[56] | 1 | MODULE wall_fluxes_mod |
---|
[1036] | 2 | |
---|
| 3 | !--------------------------------------------------------------------------------! |
---|
| 4 | ! This file is part of PALM. |
---|
| 5 | ! |
---|
| 6 | ! PALM is free software: you can redistribute it and/or modify it under the terms |
---|
| 7 | ! of the GNU General Public License as published by the Free Software Foundation, |
---|
| 8 | ! either version 3 of the License, or (at your option) any later version. |
---|
| 9 | ! |
---|
| 10 | ! PALM is distributed in the hope that it will be useful, but WITHOUT ANY |
---|
| 11 | ! WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR |
---|
| 12 | ! A PARTICULAR PURPOSE. See the GNU General Public License for more details. |
---|
| 13 | ! |
---|
| 14 | ! You should have received a copy of the GNU General Public License along with |
---|
| 15 | ! PALM. If not, see <http://www.gnu.org/licenses/>. |
---|
| 16 | ! |
---|
| 17 | ! Copyright 1997-2012 Leibniz University Hannover |
---|
| 18 | !--------------------------------------------------------------------------------! |
---|
| 19 | ! |
---|
[484] | 20 | ! Current revisions: |
---|
[52] | 21 | ! ----------------- |
---|
[198] | 22 | ! |
---|
[1017] | 23 | ! |
---|
[198] | 24 | ! Former revisions: |
---|
| 25 | ! ----------------- |
---|
| 26 | ! $Id: wall_fluxes.f90 1037 2012-10-22 14:10:22Z raasch $ |
---|
| 27 | ! |
---|
[1037] | 28 | ! 1036 2012-10-22 13:43:42Z raasch |
---|
| 29 | ! code put under GPL (PALM 3.9) |
---|
| 30 | ! |
---|
[1017] | 31 | ! 1015 2012-09-27 09:23:24Z raasch |
---|
| 32 | ! accelerator version (*_acc) added |
---|
| 33 | ! |
---|
[198] | 34 | ! 187 2008-08-06 16:25:09Z letzel |
---|
| 35 | ! Bugfix: Modification of the evaluation of the vertical turbulent momentum |
---|
| 36 | ! fluxes u'w' and v'w (see prandtl_fluxes), this requires the calculation of |
---|
| 37 | ! us_wall (and vel_total, u_i, v_i, ws) also in wall_fluxes_e. |
---|
| 38 | ! Bugfix: change definition of us_wall from 1D to 2D |
---|
[187] | 39 | ! Bugfix: storage of rifs to rifs_wall in wall_fluxes_e removed |
---|
| 40 | ! Change: add 'minus' sign to fluxes produced by subroutine wall_fluxes_e for |
---|
[198] | 41 | ! consistency with subroutine wall_fluxes |
---|
[187] | 42 | ! Change: Modification of the integrated version of the profile function for |
---|
[198] | 43 | ! momentum for unstable stratification |
---|
[52] | 44 | ! |
---|
| 45 | ! Initial version (2007/03/07) |
---|
| 46 | ! |
---|
| 47 | ! Description: |
---|
| 48 | ! ------------ |
---|
| 49 | ! Calculates momentum fluxes at vertical walls assuming Monin-Obukhov |
---|
| 50 | ! similarity. |
---|
| 51 | ! Indices: usvs a=1, vsus b=1, wsvs c1=1, wsus c2=1 (other=0). |
---|
[56] | 52 | ! The all-gridpoint version of wall_fluxes_e is not used so far, because |
---|
| 53 | ! it gives slightly different results from the ij-version for some unknown |
---|
| 54 | ! reason. |
---|
[52] | 55 | !------------------------------------------------------------------------------! |
---|
[56] | 56 | PRIVATE |
---|
[1015] | 57 | PUBLIC wall_fluxes, wall_fluxes_acc, wall_fluxes_e, wall_fluxes_e_acc |
---|
[56] | 58 | |
---|
| 59 | INTERFACE wall_fluxes |
---|
| 60 | MODULE PROCEDURE wall_fluxes |
---|
| 61 | MODULE PROCEDURE wall_fluxes_ij |
---|
| 62 | END INTERFACE wall_fluxes |
---|
| 63 | |
---|
[1015] | 64 | INTERFACE wall_fluxes_acc |
---|
| 65 | MODULE PROCEDURE wall_fluxes_acc |
---|
| 66 | END INTERFACE wall_fluxes_acc |
---|
| 67 | |
---|
[56] | 68 | INTERFACE wall_fluxes_e |
---|
| 69 | MODULE PROCEDURE wall_fluxes_e |
---|
| 70 | MODULE PROCEDURE wall_fluxes_e_ij |
---|
| 71 | END INTERFACE wall_fluxes_e |
---|
| 72 | |
---|
[1015] | 73 | INTERFACE wall_fluxes_e_acc |
---|
| 74 | MODULE PROCEDURE wall_fluxes_e_acc |
---|
| 75 | END INTERFACE wall_fluxes_e_acc |
---|
| 76 | |
---|
[56] | 77 | CONTAINS |
---|
[52] | 78 | |
---|
[56] | 79 | !------------------------------------------------------------------------------! |
---|
| 80 | ! Call for all grid points |
---|
| 81 | !------------------------------------------------------------------------------! |
---|
[75] | 82 | SUBROUTINE wall_fluxes( wall_flux, a, b, c1, c2, nzb_uvw_inner, & |
---|
[56] | 83 | nzb_uvw_outer, wall ) |
---|
[52] | 84 | |
---|
[56] | 85 | USE arrays_3d |
---|
| 86 | USE control_parameters |
---|
| 87 | USE grid_variables |
---|
| 88 | USE indices |
---|
| 89 | USE statistics |
---|
[52] | 90 | |
---|
[56] | 91 | IMPLICIT NONE |
---|
[52] | 92 | |
---|
[75] | 93 | INTEGER :: i, j, k, wall_index |
---|
[52] | 94 | |
---|
