*u(k,j,i) + b*v(k,j,i) + (c1+c2)*w(k,j,i) ) / ( & |
---|
| 439 | LOG( zp / z0(j,i) ) - & |
---|
| 440 | LOG( ( 1.0 + h1 )**2 * ( 1.0 + h1**2 ) / ( & |
---|
| 441 | ( 1.0 + h2 )**2 * ( 1.0 + h2**2 ) ) ) + & |
---|
| 442 | 2.0 * ( ATAN( h1 ) - ATAN( h2 ) ) & |
---|
| 443 | ) |
---|
| 444 | ENDIF |
---|
| 445 | wall_flux(k,j,i) = -wall_flux(k,j,i) * us_wall |
---|
| 446 | |
---|
| 447 | ! |
---|
| 448 | !-- store rifs for next time step |
---|
| 449 | rif_wall(k,j,i,wall_index) = rifs |
---|
| 450 | |
---|
[1153] | 451 | ENDDO |
---|
| 452 | |
---|
| 453 | ENDIF |
---|
| 454 | |
---|
[1015] | 455 | ENDDO |
---|
| 456 | ENDDO |
---|
| 457 | !$acc end kernels |
---|
| 458 | |
---|
| 459 | END SUBROUTINE wall_fluxes_acc |
---|
| 460 | |
---|
| 461 | |
---|
[56] | 462 | !------------------------------------------------------------------------------! |
---|
| 463 | ! Call for all grid point i,j |
---|
| 464 | !------------------------------------------------------------------------------! |
---|
| 465 | SUBROUTINE wall_fluxes_ij( i, j, nzb_w, nzt_w, wall_flux, a, b, c1, c2 ) |
---|
| 466 | |
---|
[1320] | 467 | USE arrays_3d, & |
---|
| 468 | ONLY: rif_wall, pt, u, v, w, z0 |
---|
| 469 | |
---|
| 470 | USE control_parameters, & |
---|
| 471 | ONLY: g, kappa, rif_max, rif_min |
---|
| 472 | |
---|
| 473 | USE grid_variables, & |
---|
| 474 | ONLY: dx, dy |
---|
| 475 | |
---|
| 476 | USE indices, & |
---|
| 477 | ONLY: nzb, nzt |
---|
| 478 | |
---|
| 479 | USE kinds |
---|
| 480 | |
---|
| 481 | USE statistics, & |
---|
| 482 | ONLY: hom |
---|
[56] | 483 | |
---|
| 484 | IMPLICIT NONE |
---|
| 485 | |
---|
[1320] | 486 | INTEGER(iwp) :: i !: |
---|
| 487 | INTEGER(iwp) :: j !: |
---|
| 488 | INTEGER(iwp) :: k !: |
---|
| 489 | INTEGER(iwp) :: nzb_w !: |
---|
| 490 | INTEGER(iwp) :: nzt_w !: |
---|
| 491 | INTEGER(iwp) :: wall_index !: |
---|
| 492 | |
---|
| 493 | REAL(wp) :: a !: |
---|
| 494 | REAL(wp) :: b !: |
---|
| 495 | REAL(wp) :: c1 !: |
---|
| 496 | REAL(wp) :: c2 !: |
---|
| 497 | REAL(wp) :: h1 !: |
---|
| 498 | REAL(wp) :: h2 !: |
---|
| 499 | REAL(wp) :: zp !: |
---|
| 500 | REAL(wp) :: pts !: |
---|
| 501 | REAL(wp) :: pt_i !: |
---|
| 502 | REAL(wp) :: rifs !: |
---|
| 503 | REAL(wp) :: u_i !: |
---|
| 504 | REAL(wp) :: v_i !: |
---|
| 505 | REAL(wp) :: us_wall !: |
---|
| 506 | REAL(wp) :: vel_total !: |
---|
| 507 | REAL(wp) :: ws !: |
---|
| 508 | REAL(wp) :: wspts !: |
---|
[56] | 509 | |
---|
[1320] | 510 | REAL(wp), DIMENSION(nzb:nzt+1) :: wall_flux !: |
---|
[56] | 511 | |
---|
| 512 | |
---|
| 513 | zp = 0.5 * ( (a+c1) * dy + (b+c2) * dx ) |
---|
| 514 | wall_flux = 0.0 |
---|
| 515 | wall_index = NINT( a+ 2*b + 3*c1 + 4*c2 ) |
---|
| 516 | |
---|
| 517 | ! |
---|
| 518 | !-- All subsequent variables are computed for the respective location where |
---|
[187] | 519 | !-- the respective flux is defined. |
---|
[56] | 520 | DO k = nzb_w, nzt_w |
---|
| 521 | |
---|
| 522 | ! |
---|
| 523 | !-- (1) Compute rifs, u_i, v_i, ws, pt' and w'pt' |
---|
| 524 | rifs = rif_wall(k,j,i,wall_index) |
---|
| 525 | |
---|
[1320] | 526 | u_i = a * u(k,j,i) + c1 * 0.25 * & |
---|
