[56] | 1 | MODULE wall_fluxes_mod |
---|
[52] | 2 | !------------------------------------------------------------------------------! |
---|
[484] | 3 | ! Current revisions: |
---|
[52] | 4 | ! ----------------- |
---|
[1015] | 5 | ! accelerator version (*_acc) added |
---|
[198] | 6 | ! |
---|
| 7 | ! Former revisions: |
---|
| 8 | ! ----------------- |
---|
| 9 | ! $Id: wall_fluxes.f90 1015 2012-09-27 09:23:24Z raasch $ |
---|
| 10 | ! |
---|
| 11 | ! 187 2008-08-06 16:25:09Z letzel |
---|
| 12 | ! Bugfix: Modification of the evaluation of the vertical turbulent momentum |
---|
| 13 | ! fluxes u'w' and v'w (see prandtl_fluxes), this requires the calculation of |
---|
| 14 | ! us_wall (and vel_total, u_i, v_i, ws) also in wall_fluxes_e. |
---|
| 15 | ! Bugfix: change definition of us_wall from 1D to 2D |
---|
[187] | 16 | ! Bugfix: storage of rifs to rifs_wall in wall_fluxes_e removed |
---|
| 17 | ! Change: add 'minus' sign to fluxes produced by subroutine wall_fluxes_e for |
---|
[198] | 18 | ! consistency with subroutine wall_fluxes |
---|
[187] | 19 | ! Change: Modification of the integrated version of the profile function for |
---|
[198] | 20 | ! momentum for unstable stratification |
---|
[52] | 21 | ! |
---|
| 22 | ! Initial version (2007/03/07) |
---|
| 23 | ! |
---|
| 24 | ! Description: |
---|
| 25 | ! ------------ |
---|
| 26 | ! Calculates momentum fluxes at vertical walls assuming Monin-Obukhov |
---|
| 27 | ! similarity. |
---|
| 28 | ! Indices: usvs a=1, vsus b=1, wsvs c1=1, wsus c2=1 (other=0). |
---|
[56] | 29 | ! The all-gridpoint version of wall_fluxes_e is not used so far, because |
---|
| 30 | ! it gives slightly different results from the ij-version for some unknown |
---|
| 31 | ! reason. |
---|
[52] | 32 | !------------------------------------------------------------------------------! |
---|
[56] | 33 | PRIVATE |
---|
[1015] | 34 | PUBLIC wall_fluxes, wall_fluxes_acc, wall_fluxes_e, wall_fluxes_e_acc |
---|
[56] | 35 | |
---|
| 36 | INTERFACE wall_fluxes |
---|
| 37 | MODULE PROCEDURE wall_fluxes |
---|
| 38 | MODULE PROCEDURE wall_fluxes_ij |
---|
| 39 | END INTERFACE wall_fluxes |
---|
| 40 | |
---|
[1015] | 41 | INTERFACE wall_fluxes_acc |
---|
| 42 | MODULE PROCEDURE wall_fluxes_acc |
---|
| 43 | END INTERFACE wall_fluxes_acc |
---|
| 44 | |
---|
[56] | 45 | INTERFACE wall_fluxes_e |
---|
| 46 | MODULE PROCEDURE wall_fluxes_e |
---|
| 47 | MODULE PROCEDURE wall_fluxes_e_ij |
---|
| 48 | END INTERFACE wall_fluxes_e |
---|
| 49 | |
---|
[1015] | 50 | INTERFACE wall_fluxes_e_acc |
---|
| 51 | MODULE PROCEDURE wall_fluxes_e_acc |
---|
| 52 | END INTERFACE wall_fluxes_e_acc |
---|
| 53 | |
---|
[56] | 54 | CONTAINS |
---|
[52] | 55 | |
---|
[56] | 56 | !------------------------------------------------------------------------------! |
---|
| 57 | ! Call for all grid points |
---|
| 58 | !------------------------------------------------------------------------------! |
---|
[75] | 59 | SUBROUTINE wall_fluxes( wall_flux, a, b, c1, c2, nzb_uvw_inner, & |
---|
[56] | 60 | nzb_uvw_outer, wall ) |
---|
[52] | 61 | |
---|
[56] | 62 | USE arrays_3d |
---|
| 63 | USE control_parameters |
---|
| 64 | USE grid_variables |
---|
| 65 | USE indices |
---|
| 66 | USE statistics |
---|
[52] | 67 | |
---|
[56] | 68 | IMPLICIT NONE |
---|
[52] | 69 | |
---|
[75] | 70 | INTEGER :: i, j, k, wall_index |
---|
[52] | 71 | |
---|
[667] | 72 | INTEGER, DIMENSION(nysg:nyng,nxlg:nxrg) :: nzb_uvw_inner, & |
---|
[56] | 73 | nzb_uvw_outer |
---|
| 74 | REAL :: a, b, c1, c2, h1, h2, zp |
---|
| 75 | REAL :: pts, pt_i, rifs, u_i, v_i, us_wall, vel_total, ws, wspts |
---|
[52] | 76 | |
---|