[667] | 95 | INTEGER, DIMENSION(nysg:nyng,nxlg:nxrg) :: nzb_uvw_inner, & |
---|
[56] | 96 | nzb_uvw_outer |
---|
| 97 | REAL :: a, b, c1, c2, h1, h2, zp |
---|
| 98 | REAL :: pts, pt_i, rifs, u_i, v_i, us_wall, vel_total, ws, wspts |
---|
[52] | 99 | |
---|
[667] | 100 | REAL, DIMENSION(nysg:nyng,nxlg:nxrg) :: wall |
---|
[75] | 101 | REAL, DIMENSION(nzb:nzt+1,nys:nyn,nxl:nxr) :: wall_flux |
---|
[52] | 102 | |
---|
| 103 | |
---|
[56] | 104 | zp = 0.5 * ( (a+c1) * dy + (b+c2) * dx ) |
---|
| 105 | wall_flux = 0.0 |
---|
| 106 | wall_index = NINT( a+ 2*b + 3*c1 + 4*c2 ) |
---|
| 107 | |
---|
[75] | 108 | DO i = nxl, nxr |
---|
| 109 | DO j = nys, nyn |
---|
[56] | 110 | |
---|
| 111 | IF ( wall(j,i) /= 0.0 ) THEN |
---|
[52] | 112 | ! |
---|
[56] | 113 | !-- All subsequent variables are computed for the respective |
---|
[187] | 114 | !-- location where the respective flux is defined. |
---|
[56] | 115 | DO k = nzb_uvw_inner(j,i)+1, nzb_uvw_outer(j,i) |
---|
[53] | 116 | |
---|
[52] | 117 | ! |
---|
[56] | 118 | !-- (1) Compute rifs, u_i, v_i, ws, pt' and w'pt' |
---|
| 119 | rifs = rif_wall(k,j,i,wall_index) |
---|
[53] | 120 | |
---|
[56] | 121 | u_i = a * u(k,j,i) + c1 * 0.25 * & |
---|
| 122 | ( u(k+1,j,i+1) + u(k+1,j,i) + u(k,j,i+1) + u(k,j,i) ) |
---|
[53] | 123 | |
---|
[56] | 124 | v_i = b * v(k,j,i) + c2 * 0.25 * & |
---|
| 125 | ( v(k+1,j+1,i) + v(k+1,j,i) + v(k,j+1,i) + v(k,j,i) ) |
---|
[53] | 126 | |
---|
[56] | 127 | ws = ( c1 + c2 ) * w(k,j,i) + 0.25 * ( & |
---|
| 128 | a * ( w(k-1,j,i-1) + w(k-1,j,i) + w(k,j,i-1) + w(k,j,i) ) & |
---|
| 129 | + b * ( w(k-1,j-1,i) + w(k-1,j,i) + w(k,j-1,i) + w(k,j,i) ) & |
---|
| 130 | ) |
---|
| 131 | pt_i = 0.5 * ( pt(k,j,i) + a * pt(k,j,i-1) + & |
---|
| 132 | b * pt(k,j-1,i) + ( c1 + c2 ) * pt(k+1,j,i) ) |
---|
[53] | 133 | |
---|
[56] | 134 | pts = pt_i - hom(k,1,4,0) |
---|
| 135 | wspts = ws * pts |
---|
[53] | 136 | |
---|
[52] | 137 | ! |
---|
[56] | 138 | !-- (2) Compute wall-parallel absolute velocity vel_total |
---|
| 139 | vel_total = SQRT( ws**2 + (a+c1) * u_i**2 + (b+c2) * v_i**2 ) |
---|
[53] | 140 | |
---|
[52] | 141 | ! |
---|
[56] | 142 | !-- (3) Compute wall friction velocity us_wall |
---|
| 143 | IF ( rifs >= 0.0 ) THEN |
---|
[53] | 144 | |
---|
[52] | 145 | ! |
---|
[56] | 146 | !-- Stable stratification (and neutral) |
---|
| 147 | us_wall = kappa * vel_total / ( LOG( zp / z0(j,i) ) + & |
---|
| 148 | 5.0 * rifs * ( zp - z0(j,i) ) / zp & |
---|
| 149 | ) |
---|
| 150 | ELSE |
---|
[53] | 151 | |
---|
[52] | 152 | ! |
---|
[56] | 153 | !-- Unstable stratification |
---|
[187] | 154 | h1 = SQRT( SQRT( 1.0 - 16.0 * rifs ) ) |
---|
| 155 | h2 = SQRT( SQRT( 1.0 - 16.0 * rifs * z0(j,i) / zp ) ) |
---|
[53] | 156 | |
---|
[187] | 157 | us_wall = kappa * vel_total / ( & |
---|
| 158 | LOG( zp / z0(j,i) ) - & |
---|
| 159 | LOG( ( 1.0 + h1 )**2 * ( 1.0 + h1**2 ) / ( & |
---|
| 160 | ( 1.0 + h2 )**2 * ( 1.0 + h2**2 ) ) ) + & |
---|
| 161 | 2.0 * ( ATAN( h1 ) - ATAN( h2 ) ) & |
---|
| 162 | ) |
---|
[56] | 163 | ENDIF |
---|
[53] | 164 | |
---|
[52] | 165 | ! |
---|
[56] | 166 | !-- (4) Compute zp/L (corresponds to neutral Richardson flux |
---|
| 167 | !-- number rifs) |
---|
| 168 | rifs = -1.0 * zp * kappa * g * wspts / ( pt_i * & |
---|
| 169 | ( us_wall**3 + 1E-30 ) ) |
---|
[53] | 170 | |
---|
[52] | 171 | ! |
---|
[56] | 172 | !-- Limit the value range of the Richardson numbers. |
---|
| 173 | !-- This is necessary for very small velocities (u,w --> 0), |
---|
| 174 | !-- because the absolute value of rif can then become very |
---|
| 175 | !-- large, which in consequence would result in very large |
---|
| 176 | !-- shear stresses and very small momentum fluxes (both are |
---|
| 177 | !-- generally unrealistic). |
---|
| 178 | IF ( rifs < rif_min ) rifs = rif_min |
---|
| 179 | IF ( rifs > rif_max ) rifs = rif_max |
---|
[53] | 180 | |
---|
[52] | 181 | ! |
---|
[56] | 182 | !-- (5) Compute wall_flux (u'v', v'u', w'v', or w'u') |
---|
| 183 | IF ( rifs >= 0.0 ) THEN |
---|
[53] | 184 | |
---|
[52] | 185 | ! |
---|
[56] | 186 | !-- Stable stratification (and neutral) |
---|
| 187 | wall_flux(k,j,i) = kappa * & |
---|
| 188 | ( a*u(k,j,i) + b*v(k,j,i) + (c1+c2)*w(k,j,i) ) / & |
---|
| 189 | ( LOG( zp / z0(j,i) ) + & |
---|
| 190 | 5.0 * rifs * ( zp - z0(j,i) ) / zp & |
---|
| 191 | ) |
---|
| 192 | ELSE |
---|
[53] | 193 | |
---|
[52] | 194 | ! |
---|
[56] | 195 | !-- Unstable stratification |
---|
[187] | 196 | h1 = SQRT( SQRT( 1.0 - 16.0 * rifs ) ) |
---|
| 197 | h2 = SQRT( SQRT( 1.0 - 16.0 * rifs * z0(j,i) / zp ) ) |
---|
[53] | 198 | |
---|
[187] | 199 | wall_flux(k,j,i) = kappa * & |