[56] | 527 | ( u(k+1,j,i+1) + u(k+1,j,i) + u(k,j,i+1) + u(k,j,i) ) |
---|
| 528 | |
---|
[1320] | 529 | v_i = b * v(k,j,i) + c2 * 0.25 * & |
---|
[56] | 530 | ( v(k+1,j+1,i) + v(k+1,j,i) + v(k,j+1,i) + v(k,j,i) ) |
---|
| 531 | |
---|
| 532 | ws = ( c1 + c2 ) * w(k,j,i) + 0.25 * ( & |
---|
| 533 | a * ( w(k-1,j,i-1) + w(k-1,j,i) + w(k,j,i-1) + w(k,j,i) ) & |
---|
| 534 | + b * ( w(k-1,j-1,i) + w(k-1,j,i) + w(k,j-1,i) + w(k,j,i) ) & |
---|
| 535 | ) |
---|
[1320] | 536 | pt_i = 0.5 * ( pt(k,j,i) + a * pt(k,j,i-1) + b * pt(k,j-1,i) & |
---|
[56] | 537 | + ( c1 + c2 ) * pt(k+1,j,i) ) |
---|
| 538 | |
---|
| 539 | pts = pt_i - hom(k,1,4,0) |
---|
| 540 | wspts = ws * pts |
---|
| 541 | |
---|
| 542 | ! |
---|
| 543 | !-- (2) Compute wall-parallel absolute velocity vel_total |
---|
| 544 | vel_total = SQRT( ws**2 + ( a+c1 ) * u_i**2 + ( b+c2 ) * v_i**2 ) |
---|
| 545 | |
---|
| 546 | ! |
---|
| 547 | !-- (3) Compute wall friction velocity us_wall |
---|
| 548 | IF ( rifs >= 0.0 ) THEN |
---|
| 549 | |
---|
| 550 | ! |
---|
| 551 | !-- Stable stratification (and neutral) |
---|
| 552 | us_wall = kappa * vel_total / ( LOG( zp / z0(j,i) ) + & |
---|
| 553 | 5.0 * rifs * ( zp - z0(j,i) ) / zp & |
---|
| 554 | ) |
---|
| 555 | ELSE |
---|
| 556 | |
---|
| 557 | ! |
---|
| 558 | !-- Unstable stratification |
---|
[187] | 559 | h1 = SQRT( SQRT( 1.0 - 16.0 * rifs ) ) |
---|
| 560 | h2 = SQRT( SQRT( 1.0 - 16.0 * rifs * z0(j,i) / zp ) ) |
---|
[56] | 561 | |
---|
[1320] | 562 | us_wall = kappa * vel_total / ( & |
---|
| 563 | LOG( zp / z0(j,i) ) - & |
---|
| 564 | LOG( ( 1.0 + h1 )**2 * ( 1.0 + h1**2 ) / ( & |
---|
| 565 | ( 1.0 + h2 )**2 * ( 1.0 + h2**2 ) ) ) + & |
---|
| 566 | 2.0 * ( ATAN( h1 ) - ATAN( h2 ) ) & |
---|
[187] | 567 | ) |
---|
[56] | 568 | ENDIF |
---|
| 569 | |
---|
| 570 | ! |
---|
| 571 | !-- (4) Compute zp/L (corresponds to neutral Richardson flux number |
---|
| 572 | !-- rifs) |
---|
| 573 | rifs = -1.0 * zp * kappa * g * wspts / ( pt_i * (us_wall**3 + 1E-30) ) |
---|
| 574 | |
---|
| 575 | ! |
---|
| 576 | !-- Limit the value range of the Richardson numbers. |
---|
| 577 | !-- This is necessary for very small velocities (u,w --> 0), because |
---|
| 578 | !-- the absolute value of rif can then become very large, which in |
---|
| 579 | !-- consequence would result in very large shear stresses and very |
---|
| 580 | !-- small momentum fluxes (both are generally unrealistic). |
---|
| 581 | IF ( rifs < rif_min ) rifs = rif_min |
---|
| 582 | IF ( rifs > rif_max ) rifs = rif_max |
---|
| 583 | |
---|
| 584 | ! |
---|
| 585 | !-- (5) Compute wall_flux (u'v', v'u', w'v', or w'u') |
---|
| 586 | IF ( rifs >= 0.0 ) THEN |
---|
| 587 | |
---|
| 588 | ! |
---|
| 589 | !-- Stable stratification (and neutral) |
---|
[1320] | 590 | wall_flux(k) = kappa * & |
---|
| 591 | ( a*u(k,j,i) + b*v(k,j,i) + (c1+c2)*w(k,j,i) ) / & |
---|
| 592 | ( LOG( zp / z0(j,i) ) + & |
---|
| 593 | 5.0 * rifs * ( zp - z0(j,i) ) / zp & |
---|
[53] | 594 | ) |
---|
[52] | 595 | ELSE |
---|
[53] | 596 | |
---|
[56] | 597 | ! |
---|
| 598 | !-- Unstable stratification |
---|
[187] | 599 | h1 = SQRT( SQRT( 1.0 - 16.0 * rifs ) ) |
---|
