[56] | 1 | MODULE wall_fluxes_mod |
---|
[1036] | 2 | |
---|
| 3 | !--------------------------------------------------------------------------------! |
---|
| 4 | ! This file is part of PALM. |
---|
| 5 | ! |
---|
| 6 | ! PALM is free software: you can redistribute it and/or modify it under the terms |
---|
| 7 | ! of the GNU General Public License as published by the Free Software Foundation, |
---|
| 8 | ! either version 3 of the License, or (at your option) any later version. |
---|
| 9 | ! |
---|
| 10 | ! PALM is distributed in the hope that it will be useful, but WITHOUT ANY |
---|
| 11 | ! WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR |
---|
| 12 | ! A PARTICULAR PURPOSE. See the GNU General Public License for more details. |
---|
| 13 | ! |
---|
| 14 | ! You should have received a copy of the GNU General Public License along with |
---|
| 15 | ! PALM. If not, see <http://www.gnu.org/licenses/>. |
---|
| 16 | ! |
---|
| 17 | ! Copyright 1997-2012 Leibniz University Hannover |
---|
| 18 | !--------------------------------------------------------------------------------! |
---|
| 19 | ! |
---|
[484] | 20 | ! Current revisions: |
---|
[52] | 21 | ! ----------------- |
---|
[1128] | 22 | ! loop index bounds in accelerator version replaced by i_left, i_right, j_south, |
---|
| 23 | ! j_north |
---|
[198] | 24 | ! |
---|
| 25 | ! Former revisions: |
---|
| 26 | ! ----------------- |
---|
| 27 | ! $Id: wall_fluxes.f90 1128 2013-04-12 06:19:32Z raasch $ |
---|
| 28 | ! |
---|
[1037] | 29 | ! 1036 2012-10-22 13:43:42Z raasch |
---|
| 30 | ! code put under GPL (PALM 3.9) |
---|
| 31 | ! |
---|
[1017] | 32 | ! 1015 2012-09-27 09:23:24Z raasch |
---|
| 33 | ! accelerator version (*_acc) added |
---|
| 34 | ! |
---|
[198] | 35 | ! 187 2008-08-06 16:25:09Z letzel |
---|
| 36 | ! Bugfix: Modification of the evaluation of the vertical turbulent momentum |
---|
| 37 | ! fluxes u'w' and v'w (see prandtl_fluxes), this requires the calculation of |
---|
| 38 | ! us_wall (and vel_total, u_i, v_i, ws) also in wall_fluxes_e. |
---|
| 39 | ! Bugfix: change definition of us_wall from 1D to 2D |
---|
[187] | 40 | ! Bugfix: storage of rifs to rifs_wall in wall_fluxes_e removed |
---|
| 41 | ! Change: add 'minus' sign to fluxes produced by subroutine wall_fluxes_e for |
---|
[198] | 42 | ! consistency with subroutine wall_fluxes |
---|
[187] | 43 | ! Change: Modification of the integrated version of the profile function for |
---|
[198] | 44 | ! momentum for unstable stratification |
---|
[52] | 45 | ! |
---|
| 46 | ! Initial version (2007/03/07) |
---|
| 47 | ! |
---|
| 48 | ! Description: |
---|
| 49 | ! ------------ |
---|
| 50 | ! Calculates momentum fluxes at vertical walls assuming Monin-Obukhov |
---|
| 51 | ! similarity. |
---|
| 52 | ! Indices: usvs a=1, vsus b=1, wsvs c1=1, wsus c2=1 (other=0). |
---|
[56] | 53 | ! The all-gridpoint version of wall_fluxes_e is not used so far, because |
---|
| 54 | ! it gives slightly different results from the ij-version for some unknown |
---|
| 55 | ! reason. |
---|
[52] | 56 | !------------------------------------------------------------------------------! |
---|
[56] | 57 | PRIVATE |
---|
[1015] | 58 | PUBLIC wall_fluxes, wall_fluxes_acc, wall_fluxes_e, wall_fluxes_e_acc |
---|
[56] | 59 | |
---|
| 60 | INTERFACE wall_fluxes |
---|
| 61 | MODULE PROCEDURE wall_fluxes |
---|
| 62 | MODULE PROCEDURE wall_fluxes_ij |
---|
| 63 | END INTERFACE wall_fluxes |
---|
| 64 | |
---|
[1015] | 65 | INTERFACE wall_fluxes_acc |
---|
| 66 | MODULE PROCEDURE wall_fluxes_acc |
---|
| 67 | END INTERFACE wall_fluxes_acc |
---|
| 68 | |
---|
[56] | 69 | INTERFACE wall_fluxes_e |
---|
| 70 | MODULE PROCEDURE wall_fluxes_e |
---|
| 71 | MODULE PROCEDURE wall_fluxes_e_ij |
---|
| 72 | END INTERFACE wall_fluxes_e |
---|
| 73 | |
---|
[1015] | 74 | INTERFACE wall_fluxes_e_acc |
---|
| 75 | MODULE PROCEDURE wall_fluxes_e_acc |
---|
| 76 | END INTERFACE wall_fluxes_e_acc |
---|
| 77 | |
---|
[56] | 78 | CONTAINS |
---|
[52] | 79 | |
---|
[56] | 80 | !------------------------------------------------------------------------------! |
---|
| 81 | ! Call for all grid points |
---|
| 82 | !------------------------------------------------------------------------------! |
---|
[75] | 83 | SUBROUTINE wall_fluxes( wall_flux, a, b, c1, c2, nzb_uvw_inner, & |
---|
[56] | 84 | nzb_uvw_outer, wall ) |
---|
[52] | 85 | |
---|
[56] | 86 | USE arrays_3d |
---|
| 87 | USE control_parameters |
---|
| 88 | USE grid_variables |
---|
| 89 | USE indices |
---|
| 90 | USE statistics |
---|
[52] | 91 | |
---|
[56] | 92 | IMPLICIT NONE |
---|
[52] | 93 | |
---|