---|
| 200 | ( a*u(k,j,i) + b*v(k,j,i) + (c1+c2)*w(k,j,i) ) / ( & |
---|
| 201 | LOG( zp / z0(j,i) ) - & |
---|
| 202 | LOG( ( 1.0 + h1 )**2 * ( 1.0 + h1**2 ) / ( & |
---|
| 203 | ( 1.0 + h2 )**2 * ( 1.0 + h2**2 ) ) ) + & |
---|
| 204 | 2.0 * ( ATAN( h1 ) - ATAN( h2 ) ) & |
---|
| 205 | ) |
---|
[56] | 206 | ENDIF |
---|
[187] | 207 | wall_flux(k,j,i) = -wall_flux(k,j,i) * us_wall |
---|
[56] | 208 | |
---|
| 209 | ! |
---|
| 210 | !-- store rifs for next time step |
---|
| 211 | rif_wall(k,j,i,wall_index) = rifs |
---|
| 212 | |
---|
| 213 | ENDDO |
---|
| 214 | |
---|
| 215 | ENDIF |
---|
| 216 | |
---|
| 217 | ENDDO |
---|
| 218 | ENDDO |
---|
| 219 | |
---|
| 220 | END SUBROUTINE wall_fluxes |
---|
| 221 | |
---|
| 222 | |
---|
[1015] | 223 | !------------------------------------------------------------------------------! |
---|
| 224 | ! Call for all grid points - accelerator version |
---|
| 225 | !------------------------------------------------------------------------------! |
---|
| 226 | SUBROUTINE wall_fluxes_acc( wall_flux, a, b, c1, c2, nzb_uvw_inner, & |
---|
| 227 | nzb_uvw_outer, wall ) |
---|
[56] | 228 | |
---|
[1015] | 229 | USE arrays_3d |
---|
| 230 | USE control_parameters |
---|
| 231 | USE grid_variables |
---|
| 232 | USE indices |
---|
| 233 | USE statistics |
---|
| 234 | |
---|
| 235 | IMPLICIT NONE |
---|
| 236 | |
---|
| 237 | INTEGER :: i, j, k, max_outer, min_inner, wall_index |
---|
| 238 | |
---|
| 239 | INTEGER, DIMENSION(nysg:nyng,nxlg:nxrg) :: nzb_uvw_inner, & |
---|
| 240 | nzb_uvw_outer |
---|
| 241 | REAL :: a, b, c1, c2, h1, h2, zp |
---|
| 242 | REAL :: pts, pt_i, rifs, u_i, v_i, us_wall, vel_total, ws, wspts |
---|
| 243 | |
---|
| 244 | REAL, DIMENSION(nysg:nyng,nxlg:nxrg) :: wall |
---|
| 245 | REAL, DIMENSION(nzb:nzt+1,nys:nyn,nxl:nxr) :: wall_flux |
---|
| 246 | |
---|
| 247 | |
---|
| 248 | zp = 0.5 * ( (a+c1) * dy + (b+c2) * dx ) |
---|
| 249 | wall_flux = 0.0 |
---|
| 250 | wall_index = NINT( a+ 2*b + 3*c1 + 4*c2 ) |
---|
| 251 | |
---|
| 252 | min_inner = MINVAL( nzb_uvw_inner(nys:nyn,nxl:nxr) ) + 1 |
---|
| 253 | max_outer = MINVAL( nzb_uvw_outer(nys:nyn,nxl:nxr) ) |
---|
| 254 | |
---|
| 255 | !$acc kernels present( hom, nzb_uvw_inner, nzb_uvw_outer, pt, rif_wall ) & |
---|
| 256 | !$acc present( u, v, w, wall, wall_flux, z0 ) |
---|
| 257 | !$acc loop |
---|
| 258 | DO i = nxl, nxr |
---|
| 259 | DO j = nys, nyn |
---|
| 260 | !$acc loop vector( 32 ) |
---|
| 261 | DO k = min_inner, max_outer |
---|
| 262 | ! |
---|
| 263 | !-- All subsequent variables are computed for the respective |
---|
| 264 | !-- location where the respective flux is defined. |
---|
| 265 | IF ( k >= nzb_uvw_inner(j,i)+1 .AND. & |
---|
| 266 | k <= nzb_uvw_outer(j,i) .AND. wall(j,i) /= 0.0 ) THEN |
---|
| 267 | ! |
---|
| 268 | !-- (1) Compute rifs, u_i, v_i, ws, pt' and w'pt' |
---|
| 269 | rifs = rif_wall(k,j,i,wall_index) |
---|
| 270 | |
---|
| 271 | u_i = a * u(k,j,i) + c1 * 0.25 * & |
---|
| 272 | ( u(k+1,j,i+1) + u(k+1,j,i) + u(k,j,i+1) + u(k,j,i) ) |
---|
| 273 | |
---|
| 274 | v_i = b * v(k,j,i) + c2 * 0.25 * & |
---|
| 275 | ( v(k+1,j+1,i) + v(k+1,j,i) + v(k,j+1,i) + v(k,j,i) ) |
---|
| 276 | |
---|
| 277 | ws = ( c1 + c2 ) * w(k,j,i) + 0.25 * ( & |
---|
| 278 | a * ( w(k-1,j,i-1) + w(k-1,j,i) + w(k,j,i-1) + w(k,j,i) ) & |
---|
| 279 | + b * ( w(k-1,j-1,i) + w(k-1,j,i) + w(k,j-1,i) + w(k,j,i) ) & |
---|
| 280 | ) |
---|
| 281 | pt_i = 0.5 * ( pt(k,j,i) + a * pt(k,j,i-1) + & |
---|
| 282 | b * pt(k,j-1,i) + ( c1 + c2 ) * pt(k+1,j,i) ) |
---|
| 283 | |
---|
| 284 | pts = pt_i - hom(k,1,4,0) |
---|
| 285 | wspts = ws * pts |
---|
| 286 | |
---|
| 287 | ! |
---|
| 288 | !-- (2) Compute wall-parallel absolute velocity vel_total |
---|
| 289 | vel_total = SQRT( ws**2 + (a+c1) * u_i**2 + (b+c2) * v_i**2 ) |
---|
| 290 | |
---|
| 291 | ! |
---|
| 292 | !-- (3) Compute wall friction velocity us_wall |
---|
| 293 | IF ( rifs >= 0.0 ) THEN |
---|
| 294 | |
---|
| 295 | ! |
---|
| 296 | !-- Stable stratification (and neutral) |
---|
| 297 | us_wall = kappa * vel_total / ( LOG( zp / z0(j,i) ) + & |
---|
| 298 | 5.0 * rifs * ( zp - z0(j,i) ) / zp & |
---|
| 299 | ) |
---|
| 300 | ELSE |
---|
| 301 | |
---|
| 302 | ! |
---|
| 303 | !-- Unstable stratification |
---|
| 304 | h1 = SQRT( SQRT( 1.0 - 16.0 * rifs ) ) |
---|
| 305 | h2 = SQRT( SQRT( 1.0 - 16.0 * rifs * z0(j,i) / zp ) ) |
---|
| 306 | |
---|
| 307 | us_wall = kappa * vel_total / ( & |
---|
| 308 | LOG( zp / z0(j,i) ) - & |
---|
| 309 | LOG( ( 1.0 + h1 )**2 * ( 1.0 + h1**2 ) / ( & |
---|
| 310 | ( 1.0 + h2 )**2 * ( 1.0 + h2**2 ) ) ) + & |
---|