| 600 | h2 = SQRT( SQRT( 1.0 - 16.0 * rifs * z0(j,i) / zp ) ) |
---|
[52] | 601 | |
---|
[1320] | 602 | wall_flux(k) = kappa * & |
---|
| 603 | ( a*u(k,j,i) + b*v(k,j,i) + (c1+c2)*w(k,j,i) ) / ( & |
---|
| 604 | LOG( zp / z0(j,i) ) - & |
---|
| 605 | LOG( ( 1.0 + h1 )**2 * ( 1.0 + h1**2 ) / ( & |
---|
| 606 | ( 1.0 + h2 )**2 * ( 1.0 + h2**2 ) ) ) + & |
---|
| 607 | 2.0 * ( ATAN( h1 ) - ATAN( h2 ) ) & |
---|
[187] | 608 | ) |
---|
[56] | 609 | ENDIF |
---|
[187] | 610 | wall_flux(k) = -wall_flux(k) * us_wall |
---|
[53] | 611 | |
---|
[56] | 612 | ! |
---|
| 613 | !-- store rifs for next time step |
---|
| 614 | rif_wall(k,j,i,wall_index) = rifs |
---|
[53] | 615 | |
---|
[56] | 616 | ENDDO |
---|
[53] | 617 | |
---|
[56] | 618 | END SUBROUTINE wall_fluxes_ij |
---|
[53] | 619 | |
---|
[56] | 620 | |
---|
| 621 | |
---|
[53] | 622 | !------------------------------------------------------------------------------! |
---|
[56] | 623 | ! Call for all grid points |
---|
| 624 | !------------------------------------------------------------------------------! |
---|
| 625 | SUBROUTINE wall_fluxes_e( wall_flux, a, b, c1, c2, wall ) |
---|
| 626 | |
---|
| 627 | !------------------------------------------------------------------------------! |
---|
[53] | 628 | ! Description: |
---|
| 629 | ! ------------ |
---|
| 630 | ! Calculates momentum fluxes at vertical walls for routine production_e |
---|
| 631 | ! assuming Monin-Obukhov similarity. |
---|
| 632 | ! Indices: usvs a=1, vsus b=1, wsvs c1=1, wsus c2=1 (other=0). |
---|
| 633 | !------------------------------------------------------------------------------! |
---|
| 634 | |
---|
[1320] | 635 | USE arrays_3d, & |
---|
| 636 | ONLY: rif_wall, u, v, w, z0 |
---|
| 637 | |
---|
| 638 | USE control_parameters, & |
---|
| 639 | ONLY: kappa |
---|
| 640 | |
---|
| 641 | USE grid_variables, & |
---|
| 642 | ONLY: dx, dy |
---|
| 643 | |
---|
| 644 | USE indices, & |
---|
| 645 | ONLY: nxl, nxlg, nxr, nxrg, nyn, nyng, nys, nysg, nzb, & |
---|
| 646 | nzb_diff_s_inner, nzb_diff_s_outer, nzt |
---|
| 647 | |
---|
| 648 | USE kinds |
---|
[53] | 649 | |
---|
[56] | 650 | IMPLICIT NONE |
---|
[53] | 651 | |
---|
[1320] | 652 | INTEGER(iwp) :: i !: |
---|
| 653 | INTEGER(iwp) :: j !: |
---|
| 654 | INTEGER(iwp) :: k !: |
---|
| 655 | INTEGER(iwp) :: kk !: |
---|
| 656 | INTEGER(iwp) :: wall_index !: |
---|
| 657 | |
---|
| 658 | REAL(wp) :: a !: |
---|
| 659 | REAL(wp) :: b !: |
---|
| 660 | REAL(wp) :: c1 !: |
---|
| 661 | REAL(wp) :: c2 !: |
---|
| 662 | REAL(wp) :: h1 !: |
---|
| 663 | REAL(wp) :: h2 !: |
---|
| 664 | REAL(wp) :: u_i !: |
---|
| 665 | REAL(wp) :: v_i !: |
---|
| 666 | REAL(wp) :: us_wall !: |
---|
| 667 | REAL(wp) :: vel_total !: |
---|
| 668 | REAL(wp) :: vel_zp !: |
---|
| 669 | REAL(wp) :: ws !: |
---|
| 670 | REAL(wp) :: zp !: |
---|
| 671 | REAL(wp) :: rifs !: |
---|
[53] | 672 | |
---|
[1320] | 673 | REAL(wp), & |
---|
| 674 | DIMENSION(nysg:nyng,nxlg:nxrg) :: & |
---|
| 675 | wall !: |
---|
| 676 | |
---|
| 677 | REAL(wp), & |
---|
| 678 | DIMENSION(nzb:nzt+1,nys:nyn,nxl:nxr) :: & |
---|
| 679 | wall_flux !: |
---|
[53] | 680 | |
---|
| 681 | |
---|