[667] | 77 | REAL, DIMENSION(nysg:nyng,nxlg:nxrg) :: wall |
---|
[75] | 78 | REAL, DIMENSION(nzb:nzt+1,nys:nyn,nxl:nxr) :: wall_flux |
---|
[52] | 79 | |
---|
| 80 | |
---|
[56] | 81 | zp = 0.5 * ( (a+c1) * dy + (b+c2) * dx ) |
---|
| 82 | wall_flux = 0.0 |
---|
| 83 | wall_index = NINT( a+ 2*b + 3*c1 + 4*c2 ) |
---|
| 84 | |
---|
[75] | 85 | DO i = nxl, nxr |
---|
| 86 | DO j = nys, nyn |
---|
[56] | 87 | |
---|
| 88 | IF ( wall(j,i) /= 0.0 ) THEN |
---|
[52] | 89 | ! |
---|
[56] | 90 | !-- All subsequent variables are computed for the respective |
---|
[187] | 91 | !-- location where the respective flux is defined. |
---|
[56] | 92 | DO k = nzb_uvw_inner(j,i)+1, nzb_uvw_outer(j,i) |
---|
[53] | 93 | |
---|
[52] | 94 | ! |
---|
[56] | 95 | !-- (1) Compute rifs, u_i, v_i, ws, pt' and w'pt' |
---|
| 96 | rifs = rif_wall(k,j,i,wall_index) |
---|
[53] | 97 | |
---|
[56] | 98 | u_i = a * u(k,j,i) + c1 * 0.25 * & |
---|
| 99 | ( u(k+1,j,i+1) + u(k+1,j,i) + u(k,j,i+1) + u(k,j,i) ) |
---|
[53] | 100 | |
---|
[56] | 101 | v_i = b * v(k,j,i) + c2 * 0.25 * & |
---|
| 102 | ( v(k+1,j+1,i) + v(k+1,j,i) + v(k,j+1,i) + v(k,j,i) ) |
---|
[53] | 103 | |
---|
[56] | 104 | ws = ( c1 + c2 ) * w(k,j,i) + 0.25 * ( & |
---|
| 105 | a * ( w(k-1,j,i-1) + w(k-1,j,i) + w(k,j,i-1) + w(k,j,i) ) & |
---|
| 106 | + b * ( w(k-1,j-1,i) + w(k-1,j,i) + w(k,j-1,i) + w(k,j,i) ) & |
---|
| 107 | ) |
---|
| 108 | pt_i = 0.5 * ( pt(k,j,i) + a * pt(k,j,i-1) + & |
---|
| 109 | b * pt(k,j-1,i) + ( c1 + c2 ) * pt(k+1,j,i) ) |
---|
[53] | 110 | |
---|
[56] | 111 | pts = pt_i - hom(k,1,4,0) |
---|
| 112 | wspts = ws * pts |
---|
[53] | 113 | |
---|
[52] | 114 | ! |
---|
[56] | 115 | !-- (2) Compute wall-parallel absolute velocity vel_total |
---|
| 116 | vel_total = SQRT( ws**2 + (a+c1) * u_i**2 + (b+c2) * v_i**2 ) |
---|
[53] | 117 | |
---|
[52] | 118 | ! |
---|
[56] | 119 | !-- (3) Compute wall friction velocity us_wall |
---|
| 120 | IF ( rifs >= 0.0 ) THEN |
---|
[53] | 121 | |
---|
[52] | 122 | ! |
---|
[56] | 123 | !-- Stable stratification (and neutral) |
---|
| 124 | us_wall = kappa * vel_total / ( LOG( zp / z0(j,i) ) + & |
---|
| 125 | 5.0 * rifs * ( zp - z0(j,i) ) / zp & |
---|
| 126 | ) |
---|
| 127 | ELSE |
---|
[53] | 128 | |
---|
[52] | 129 | ! |
---|
[56] | 130 | !-- Unstable stratification |
---|
[187] | 131 | h1 = SQRT( SQRT( 1.0 - 16.0 * rifs ) ) |
---|
| 132 | h2 = SQRT( SQRT( 1.0 - 16.0 * rifs * z0(j,i) / zp ) ) |
---|
[53] | 133 | |
---|
[187] | 134 | us_wall = kappa * vel_total / ( & |
---|
| 135 | LOG( zp / z0(j,i) ) - & |
---|
| 136 | LOG( ( 1.0 + h1 )**2 * ( 1.0 + h1**2 ) / ( & |
---|
| 137 | ( 1.0 + h2 )**2 * ( 1.0 + h2**2 ) ) ) + & |
---|
| 138 | 2.0 * ( ATAN( h1 ) - ATAN( h2 ) ) & |
---|
| 139 | ) |
---|
[56] | 140 | ENDIF |
---|
[53] | 141 | |
---|
[52] | 142 | ! |
---|
[56] | 143 | !-- (4) Compute zp/L (corresponds to neutral Richardson flux |
---|
| 144 | !-- number rifs) |
---|
| 145 | rifs = -1.0 * zp * kappa * g * wspts / ( pt_i * & |
---|
| 146 | ( us_wall**3 + 1E-30 ) ) |
---|
[53] | 147 | |
---|
[52] | 148 | ! |
---|
[56] | 149 | !-- Limit the value range of the Richardson numbers. |
---|
| 150 | !-- This is necessary for very small velocities (u,w --> 0), |
---|
| 151 | !-- because the absolute value of rif can then become very |
---|
| 152 | !-- large, which in consequence would result in very large |
---|
| 153 | !-- shear stresses and very small momentum fluxes (both are |
---|
| 154 | !-- generally unrealistic). |
---|
| 155 | IF ( rifs < rif_min ) rifs = rif_min |
---|
| 156 | IF ( rifs > rif_max ) rifs = rif_max |
---|
[53] | 157 | |
---|
[52] | 158 | ! |
---|
[56] | 159 | !-- (5) Compute wall_flux (u'v', v'u', w'v', or w'u') |
---|