| 311 | 2.0 * ( ATAN( h1 ) - ATAN( h2 ) ) & |
---|
| 312 | ) |
---|
| 313 | ENDIF |
---|
| 314 | |
---|
| 315 | ! |
---|
| 316 | !-- (4) Compute zp/L (corresponds to neutral Richardson flux |
---|
| 317 | !-- number rifs) |
---|
| 318 | rifs = -1.0 * zp * kappa * g * wspts / ( pt_i * & |
---|
| 319 | ( us_wall**3 + 1E-30 ) ) |
---|
| 320 | |
---|
| 321 | ! |
---|
| 322 | !-- Limit the value range of the Richardson numbers. |
---|
| 323 | !-- This is necessary for very small velocities (u,w --> 0), |
---|
| 324 | !-- because the absolute value of rif can then become very |
---|
| 325 | !-- large, which in consequence would result in very large |
---|
| 326 | !-- shear stresses and very small momentum fluxes (both are |
---|
| 327 | !-- generally unrealistic). |
---|
| 328 | IF ( rifs < rif_min ) rifs = rif_min |
---|
| 329 | IF ( rifs > rif_max ) rifs = rif_max |
---|
| 330 | |
---|
| 331 | ! |
---|
| 332 | !-- (5) Compute wall_flux (u'v', v'u', w'v', or w'u') |
---|
| 333 | IF ( rifs >= 0.0 ) THEN |
---|
| 334 | |
---|
| 335 | ! |
---|
| 336 | !-- Stable stratification (and neutral) |
---|
| 337 | wall_flux(k,j,i) = kappa * & |
---|
| 338 | ( a*u(k,j,i) + b*v(k,j,i) + (c1+c2)*w(k,j,i) ) / & |
---|
| 339 | ( LOG( zp / z0(j,i) ) + & |
---|
| 340 | 5.0 * rifs * ( zp - z0(j,i) ) / zp & |
---|
| 341 | ) |
---|
| 342 | ELSE |
---|
| 343 | |
---|
| 344 | ! |
---|
| 345 | !-- Unstable stratification |
---|
| 346 | h1 = SQRT( SQRT( 1.0 - 16.0 * rifs ) ) |
---|
| 347 | h2 = SQRT( SQRT( 1.0 - 16.0 * rifs * z0(j,i) / zp ) ) |
---|
| 348 | |
---|
| 349 | wall_flux(k,j,i) = kappa * & |
---|
| 350 | ( a*u(k,j,i) + b*v(k,j,i) + (c1+c2)*w(k,j,i) ) / ( & |
---|
| 351 | LOG( zp / z0(j,i) ) - & |
---|
| 352 | LOG( ( 1.0 + h1 )**2 * ( 1.0 + h1**2 ) / ( & |
---|
| 353 | ( 1.0 + h2 )**2 * ( 1.0 + h2**2 ) ) ) + & |
---|
| 354 | 2.0 * ( ATAN( h1 ) - ATAN( h2 ) ) & |
---|
| 355 | ) |
---|
| 356 | ENDIF |
---|
| 357 | wall_flux(k,j,i) = -wall_flux(k,j,i) * us_wall |
---|
| 358 | |
---|
| 359 | ! |
---|
| 360 | !-- store rifs for next time step |
---|
| 361 | rif_wall(k,j,i,wall_index) = rifs |
---|
| 362 | |
---|
| 363 | ENDIF |
---|
| 364 | |
---|
| 365 | ENDDO |
---|
| 366 | ENDDO |
---|
| 367 | ENDDO |
---|
| 368 | !$acc end kernels |
---|
| 369 | |
---|
| 370 | END SUBROUTINE wall_fluxes_acc |
---|
| 371 | |
---|
| 372 | |
---|
[56] | 373 | !------------------------------------------------------------------------------! |
---|
| 374 | ! Call for all grid point i,j |
---|
| 375 | !------------------------------------------------------------------------------! |
---|
| 376 | SUBROUTINE wall_fluxes_ij( i, j, nzb_w, nzt_w, wall_flux, a, b, c1, c2 ) |
---|
| 377 | |
---|
| 378 | USE arrays_3d |
---|
| 379 | USE control_parameters |
---|
| 380 | USE grid_variables |
---|
| 381 | USE indices |
---|
| 382 | USE statistics |
---|
| 383 | |
---|
| 384 | IMPLICIT NONE |
---|
| 385 | |
---|
| 386 | INTEGER :: i, j, k, nzb_w, nzt_w, wall_index |
---|
| 387 | REAL :: a, b, c1, c2, h1, h2, zp |
---|
| 388 | |
---|
| 389 | REAL :: pts, pt_i, rifs, u_i, v_i, us_wall, vel_total, ws, wspts |
---|
| 390 | |
---|
| 391 | REAL, DIMENSION(nzb:nzt+1) :: wall_flux |
---|
| 392 | |
---|
| 393 | |
---|
| 394 | zp = 0.5 * ( (a+c1) * dy + (b+c2) * dx ) |
---|
| 395 | wall_flux = 0.0 |
---|
| 396 | wall_index = NINT( a+ 2*b + 3*c1 + 4*c2 ) |
---|
| 397 | |
---|
| 398 | ! |
---|
| 399 | !-- All subsequent variables are computed for the respective location where |
---|
[187] | 400 | !-- the respective flux is defined. |
---|
[56] | 401 | DO k = nzb_w, nzt_w |
---|
| 402 | |
---|
| 403 | ! |
---|
| 404 | !-- (1) Compute rifs, u_i, v_i, ws, pt' and w'pt' |
---|
| 405 | rifs = rif_wall(k,j,i,wall_index) |
---|
| 406 | |
---|
| 407 | u_i = a * u(k,j,i) + c1 * 0.25 * & |
---|
| 408 | ( u(k+1,j,i+1) + u(k+1,j,i) + u(k,j,i+1) + u(k,j,i) ) |
---|
| 409 | |
---|
| 410 | v_i = b * v(k,j,i) + c2 * 0.25 * & |
---|
| 411 | ( v(k+1,j+1,i) + v(k+1,j,i) + v(k,j+1,i) + v(k,j,i) ) |
---|
| 412 | |
---|
| 413 | ws = ( c1 + c2 ) * w(k,j,i) + 0.25 * ( & |
---|
| 414 | a * ( w(k-1,j,i-1) + w(k-1,j,i) + w(k,j,i-1) + w(k,j,i) ) & |
---|
| 415 | + b * ( w(k-1,j-1,i) + w(k-1,j,i) + w(k,j-1,i) + w(k,j,i) ) & |
---|
| 416 | ) |
---|
| 417 | pt_i = 0.5 * ( pt(k,j,i) + a * pt(k,j,i-1) + b * pt(k,j-1,i) & |
---|
| 418 | + ( c1 + c2 ) * pt(k+1,j,i) ) |
---|
| 419 | |
---|
| 420 | pts = pt_i - hom(k,1,4,0) |
---|
| 421 | wspts = ws * pts |
---|
| 422 | |
---|
| 423 | ! |
---|
| 424 | !-- (2) Compute wall-parallel absolute velocity vel_total |
---|
| 425 | vel_total = SQRT( ws**2 + ( a+c1 ) * u_i**2 + ( b+c2 ) * v_i**2 ) |
---|