[75] | 94 | INTEGER :: i, j, k, wall_index |
---|
[52] | 95 | |
---|
[667] | 96 | INTEGER, DIMENSION(nysg:nyng,nxlg:nxrg) :: nzb_uvw_inner, & |
---|
[56] | 97 | nzb_uvw_outer |
---|
| 98 | REAL :: a, b, c1, c2, h1, h2, zp |
---|
| 99 | REAL :: pts, pt_i, rifs, u_i, v_i, us_wall, vel_total, ws, wspts |
---|
[52] | 100 | |
---|
[667] | 101 | REAL, DIMENSION(nysg:nyng,nxlg:nxrg) :: wall |
---|
[75] | 102 | REAL, DIMENSION(nzb:nzt+1,nys:nyn,nxl:nxr) :: wall_flux |
---|
[52] | 103 | |
---|
| 104 | |
---|
[56] | 105 | zp = 0.5 * ( (a+c1) * dy + (b+c2) * dx ) |
---|
| 106 | wall_flux = 0.0 |
---|
| 107 | wall_index = NINT( a+ 2*b + 3*c1 + 4*c2 ) |
---|
| 108 | |
---|
[75] | 109 | DO i = nxl, nxr |
---|
| 110 | DO j = nys, nyn |
---|
[56] | 111 | |
---|
| 112 | IF ( wall(j,i) /= 0.0 ) THEN |
---|
[52] | 113 | ! |
---|
[56] | 114 | !-- All subsequent variables are computed for the respective |
---|
[187] | 115 | !-- location where the respective flux is defined. |
---|
[56] | 116 | DO k = nzb_uvw_inner(j,i)+1, nzb_uvw_outer(j,i) |
---|
[53] | 117 | |
---|
[52] | 118 | ! |
---|
[56] | 119 | !-- (1) Compute rifs, u_i, v_i, ws, pt' and w'pt' |
---|
| 120 | rifs = rif_wall(k,j,i,wall_index) |
---|
[53] | 121 | |
---|
[56] | 122 | u_i = a * u(k,j,i) + c1 * 0.25 * & |
---|
| 123 | ( u(k+1,j,i+1) + u(k+1,j,i) + u(k,j,i+1) + u(k,j,i) ) |
---|
[53] | 124 | |
---|
[56] | 125 | v_i = b * v(k,j,i) + c2 * 0.25 * & |
---|
| 126 | ( v(k+1,j+1,i) + v(k+1,j,i) + v(k,j+1,i) + v(k,j,i) ) |
---|
[53] | 127 | |
---|
[56] | 128 | ws = ( c1 + c2 ) * w(k,j,i) + 0.25 * ( & |
---|
| 129 | a * ( w(k-1,j,i-1) + w(k-1,j,i) + w(k,j,i-1) + w(k,j,i) ) & |
---|
| 130 | + b * ( w(k-1,j-1,i) + w(k-1,j,i) + w(k,j-1,i) + w(k,j,i) ) & |
---|
| 131 | ) |
---|
| 132 | pt_i = 0.5 * ( pt(k,j,i) + a * pt(k,j,i-1) + & |
---|
| 133 | b * pt(k,j-1,i) + ( c1 + c2 ) * pt(k+1,j,i) ) |
---|
[53] | 134 | |
---|
[56] | 135 | pts = pt_i - hom(k,1,4,0) |
---|
| 136 | wspts = ws * pts |
---|
[53] | 137 | |
---|
[52] | 138 | ! |
---|
[56] | 139 | !-- (2) Compute wall-parallel absolute velocity vel_total |
---|
| 140 | vel_total = SQRT( ws**2 + (a+c1) * u_i**2 + (b+c2) * v_i**2 ) |
---|
[53] | 141 | |
---|
[52] | 142 | ! |
---|
[56] | 143 | !-- (3) Compute wall friction velocity us_wall |
---|
| 144 | IF ( rifs >= 0.0 ) THEN |
---|
[53] | 145 | |
---|
[52] | 146 | ! |
---|
[56] | 147 | !-- Stable stratification (and neutral) |
---|
| 148 | us_wall = kappa * vel_total / ( LOG( zp / z0(j,i) ) + & |
---|
| 149 | 5.0 * rifs * ( zp - z0(j,i) ) / zp & |
---|
| 150 | ) |
---|
| 151 | ELSE |
---|
[53] | 152 | |
---|
[52] | 153 | ! |
---|
[56] | 154 | !-- Unstable stratification |
---|
[187] | 155 | h1 = SQRT( SQRT( 1.0 - 16.0 * rifs ) ) |
---|
| 156 | h2 = SQRT( SQRT( 1.0 - 16.0 * rifs * z0(j,i) / zp ) ) |
---|
[53] | 157 | |
---|
[187] | 158 | us_wall = kappa * vel_total / ( & |
---|
| 159 | LOG( zp / z0(j,i) ) - & |
---|
| 160 | LOG( ( 1.0 + h1 )**2 * ( 1.0 + h1**2 ) / ( & |
---|
| 161 | ( 1.0 + h2 )**2 * ( 1.0 + h2**2 ) ) ) + & |
---|
| 162 | 2.0 * ( ATAN( h1 ) - ATAN( h2 ) ) & |
---|
| 163 | ) |
---|
[56] | 164 | ENDIF |
---|
[53] | 165 | |
---|
[52] | 166 | ! |
---|
[56] | 167 | !-- (4) Compute zp/L (corresponds to neutral Richardson flux |
---|
| 168 | !-- number rifs) |
---|
| 169 | rifs = -1.0 * zp * kappa * g * wspts / ( pt_i * & |
---|
| 170 | ( us_wall**3 + 1E-30 ) ) |
---|
[53] | 171 | |
---|
[52] | 172 | ! |
---|
[56] | 173 | !-- Limit the value range of the Richardson numbers. |
---|
| 174 | !-- This is necessary for very small velocities (u,w --> 0), |
---|
| 175 | !-- because the absolute value of rif can then become very |
---|
| 176 | !-- large, which in consequence would result in very large |
---|
| 177 | !-- shear stresses and very small momentum fluxes (both are |
---|
| 178 | !-- generally unrealistic). |
---|
| 179 | IF ( rifs < rif_min ) rifs = rif_min |
---|
| 180 | IF ( rifs > rif_max ) rifs = rif_max |
---|
[53] | 181 | |
---|
[52] | 182 | ! |
---|
[56] | 183 | !-- (5) Compute wall_flux (u'v', v'u', w'v', or w'u') |
---|
| 184 | IF ( rifs >= 0.0 ) THEN |
---|
[53] | 185 | |
---|
[52] | 186 | ! |
---|
[56] | 187 | !-- Stable stratification (and neutral) |
---|
| 188 | wall_flux(k,j,i) = kappa * & |
---|
| 189 | ( a*u(k,j,i) + b*v(k,j,i) + (c1+c2)*w(k,j,i) ) / & |
---|
| 190 | ( LOG( zp / z0(j,i) ) + & |
---|
| 191 | 5.0 * rifs * ( zp - z0(j,i) ) / zp & |
---|
| 192 | ) |
---|
| 193 | ELSE |
---|
[53] | 194 | |
---|
[52] | 195 | ! |
---|
[56] | 196 | !-- Unstable stratification |
---|
[187] | 197 | h1 = SQRT( SQRT( 1.0 - 16.0 * rifs ) ) |
---|
| 198 | h2 = SQRT( SQRT( 1.0 - 16.0 * rifs * z0(j,i) / zp ) ) |
---|