| 160 | IF ( rifs >= 0.0 ) THEN |
---|
[53] | 161 | |
---|
[52] | 162 | ! |
---|
[56] | 163 | !-- Stable stratification (and neutral) |
---|
| 164 | wall_flux(k,j,i) = kappa * & |
---|
| 165 | ( a*u(k,j,i) + b*v(k,j,i) + (c1+c2)*w(k,j,i) ) / & |
---|
| 166 | ( LOG( zp / z0(j,i) ) + & |
---|
| 167 | 5.0 * rifs * ( zp - z0(j,i) ) / zp & |
---|
| 168 | ) |
---|
| 169 | ELSE |
---|
[53] | 170 | |
---|
[52] | 171 | ! |
---|
[56] | 172 | !-- Unstable stratification |
---|
[187] | 173 | h1 = SQRT( SQRT( 1.0 - 16.0 * rifs ) ) |
---|
| 174 | h2 = SQRT( SQRT( 1.0 - 16.0 * rifs * z0(j,i) / zp ) ) |
---|
[53] | 175 | |
---|
[187] | 176 | wall_flux(k,j,i) = kappa * & |
---|
| 177 | ( a*u(k,j,i) + b*v(k,j,i) + (c1+c2)*w(k,j,i) ) / ( & |
---|
| 178 | LOG( zp / z0(j,i) ) - & |
---|
| 179 | LOG( ( 1.0 + h1 )**2 * ( 1.0 + h1**2 ) / ( & |
---|
| 180 | ( 1.0 + h2 )**2 * ( 1.0 + h2**2 ) ) ) + & |
---|
| 181 | 2.0 * ( ATAN( h1 ) - ATAN( h2 ) ) & |
---|
| 182 | ) |
---|
[56] | 183 | ENDIF |
---|
[187] | 184 | wall_flux(k,j,i) = -wall_flux(k,j,i) * us_wall |
---|
[56] | 185 | |
---|
| 186 | ! |
---|
| 187 | !-- store rifs for next time step |
---|
| 188 | rif_wall(k,j,i,wall_index) = rifs |
---|
| 189 | |
---|
| 190 | ENDDO |
---|
| 191 | |
---|
| 192 | ENDIF |
---|
| 193 | |
---|
| 194 | ENDDO |
---|
| 195 | ENDDO |
---|
| 196 | |
---|
| 197 | END SUBROUTINE wall_fluxes |
---|
| 198 | |
---|
| 199 | |
---|
[1015] | 200 | !------------------------------------------------------------------------------! |
---|
| 201 | ! Call for all grid points - accelerator version |
---|
| 202 | !------------------------------------------------------------------------------! |
---|
| 203 | SUBROUTINE wall_fluxes_acc( wall_flux, a, b, c1, c2, nzb_uvw_inner, & |
---|
| 204 | nzb_uvw_outer, wall ) |
---|
[56] | 205 | |
---|
[1015] | 206 | USE arrays_3d |
---|
| 207 | USE control_parameters |
---|
| 208 | USE grid_variables |
---|
| 209 | USE indices |
---|
| 210 | USE statistics |
---|
| 211 | |
---|
| 212 | IMPLICIT NONE |
---|
| 213 | |
---|
| 214 | INTEGER :: i, j, k, max_outer, min_inner, wall_index |
---|
| 215 | |
---|
| 216 | INTEGER, DIMENSION(nysg:nyng,nxlg:nxrg) :: nzb_uvw_inner, & |
---|
| 217 | nzb_uvw_outer |
---|
| 218 | REAL :: a, b, c1, c2, h1, h2, zp |
---|
| 219 | REAL :: pts, pt_i, rifs, u_i, v_i, us_wall, vel_total, ws, wspts |
---|
| 220 | |
---|
| 221 | REAL, DIMENSION(nysg:nyng,nxlg:nxrg) :: wall |
---|
| 222 | REAL, DIMENSION(nzb:nzt+1,nys:nyn,nxl:nxr) :: wall_flux |
---|
| 223 | |
---|
| 224 | |
---|
| 225 | zp = 0.5 * ( (a+c1) * dy + (b+c2) * dx ) |
---|
| 226 | wall_flux = 0.0 |
---|
| 227 | wall_index = NINT( a+ 2*b + 3*c1 + 4*c2 ) |
---|
| 228 | |
---|
| 229 | min_inner = MINVAL( nzb_uvw_inner(nys:nyn,nxl:nxr) ) + 1 |
---|
| 230 | max_outer = MINVAL( nzb_uvw_outer(nys:nyn,nxl:nxr) ) |
---|
| 231 | |
---|
| 232 | !$acc kernels present( hom, nzb_uvw_inner, nzb_uvw_outer, pt, rif_wall ) & |
---|
| 233 | !$acc present( u, v, w, wall, wall_flux, z0 ) |
---|
| 234 | !$acc loop |
---|
| 235 | DO i = nxl, nxr |
---|
| 236 | DO j = nys, nyn |
---|
| 237 | !$acc loop vector( 32 ) |
---|
| 238 | DO k = min_inner, max_outer |
---|
| 239 | ! |
---|
| 240 | !-- All subsequent variables are computed for the respective |
---|
| 241 | !-- location where the respective flux is defined. |
---|
| 242 | IF ( k >= nzb_uvw_inner(j,i)+1 .AND. & |
---|
| 243 | k <= nzb_uvw_outer(j,i) .AND. wall(j,i) /= 0.0 ) THEN |
---|
| 244 | ! |
---|
| 245 | !-- (1) Compute rifs, u_i, v_i, ws, pt' and w'pt' |
---|
| 246 | rifs = rif_wall(k,j,i,wall_index) |
---|
| 247 | |
---|
| 248 | u_i = a * u(k,j,i) + c1 * 0.25 * & |
---|
| 249 | ( u(k+1,j,i+1) + u(k+1,j,i) + u(k,j,i+1) + u(k,j,i) ) |