| 426 | |
---|
| 427 | ! |
---|
| 428 | !-- (3) Compute wall friction velocity us_wall |
---|
| 429 | IF ( rifs >= 0.0 ) THEN |
---|
| 430 | |
---|
| 431 | ! |
---|
| 432 | !-- Stable stratification (and neutral) |
---|
| 433 | us_wall = kappa * vel_total / ( LOG( zp / z0(j,i) ) + & |
---|
| 434 | 5.0 * rifs * ( zp - z0(j,i) ) / zp & |
---|
| 435 | ) |
---|
| 436 | ELSE |
---|
| 437 | |
---|
| 438 | ! |
---|
| 439 | !-- Unstable stratification |
---|
[187] | 440 | h1 = SQRT( SQRT( 1.0 - 16.0 * rifs ) ) |
---|
| 441 | h2 = SQRT( SQRT( 1.0 - 16.0 * rifs * z0(j,i) / zp ) ) |
---|
[56] | 442 | |
---|
[187] | 443 | us_wall = kappa * vel_total / ( & |
---|
| 444 | LOG( zp / z0(j,i) ) - & |
---|
| 445 | LOG( ( 1.0 + h1 )**2 * ( 1.0 + h1**2 ) / ( & |
---|
| 446 | ( 1.0 + h2 )**2 * ( 1.0 + h2**2 ) ) ) + & |
---|
| 447 | 2.0 * ( ATAN( h1 ) - ATAN( h2 ) ) & |
---|
| 448 | ) |
---|
[56] | 449 | ENDIF |
---|
| 450 | |
---|
| 451 | ! |
---|
| 452 | !-- (4) Compute zp/L (corresponds to neutral Richardson flux number |
---|
| 453 | !-- rifs) |
---|
| 454 | rifs = -1.0 * zp * kappa * g * wspts / ( pt_i * (us_wall**3 + 1E-30) ) |
---|
| 455 | |
---|
| 456 | ! |
---|
| 457 | !-- Limit the value range of the Richardson numbers. |
---|
| 458 | !-- This is necessary for very small velocities (u,w --> 0), because |
---|
| 459 | !-- the absolute value of rif can then become very large, which in |
---|
| 460 | !-- consequence would result in very large shear stresses and very |
---|
| 461 | !-- small momentum fluxes (both are generally unrealistic). |
---|
| 462 | IF ( rifs < rif_min ) rifs = rif_min |
---|
| 463 | IF ( rifs > rif_max ) rifs = rif_max |
---|
| 464 | |
---|
| 465 | ! |
---|
| 466 | !-- (5) Compute wall_flux (u'v', v'u', w'v', or w'u') |
---|
| 467 | IF ( rifs >= 0.0 ) THEN |
---|
| 468 | |
---|
| 469 | ! |
---|
| 470 | !-- Stable stratification (and neutral) |
---|
[53] | 471 | wall_flux(k) = kappa * & |
---|
| 472 | ( a*u(k,j,i) + b*v(k,j,i) + (c1+c2)*w(k,j,i) ) / & |
---|
[56] | 473 | ( LOG( zp / z0(j,i) ) + & |
---|
| 474 | 5.0 * rifs * ( zp - z0(j,i) ) / zp & |
---|
[53] | 475 | ) |
---|
[52] | 476 | ELSE |
---|
[53] | 477 | |
---|
[56] | 478 | ! |
---|
| 479 | !-- Unstable stratification |
---|
[187] | 480 | h1 = SQRT( SQRT( 1.0 - 16.0 * rifs ) ) |
---|
| 481 | h2 = SQRT( SQRT( 1.0 - 16.0 * rifs * z0(j,i) / zp ) ) |
---|
[52] | 482 | |
---|
[187] | 483 | wall_flux(k) = kappa * & |
---|
| 484 | ( a*u(k,j,i) + b*v(k,j,i) + (c1+c2)*w(k,j,i) ) / ( & |
---|
| 485 | LOG( zp / z0(j,i) ) - & |
---|
| 486 | LOG( ( 1.0 + h1 )**2 * ( 1.0 + h1**2 ) / ( & |
---|
| 487 | ( 1.0 + h2 )**2 * ( 1.0 + h2**2 ) ) ) + & |
---|
| 488 | 2.0 * ( ATAN( h1 ) - ATAN( h2 ) ) & |
---|
| 489 | ) |
---|
[56] | 490 | ENDIF |
---|
[187] | 491 | wall_flux(k) = -wall_flux(k) * us_wall |
---|
[53] | 492 | |
---|
[56] | 493 | ! |
---|
| 494 | !-- store rifs for next time step |
---|
| 495 | rif_wall(k,j,i,wall_index) = rifs |
---|
[53] | 496 | |
---|
[56] | 497 | ENDDO |
---|
[53] | 498 | |
---|
[56] | 499 | END SUBROUTINE wall_fluxes_ij |
---|
[53] | 500 | |
---|
[56] | 501 | |
---|
| 502 | |
---|
[53] | 503 | !------------------------------------------------------------------------------! |
---|
[56] | 504 | ! Call for all grid points |
---|
| 505 | !------------------------------------------------------------------------------! |
---|
| 506 | SUBROUTINE wall_fluxes_e( wall_flux, a, b, c1, c2, wall ) |
---|
| 507 | |
---|
| 508 | !------------------------------------------------------------------------------! |
---|
[53] | 509 | ! Description: |
---|
| 510 | ! ------------ |
---|
| 511 | ! Calculates momentum fluxes at vertical walls for routine production_e |
---|
| 512 | ! assuming Monin-Obukhov similarity. |
---|
| 513 | ! Indices: usvs a=1, vsus b=1, wsvs c1=1, wsus c2=1 (other=0). |
---|
| 514 | !------------------------------------------------------------------------------! |
---|
| 515 | |
---|
[56] | 516 | USE arrays_3d |
---|
| 517 | USE control_parameters |
---|
| 518 | USE grid_variables |
---|
| 519 | USE indices |
---|
| 520 | USE statistics |
---|
[53] | 521 | |
---|
[56] | 522 | IMPLICIT NONE |
---|
[53] | 523 | |
---|
[56] | 524 | INTEGER :: i, j, k, kk, wall_index |
---|
[187] | 525 | REAL :: a, b, c1, c2, h1, h2, u_i, v_i, us_wall, vel_total, vel_zp, & |
---|
| 526 | ws, zp |
---|
[53] | 527 | |
---|
[56] | 528 | REAL :: rifs |
---|
[53] | 529 | |
---|
[667] | 530 | REAL, DIMENSION(nysg:nyng,nxlg:nxrg) :: wall |
---|
[56] | 531 | REAL, DIMENSION(nzb:nzt+1,nys:nyn,nxl:nxr) :: wall_flux |
---|
[53] | 532 | |
---|
| 533 | |
---|
[56] | 534 | zp = 0.5 * ( (a+c1) * dy + (b+c2) * dx ) |