[53] | 199 | |
---|
[187] | 200 | wall_flux(k,j,i) = kappa * & |
---|
| 201 | ( a*u(k,j,i) + b*v(k,j,i) + (c1+c2)*w(k,j,i) ) / ( & |
---|
| 202 | LOG( zp / z0(j,i) ) - & |
---|
| 203 | LOG( ( 1.0 + h1 )**2 * ( 1.0 + h1**2 ) / ( & |
---|
| 204 | ( 1.0 + h2 )**2 * ( 1.0 + h2**2 ) ) ) + & |
---|
| 205 | 2.0 * ( ATAN( h1 ) - ATAN( h2 ) ) & |
---|
| 206 | ) |
---|
[56] | 207 | ENDIF |
---|
[187] | 208 | wall_flux(k,j,i) = -wall_flux(k,j,i) * us_wall |
---|
[56] | 209 | |
---|
| 210 | ! |
---|
| 211 | !-- store rifs for next time step |
---|
| 212 | rif_wall(k,j,i,wall_index) = rifs |
---|
| 213 | |
---|
| 214 | ENDDO |
---|
| 215 | |
---|
| 216 | ENDIF |
---|
| 217 | |
---|
| 218 | ENDDO |
---|
| 219 | ENDDO |
---|
| 220 | |
---|
| 221 | END SUBROUTINE wall_fluxes |
---|
| 222 | |
---|
| 223 | |
---|
[1015] | 224 | !------------------------------------------------------------------------------! |
---|
| 225 | ! Call for all grid points - accelerator version |
---|
| 226 | !------------------------------------------------------------------------------! |
---|
| 227 | SUBROUTINE wall_fluxes_acc( wall_flux, a, b, c1, c2, nzb_uvw_inner, & |
---|
| 228 | nzb_uvw_outer, wall ) |
---|
[56] | 229 | |
---|
[1015] | 230 | USE arrays_3d |
---|
| 231 | USE control_parameters |
---|
| 232 | USE grid_variables |
---|
| 233 | USE indices |
---|
| 234 | USE statistics |
---|
| 235 | |
---|
| 236 | IMPLICIT NONE |
---|
| 237 | |
---|
| 238 | INTEGER :: i, j, k, max_outer, min_inner, wall_index |
---|
| 239 | |
---|
| 240 | INTEGER, DIMENSION(nysg:nyng,nxlg:nxrg) :: nzb_uvw_inner, & |
---|
| 241 | nzb_uvw_outer |
---|
| 242 | REAL :: a, b, c1, c2, h1, h2, zp |
---|
| 243 | REAL :: pts, pt_i, rifs, u_i, v_i, us_wall, vel_total, ws, wspts |
---|
| 244 | |
---|
| 245 | REAL, DIMENSION(nysg:nyng,nxlg:nxrg) :: wall |
---|
| 246 | REAL, DIMENSION(nzb:nzt+1,nys:nyn,nxl:nxr) :: wall_flux |
---|
| 247 | |
---|
| 248 | |
---|
| 249 | zp = 0.5 * ( (a+c1) * dy + (b+c2) * dx ) |
---|
| 250 | wall_flux = 0.0 |
---|
| 251 | wall_index = NINT( a+ 2*b + 3*c1 + 4*c2 ) |
---|
| 252 | |
---|
| 253 | min_inner = MINVAL( nzb_uvw_inner(nys:nyn,nxl:nxr) ) + 1 |
---|
| 254 | max_outer = MINVAL( nzb_uvw_outer(nys:nyn,nxl:nxr) ) |
---|
| 255 | |
---|
| 256 | !$acc kernels present( hom, nzb_uvw_inner, nzb_uvw_outer, pt, rif_wall ) & |
---|
| 257 | !$acc present( u, v, w, wall, wall_flux, z0 ) |
---|
| 258 | !$acc loop |
---|
[1128] | 259 | DO i = i_left, i_right |
---|
| 260 | DO j = j_south, j_north |
---|
[1015] | 261 | !$acc loop vector( 32 ) |
---|
| 262 | DO k = min_inner, max_outer |
---|
| 263 | ! |
---|
| 264 | !-- All subsequent variables are computed for the respective |
---|
| 265 | !-- location where the respective flux is defined. |
---|
| 266 | IF ( k >= nzb_uvw_inner(j,i)+1 .AND. & |
---|
| 267 | k <= nzb_uvw_outer(j,i) .AND. wall(j,i) /= 0.0 ) THEN |
---|
| 268 | ! |
---|
| 269 | !-- (1) Compute rifs, u_i, v_i, ws, pt' and w'pt' |
---|
| 270 | rifs = rif_wall(k,j,i,wall_index) |
---|
| 271 | |
---|
| 272 | u_i = a * u(k,j,i) + c1 * 0.25 * & |
---|
| 273 | ( u(k+1,j,i+1) + u(k+1,j,i) + u(k,j,i+1) + u(k,j,i) ) |
---|
| 274 | |
---|
| 275 | v_i = b * v(k,j,i) + c2 * 0.25 * & |
---|
| 276 | ( v(k+1,j+1,i) + v(k+1,j,i) + v(k,j+1,i) + v(k,j,i) ) |
---|
| 277 | |
---|
| 278 | ws = ( c1 + c2 ) * w(k,j,i) + 0.25 * ( & |
---|
| 279 | a * ( w(k-1,j,i-1) + w(k-1,j,i) + w(k,j,i-1) + w(k,j,i) ) & |
---|
| 280 | + b * ( w(k-1,j-1,i) + w(k-1,j,i) + w(k,j-1,i) + w(k,j,i) ) & |
---|
| 281 | ) |
---|
| 282 | pt_i = 0.5 * ( pt(k,j,i) + a * pt(k,j,i-1) + & |
---|
| 283 | b * pt(k,j-1,i) + ( c1 + c2 ) * pt(k+1,j,i) ) |
---|
| 284 | |
---|
| 285 | pts = pt_i - hom(k,1,4,0) |
---|
| 286 | wspts = ws * pts |
---|
| 287 | |
---|
| 288 | ! |
---|
| 289 | !-- (2) Compute wall-parallel absolute velocity vel_total |
---|
| 290 | vel_total = SQRT( ws**2 + (a+c1) * u_i**2 + (b+c2) * v_i**2 ) |
---|
| 291 | |
---|
| 292 | ! |
---|
| 293 | !-- (3) Compute wall friction velocity us_wall |
---|
| 294 | IF ( rifs >= 0.0 ) THEN |
---|
| 295 | |
---|
| 296 | ! |
---|
| 297 | !-- Stable stratification (and neutral) |
---|
| 298 | us_wall = kappa * vel_total / ( LOG( zp / z0(j,i) ) + & |
---|
| 299 | 5.0 * rifs * ( zp - z0(j,i) ) / zp & |
---|
| 300 | ) |
---|
| 301 | ELSE |
---|
| 302 | |
---|
| 303 | ! |
---|
| 304 | !-- Unstable stratification |
---|
| 305 | h1 = SQRT( SQRT( 1.0 - 16.0 * rifs ) ) |
---|
| 306 | h2 = SQRT( SQRT( 1.0 - 16.0 * rifs * z0(j,i) / zp ) ) |
---|
| 307 | |
---|
| 308 | us_wall = kappa * vel_total / ( & |
---|
| 309 | LOG( zp / z0(j,i) ) - & |
---|
| 310 | LOG( ( 1.0 + h1 )**2 * ( 1.0 + h1**2 ) / ( & |