---|
| 250 | |
---|
| 251 | v_i = b * v(k,j,i) + c2 * 0.25 * & |
---|
| 252 | ( v(k+1,j+1,i) + v(k+1,j,i) + v(k,j+1,i) + v(k,j,i) ) |
---|
| 253 | |
---|
| 254 | ws = ( c1 + c2 ) * w(k,j,i) + 0.25 * ( & |
---|
| 255 | a * ( w(k-1,j,i-1) + w(k-1,j,i) + w(k,j,i-1) + w(k,j,i) ) & |
---|
| 256 | + b * ( w(k-1,j-1,i) + w(k-1,j,i) + w(k,j-1,i) + w(k,j,i) ) & |
---|
| 257 | ) |
---|
| 258 | pt_i = 0.5 * ( pt(k,j,i) + a * pt(k,j,i-1) + & |
---|
| 259 | b * pt(k,j-1,i) + ( c1 + c2 ) * pt(k+1,j,i) ) |
---|
| 260 | |
---|
| 261 | pts = pt_i - hom(k,1,4,0) |
---|
| 262 | wspts = ws * pts |
---|
| 263 | |
---|
| 264 | ! |
---|
| 265 | !-- (2) Compute wall-parallel absolute velocity vel_total |
---|
| 266 | vel_total = SQRT( ws**2 + (a+c1) * u_i**2 + (b+c2) * v_i**2 ) |
---|
| 267 | |
---|
| 268 | ! |
---|
| 269 | !-- (3) Compute wall friction velocity us_wall |
---|
| 270 | IF ( rifs >= 0.0 ) THEN |
---|
| 271 | |
---|
| 272 | ! |
---|
| 273 | !-- Stable stratification (and neutral) |
---|
| 274 | us_wall = kappa * vel_total / ( LOG( zp / z0(j,i) ) + & |
---|
| 275 | 5.0 * rifs * ( zp - z0(j,i) ) / zp & |
---|
| 276 | ) |
---|
| 277 | ELSE |
---|
| 278 | |
---|
| 279 | ! |
---|
| 280 | !-- Unstable stratification |
---|
| 281 | h1 = SQRT( SQRT( 1.0 - 16.0 * rifs ) ) |
---|
| 282 | h2 = SQRT( SQRT( 1.0 - 16.0 * rifs * z0(j,i) / zp ) ) |
---|
| 283 | |
---|
| 284 | us_wall = kappa * vel_total / ( & |
---|
| 285 | LOG( zp / z0(j,i) ) - & |
---|
| 286 | LOG( ( 1.0 + h1 )**2 * ( 1.0 + h1**2 ) / ( & |
---|
| 287 | ( 1.0 + h2 )**2 * ( 1.0 + h2**2 ) ) ) + & |
---|
| 288 | 2.0 * ( ATAN( h1 ) - ATAN( h2 ) ) & |
---|
| 289 | ) |
---|
| 290 | ENDIF |
---|
| 291 | |
---|
| 292 | ! |
---|
| 293 | !-- (4) Compute zp/L (corresponds to neutral Richardson flux |
---|
| 294 | !-- number rifs) |
---|
| 295 | rifs = -1.0 * zp * kappa * g * wspts / ( pt_i * & |
---|
| 296 | ( us_wall**3 + 1E-30 ) ) |
---|
| 297 | |
---|
| 298 | ! |
---|
| 299 | !-- Limit the value range of the Richardson numbers. |
---|
| 300 | !-- This is necessary for very small velocities (u,w --> 0), |
---|
| 301 | !-- because the absolute value of rif can then become very |
---|
| 302 | !-- large, which in consequence would result in very large |
---|
| 303 | !-- shear stresses and very small momentum fluxes (both are |
---|
| 304 | !-- generally unrealistic). |
---|
| 305 | IF ( rifs < rif_min ) rifs = rif_min |
---|
| 306 | IF ( rifs > rif_max ) rifs = rif_max |
---|
| 307 | |
---|
| 308 | ! |
---|
| 309 | !-- (5) Compute wall_flux (u'v', v'u', w'v', or w'u') |
---|
| 310 | IF ( rifs >= 0.0 ) THEN |
---|
| 311 | |
---|
| 312 | ! |
---|
| 313 | !-- Stable stratification (and neutral) |
---|
| 314 | wall_flux(k,j,i) = kappa * & |
---|
| 315 | ( a*u(k,j,i) + b*v(k,j,i) + (c1+c2)*w(k,j,i) ) / & |
---|
| 316 | ( LOG( zp / z0(j,i) ) + & |
---|
| 317 | 5.0 * rifs * ( zp - z0(j,i) ) / zp & |
---|
| 318 | ) |
---|
| 319 | ELSE |
---|
| 320 | |
---|
| 321 | ! |
---|
| 322 | !-- Unstable stratification |
---|
| 323 | h1 = SQRT( SQRT( 1.0 - 16.0 * rifs ) ) |
---|
| 324 | h2 = SQRT( SQRT( 1.0 - 16.0 * rifs * z0(j,i) / zp ) ) |
---|
| 325 | |
---|
| 326 | wall_flux(k,j,i) = kappa * & |
---|
| 327 | ( a*u(k,j,i) + b*v(k,j,i) + (c1+c2)*w(k,j,i) ) / ( & |
---|
| 328 | LOG( zp / z0(j,i) ) - & |
---|
| 329 | LOG( ( 1.0 + h1 )**2 * ( 1.0 + h1**2 ) / ( & |
---|
| 330 | ( 1.0 + h2 )**2 * ( 1.0 + h2**2 ) ) ) + & |
---|
| 331 | 2.0 * ( ATAN( h1 ) - ATAN( h2 ) ) & |
---|
| 332 | ) |
---|
| 333 | ENDIF |
---|
| 334 | wall_flux(k,j,i) = -wall_flux(k,j,i) * us_wall |
---|
| 335 | |
---|
| 336 | ! |
---|
| 337 | !-- store rifs for next time step |
---|