---|
| 535 | wall_flux = 0.0 |
---|
| 536 | wall_index = NINT( a+ 2*b + 3*c1 + 4*c2 ) |
---|
[53] | 537 | |
---|
[56] | 538 | DO i = nxl, nxr |
---|
| 539 | DO j = nys, nyn |
---|
| 540 | |
---|
| 541 | IF ( wall(j,i) /= 0.0 ) THEN |
---|
[53] | 542 | ! |
---|
[187] | 543 | !-- All subsequent variables are computed for scalar locations. |
---|
[56] | 544 | DO k = nzb_diff_s_inner(j,i)-1, nzb_diff_s_outer(j,i)-2 |
---|
[53] | 545 | ! |
---|
[187] | 546 | !-- (1) Compute rifs, u_i, v_i, and ws |
---|
[56] | 547 | IF ( k == nzb_diff_s_inner(j,i)-1 ) THEN |
---|
| 548 | kk = nzb_diff_s_inner(j,i)-1 |
---|
| 549 | ELSE |
---|
| 550 | kk = k-1 |
---|
| 551 | ENDIF |
---|
| 552 | rifs = 0.5 * ( rif_wall(k,j,i,wall_index) + & |
---|
| 553 | a * rif_wall(k,j,i+1,1) + b * rif_wall(k,j+1,i,2) + & |
---|
| 554 | c1 * rif_wall(kk,j,i,3) + c2 * rif_wall(kk,j,i,4) & |
---|
| 555 | ) |
---|
[53] | 556 | |
---|
[187] | 557 | u_i = 0.5 * ( u(k,j,i) + u(k,j,i+1) ) |
---|
| 558 | v_i = 0.5 * ( v(k,j,i) + v(k,j+1,i) ) |
---|
| 559 | ws = 0.5 * ( w(k,j,i) + w(k-1,j,i) ) |
---|
[53] | 560 | ! |
---|
[187] | 561 | !-- (2) Compute wall-parallel absolute velocity vel_total and |
---|
| 562 | !-- interpolate appropriate velocity component vel_zp. |
---|
| 563 | vel_total = SQRT( ws**2 + (a+c1) * u_i**2 + (b+c2) * v_i**2 ) |
---|
| 564 | vel_zp = 0.5 * ( a * u_i + b * v_i + (c1+c2) * ws ) |
---|
| 565 | ! |
---|
| 566 | !-- (3) Compute wall friction velocity us_wall |
---|
| 567 | IF ( rifs >= 0.0 ) THEN |
---|
[53] | 568 | |
---|
| 569 | ! |
---|
[187] | 570 | !-- Stable stratification (and neutral) |
---|
| 571 | us_wall = kappa * vel_total / ( LOG( zp / z0(j,i) ) + & |
---|
| 572 | 5.0 * rifs * ( zp - z0(j,i) ) / zp & |
---|
| 573 | ) |
---|
| 574 | ELSE |
---|
| 575 | |
---|
| 576 | ! |
---|
| 577 | !-- Unstable stratification |
---|
| 578 | h1 = SQRT( SQRT( 1.0 - 16.0 * rifs ) ) |
---|
| 579 | h2 = SQRT( SQRT( 1.0 - 16.0 * rifs * z0(j,i) / zp ) ) |
---|
| 580 | |
---|
| 581 | us_wall = kappa * vel_total / ( & |
---|
| 582 | LOG( zp / z0(j,i) ) - & |
---|
| 583 | LOG( ( 1.0 + h1 )**2 * ( 1.0 + h1**2 ) / ( & |
---|
| 584 | ( 1.0 + h2 )**2 * ( 1.0 + h2**2 ) ) ) + & |
---|
| 585 | 2.0 * ( ATAN( h1 ) - ATAN( h2 ) ) & |
---|
| 586 | ) |
---|
| 587 | ENDIF |
---|
| 588 | |
---|
| 589 | ! |
---|
| 590 | !-- Skip step (4) of wall_fluxes, because here rifs is already |
---|
| 591 | !-- available from (1) |
---|
| 592 | ! |
---|
[56] | 593 | !-- (5) Compute wall_flux (u'v', v'u', w'v', or w'u') |
---|
[55] | 594 | |
---|
[56] | 595 | IF ( rifs >= 0.0 ) THEN |
---|
[53] | 596 | |
---|
| 597 | ! |
---|
[56] | 598 | !-- Stable stratification (and neutral) |
---|
| 599 | wall_flux(k,j,i) = kappa * vel_zp / & |
---|
| 600 | ( LOG( zp/z0(j,i) ) + 5.0*rifs * ( zp-z0(j,i) ) / zp ) |
---|
| 601 | ELSE |
---|
[53] | 602 | |
---|
| 603 | ! |
---|
[56] | 604 | !-- Unstable stratification |
---|
[187] | 605 | h1 = SQRT( SQRT( 1.0 - 16.0 * rifs ) ) |
---|
| 606 | h2 = SQRT( SQRT( 1.0 - 16.0 * rifs * z0(j,i) / zp ) ) |
---|
[53] | 607 | |
---|
[187] | 608 | wall_flux(k,j,i) = kappa * vel_zp / ( & |
---|
| 609 | LOG( zp / z0(j,i) ) - & |
---|
| 610 | LOG( ( 1.0 + h1 )**2 * ( 1.0 + h1**2 ) / ( & |
---|
| 611 | ( 1.0 + h2 )**2 * ( 1.0 + h2**2 ) ) ) + & |
---|
| 612 | 2.0 * ( ATAN( h1 ) - ATAN( h2 ) ) & |
---|
| 613 | ) |
---|
[56] | 614 | ENDIF |
---|
[187] | 615 | wall_flux(k,j,i) = - wall_flux(k,j,i) * us_wall |
---|
[56] | 616 | |
---|
| 617 | ENDDO |
---|
| 618 | |
---|
| 619 | ENDIF |
---|
| 620 | |
---|
| 621 | ENDDO |
---|
| 622 | ENDDO |
---|
| 623 | |
---|
| 624 | END SUBROUTINE wall_fluxes_e |
---|
| 625 | |
---|
| 626 | |
---|
[1015] | 627 | !------------------------------------------------------------------------------! |
---|
| 628 | ! Call for all grid points - accelerator version |
---|
| 629 | !------------------------------------------------------------------------------! |
---|
| 630 | SUBROUTINE wall_fluxes_e_acc( wall_flux, a, b, c1, c2, wall ) |
---|
[56] | 631 | |
---|
| 632 | !------------------------------------------------------------------------------! |
---|
[1015] | 633 | ! Description: |
---|
| 634 | ! ------------ |
---|
| 635 | ! Calculates momentum fluxes at vertical walls for routine production_e |
---|
| 636 | ! assuming Monin-Obukhov similarity. |
---|
| 637 | ! Indices: usvs a=1, vsus b=1, wsvs c1=1, wsus c2=1 (other=0). |
---|
| 638 | !------------------------------------------------------------------------------! |
---|
| 639 | |
---|
| 640 | USE arrays_3d |
---|
| 641 | USE control_parameters |
---|
| 642 | USE grid_variables |