---|
| 311 | ( 1.0 + h2 )**2 * ( 1.0 + h2**2 ) ) ) + & |
---|
| 312 | 2.0 * ( ATAN( h1 ) - ATAN( h2 ) ) & |
---|
| 313 | ) |
---|
| 314 | ENDIF |
---|
| 315 | |
---|
| 316 | ! |
---|
| 317 | !-- (4) Compute zp/L (corresponds to neutral Richardson flux |
---|
| 318 | !-- number rifs) |
---|
| 319 | rifs = -1.0 * zp * kappa * g * wspts / ( pt_i * & |
---|
| 320 | ( us_wall**3 + 1E-30 ) ) |
---|
| 321 | |
---|
| 322 | ! |
---|
| 323 | !-- Limit the value range of the Richardson numbers. |
---|
| 324 | !-- This is necessary for very small velocities (u,w --> 0), |
---|
| 325 | !-- because the absolute value of rif can then become very |
---|
| 326 | !-- large, which in consequence would result in very large |
---|
| 327 | !-- shear stresses and very small momentum fluxes (both are |
---|
| 328 | !-- generally unrealistic). |
---|
| 329 | IF ( rifs < rif_min ) rifs = rif_min |
---|
| 330 | IF ( rifs > rif_max ) rifs = rif_max |
---|
| 331 | |
---|
| 332 | ! |
---|
| 333 | !-- (5) Compute wall_flux (u'v', v'u', w'v', or w'u') |
---|
| 334 | IF ( rifs >= 0.0 ) THEN |
---|
| 335 | |
---|
| 336 | ! |
---|
| 337 | !-- Stable stratification (and neutral) |
---|
| 338 | wall_flux(k,j,i) = kappa * & |
---|
| 339 | ( a*u(k,j,i) + b*v(k,j,i) + (c1+c2)*w(k,j,i) ) / & |
---|
| 340 | ( LOG( zp / z0(j,i) ) + & |
---|
| 341 | 5.0 * rifs * ( zp - z0(j,i) ) / zp & |
---|
| 342 | ) |
---|
| 343 | ELSE |
---|
| 344 | |
---|
| 345 | ! |
---|
| 346 | !-- Unstable stratification |
---|
| 347 | h1 = SQRT( SQRT( 1.0 - 16.0 * rifs ) ) |
---|
| 348 | h2 = SQRT( SQRT( 1.0 - 16.0 * rifs * z0(j,i) / zp ) ) |
---|
| 349 | |
---|
| 350 | wall_flux(k,j,i) = kappa * & |
---|
| 351 | ( a*u(k,j,i) + b*v(k,j,i) + (c1+c2)*w(k,j,i) ) / ( & |
---|
| 352 | LOG( zp / z0(j,i) ) - & |
---|
| 353 | LOG( ( 1.0 + h1 )**2 * ( 1.0 + h1**2 ) / ( & |
---|
| 354 | ( 1.0 + h2 )**2 * ( 1.0 + h2**2 ) ) ) + & |
---|
| 355 | 2.0 * ( ATAN( h1 ) - ATAN( h2 ) ) & |
---|
| 356 | ) |
---|
| 357 | ENDIF |
---|
| 358 | wall_flux(k,j,i) = -wall_flux(k,j,i) * us_wall |
---|
| 359 | |
---|
| 360 | ! |
---|
| 361 | !-- store rifs for next time step |
---|
| 362 | rif_wall(k,j,i,wall_index) = rifs |
---|
| 363 | |
---|
| 364 | ENDIF |
---|
| 365 | |
---|
| 366 | ENDDO |
---|
| 367 | ENDDO |
---|
| 368 | ENDDO |
---|
| 369 | !$acc end kernels |
---|
| 370 | |
---|
| 371 | END SUBROUTINE wall_fluxes_acc |
---|
| 372 | |
---|
| 373 | |
---|
[56] | 374 | !------------------------------------------------------------------------------! |
---|
| 375 | ! Call for all grid point i,j |
---|
| 376 | !------------------------------------------------------------------------------! |
---|
| 377 | SUBROUTINE wall_fluxes_ij( i, j, nzb_w, nzt_w, wall_flux, a, b, c1, c2 ) |
---|
| 378 | |
---|
| 379 | USE arrays_3d |
---|
| 380 | USE control_parameters |
---|
| 381 | USE grid_variables |
---|
| 382 | USE indices |
---|
| 383 | USE statistics |
---|
| 384 | |
---|
| 385 | IMPLICIT NONE |
---|
| 386 | |
---|
| 387 | INTEGER :: i, j, k, nzb_w, nzt_w, wall_index |
---|
| 388 | REAL :: a, b, c1, c2, h1, h2, zp |
---|
| 389 | |
---|
| 390 | REAL :: pts, pt_i, rifs, u_i, v_i, us_wall, vel_total, ws, wspts |
---|
| 391 | |
---|
| 392 | REAL, DIMENSION(nzb:nzt+1) :: wall_flux |
---|
| 393 | |
---|
| 394 | |
---|
| 395 | zp = 0.5 * ( (a+c1) * dy + (b+c2) * dx ) |
---|
| 396 | wall_flux = 0.0 |
---|
| 397 | wall_index = NINT( a+ 2*b + 3*c1 + 4*c2 ) |
---|
| 398 | |
---|
| 399 | ! |
---|
| 400 | !-- All subsequent variables are computed for the respective location where |
---|
[187] | 401 | !-- the respective flux is defined. |
---|
[56] | 402 | DO k = nzb_w, nzt_w |
---|
| 403 | |
---|
| 404 | ! |
---|
| 405 | !-- (1) Compute rifs, u_i, v_i, ws, pt' and w'pt' |
---|
| 406 | rifs = rif_wall(k,j,i,wall_index) |
---|
| 407 | |
---|
| 408 | u_i = a * u(k,j,i) + c1 * 0.25 * & |
---|
| 409 | ( u(k+1,j,i+1) + u(k+1,j,i) + u(k,j,i+1) + u(k,j,i) ) |
---|
| 410 | |
---|
| 411 | v_i = b * v(k,j,i) + c2 * 0.25 * & |
---|
| 412 | ( v(k+1,j+1,i) + v(k+1,j,i) + v(k,j+1,i) + v(k,j,i) ) |
---|
| 413 | |
---|
| 414 | ws = ( c1 + c2 ) * w(k,j,i) + 0.25 * ( & |
---|
| 415 | a * ( w(k-1,j,i-1) + w(k-1,j,i) + w(k,j,i-1) + w(k,j,i) ) & |
---|
| 416 | + b * ( w(k-1,j-1,i) + w(k-1,j,i) + w(k,j-1,i) + w(k,j,i) ) & |
---|
| 417 | ) |
---|
| 418 | pt_i = 0.5 * ( pt(k,j,i) + a * pt(k,j,i-1) + b * pt(k,j-1,i) & |
---|
| 419 | + ( c1 + c2 ) * pt(k+1,j,i) ) |
---|
| 420 | |
---|
| 421 | pts = pt_i - hom(k,1,4,0) |
---|
| 422 | wspts = ws * pts |
---|
| 423 | |
---|
| 424 | ! |
---|
| 425 | !-- (2) Compute wall-parallel absolute velocity vel_total |
---|