| 338 | rif_wall(k,j,i,wall_index) = rifs |
---|
| 339 | |
---|
| 340 | ENDIF |
---|
| 341 | |
---|
| 342 | ENDDO |
---|
| 343 | ENDDO |
---|
| 344 | ENDDO |
---|
| 345 | !$acc end kernels |
---|
| 346 | |
---|
| 347 | END SUBROUTINE wall_fluxes_acc |
---|
| 348 | |
---|
| 349 | |
---|
[56] | 350 | !------------------------------------------------------------------------------! |
---|
| 351 | ! Call for all grid point i,j |
---|
| 352 | !------------------------------------------------------------------------------! |
---|
| 353 | SUBROUTINE wall_fluxes_ij( i, j, nzb_w, nzt_w, wall_flux, a, b, c1, c2 ) |
---|
| 354 | |
---|
| 355 | USE arrays_3d |
---|
| 356 | USE control_parameters |
---|
| 357 | USE grid_variables |
---|
| 358 | USE indices |
---|
| 359 | USE statistics |
---|
| 360 | |
---|
| 361 | IMPLICIT NONE |
---|
| 362 | |
---|
| 363 | INTEGER :: i, j, k, nzb_w, nzt_w, wall_index |
---|
| 364 | REAL :: a, b, c1, c2, h1, h2, zp |
---|
| 365 | |
---|
| 366 | REAL :: pts, pt_i, rifs, u_i, v_i, us_wall, vel_total, ws, wspts |
---|
| 367 | |
---|
| 368 | REAL, DIMENSION(nzb:nzt+1) :: wall_flux |
---|
| 369 | |
---|
| 370 | |
---|
| 371 | zp = 0.5 * ( (a+c1) * dy + (b+c2) * dx ) |
---|
| 372 | wall_flux = 0.0 |
---|
| 373 | wall_index = NINT( a+ 2*b + 3*c1 + 4*c2 ) |
---|
| 374 | |
---|
| 375 | ! |
---|
| 376 | !-- All subsequent variables are computed for the respective location where |
---|
[187] | 377 | !-- the respective flux is defined. |
---|
[56] | 378 | DO k = nzb_w, nzt_w |
---|
| 379 | |
---|
| 380 | ! |
---|
| 381 | !-- (1) Compute rifs, u_i, v_i, ws, pt' and w'pt' |
---|
| 382 | rifs = rif_wall(k,j,i,wall_index) |
---|
| 383 | |
---|
| 384 | u_i = a * u(k,j,i) + c1 * 0.25 * & |
---|
| 385 | ( u(k+1,j,i+1) + u(k+1,j,i) + u(k,j,i+1) + u(k,j,i) ) |
---|
| 386 | |
---|
| 387 | v_i = b * v(k,j,i) + c2 * 0.25 * & |
---|
| 388 | ( v(k+1,j+1,i) + v(k+1,j,i) + v(k,j+1,i) + v(k,j,i) ) |
---|
| 389 | |
---|
| 390 | ws = ( c1 + c2 ) * w(k,j,i) + 0.25 * ( & |
---|
| 391 | a * ( w(k-1,j,i-1) + w(k-1,j,i) + w(k,j,i-1) + w(k,j,i) ) & |
---|
| 392 | + b * ( w(k-1,j-1,i) + w(k-1,j,i) + w(k,j-1,i) + w(k,j,i) ) & |
---|
| 393 | ) |
---|
| 394 | pt_i = 0.5 * ( pt(k,j,i) + a * pt(k,j,i-1) + b * pt(k,j-1,i) & |
---|
| 395 | + ( c1 + c2 ) * pt(k+1,j,i) ) |
---|
| 396 | |
---|
| 397 | pts = pt_i - hom(k,1,4,0) |
---|
| 398 | wspts = ws * pts |
---|
| 399 | |
---|
| 400 | ! |
---|
| 401 | !-- (2) Compute wall-parallel absolute velocity vel_total |
---|
| 402 | vel_total = SQRT( ws**2 + ( a+c1 ) * u_i**2 + ( b+c2 ) * v_i**2 ) |
---|
| 403 | |
---|
| 404 | ! |
---|
| 405 | !-- (3) Compute wall friction velocity us_wall |
---|
| 406 | IF ( rifs >= 0.0 ) THEN |
---|
| 407 | |
---|
| 408 | ! |
---|
| 409 | !-- Stable stratification (and neutral) |
---|
| 410 | us_wall = kappa * vel_total / ( LOG( zp / z0(j,i) ) + & |
---|
| 411 | 5.0 * rifs * ( zp - z0(j,i) ) / zp & |
---|
| 412 | ) |
---|
| 413 | ELSE |
---|
| 414 | |
---|
| 415 | ! |
---|
| 416 | !-- Unstable stratification |
---|
[187] | 417 | h1 = SQRT( SQRT( 1.0 - 16.0 * rifs ) ) |
---|
| 418 | h2 = SQRT( SQRT( 1.0 - 16.0 * rifs * z0(j,i) / zp ) ) |
---|
[56] | 419 | |
---|
[187] | 420 | us_wall = kappa * vel_total / ( & |
---|
| 421 | LOG( zp / z0(j,i) ) - & |
---|
| 422 | LOG( ( 1.0 + h1 )**2 * ( 1.0 + h1**2 ) / ( & |
---|
| 423 | ( 1.0 + h2 )**2 * ( 1.0 + h2**2 ) ) ) + & |
---|
| 424 | 2.0 * ( ATAN( h1 ) - ATAN( h2 ) ) & |
---|
| 425 | ) |
---|
[56] | 426 | ENDIF |
---|
| 427 | |
---|
| 428 | ! |
---|
| 429 | !-- (4) Compute zp/L (corresponds to neutral Richardson flux number |
---|
| 430 | !-- rifs) |
---|
| 431 | rifs = -1.0 * zp * kappa * g * wspts / ( pt_i * (us_wall**3 + 1E-30) ) |