[56] | 682 | zp = 0.5 * ( (a+c1) * dy + (b+c2) * dx ) |
---|
| 683 | wall_flux = 0.0 |
---|
| 684 | wall_index = NINT( a+ 2*b + 3*c1 + 4*c2 ) |
---|
[53] | 685 | |
---|
[56] | 686 | DO i = nxl, nxr |
---|
| 687 | DO j = nys, nyn |
---|
| 688 | |
---|
| 689 | IF ( wall(j,i) /= 0.0 ) THEN |
---|
[53] | 690 | ! |
---|
[187] | 691 | !-- All subsequent variables are computed for scalar locations. |
---|
[56] | 692 | DO k = nzb_diff_s_inner(j,i)-1, nzb_diff_s_outer(j,i)-2 |
---|
[53] | 693 | ! |
---|
[187] | 694 | !-- (1) Compute rifs, u_i, v_i, and ws |
---|
[56] | 695 | IF ( k == nzb_diff_s_inner(j,i)-1 ) THEN |
---|
| 696 | kk = nzb_diff_s_inner(j,i)-1 |
---|
| 697 | ELSE |
---|
| 698 | kk = k-1 |
---|
| 699 | ENDIF |
---|
| 700 | rifs = 0.5 * ( rif_wall(k,j,i,wall_index) + & |
---|
| 701 | a * rif_wall(k,j,i+1,1) + b * rif_wall(k,j+1,i,2) + & |
---|
| 702 | c1 * rif_wall(kk,j,i,3) + c2 * rif_wall(kk,j,i,4) & |
---|
| 703 | ) |
---|
[53] | 704 | |
---|
[187] | 705 | u_i = 0.5 * ( u(k,j,i) + u(k,j,i+1) ) |
---|
| 706 | v_i = 0.5 * ( v(k,j,i) + v(k,j+1,i) ) |
---|
| 707 | ws = 0.5 * ( w(k,j,i) + w(k-1,j,i) ) |
---|
[53] | 708 | ! |
---|
[187] | 709 | !-- (2) Compute wall-parallel absolute velocity vel_total and |
---|
| 710 | !-- interpolate appropriate velocity component vel_zp. |
---|
| 711 | vel_total = SQRT( ws**2 + (a+c1) * u_i**2 + (b+c2) * v_i**2 ) |
---|
| 712 | vel_zp = 0.5 * ( a * u_i + b * v_i + (c1+c2) * ws ) |
---|
| 713 | ! |
---|
| 714 | !-- (3) Compute wall friction velocity us_wall |
---|
| 715 | IF ( rifs >= 0.0 ) THEN |
---|
[53] | 716 | |
---|
| 717 | ! |
---|
[187] | 718 | !-- Stable stratification (and neutral) |
---|
| 719 | us_wall = kappa * vel_total / ( LOG( zp / z0(j,i) ) + & |
---|
| 720 | 5.0 * rifs * ( zp - z0(j,i) ) / zp & |
---|
| 721 | ) |
---|
| 722 | ELSE |
---|
| 723 | |
---|
| 724 | ! |
---|
| 725 | !-- Unstable stratification |
---|
| 726 | h1 = SQRT( SQRT( 1.0 - 16.0 * rifs ) ) |
---|
| 727 | h2 = SQRT( SQRT( 1.0 - 16.0 * rifs * z0(j,i) / zp ) ) |
---|
| 728 | |
---|
| 729 | us_wall = kappa * vel_total / ( & |
---|
| 730 | LOG( zp / z0(j,i) ) - & |
---|
| 731 | LOG( ( 1.0 + h1 )**2 * ( 1.0 + h1**2 ) / ( & |
---|
| 732 | ( 1.0 + h2 )**2 * ( 1.0 + h2**2 ) ) ) + & |
---|
| 733 | 2.0 * ( ATAN( h1 ) - ATAN( h2 ) ) & |
---|
| 734 | ) |
---|
| 735 | ENDIF |
---|
| 736 | |
---|
| 737 | ! |
---|
| 738 | !-- Skip step (4) of wall_fluxes, because here rifs is already |
---|
| 739 | !-- available from (1) |
---|
| 740 | ! |
---|
[56] | 741 | !-- (5) Compute wall_flux (u'v', v'u', w'v', or w'u') |
---|
[55] | 742 | |
---|
[56] | 743 | IF ( rifs >= 0.0 ) THEN |
---|
[53] | 744 | |
---|
| 745 | ! |
---|
[56] | 746 | !-- Stable stratification (and neutral) |
---|
[1320] | 747 | wall_flux(k,j,i) = kappa * vel_zp / & |
---|
[56] | 748 | ( LOG( zp/z0(j,i) ) + 5.0*rifs * ( zp-z0(j,i) ) / zp ) |
---|
| 749 | ELSE |
---|
[53] | 750 | |
---|
| 751 | ! |
---|
[56] | 752 | !-- Unstable stratification |
---|
[187] | 753 | h1 = SQRT( SQRT( 1.0 - 16.0 * rifs ) ) |
---|
| 754 | h2 = SQRT( SQRT( 1.0 - 16.0 * rifs * z0(j,i) / zp ) ) |
---|
[53] | 755 | |
---|
[187] | 756 | wall_flux(k,j,i) = kappa * vel_zp / ( & |
---|