| 426 | vel_total = SQRT( ws**2 + ( a+c1 ) * u_i**2 + ( b+c2 ) * v_i**2 ) |
---|
| 427 | |
---|
| 428 | ! |
---|
| 429 | !-- (3) Compute wall friction velocity us_wall |
---|
| 430 | IF ( rifs >= 0.0 ) THEN |
---|
| 431 | |
---|
| 432 | ! |
---|
| 433 | !-- Stable stratification (and neutral) |
---|
| 434 | us_wall = kappa * vel_total / ( LOG( zp / z0(j,i) ) + & |
---|
| 435 | 5.0 * rifs * ( zp - z0(j,i) ) / zp & |
---|
| 436 | ) |
---|
| 437 | ELSE |
---|
| 438 | |
---|
| 439 | ! |
---|
| 440 | !-- Unstable stratification |
---|
[187] | 441 | h1 = SQRT( SQRT( 1.0 - 16.0 * rifs ) ) |
---|
| 442 | h2 = SQRT( SQRT( 1.0 - 16.0 * rifs * z0(j,i) / zp ) ) |
---|
[56] | 443 | |
---|
[187] | 444 | us_wall = kappa * vel_total / ( & |
---|
| 445 | LOG( zp / z0(j,i) ) - & |
---|
| 446 | LOG( ( 1.0 + h1 )**2 * ( 1.0 + h1**2 ) / ( & |
---|
| 447 | ( 1.0 + h2 )**2 * ( 1.0 + h2**2 ) ) ) + & |
---|
| 448 | 2.0 * ( ATAN( h1 ) - ATAN( h2 ) ) & |
---|
| 449 | ) |
---|
[56] | 450 | ENDIF |
---|
| 451 | |
---|
| 452 | ! |
---|
| 453 | !-- (4) Compute zp/L (corresponds to neutral Richardson flux number |
---|
| 454 | !-- rifs) |
---|
| 455 | rifs = -1.0 * zp * kappa * g * wspts / ( pt_i * (us_wall**3 + 1E-30) ) |
---|
| 456 | |
---|
| 457 | ! |
---|
| 458 | !-- Limit the value range of the Richardson numbers. |
---|
| 459 | !-- This is necessary for very small velocities (u,w --> 0), because |
---|
| 460 | !-- the absolute value of rif can then become very large, which in |
---|
| 461 | !-- consequence would result in very large shear stresses and very |
---|
| 462 | !-- small momentum fluxes (both are generally unrealistic). |
---|
| 463 | IF ( rifs < rif_min ) rifs = rif_min |
---|
| 464 | IF ( rifs > rif_max ) rifs = rif_max |
---|
| 465 | |
---|
| 466 | ! |
---|
| 467 | !-- (5) Compute wall_flux (u'v', v'u', w'v', or w'u') |
---|
| 468 | IF ( rifs >= 0.0 ) THEN |
---|
| 469 | |
---|
| 470 | ! |
---|
| 471 | !-- Stable stratification (and neutral) |
---|
[53] | 472 | wall_flux(k) = kappa * & |
---|
| 473 | ( a*u(k,j,i) + b*v(k,j,i) + (c1+c2)*w(k,j,i) ) / & |
---|
[56] | 474 | ( LOG( zp / z0(j,i) ) + & |
---|
| 475 | 5.0 * rifs * ( zp - z0(j,i) ) / zp & |
---|
[53] | 476 | ) |
---|
[52] | 477 | ELSE |
---|
[53] | 478 | |
---|
[56] | 479 | ! |
---|
| 480 | !-- Unstable stratification |
---|
[187] | 481 | h1 = SQRT( SQRT( 1.0 - 16.0 * rifs ) ) |
---|
| 482 | h2 = SQRT( SQRT( 1.0 - 16.0 * rifs * z0(j,i) / zp ) ) |
---|
[52] | 483 | |
---|
[187] | 484 | wall_flux(k) = kappa * & |
---|
| 485 | ( a*u(k,j,i) + b*v(k,j,i) + (c1+c2)*w(k,j,i) ) / ( & |
---|
| 486 | LOG( zp / z0(j,i) ) - & |
---|
| 487 | LOG( ( 1.0 + h1 )**2 * ( 1.0 + h1**2 ) / ( & |
---|
| 488 | ( 1.0 + h2 )**2 * ( 1.0 + h2**2 ) ) ) + & |
---|
| 489 | 2.0 * ( ATAN( h1 ) - ATAN( h2 ) ) & |
---|
| 490 | ) |
---|
[56] | 491 | ENDIF |
---|
[187] | 492 | wall_flux(k) = -wall_flux(k) * us_wall |
---|
[53] | 493 | |
---|
[56] | 494 | ! |
---|
| 495 | !-- store rifs for next time step |
---|
| 496 | rif_wall(k,j,i,wall_index) = rifs |
---|
[53] | 497 | |
---|
[56] | 498 | ENDDO |
---|
[53] | 499 | |
---|
[56] | 500 | END SUBROUTINE wall_fluxes_ij |
---|
[53] | 501 | |
---|
[56] | 502 | |
---|
| 503 | |
---|
[53] | 504 | !------------------------------------------------------------------------------! |
---|
[56] | 505 | ! Call for all grid points |
---|
| 506 | !------------------------------------------------------------------------------! |
---|
| 507 | SUBROUTINE wall_fluxes_e( wall_flux, a, b, c1, c2, wall ) |
---|
| 508 | |
---|
| 509 | !------------------------------------------------------------------------------! |
---|
[53] | 510 | ! Description: |
---|
| 511 | ! ------------ |
---|
| 512 | ! Calculates momentum fluxes at vertical walls for routine production_e |
---|
| 513 | ! assuming Monin-Obukhov similarity. |
---|
| 514 | ! Indices: usvs a=1, vsus b=1, wsvs c1=1, wsus c2=1 (other=0). |
---|
| 515 | !------------------------------------------------------------------------------! |
---|
| 516 | |
---|
[56] | 517 | USE arrays_3d |
---|
| 518 | USE control_parameters |
---|
| 519 | USE grid_variables |
---|
| 520 | USE indices |
---|
| 521 | USE statistics |
---|
[53] | 522 | |
---|
[56] | 523 | IMPLICIT NONE |
---|
[53] | 524 | |
---|
[56] | 525 | INTEGER :: i, j, k, kk, wall_index |
---|
[187] | 526 | REAL :: a, b, c1, c2, h1, h2, u_i, v_i, us_wall, vel_total, vel_zp, & |
---|
| 527 | ws, zp |
---|
[53] | 528 | |
---|
[56] | 529 | REAL :: rifs |
---|
[53] | 530 | |
---|
[667] | 531 | REAL, DIMENSION(nysg:nyng,nxlg:nxrg) :: wall |
---|
[56] | 532 | REAL, DIMENSION(nzb:nzt+1,nys:nyn,nxl:nxr) :: wall_flux |
---|
[53] | 533 | |
---|
| 534 | |
---|