---|
| 432 | |
---|
| 433 | ! |
---|
| 434 | !-- Limit the value range of the Richardson numbers. |
---|
| 435 | !-- This is necessary for very small velocities (u,w --> 0), because |
---|
| 436 | !-- the absolute value of rif can then become very large, which in |
---|
| 437 | !-- consequence would result in very large shear stresses and very |
---|
| 438 | !-- small momentum fluxes (both are generally unrealistic). |
---|
| 439 | IF ( rifs < rif_min ) rifs = rif_min |
---|
| 440 | IF ( rifs > rif_max ) rifs = rif_max |
---|
| 441 | |
---|
| 442 | ! |
---|
| 443 | !-- (5) Compute wall_flux (u'v', v'u', w'v', or w'u') |
---|
| 444 | IF ( rifs >= 0.0 ) THEN |
---|
| 445 | |
---|
| 446 | ! |
---|
| 447 | !-- Stable stratification (and neutral) |
---|
[53] | 448 | wall_flux(k) = kappa * & |
---|
| 449 | ( a*u(k,j,i) + b*v(k,j,i) + (c1+c2)*w(k,j,i) ) / & |
---|
[56] | 450 | ( LOG( zp / z0(j,i) ) + & |
---|
| 451 | 5.0 * rifs * ( zp - z0(j,i) ) / zp & |
---|
[53] | 452 | ) |
---|
[52] | 453 | ELSE |
---|
[53] | 454 | |
---|
[56] | 455 | ! |
---|
| 456 | !-- Unstable stratification |
---|
[187] | 457 | h1 = SQRT( SQRT( 1.0 - 16.0 * rifs ) ) |
---|
| 458 | h2 = SQRT( SQRT( 1.0 - 16.0 * rifs * z0(j,i) / zp ) ) |
---|
[52] | 459 | |
---|
[187] | 460 | wall_flux(k) = kappa * & |
---|
| 461 | ( a*u(k,j,i) + b*v(k,j,i) + (c1+c2)*w(k,j,i) ) / ( & |
---|
| 462 | LOG( zp / z0(j,i) ) - & |
---|
| 463 | LOG( ( 1.0 + h1 )**2 * ( 1.0 + h1**2 ) / ( & |
---|
| 464 | ( 1.0 + h2 )**2 * ( 1.0 + h2**2 ) ) ) + & |
---|
| 465 | 2.0 * ( ATAN( h1 ) - ATAN( h2 ) ) & |
---|
| 466 | ) |
---|
[56] | 467 | ENDIF |
---|
[187] | 468 | wall_flux(k) = -wall_flux(k) * us_wall |
---|
[53] | 469 | |
---|
[56] | 470 | ! |
---|
| 471 | !-- store rifs for next time step |
---|
| 472 | rif_wall(k,j,i,wall_index) = rifs |
---|
[53] | 473 | |
---|
[56] | 474 | ENDDO |
---|
[53] | 475 | |
---|
[56] | 476 | END SUBROUTINE wall_fluxes_ij |
---|
[53] | 477 | |
---|
[56] | 478 | |
---|
| 479 | |
---|
[53] | 480 | !------------------------------------------------------------------------------! |
---|
[56] | 481 | ! Call for all grid points |
---|
| 482 | !------------------------------------------------------------------------------! |
---|
| 483 | SUBROUTINE wall_fluxes_e( wall_flux, a, b, c1, c2, wall ) |
---|
| 484 | |
---|
| 485 | !------------------------------------------------------------------------------! |
---|
[53] | 486 | ! Description: |
---|
| 487 | ! ------------ |
---|
| 488 | ! Calculates momentum fluxes at vertical walls for routine production_e |
---|
| 489 | ! assuming Monin-Obukhov similarity. |
---|
| 490 | ! Indices: usvs a=1, vsus b=1, wsvs c1=1, wsus c2=1 (other=0). |
---|
| 491 | !------------------------------------------------------------------------------! |
---|
| 492 | |
---|
[56] | 493 | USE arrays_3d |
---|
| 494 | USE control_parameters |
---|
| 495 | USE grid_variables |
---|
| 496 | USE indices |
---|
| 497 | USE statistics |
---|
[53] | 498 | |
---|
[56] | 499 | IMPLICIT NONE |
---|
[53] | 500 | |
---|
[56] | 501 | INTEGER :: i, j, k, kk, wall_index |
---|
[187] | 502 | REAL :: a, b, c1, c2, h1, h2, u_i, v_i, us_wall, vel_total, vel_zp, & |
---|
| 503 | ws, zp |
---|
[53] | 504 | |
---|
[56] | 505 | REAL :: rifs |
---|
[53] | 506 | |
---|
[667] | 507 | REAL, DIMENSION(nysg:nyng,nxlg:nxrg) :: wall |
---|
[56] | 508 | REAL, DIMENSION(nzb:nzt+1,nys:nyn,nxl:nxr) :: wall_flux |
---|
[53] | 509 | |
---|
| 510 | |
---|
[56] | 511 | zp = 0.5 * ( (a+c1) * dy + (b+c2) * dx ) |
---|
| 512 | wall_flux = 0.0 |
---|
| 513 | wall_index = NINT( a+ 2*b + 3*c1 + 4*c2 ) |
---|
[53] | 514 | |
---|
[56] | 515 | DO i = nxl, nxr |
---|