| 757 | LOG( zp / z0(j,i) ) - & |
---|
| 758 | LOG( ( 1.0 + h1 )**2 * ( 1.0 + h1**2 ) / ( & |
---|
| 759 | ( 1.0 + h2 )**2 * ( 1.0 + h2**2 ) ) ) + & |
---|
| 760 | 2.0 * ( ATAN( h1 ) - ATAN( h2 ) ) & |
---|
| 761 | ) |
---|
[56] | 762 | ENDIF |
---|
[187] | 763 | wall_flux(k,j,i) = - wall_flux(k,j,i) * us_wall |
---|
[56] | 764 | |
---|
| 765 | ENDDO |
---|
| 766 | |
---|
| 767 | ENDIF |
---|
| 768 | |
---|
| 769 | ENDDO |
---|
| 770 | ENDDO |
---|
| 771 | |
---|
| 772 | END SUBROUTINE wall_fluxes_e |
---|
| 773 | |
---|
| 774 | |
---|
[1015] | 775 | !------------------------------------------------------------------------------! |
---|
| 776 | ! Call for all grid points - accelerator version |
---|
| 777 | !------------------------------------------------------------------------------! |
---|
| 778 | SUBROUTINE wall_fluxes_e_acc( wall_flux, a, b, c1, c2, wall ) |
---|
[56] | 779 | |
---|
| 780 | !------------------------------------------------------------------------------! |
---|
[1015] | 781 | ! Description: |
---|
| 782 | ! ------------ |
---|
| 783 | ! Calculates momentum fluxes at vertical walls for routine production_e |
---|
| 784 | ! assuming Monin-Obukhov similarity. |
---|
| 785 | ! Indices: usvs a=1, vsus b=1, wsvs c1=1, wsus c2=1 (other=0). |
---|
| 786 | !------------------------------------------------------------------------------! |
---|
| 787 | |
---|
[1320] | 788 | USE arrays_3d, & |
---|
| 789 | ONLY: rif_wall, u, v, w, z0 |
---|
| 790 | |
---|
| 791 | USE control_parameters, & |
---|
| 792 | ONLY: kappa |
---|
| 793 | |
---|
| 794 | USE grid_variables, & |
---|
| 795 | ONLY: dx, dy |
---|
| 796 | |
---|
| 797 | USE indices, & |
---|
| 798 | ONLY: i_left, i_right, j_north, j_south, nxl, nxlg, nxr, nxrg, & |
---|
| 799 | nyn, nyng, nys, nysg, nzb, nzb_diff_s_inner, & |
---|
| 800 | nzb_diff_s_outer, nzt |
---|
| 801 | |
---|
| 802 | USE kinds |
---|
[1015] | 803 | |
---|
| 804 | IMPLICIT NONE |
---|
| 805 | |
---|
[1320] | 806 | INTEGER(iwp) :: i !: |
---|
| 807 | INTEGER(iwp) :: j !: |
---|
| 808 | INTEGER(iwp) :: k !: |
---|
| 809 | INTEGER(iwp) :: kk !: |
---|
| 810 | INTEGER(iwp) :: max_outer !: |
---|
| 811 | INTEGER(iwp) :: min_inner !: |
---|
| 812 | INTEGER(iwp) :: wall_index !: |
---|
| 813 | |
---|
| 814 | REAL(wp) :: a !: |
---|
| 815 | REAL(wp) :: b !: |
---|
| 816 | REAL(wp) :: c1 !: |
---|
| 817 | REAL(wp) :: c2 !: |
---|
| 818 | REAL(wp) :: h1 !: |
---|
| 819 | REAL(wp) :: h2 !: |
---|
| 820 | REAL(wp) :: u_i !: |
---|
| 821 | REAL(wp) :: v_i !: |
---|
| 822 | REAL(wp) :: us_wall !: |
---|
| 823 | REAL(wp) :: vel_total !: |
---|
| 824 | REAL(wp) :: vel_zp !: |
---|
| 825 | REAL(wp) :: ws !: |
---|
| 826 | REAL(wp) :: zp !: |
---|
| 827 | REAL(wp) :: rifs !: |
---|
[1015] | 828 | |
---|
[1320] | 829 | REAL(wp), & |
---|
| 830 | DIMENSION(nysg:nyng,nxlg:nxrg) :: & |
---|
| 831 | wall !: |
---|
| 832 | |
---|
| 833 | REAL(wp), & |
---|
| 834 | DIMENSION(nzb:nzt+1,nys:nyn,nxl:nxr) :: & |
---|
| 835 | wall_flux !: |
---|
[1015] | 836 | |
---|
| 837 | |
---|
| 838 | zp = 0.5 * ( (a+c1) * dy + (b+c2) * dx ) |
---|
| 839 | wall_flux = 0.0 |
---|
| 840 | wall_index = NINT( a+ 2*b + 3*c1 + 4*c2 ) |