[56] | 535 | zp = 0.5 * ( (a+c1) * dy + (b+c2) * dx ) |
---|
| 536 | wall_flux = 0.0 |
---|
| 537 | wall_index = NINT( a+ 2*b + 3*c1 + 4*c2 ) |
---|
[53] | 538 | |
---|
[56] | 539 | DO i = nxl, nxr |
---|
| 540 | DO j = nys, nyn |
---|
| 541 | |
---|
| 542 | IF ( wall(j,i) /= 0.0 ) THEN |
---|
[53] | 543 | ! |
---|
[187] | 544 | !-- All subsequent variables are computed for scalar locations. |
---|
[56] | 545 | DO k = nzb_diff_s_inner(j,i)-1, nzb_diff_s_outer(j,i)-2 |
---|
[53] | 546 | ! |
---|
[187] | 547 | !-- (1) Compute rifs, u_i, v_i, and ws |
---|
[56] | 548 | IF ( k == nzb_diff_s_inner(j,i)-1 ) THEN |
---|
| 549 | kk = nzb_diff_s_inner(j,i)-1 |
---|
| 550 | ELSE |
---|
| 551 | kk = k-1 |
---|
| 552 | ENDIF |
---|
| 553 | rifs = 0.5 * ( rif_wall(k,j,i,wall_index) + & |
---|
| 554 | a * rif_wall(k,j,i+1,1) + b * rif_wall(k,j+1,i,2) + & |
---|
| 555 | c1 * rif_wall(kk,j,i,3) + c2 * rif_wall(kk,j,i,4) & |
---|
| 556 | ) |
---|
[53] | 557 | |
---|
[187] | 558 | u_i = 0.5 * ( u(k,j,i) + u(k,j,i+1) ) |
---|
| 559 | v_i = 0.5 * ( v(k,j,i) + v(k,j+1,i) ) |
---|
| 560 | ws = 0.5 * ( w(k,j,i) + w(k-1,j,i) ) |
---|
[53] | 561 | ! |
---|
[187] | 562 | !-- (2) Compute wall-parallel absolute velocity vel_total and |
---|
| 563 | !-- interpolate appropriate velocity component vel_zp. |
---|
| 564 | vel_total = SQRT( ws**2 + (a+c1) * u_i**2 + (b+c2) * v_i**2 ) |
---|
| 565 | vel_zp = 0.5 * ( a * u_i + b * v_i + (c1+c2) * ws ) |
---|
| 566 | ! |
---|
| 567 | !-- (3) Compute wall friction velocity us_wall |
---|
| 568 | IF ( rifs >= 0.0 ) THEN |
---|
[53] | 569 | |
---|
| 570 | ! |
---|
[187] | 571 | !-- Stable stratification (and neutral) |
---|
| 572 | us_wall = kappa * vel_total / ( LOG( zp / z0(j,i) ) + & |
---|
| 573 | 5.0 * rifs * ( zp - z0(j,i) ) / zp & |
---|
| 574 | ) |
---|
| 575 | ELSE |
---|
| 576 | |
---|
| 577 | ! |
---|
| 578 | !-- Unstable stratification |
---|
| 579 | h1 = SQRT( SQRT( 1.0 - 16.0 * rifs ) ) |
---|
| 580 | h2 = SQRT( SQRT( 1.0 - 16.0 * rifs * z0(j,i) / zp ) ) |
---|
| 581 | |
---|
| 582 | us_wall = kappa * vel_total / ( & |
---|
| 583 | LOG( zp / z0(j,i) ) - & |
---|
| 584 | LOG( ( 1.0 + h1 )**2 * ( 1.0 + h1**2 ) / ( & |
---|
| 585 | ( 1.0 + h2 )**2 * ( 1.0 + h2**2 ) ) ) + & |
---|
| 586 | 2.0 * ( ATAN( h1 ) - ATAN( h2 ) ) & |
---|
| 587 | ) |
---|
| 588 | ENDIF |
---|
| 589 | |
---|
| 590 | ! |
---|
| 591 | !-- Skip step (4) of wall_fluxes, because here rifs is already |
---|
| 592 | !-- available from (1) |
---|
| 593 | ! |
---|
[56] | 594 | !-- (5) Compute wall_flux (u'v', v'u', w'v', or w'u') |
---|
[55] | 595 | |
---|
[56] | 596 | IF ( rifs >= 0.0 ) THEN |
---|
[53] | 597 | |
---|
| 598 | ! |
---|
[56] | 599 | !-- Stable stratification (and neutral) |
---|
| 600 | wall_flux(k,j,i) = kappa * vel_zp / & |
---|
| 601 | ( LOG( zp/z0(j,i) ) + 5.0*rifs * ( zp-z0(j,i) ) / zp ) |
---|
| 602 | ELSE |
---|
[53] | 603 | |
---|
| 604 | ! |
---|
[56] | 605 | !-- Unstable stratification |
---|
[187] | 606 | h1 = SQRT( SQRT( 1.0 - 16.0 * rifs ) ) |
---|
| 607 | h2 = SQRT( SQRT( 1.0 - 16.0 * rifs * z0(j,i) / zp ) ) |
---|
[53] | 608 | |
---|
[187] | 609 | wall_flux(k,j,i) = kappa * vel_zp / ( & |
---|
| 610 | LOG( zp / z0(j,i) ) - & |
---|
| 611 | LOG( ( 1.0 + h1 )**2 * ( 1.0 + h1**2 ) / ( & |
---|
| 612 | ( 1.0 + h2 )**2 * ( 1.0 + h2**2 ) ) ) + & |
---|
| 613 | 2.0 * ( ATAN( h1 ) - ATAN( h2 ) ) & |
---|
| 614 | ) |
---|
[56] | 615 | ENDIF |
---|
[187] | 616 | wall_flux(k,j,i) = - wall_flux(k,j,i) * us_wall |
---|
[56] | 617 | |
---|
| 618 | ENDDO |
---|
| 619 | |
---|
| 620 | ENDIF |
---|
| 621 | |
---|
| 622 | ENDDO |
---|
| 623 | ENDDO |
---|
| 624 | |
---|
| 625 | END SUBROUTINE wall_fluxes_e |
---|
| 626 | |
---|
| 627 | |
---|
[1015] | 628 | !------------------------------------------------------------------------------! |
---|
| 629 | ! Call for all grid points - accelerator version |
---|
| 630 | !------------------------------------------------------------------------------! |
---|
| 631 | SUBROUTINE wall_fluxes_e_acc( wall_flux, a, b, c1, c2, wall ) |
---|
[56] | 632 | |
---|
| 633 | !------------------------------------------------------------------------------! |
---|
[1015] | 634 | ! Description: |
---|
| 635 | ! ------------ |
---|
| 636 | ! Calculates momentum fluxes at vertical walls for routine production_e |
---|
| 637 | ! assuming Monin-Obukhov similarity. |
---|
| 638 | ! Indices: usvs a=1, vsus b=1, wsvs c1=1, wsus c2=1 (other=0). |
---|
| 639 | !------------------------------------------------------------------------------! |
---|
| 640 | |
---|
| 641 | USE arrays_3d |
---|
| 642 | USE control_parameters |
---|