| 516 | DO j = nys, nyn |
---|
| 517 | |
---|
| 518 | IF ( wall(j,i) /= 0.0 ) THEN |
---|
[53] | 519 | ! |
---|
[187] | 520 | !-- All subsequent variables are computed for scalar locations. |
---|
[56] | 521 | DO k = nzb_diff_s_inner(j,i)-1, nzb_diff_s_outer(j,i)-2 |
---|
[53] | 522 | ! |
---|
[187] | 523 | !-- (1) Compute rifs, u_i, v_i, and ws |
---|
[56] | 524 | IF ( k == nzb_diff_s_inner(j,i)-1 ) THEN |
---|
| 525 | kk = nzb_diff_s_inner(j,i)-1 |
---|
| 526 | ELSE |
---|
| 527 | kk = k-1 |
---|
| 528 | ENDIF |
---|
| 529 | rifs = 0.5 * ( rif_wall(k,j,i,wall_index) + & |
---|
| 530 | a * rif_wall(k,j,i+1,1) + b * rif_wall(k,j+1,i,2) + & |
---|
| 531 | c1 * rif_wall(kk,j,i,3) + c2 * rif_wall(kk,j,i,4) & |
---|
| 532 | ) |
---|
[53] | 533 | |
---|
[187] | 534 | u_i = 0.5 * ( u(k,j,i) + u(k,j,i+1) ) |
---|
| 535 | v_i = 0.5 * ( v(k,j,i) + v(k,j+1,i) ) |
---|
| 536 | ws = 0.5 * ( w(k,j,i) + w(k-1,j,i) ) |
---|
[53] | 537 | ! |
---|
[187] | 538 | !-- (2) Compute wall-parallel absolute velocity vel_total and |
---|
| 539 | !-- interpolate appropriate velocity component vel_zp. |
---|
| 540 | vel_total = SQRT( ws**2 + (a+c1) * u_i**2 + (b+c2) * v_i**2 ) |
---|
| 541 | vel_zp = 0.5 * ( a * u_i + b * v_i + (c1+c2) * ws ) |
---|
| 542 | ! |
---|
| 543 | !-- (3) Compute wall friction velocity us_wall |
---|
| 544 | IF ( rifs >= 0.0 ) THEN |
---|
[53] | 545 | |
---|
| 546 | ! |
---|
[187] | 547 | !-- Stable stratification (and neutral) |
---|
| 548 | us_wall = kappa * vel_total / ( LOG( zp / z0(j,i) ) + & |
---|
| 549 | 5.0 * rifs * ( zp - z0(j,i) ) / zp & |
---|
| 550 | ) |
---|
| 551 | ELSE |
---|
| 552 | |
---|
| 553 | ! |
---|
| 554 | !-- Unstable stratification |
---|
| 555 | h1 = SQRT( SQRT( 1.0 - 16.0 * rifs ) ) |
---|
| 556 | h2 = SQRT( SQRT( 1.0 - 16.0 * rifs * z0(j,i) / zp ) ) |
---|
| 557 | |
---|
| 558 | us_wall = kappa * vel_total / ( & |
---|
| 559 | LOG( zp / z0(j,i) ) - & |
---|
| 560 | LOG( ( 1.0 + h1 )**2 * ( 1.0 + h1**2 ) / ( & |
---|
| 561 | ( 1.0 + h2 )**2 * ( 1.0 + h2**2 ) ) ) + & |
---|
| 562 | 2.0 * ( ATAN( h1 ) - ATAN( h2 ) ) & |
---|
| 563 | ) |
---|
| 564 | ENDIF |
---|
| 565 | |
---|
| 566 | ! |
---|
| 567 | !-- Skip step (4) of wall_fluxes, because here rifs is already |
---|
| 568 | !-- available from (1) |
---|
| 569 | ! |
---|
[56] | 570 | !-- (5) Compute wall_flux (u'v', v'u', w'v', or w'u') |
---|
[55] | 571 | |
---|
[56] | 572 | IF ( rifs >= 0.0 ) THEN |
---|
[53] | 573 | |
---|
| 574 | ! |
---|
[56] | 575 | !-- Stable stratification (and neutral) |
---|
| 576 | wall_flux(k,j,i) = kappa * vel_zp / & |
---|
| 577 | ( LOG( zp/z0(j,i) ) + 5.0*rifs * ( zp-z0(j,i) ) / zp ) |
---|
| 578 | ELSE |
---|
[53] | 579 | |
---|
| 580 | ! |
---|
[56] | 581 | !-- Unstable stratification |
---|
[187] | 582 | h1 = SQRT( SQRT( 1.0 - 16.0 * rifs ) ) |
---|
| 583 | h2 = SQRT( SQRT( 1.0 - 16.0 * rifs * z0(j,i) / zp ) ) |
---|
[53] | 584 | |
---|
[187] | 585 | wall_flux(k,j,i) = kappa * vel_zp / ( & |
---|
| 586 | LOG( zp / z0(j,i) ) - & |
---|
| 587 | LOG( ( 1.0 + h1 )**2 * ( 1.0 + h1**2 ) / ( & |
---|
| 588 | ( 1.0 + h2 )**2 * ( 1.0 + h2**2 ) ) ) + & |
---|
| 589 | 2.0 * ( ATAN( h1 ) - ATAN( h2 ) ) & |
---|
| 590 | ) |
---|
[56] | 591 | ENDIF |
---|
[187] | 592 | wall_flux(k,j,i) = - wall_flux(k,j,i) * us_wall |
---|
[56] | 593 | |
---|
| 594 | ENDDO |
---|
| 595 | |
---|
| 596 | ENDIF |
---|
| 597 | |
---|
| 598 | ENDDO |
---|
| 599 | ENDDO |
---|
| 600 | |
---|
| 601 | END SUBROUTINE wall_fluxes_e |
---|
| 602 | |
---|
| 603 | |
---|
[1015] | 604 | !------------------------------------------------------------------------------! |
---|
| 605 | ! Call for all grid points - accelerator version |
---|