---|
| 841 | |
---|
| 842 | min_inner = MINVAL( nzb_diff_s_inner(nys:nyn,nxl:nxr) ) - 1 |
---|
| 843 | max_outer = MAXVAL( nzb_diff_s_outer(nys:nyn,nxl:nxr) ) - 2 |
---|
| 844 | |
---|
| 845 | !$acc kernels present( nzb_diff_s_inner, nzb_diff_s_outer, pt, rif_wall ) & |
---|
| 846 | !$acc present( u, v, w, wall, wall_flux, z0 ) |
---|
[1128] | 847 | DO i = i_left, i_right |
---|
| 848 | DO j = j_south, j_north |
---|
[1015] | 849 | DO k = min_inner, max_outer |
---|
| 850 | ! |
---|
| 851 | !-- All subsequent variables are computed for scalar locations |
---|
[1320] | 852 | IF ( k >= nzb_diff_s_inner(j,i)-1 .AND. & |
---|
[1015] | 853 | k <= nzb_diff_s_outer(j,i)-2 .AND. wall(j,i) /= 0.0 ) THEN |
---|
| 854 | ! |
---|
| 855 | !-- (1) Compute rifs, u_i, v_i, and ws |
---|
| 856 | IF ( k == nzb_diff_s_inner(j,i)-1 ) THEN |
---|
| 857 | kk = nzb_diff_s_inner(j,i)-1 |
---|
| 858 | ELSE |
---|
| 859 | kk = k-1 |
---|
| 860 | ENDIF |
---|
| 861 | rifs = 0.5 * ( rif_wall(k,j,i,wall_index) + & |
---|
| 862 | a * rif_wall(k,j,i+1,1) + b * rif_wall(k,j+1,i,2) + & |
---|
| 863 | c1 * rif_wall(kk,j,i,3) + c2 * rif_wall(kk,j,i,4) & |
---|
| 864 | ) |
---|
| 865 | |
---|
| 866 | u_i = 0.5 * ( u(k,j,i) + u(k,j,i+1) ) |
---|
| 867 | v_i = 0.5 * ( v(k,j,i) + v(k,j+1,i) ) |
---|
| 868 | ws = 0.5 * ( w(k,j,i) + w(k-1,j,i) ) |
---|
| 869 | ! |
---|
| 870 | !-- (2) Compute wall-parallel absolute velocity vel_total and |
---|
| 871 | !-- interpolate appropriate velocity component vel_zp. |
---|
| 872 | vel_total = SQRT( ws**2 + (a+c1) * u_i**2 + (b+c2) * v_i**2 ) |
---|
| 873 | vel_zp = 0.5 * ( a * u_i + b * v_i + (c1+c2) * ws ) |
---|
| 874 | ! |
---|
| 875 | !-- (3) Compute wall friction velocity us_wall |
---|
| 876 | IF ( rifs >= 0.0 ) THEN |
---|
| 877 | |
---|
| 878 | ! |
---|
| 879 | !-- Stable stratification (and neutral) |
---|
| 880 | us_wall = kappa * vel_total / ( LOG( zp / z0(j,i) ) + & |
---|
| 881 | 5.0 * rifs * ( zp - z0(j,i) ) / zp & |
---|
| 882 | ) |
---|
| 883 | ELSE |
---|
| 884 | |
---|
| 885 | ! |
---|
| 886 | !-- Unstable stratification |
---|
| 887 | h1 = SQRT( SQRT( 1.0 - 16.0 * rifs ) ) |
---|
| 888 | h2 = SQRT( SQRT( 1.0 - 16.0 * rifs * z0(j,i) / zp ) ) |
---|
| 889 | |
---|
| 890 | us_wall = kappa * vel_total / ( & |
---|
| 891 | LOG( zp / z0(j,i) ) - & |
---|
| 892 | LOG( ( 1.0 + h1 )**2 * ( 1.0 + h1**2 ) / ( & |
---|
| 893 | ( 1.0 + h2 )**2 * ( 1.0 + h2**2 ) ) ) + & |
---|
| 894 | 2.0 * ( ATAN( h1 ) - ATAN( h2 ) ) & |
---|
| 895 | ) |
---|
| 896 | ENDIF |
---|
| 897 | |
---|
| 898 | ! |
---|
| 899 | !-- Skip step (4) of wall_fluxes, because here rifs is already |
---|
| 900 | !-- available from (1) |
---|
| 901 | ! |
---|
| 902 | !-- (5) Compute wall_flux (u'v', v'u', w'v', or w'u') |
---|
| 903 | |
---|
| 904 | IF ( rifs >= 0.0 ) THEN |
---|
| 905 | |
---|
| 906 | ! |
---|
| 907 | !-- Stable stratification (and neutral) |
---|
[1320] | 908 | wall_flux(k,j,i) = kappa * vel_zp / & |
---|
[1015] | 909 | ( LOG( zp/z0(j,i) ) + 5.0*rifs * ( zp-z0(j,i) ) / zp ) |
---|
| 910 | ELSE |
---|
| 911 | |
---|
| 912 | ! |
---|
| 913 | !-- Unstable stratification |
---|