| 643 | USE grid_variables |
---|
| 644 | USE indices |
---|
| 645 | USE statistics |
---|
| 646 | |
---|
| 647 | IMPLICIT NONE |
---|
| 648 | |
---|
| 649 | INTEGER :: i, j, k, kk, max_outer, min_inner, wall_index |
---|
| 650 | REAL :: a, b, c1, c2, h1, h2, u_i, v_i, us_wall, vel_total, vel_zp, & |
---|
| 651 | ws, zp |
---|
| 652 | |
---|
| 653 | REAL :: rifs |
---|
| 654 | |
---|
| 655 | REAL, DIMENSION(nysg:nyng,nxlg:nxrg) :: wall |
---|
| 656 | REAL, DIMENSION(nzb:nzt+1,nys:nyn,nxl:nxr) :: wall_flux |
---|
| 657 | |
---|
| 658 | |
---|
| 659 | zp = 0.5 * ( (a+c1) * dy + (b+c2) * dx ) |
---|
| 660 | wall_flux = 0.0 |
---|
| 661 | wall_index = NINT( a+ 2*b + 3*c1 + 4*c2 ) |
---|
| 662 | |
---|
| 663 | min_inner = MINVAL( nzb_diff_s_inner(nys:nyn,nxl:nxr) ) - 1 |
---|
| 664 | max_outer = MAXVAL( nzb_diff_s_outer(nys:nyn,nxl:nxr) ) - 2 |
---|
| 665 | |
---|
| 666 | !$acc kernels present( nzb_diff_s_inner, nzb_diff_s_outer, pt, rif_wall ) & |
---|
| 667 | !$acc present( u, v, w, wall, wall_flux, z0 ) |
---|
| 668 | !$acc loop |
---|
[1128] | 669 | DO i = i_left, i_right |
---|
| 670 | DO j = j_south, j_north |
---|
[1015] | 671 | !$acc loop vector(32) |
---|
| 672 | DO k = min_inner, max_outer |
---|
| 673 | ! |
---|
| 674 | !-- All subsequent variables are computed for scalar locations |
---|
| 675 | IF ( k >= nzb_diff_s_inner(j,i)-1 .AND. & |
---|
| 676 | k <= nzb_diff_s_outer(j,i)-2 .AND. wall(j,i) /= 0.0 ) THEN |
---|
| 677 | ! |
---|
| 678 | !-- (1) Compute rifs, u_i, v_i, and ws |
---|
| 679 | IF ( k == nzb_diff_s_inner(j,i)-1 ) THEN |
---|
| 680 | kk = nzb_diff_s_inner(j,i)-1 |
---|
| 681 | ELSE |
---|
| 682 | kk = k-1 |
---|
| 683 | ENDIF |
---|
| 684 | rifs = 0.5 * ( rif_wall(k,j,i,wall_index) + & |
---|
| 685 | a * rif_wall(k,j,i+1,1) + b * rif_wall(k,j+1,i,2) + & |
---|
| 686 | c1 * rif_wall(kk,j,i,3) + c2 * rif_wall(kk,j,i,4) & |
---|
| 687 | ) |
---|
| 688 | |
---|
| 689 | u_i = 0.5 * ( u(k,j,i) + u(k,j,i+1) ) |
---|
| 690 | v_i = 0.5 * ( v(k,j,i) + v(k,j+1,i) ) |
---|
| 691 | ws = 0.5 * ( w(k,j,i) + w(k-1,j,i) ) |
---|
| 692 | ! |
---|
| 693 | !-- (2) Compute wall-parallel absolute velocity vel_total and |
---|
| 694 | !-- interpolate appropriate velocity component vel_zp. |
---|
| 695 | vel_total = SQRT( ws**2 + (a+c1) * u_i**2 + (b+c2) * v_i**2 ) |
---|
| 696 | vel_zp = 0.5 * ( a * u_i + b * v_i + (c1+c2) * ws ) |
---|
| 697 | ! |
---|
| 698 | !-- (3) Compute wall friction velocity us_wall |
---|
| 699 | IF ( rifs >= 0.0 ) THEN |
---|
| 700 | |
---|
| 701 | ! |
---|
| 702 | !-- Stable stratification (and neutral) |
---|
| 703 | us_wall = kappa * vel_total / ( LOG( zp / z0(j,i) ) + & |
---|
| 704 | 5.0 * rifs * ( zp - z0(j,i) ) / zp & |
---|
| 705 | ) |
---|
| 706 | ELSE |
---|
| 707 | |
---|
| 708 | ! |
---|
| 709 | !-- Unstable stratification |
---|
| 710 | h1 = SQRT( SQRT( 1.0 - 16.0 * rifs ) ) |
---|
| 711 | h2 = SQRT( SQRT( 1.0 - 16.0 * rifs * z0(j,i) / zp ) ) |
---|
| 712 | |
---|
| 713 | us_wall = kappa * vel_total / ( & |
---|
| 714 | LOG( zp / z0(j,i) ) - & |
---|
| 715 | LOG( ( 1.0 + h1 )**2 * ( 1.0 + h1**2 ) / ( & |
---|
| 716 | ( 1.0 + h2 )**2 * ( 1.0 + h2**2 ) ) ) + & |
---|
| 717 | 2.0 * ( ATAN( h1 ) - ATAN( h2 ) ) & |
---|
| 718 | ) |
---|
| 719 | ENDIF |
---|
| 720 | |
---|
| 721 | ! |
---|
| 722 | !-- Skip step (4) of wall_fluxes, because here rifs is already |
---|
| 723 | !-- available from (1) |
---|
| 724 | ! |
---|
| 725 | !-- (5) Compute wall_flux (u'v', v'u', w'v', or w'u') |
---|
| 726 | |
---|
| 727 | IF ( rifs >= 0.0 ) THEN |
---|
| 728 | |
---|
| 729 | ! |
---|
| 730 | !-- Stable stratification (and neutral) |
---|
| 731 | wall_flux(k,j,i) = kappa * vel_zp / & |
---|
| 732 | ( LOG( zp/z0(j,i) ) + 5.0*rifs * ( zp-z0(j,i) ) / zp ) |
---|
| 733 | ELSE |
---|
| 734 | |
---|
| 735 | ! |
---|
| 736 | !-- Unstable stratification |
---|
| 737 | h1 = SQRT( SQRT( 1.0 - 16.0 * rifs ) ) |
---|
| 738 | h2 = SQRT( SQRT( 1.0 - 16.0 * rifs * z0(j,i) / zp ) ) |
---|
| 739 | |
---|
| 740 | wall_flux(k,j,i) = kappa * vel_zp / ( & |
---|
| 741 | LOG( zp / z0(j,i) ) - & |
---|
| 742 | LOG( ( 1.0 + h1 )**2 * ( 1.0 + h1**2 ) / ( & |
---|
| 743 | ( 1.0 + h2 )**2 * ( 1.0 + h2**2 ) ) ) + & |
---|
| 744 | 2.0 * ( ATAN( h1 ) - ATAN( h2 ) ) & |
---|
| 745 | ) |
---|
| 746 | ENDIF |
---|
| 747 | wall_flux(k,j,i) = - wall_flux(k,j,i) * us_wall |
---|
| 748 | |
---|
| 749 | ENDIF |
---|
| 750 | |
---|
| 751 | ENDDO |
---|
| 752 | ENDDO |
---|
| 753 | ENDDO |
---|
| 754 | !$acc end kernels |
---|
| 755 | |
---|
| 756 | END SUBROUTINE wall_fluxes_e_acc |
---|
| 757 | |
---|
| 758 | |
---|
| 759 | !------------------------------------------------------------------------------! |