---|
| 643 | USE indices |
---|
| 644 | USE statistics |
---|
| 645 | |
---|
| 646 | IMPLICIT NONE |
---|
| 647 | |
---|
| 648 | INTEGER :: i, j, k, kk, max_outer, min_inner, wall_index |
---|
| 649 | REAL :: a, b, c1, c2, h1, h2, u_i, v_i, us_wall, vel_total, vel_zp, & |
---|
| 650 | ws, zp |
---|
| 651 | |
---|
| 652 | REAL :: rifs |
---|
| 653 | |
---|
| 654 | REAL, DIMENSION(nysg:nyng,nxlg:nxrg) :: wall |
---|
| 655 | REAL, DIMENSION(nzb:nzt+1,nys:nyn,nxl:nxr) :: wall_flux |
---|
| 656 | |
---|
| 657 | |
---|
| 658 | zp = 0.5 * ( (a+c1) * dy + (b+c2) * dx ) |
---|
| 659 | wall_flux = 0.0 |
---|
| 660 | wall_index = NINT( a+ 2*b + 3*c1 + 4*c2 ) |
---|
| 661 | |
---|
| 662 | min_inner = MINVAL( nzb_diff_s_inner(nys:nyn,nxl:nxr) ) - 1 |
---|
| 663 | max_outer = MAXVAL( nzb_diff_s_outer(nys:nyn,nxl:nxr) ) - 2 |
---|
| 664 | |
---|
| 665 | !$acc kernels present( nzb_diff_s_inner, nzb_diff_s_outer, pt, rif_wall ) & |
---|
| 666 | !$acc present( u, v, w, wall, wall_flux, z0 ) |
---|
| 667 | !$acc loop |
---|
| 668 | DO i = nxl, nxr |
---|
| 669 | DO j = nys, nyn |
---|
| 670 | !$acc loop vector(32) |
---|
| 671 | DO k = min_inner, max_outer |
---|
| 672 | ! |
---|
| 673 | !-- All subsequent variables are computed for scalar locations |
---|
| 674 | IF ( k >= nzb_diff_s_inner(j,i)-1 .AND. & |
---|
| 675 | k <= nzb_diff_s_outer(j,i)-2 .AND. wall(j,i) /= 0.0 ) THEN |
---|
| 676 | ! |
---|
| 677 | !-- (1) Compute rifs, u_i, v_i, and ws |
---|
| 678 | IF ( k == nzb_diff_s_inner(j,i)-1 ) THEN |
---|
| 679 | kk = nzb_diff_s_inner(j,i)-1 |
---|
| 680 | ELSE |
---|
| 681 | kk = k-1 |
---|
| 682 | ENDIF |
---|
| 683 | rifs = 0.5 * ( rif_wall(k,j,i,wall_index) + & |
---|
| 684 | a * rif_wall(k,j,i+1,1) + b * rif_wall(k,j+1,i,2) + & |
---|
| 685 | c1 * rif_wall(kk,j,i,3) + c2 * rif_wall(kk,j,i,4) & |
---|
| 686 | ) |
---|
| 687 | |
---|
| 688 | u_i = 0.5 * ( u(k,j,i) + u(k,j,i+1) ) |
---|
| 689 | v_i = 0.5 * ( v(k,j,i) + v(k,j+1,i) ) |
---|
| 690 | ws = 0.5 * ( w(k,j,i) + w(k-1,j,i) ) |
---|
| 691 | ! |
---|
| 692 | !-- (2) Compute wall-parallel absolute velocity vel_total and |
---|
| 693 | !-- interpolate appropriate velocity component vel_zp. |
---|
| 694 | vel_total = SQRT( ws**2 + (a+c1) * u_i**2 + (b+c2) * v_i**2 ) |
---|
| 695 | vel_zp = 0.5 * ( a * u_i + b * v_i + (c1+c2) * ws ) |
---|
| 696 | ! |
---|
| 697 | !-- (3) Compute wall friction velocity us_wall |
---|
| 698 | IF ( rifs >= 0.0 ) THEN |
---|
| 699 | |
---|
| 700 | ! |
---|
| 701 | !-- Stable stratification (and neutral) |
---|
| 702 | us_wall = kappa * vel_total / ( LOG( zp / z0(j,i) ) + & |
---|
| 703 | 5.0 * rifs * ( zp - z0(j,i) ) / zp & |
---|
| 704 | ) |
---|
| 705 | ELSE |
---|
| 706 | |
---|
| 707 | ! |
---|
| 708 | !-- Unstable stratification |
---|
| 709 | h1 = SQRT( SQRT( 1.0 - 16.0 * rifs ) ) |
---|
| 710 | h2 = SQRT( SQRT( 1.0 - 16.0 * rifs * z0(j,i) / zp ) ) |
---|
| 711 | |
---|
| 712 | us_wall = kappa * vel_total / ( & |
---|
| 713 | LOG( zp / z0(j,i) ) - & |
---|
| 714 | LOG( ( 1.0 + h1 )**2 * ( 1.0 + h1**2 ) / ( & |
---|
| 715 | ( 1.0 + h2 )**2 * ( 1.0 + h2**2 ) ) ) + & |
---|
| 716 | 2.0 * ( ATAN( h1 ) - ATAN( h2 ) ) & |
---|
| 717 | ) |
---|
| 718 | ENDIF |
---|
| 719 | |
---|
| 720 | ! |
---|
| 721 | !-- Skip step (4) of wall_fluxes, because here rifs is already |
---|
| 722 | !-- available from (1) |
---|
| 723 | ! |
---|
| 724 | !-- (5) Compute wall_flux (u'v', v'u', w'v', or w'u') |
---|
| 725 | |
---|
| 726 | IF ( rifs >= 0.0 ) THEN |
---|
| 727 | |
---|
| 728 | ! |
---|
| 729 | !-- Stable stratification (and neutral) |
---|
| 730 | wall_flux(k,j,i) = kappa * vel_zp / & |
---|
| 731 | ( LOG( zp/z0(j,i) ) + 5.0*rifs * ( zp-z0(j,i) ) / zp ) |
---|
| 732 | ELSE |
---|
| 733 | |
---|
| 734 | ! |
---|
| 735 | !-- Unstable stratification |
---|
| 736 | h1 = SQRT( SQRT( 1.0 - 16.0 * rifs ) ) |
---|
| 737 | h2 = SQRT( SQRT( 1.0 - 16.0 * rifs * z0(j,i) / zp ) ) |
---|
| 738 | |
---|
| 739 | wall_flux(k,j,i) = kappa * vel_zp / ( & |
---|
| 740 | LOG( zp / z0(j,i) ) - & |
---|
| 741 | LOG( ( 1.0 + h1 )**2 * ( 1.0 + h1**2 ) / ( & |
---|
| 742 | ( 1.0 + h2 )**2 * ( 1.0 + h2**2 ) ) ) + & |
---|
| 743 | 2.0 * ( ATAN( h1 ) - ATAN( h2 ) ) & |
---|
| 744 | ) |
---|
| 745 | ENDIF |
---|
| 746 | wall_flux(k,j,i) = - wall_flux(k,j,i) * us_wall |
---|
| 747 | |
---|
| 748 | ENDIF |
---|
| 749 | |
---|
| 750 | ENDDO |
---|
| 751 | ENDDO |
---|
| 752 | ENDDO |
---|
| 753 | !$acc end kernels |
---|
| 754 | |
---|
| 755 | END SUBROUTINE wall_fluxes_e_acc |
---|
| 756 | |
---|
| 757 | |
---|
| 758 | !------------------------------------------------------------------------------! |