| 914 | h1 = SQRT( SQRT( 1.0 - 16.0 * rifs ) ) |
---|
| 915 | h2 = SQRT( SQRT( 1.0 - 16.0 * rifs * z0(j,i) / zp ) ) |
---|
| 916 | |
---|
| 917 | wall_flux(k,j,i) = kappa * vel_zp / ( & |
---|
| 918 | LOG( zp / z0(j,i) ) - & |
---|
| 919 | LOG( ( 1.0 + h1 )**2 * ( 1.0 + h1**2 ) / ( & |
---|
| 920 | ( 1.0 + h2 )**2 * ( 1.0 + h2**2 ) ) ) + & |
---|
| 921 | 2.0 * ( ATAN( h1 ) - ATAN( h2 ) ) & |
---|
| 922 | ) |
---|
| 923 | ENDIF |
---|
| 924 | wall_flux(k,j,i) = - wall_flux(k,j,i) * us_wall |
---|
| 925 | |
---|
| 926 | ENDIF |
---|
| 927 | |
---|
| 928 | ENDDO |
---|
| 929 | ENDDO |
---|
| 930 | ENDDO |
---|
| 931 | !$acc end kernels |
---|
| 932 | |
---|
| 933 | END SUBROUTINE wall_fluxes_e_acc |
---|
| 934 | |
---|
| 935 | |
---|
| 936 | !------------------------------------------------------------------------------! |
---|
[56] | 937 | ! Call for grid point i,j |
---|
| 938 | !------------------------------------------------------------------------------! |
---|
| 939 | SUBROUTINE wall_fluxes_e_ij( i, j, nzb_w, nzt_w, wall_flux, a, b, c1, c2 ) |
---|
| 940 | |
---|
[1320] | 941 | USE arrays_3d, & |
---|
| 942 | ONLY: rif_wall, u, v, w, z0 |
---|
| 943 | |
---|
| 944 | USE control_parameters, & |
---|
| 945 | ONLY: kappa |
---|
| 946 | |
---|
| 947 | USE grid_variables, & |
---|
| 948 | ONLY: dx, dy |
---|
| 949 | |
---|
| 950 | USE indices, & |
---|
| 951 | ONLY: nzb, nzt |
---|
| 952 | |
---|
| 953 | USE kinds |
---|
[56] | 954 | |
---|
| 955 | IMPLICIT NONE |
---|
| 956 | |
---|
[1320] | 957 | INTEGER(iwp) :: i !: |
---|
| 958 | INTEGER(iwp) :: j !: |
---|
| 959 | INTEGER(iwp) :: k !: |
---|
| 960 | INTEGER(iwp) :: kk !: |
---|
| 961 | INTEGER(iwp) :: nzb_w !: |
---|
| 962 | INTEGER(iwp) :: nzt_w !: |
---|
| 963 | INTEGER(iwp) :: wall_index !: |
---|
| 964 | |
---|
| 965 | REAL(wp) :: a !: |
---|
| 966 | REAL(wp) :: b !: |
---|
| 967 | REAL(wp) :: c1 !: |
---|
| 968 | REAL(wp) :: c2 !: |
---|
| 969 | REAL(wp) :: h1 !: |
---|
| 970 | REAL(wp) :: h2 !: |
---|
| 971 | REAL(wp) :: u_i !: |
---|
| 972 | REAL(wp) :: v_i !: |
---|
| 973 | REAL(wp) :: us_wall !: |
---|
| 974 | REAL(wp) :: vel_total !: |
---|
| 975 | REAL(wp) :: vel_zp !: |
---|
| 976 | REAL(wp) :: ws !: |
---|
| 977 | REAL(wp) :: zp !: |
---|
| 978 | REAL(wp) :: rifs !: |
---|
[56] | 979 | |
---|
[1320] | 980 | REAL(wp), DIMENSION(nzb:nzt+1) :: wall_flux !: |
---|
[56] | 981 | |
---|
| 982 | |
---|
| 983 | zp = 0.5 * ( (a+c1) * dy + (b+c2) * dx ) |
---|
| 984 | wall_flux = 0.0 |
---|
| 985 | wall_index = NINT( a+ 2*b + 3*c1 + 4*c2 ) |
---|
| 986 | |
---|
| 987 | ! |
---|
[187] | 988 | !-- All subsequent variables are computed for scalar locations. |
---|
[56] | 989 | DO k = nzb_w, nzt_w |
---|
| 990 | |
---|
| 991 | ! |
---|
[187] | 992 | !-- (1) Compute rifs, u_i, v_i, and ws |
---|
[56] | 993 | IF ( k == nzb_w ) THEN |
---|
| 994 | kk = nzb_w |
---|
[53] | 995 | ELSE |
---|
[56] | 996 | kk = k-1 |
---|
| 997 | ENDIF |
---|
| 998 | rifs = 0.5 * ( rif_wall(k,j,i,wall_index) + & |
---|
| 999 | a * rif_wall(k,j,i+1,1) + b * rif_wall(k,j+1,i,2) + & |
---|
| 1000 | c1 * rif_wall(kk,j,i,3) + c2 * rif_wall(kk,j,i,4) & |
---|
| 1001 | ) |
---|
| 1002 | |
---|