---|
[56] | 760 | ! Call for grid point i,j |
---|
| 761 | !------------------------------------------------------------------------------! |
---|
| 762 | SUBROUTINE wall_fluxes_e_ij( i, j, nzb_w, nzt_w, wall_flux, a, b, c1, c2 ) |
---|
| 763 | |
---|
| 764 | USE arrays_3d |
---|
| 765 | USE control_parameters |
---|
| 766 | USE grid_variables |
---|
| 767 | USE indices |
---|
| 768 | USE statistics |
---|
| 769 | |
---|
| 770 | IMPLICIT NONE |
---|
| 771 | |
---|
| 772 | INTEGER :: i, j, k, kk, nzb_w, nzt_w, wall_index |
---|
[187] | 773 | REAL :: a, b, c1, c2, h1, h2, u_i, v_i, us_wall, vel_total, vel_zp, & |
---|
| 774 | ws, zp |
---|
[56] | 775 | |
---|
| 776 | REAL :: rifs |
---|
| 777 | |
---|
| 778 | REAL, DIMENSION(nzb:nzt+1) :: wall_flux |
---|
| 779 | |
---|
| 780 | |
---|
| 781 | zp = 0.5 * ( (a+c1) * dy + (b+c2) * dx ) |
---|
| 782 | wall_flux = 0.0 |
---|
| 783 | wall_index = NINT( a+ 2*b + 3*c1 + 4*c2 ) |
---|
| 784 | |
---|
| 785 | ! |
---|
[187] | 786 | !-- All subsequent variables are computed for scalar locations. |
---|
[56] | 787 | DO k = nzb_w, nzt_w |
---|
| 788 | |
---|
| 789 | ! |
---|
[187] | 790 | !-- (1) Compute rifs, u_i, v_i, and ws |
---|
[56] | 791 | IF ( k == nzb_w ) THEN |
---|
| 792 | kk = nzb_w |
---|
[53] | 793 | ELSE |
---|
[56] | 794 | kk = k-1 |
---|
| 795 | ENDIF |
---|
| 796 | rifs = 0.5 * ( rif_wall(k,j,i,wall_index) + & |
---|
| 797 | a * rif_wall(k,j,i+1,1) + b * rif_wall(k,j+1,i,2) + & |
---|
| 798 | c1 * rif_wall(kk,j,i,3) + c2 * rif_wall(kk,j,i,4) & |
---|
| 799 | ) |
---|
| 800 | |
---|
[187] | 801 | u_i = 0.5 * ( u(k,j,i) + u(k,j,i+1) ) |
---|
| 802 | v_i = 0.5 * ( v(k,j,i) + v(k,j+1,i) ) |
---|
| 803 | ws = 0.5 * ( w(k,j,i) + w(k-1,j,i) ) |
---|
[56] | 804 | ! |
---|
[187] | 805 | !-- (2) Compute wall-parallel absolute velocity vel_total and |
---|
| 806 | !-- interpolate appropriate velocity component vel_zp. |
---|
| 807 | vel_total = SQRT( ws**2 + (a+c1) * u_i**2 + (b+c2) * v_i**2 ) |
---|
| 808 | vel_zp = 0.5 * ( a * u_i + b * v_i + (c1+c2) * ws ) |
---|
| 809 | ! |
---|
| 810 | !-- (3) Compute wall friction velocity us_wall |
---|
| 811 | IF ( rifs >= 0.0 ) THEN |
---|
[56] | 812 | |
---|
| 813 | ! |
---|
[187] | 814 | !-- Stable stratification (and neutral) |
---|
| 815 | us_wall = kappa * vel_total / ( LOG( zp / z0(j,i) ) + & |
---|
| 816 | 5.0 * rifs * ( zp - z0(j,i) ) / zp & |
---|
| 817 | ) |
---|
| 818 | ELSE |
---|
| 819 | |
---|
| 820 | ! |
---|
| 821 | !-- Unstable stratification |
---|
| 822 | h1 = SQRT( SQRT( 1.0 - 16.0 * rifs ) ) |
---|
| 823 | h2 = SQRT( SQRT( 1.0 - 16.0 * rifs * z0(j,i) / zp ) ) |
---|
| 824 | |
---|
| 825 | us_wall = kappa * vel_total / ( & |
---|
| 826 | LOG( zp / z0(j,i) ) - & |
---|
| 827 | LOG( ( 1.0 + h1 )**2 * ( 1.0 + h1**2 ) / ( & |
---|
| 828 | ( 1.0 + h2 )**2 * ( 1.0 + h2**2 ) ) ) + & |
---|
| 829 | 2.0 * ( ATAN( h1 ) - ATAN( h2 ) ) & |
---|
| 830 | ) |
---|
| 831 | ENDIF |
---|
| 832 | |
---|
| 833 | ! |
---|
| 834 | !-- Skip step (4) of wall_fluxes, because here rifs is already |
---|
| 835 | !-- available from (1) |
---|
| 836 | ! |
---|
[56] | 837 | !-- (5) Compute wall_flux (u'v', v'u', w'v', or w'u') |
---|
[187] | 838 | !-- First interpolate the velocity (this is different from |
---|
| 839 | !-- subroutine wall_fluxes because fluxes in subroutine |
---|
| 840 | !-- wall_fluxes_e are defined at scalar locations). |
---|
[56] | 841 | vel_zp = 0.5 * ( a * ( u(k,j,i) + u(k,j,i+1) ) + & |
---|
| 842 | b * ( v(k,j,i) + v(k,j+1,i) ) + & |
---|
| 843 | (c1+c2) * ( w(k,j,i) + w(k-1,j,i) ) & |
---|
| 844 | ) |
---|
| 845 | |
---|
| 846 | IF ( rifs >= 0.0 ) THEN |
---|
| 847 | |
---|
| 848 | ! |
---|
| 849 | !-- Stable stratification (and neutral) |
---|
| 850 | wall_flux(k) = kappa * vel_zp / & |
---|
| 851 | ( LOG( zp/z0(j,i) ) + 5.0*rifs * ( zp-z0(j,i) ) / zp ) |
---|
| 852 | ELSE |
---|
| 853 | |
---|
| 854 | ! |
---|
| 855 | !-- Unstable stratification |
---|
[187] | 856 | h1 = SQRT( SQRT( 1.0 - 16.0 * rifs ) ) |
---|
| 857 | h2 = SQRT( SQRT( 1.0 - 16.0 * rifs * z0(j,i) / zp ) ) |
---|
[56] | 858 | |
---|
[187] | 859 | wall_flux(k) = kappa * vel_zp / ( & |
---|
| 860 | LOG( zp / z0(j,i) ) - & |
---|
| 861 | LOG( ( 1.0 + h1 )**2 * ( 1.0 + h1**2 ) / ( & |
---|
| 862 | ( 1.0 + h2 )**2 * ( 1.0 + h2**2 ) ) ) + & |
---|
| 863 | 2.0 * ( ATAN( h1 ) - ATAN( h2 ) ) & |
---|
| 864 | ) |
---|
[53] | 865 | ENDIF |
---|
[187] | 866 | wall_flux(k) = - wall_flux(k) * us_wall |
---|
[53] | 867 | |
---|
[56] | 868 | ENDDO |
---|
[53] | 869 | |
---|
[56] | 870 | END SUBROUTINE wall_fluxes_e_ij |
---|
| 871 | |
---|
| 872 | END MODULE wall_fluxes_mod |
---|