---|
[56] | 759 | ! Call for grid point i,j |
---|
| 760 | !------------------------------------------------------------------------------! |
---|
| 761 | SUBROUTINE wall_fluxes_e_ij( i, j, nzb_w, nzt_w, wall_flux, a, b, c1, c2 ) |
---|
| 762 | |
---|
| 763 | USE arrays_3d |
---|
| 764 | USE control_parameters |
---|
| 765 | USE grid_variables |
---|
| 766 | USE indices |
---|
| 767 | USE statistics |
---|
| 768 | |
---|
| 769 | IMPLICIT NONE |
---|
| 770 | |
---|
| 771 | INTEGER :: i, j, k, kk, nzb_w, nzt_w, wall_index |
---|
[187] | 772 | REAL :: a, b, c1, c2, h1, h2, u_i, v_i, us_wall, vel_total, vel_zp, & |
---|
| 773 | ws, zp |
---|
[56] | 774 | |
---|
| 775 | REAL :: rifs |
---|
| 776 | |
---|
| 777 | REAL, DIMENSION(nzb:nzt+1) :: wall_flux |
---|
| 778 | |
---|
| 779 | |
---|
| 780 | zp = 0.5 * ( (a+c1) * dy + (b+c2) * dx ) |
---|
| 781 | wall_flux = 0.0 |
---|
| 782 | wall_index = NINT( a+ 2*b + 3*c1 + 4*c2 ) |
---|
| 783 | |
---|
| 784 | ! |
---|
[187] | 785 | !-- All subsequent variables are computed for scalar locations. |
---|
[56] | 786 | DO k = nzb_w, nzt_w |
---|
| 787 | |
---|
| 788 | ! |
---|
[187] | 789 | !-- (1) Compute rifs, u_i, v_i, and ws |
---|
[56] | 790 | IF ( k == nzb_w ) THEN |
---|
| 791 | kk = nzb_w |
---|
[53] | 792 | ELSE |
---|
[56] | 793 | kk = k-1 |
---|
| 794 | ENDIF |
---|
| 795 | rifs = 0.5 * ( rif_wall(k,j,i,wall_index) + & |
---|
| 796 | a * rif_wall(k,j,i+1,1) + b * rif_wall(k,j+1,i,2) + & |
---|
| 797 | c1 * rif_wall(kk,j,i,3) + c2 * rif_wall(kk,j,i,4) & |
---|
| 798 | ) |
---|
| 799 | |
---|
[187] | 800 | u_i = 0.5 * ( u(k,j,i) + u(k,j,i+1) ) |
---|
| 801 | v_i = 0.5 * ( v(k,j,i) + v(k,j+1,i) ) |
---|
| 802 | ws = 0.5 * ( w(k,j,i) + w(k-1,j,i) ) |
---|
[56] | 803 | ! |
---|
[187] | 804 | !-- (2) Compute wall-parallel absolute velocity vel_total and |
---|
| 805 | !-- interpolate appropriate velocity component vel_zp. |
---|
| 806 | vel_total = SQRT( ws**2 + (a+c1) * u_i**2 + (b+c2) * v_i**2 ) |
---|
| 807 | vel_zp = 0.5 * ( a * u_i + b * v_i + (c1+c2) * ws ) |
---|
| 808 | ! |
---|
| 809 | !-- (3) Compute wall friction velocity us_wall |
---|
| 810 | IF ( rifs >= 0.0 ) THEN |
---|
[56] | 811 | |
---|
| 812 | ! |
---|
[187] | 813 | !-- Stable stratification (and neutral) |
---|
| 814 | us_wall = kappa * vel_total / ( LOG( zp / z0(j,i) ) + & |
---|
| 815 | 5.0 * rifs * ( zp - z0(j,i) ) / zp & |
---|
| 816 | ) |
---|
| 817 | ELSE |
---|
| 818 | |
---|
| 819 | ! |
---|
| 820 | !-- Unstable stratification |
---|
| 821 | h1 = SQRT( SQRT( 1.0 - 16.0 * rifs ) ) |
---|
| 822 | h2 = SQRT( SQRT( 1.0 - 16.0 * rifs * z0(j,i) / zp ) ) |
---|
| 823 | |
---|
| 824 | us_wall = kappa * vel_total / ( & |
---|
| 825 | LOG( zp / z0(j,i) ) - & |
---|
| 826 | LOG( ( 1.0 + h1 )**2 * ( 1.0 + h1**2 ) / ( & |
---|
| 827 | ( 1.0 + h2 )**2 * ( 1.0 + h2**2 ) ) ) + & |
---|
| 828 | 2.0 * ( ATAN( h1 ) - ATAN( h2 ) ) & |
---|
| 829 | ) |
---|
| 830 | ENDIF |
---|
| 831 | |
---|
| 832 | ! |
---|
| 833 | !-- Skip step (4) of wall_fluxes, because here rifs is already |
---|
| 834 | !-- available from (1) |
---|
| 835 | ! |
---|
[56] | 836 | !-- (5) Compute wall_flux (u'v', v'u', w'v', or w'u') |
---|
[187] | 837 | !-- First interpolate the velocity (this is different from |
---|
| 838 | !-- subroutine wall_fluxes because fluxes in subroutine |
---|
| 839 | !-- wall_fluxes_e are defined at scalar locations). |
---|
[56] | 840 | vel_zp = 0.5 * ( a * ( u(k,j,i) + u(k,j,i+1) ) + & |
---|
| 841 | b * ( v(k,j,i) + v(k,j+1,i) ) + & |
---|
| 842 | (c1+c2) * ( w(k,j,i) + w(k-1,j,i) ) & |
---|
| 843 | ) |
---|
| 844 | |
---|
| 845 | IF ( rifs >= 0.0 ) THEN |
---|
| 846 | |
---|
| 847 | ! |
---|
| 848 | !-- Stable stratification (and neutral) |
---|
| 849 | wall_flux(k) = kappa * vel_zp / & |
---|
| 850 | ( LOG( zp/z0(j,i) ) + 5.0*rifs * ( zp-z0(j,i) ) / zp ) |
---|
| 851 | ELSE |
---|
| 852 | |
---|
| 853 | ! |
---|
| 854 | !-- Unstable stratification |
---|
[187] | 855 | h1 = SQRT( SQRT( 1.0 - 16.0 * rifs ) ) |
---|
| 856 | h2 = SQRT( SQRT( 1.0 - 16.0 * rifs * z0(j,i) / zp ) ) |
---|
[56] | 857 | |
---|
[187] | 858 | wall_flux(k) = kappa * vel_zp / ( & |
---|
| 859 | LOG( zp / z0(j,i) ) - & |
---|
| 860 | LOG( ( 1.0 + h1 )**2 * ( 1.0 + h1**2 ) / ( & |
---|
| 861 | ( 1.0 + h2 )**2 * ( 1.0 + h2**2 ) ) ) + & |
---|
| 862 | 2.0 * ( ATAN( h1 ) - ATAN( h2 ) ) & |
---|
| 863 | ) |
---|
[53] | 864 | ENDIF |
---|
[187] | 865 | wall_flux(k) = - wall_flux(k) * us_wall |
---|
[53] | 866 | |
---|
[56] | 867 | ENDDO |
---|
[53] | 868 | |
---|
[56] | 869 | END SUBROUTINE wall_fluxes_e_ij |
---|
| 870 | |
---|
| 871 | END MODULE wall_fluxes_mod |
---|