[187] | 1003 | u_i = 0.5 * ( u(k,j,i) + u(k,j,i+1) ) |
---|
| 1004 | v_i = 0.5 * ( v(k,j,i) + v(k,j+1,i) ) |
---|
| 1005 | ws = 0.5 * ( w(k,j,i) + w(k-1,j,i) ) |
---|
[56] | 1006 | ! |
---|
[187] | 1007 | !-- (2) Compute wall-parallel absolute velocity vel_total and |
---|
| 1008 | !-- interpolate appropriate velocity component vel_zp. |
---|
| 1009 | vel_total = SQRT( ws**2 + (a+c1) * u_i**2 + (b+c2) * v_i**2 ) |
---|
| 1010 | vel_zp = 0.5 * ( a * u_i + b * v_i + (c1+c2) * ws ) |
---|
| 1011 | ! |
---|
| 1012 | !-- (3) Compute wall friction velocity us_wall |
---|
| 1013 | IF ( rifs >= 0.0 ) THEN |
---|
[56] | 1014 | |
---|
| 1015 | ! |
---|
[187] | 1016 | !-- Stable stratification (and neutral) |
---|
| 1017 | us_wall = kappa * vel_total / ( LOG( zp / z0(j,i) ) + & |
---|
| 1018 | 5.0 * rifs * ( zp - z0(j,i) ) / zp & |
---|
| 1019 | ) |
---|
| 1020 | ELSE |
---|
| 1021 | |
---|
| 1022 | ! |
---|
| 1023 | !-- Unstable stratification |
---|
| 1024 | h1 = SQRT( SQRT( 1.0 - 16.0 * rifs ) ) |
---|
| 1025 | h2 = SQRT( SQRT( 1.0 - 16.0 * rifs * z0(j,i) / zp ) ) |
---|
| 1026 | |
---|
[1320] | 1027 | us_wall = kappa * vel_total / ( & |
---|
| 1028 | LOG( zp / z0(j,i) ) - & |
---|
| 1029 | LOG( ( 1.0 + h1 )**2 * ( 1.0 + h1**2 ) / ( & |
---|
| 1030 | ( 1.0 + h2 )**2 * ( 1.0 + h2**2 ) ) ) + & |
---|
| 1031 | 2.0 * ( ATAN( h1 ) - ATAN( h2 ) ) & |
---|
[187] | 1032 | ) |
---|
| 1033 | ENDIF |
---|
| 1034 | |
---|
| 1035 | ! |
---|
| 1036 | !-- Skip step (4) of wall_fluxes, because here rifs is already |
---|
| 1037 | !-- available from (1) |
---|
| 1038 | ! |
---|
[56] | 1039 | !-- (5) Compute wall_flux (u'v', v'u', w'v', or w'u') |
---|
[187] | 1040 | !-- First interpolate the velocity (this is different from |
---|
| 1041 | !-- subroutine wall_fluxes because fluxes in subroutine |
---|
| 1042 | !-- wall_fluxes_e are defined at scalar locations). |
---|
[1320] | 1043 | vel_zp = 0.5 * ( a * ( u(k,j,i) + u(k,j,i+1) ) + & |
---|
| 1044 | b * ( v(k,j,i) + v(k,j+1,i) ) + & |
---|
| 1045 | (c1+c2) * ( w(k,j,i) + w(k-1,j,i) ) & |
---|
[56] | 1046 | ) |
---|
| 1047 | |
---|
| 1048 | IF ( rifs >= 0.0 ) THEN |
---|
| 1049 | |
---|
| 1050 | ! |
---|
| 1051 | !-- Stable stratification (and neutral) |
---|
[1320] | 1052 | wall_flux(k) = kappa * vel_zp / & |
---|
[56] | 1053 | ( LOG( zp/z0(j,i) ) + 5.0*rifs * ( zp-z0(j,i) ) / zp ) |
---|
| 1054 | ELSE |
---|
| 1055 | |
---|
| 1056 | ! |
---|
| 1057 | !-- Unstable stratification |
---|
[187] | 1058 | h1 = SQRT( SQRT( 1.0 - 16.0 * rifs ) ) |
---|
| 1059 | h2 = SQRT( SQRT( 1.0 - 16.0 * rifs * z0(j,i) / zp ) ) |
---|
[56] | 1060 | |
---|
[1320] | 1061 | wall_flux(k) = kappa * vel_zp / ( & |
---|
| 1062 | LOG( zp / z0(j,i) ) - & |
---|
| 1063 | LOG( ( 1.0 + h1 )**2 * ( 1.0 + h1**2 ) / ( & |
---|
| 1064 | ( 1.0 + h2 )**2 * ( 1.0 + h2**2 ) ) ) + & |
---|
| 1065 | 2.0 * ( ATAN( h1 ) - ATAN( h2 ) ) & |
---|
[187] | 1066 | ) |
---|
[53] | 1067 | ENDIF |
---|
[187] | 1068 | wall_flux(k) = - wall_flux(k) * us_wall |
---|
[53] | 1069 | |
---|
[56] | 1070 | ENDDO |
---|
[53] | 1071 | |
---|
[56] | 1072 | END SUBROUTINE wall_fluxes_e_ij |
---|
| 1073 | |
---|
| 1074 | END MODULE wall_fluxes_mod |
---|