| 606 | !------------------------------------------------------------------------------! |
---|
| 607 | SUBROUTINE wall_fluxes_e_acc( wall_flux, a, b, c1, c2, wall ) |
---|
[56] | 608 | |
---|
| 609 | !------------------------------------------------------------------------------! |
---|
[1015] | 610 | ! Description: |
---|
| 611 | ! ------------ |
---|
| 612 | ! Calculates momentum fluxes at vertical walls for routine production_e |
---|
| 613 | ! assuming Monin-Obukhov similarity. |
---|
| 614 | ! Indices: usvs a=1, vsus b=1, wsvs c1=1, wsus c2=1 (other=0). |
---|
| 615 | !------------------------------------------------------------------------------! |
---|
| 616 | |
---|
| 617 | USE arrays_3d |
---|
| 618 | USE control_parameters |
---|
| 619 | USE grid_variables |
---|
| 620 | USE indices |
---|
| 621 | USE statistics |
---|
| 622 | |
---|
| 623 | IMPLICIT NONE |
---|
| 624 | |
---|
| 625 | INTEGER :: i, j, k, kk, max_outer, min_inner, wall_index |
---|
| 626 | REAL :: a, b, c1, c2, h1, h2, u_i, v_i, us_wall, vel_total, vel_zp, & |
---|
| 627 | ws, zp |
---|
| 628 | |
---|
| 629 | REAL :: rifs |
---|
| 630 | |
---|
| 631 | REAL, DIMENSION(nysg:nyng,nxlg:nxrg) :: wall |
---|
| 632 | REAL, DIMENSION(nzb:nzt+1,nys:nyn,nxl:nxr) :: wall_flux |
---|
| 633 | |
---|
| 634 | |
---|
| 635 | zp = 0.5 * ( (a+c1) * dy + (b+c2) * dx ) |
---|
| 636 | wall_flux = 0.0 |
---|
| 637 | wall_index = NINT( a+ 2*b + 3*c1 + 4*c2 ) |
---|
| 638 | |
---|
| 639 | min_inner = MINVAL( nzb_diff_s_inner(nys:nyn,nxl:nxr) ) - 1 |
---|
| 640 | max_outer = MAXVAL( nzb_diff_s_outer(nys:nyn,nxl:nxr) ) - 2 |
---|
| 641 | |
---|
| 642 | !$acc kernels present( nzb_diff_s_inner, nzb_diff_s_outer, pt, rif_wall ) & |
---|
| 643 | !$acc present( u, v, w, wall, wall_flux, z0 ) |
---|
| 644 | !$acc loop |
---|
| 645 | DO i = nxl, nxr |
---|
| 646 | DO j = nys, nyn |
---|
| 647 | !$acc loop vector(32) |
---|
| 648 | DO k = min_inner, max_outer |
---|
| 649 | ! |
---|
| 650 | !-- All subsequent variables are computed for scalar locations |
---|
| 651 | IF ( k >= nzb_diff_s_inner(j,i)-1 .AND. & |
---|
| 652 | k <= nzb_diff_s_outer(j,i)-2 .AND. wall(j,i) /= 0.0 ) THEN |
---|
| 653 | ! |
---|
| 654 | !-- (1) Compute rifs, u_i, v_i, and ws |
---|
| 655 | IF ( k == nzb_diff_s_inner(j,i)-1 ) THEN |
---|
| 656 | kk = nzb_diff_s_inner(j,i)-1 |
---|
| 657 | ELSE |
---|
| 658 | kk = k-1 |
---|
| 659 | ENDIF |
---|
| 660 | rifs = 0.5 * ( rif_wall(k,j,i,wall_index) + & |
---|
| 661 | a * rif_wall(k,j,i+1,1) + b * rif_wall(k,j+1,i,2) + & |
---|
| 662 | c1 * rif_wall(kk,j,i,3) + c2 * rif_wall(kk,j,i,4) & |
---|
| 663 | ) |
---|
| 664 | |
---|
| 665 | u_i = 0.5 * ( u(k,j,i) + u(k,j,i+1) ) |
---|
| 666 | v_i = 0.5 * ( v(k,j,i) + v(k,j+1,i) ) |
---|
| 667 | ws = 0.5 * ( w(k,j,i) + w(k-1,j,i) ) |
---|
| 668 | ! |
---|
| 669 | !-- (2) Compute wall-parallel absolute velocity vel_total and |
---|
| 670 | !-- interpolate appropriate velocity component vel_zp. |
---|
| 671 | vel_total = SQRT( ws**2 + (a+c1) * u_i**2 + (b+c2) * v_i**2 ) |
---|
| 672 | vel_zp = 0.5 * ( a * u_i + b * v_i + (c1+c2) * ws ) |
---|
| 673 | ! |
---|
| 674 | !-- (3) Compute wall friction velocity us_wall |
---|
| 675 | IF ( rifs >= 0.0 ) THEN |
---|
| 676 | |
---|
| 677 | ! |
---|
| 678 | !-- Stable stratification (and neutral) |
---|
| 679 | us_wall = kappa * vel_total / ( LOG( zp / z0(j,i) ) + & |
---|
| 680 | 5.0 * rifs * ( zp - z0(j,i) ) / zp & |
---|
| 681 | ) |
---|
| 682 | ELSE |
---|
| 683 | |
---|
| 684 | ! |
---|
| 685 | !-- Unstable stratification |
---|
| 686 | h1 = SQRT( SQRT( 1.0 - 16.0 * rifs ) ) |
---|
| 687 | h2 = SQRT( SQRT( 1.0 - 16.0 * rifs * z0(j,i) / zp ) ) |
---|
| 688 | |
---|
| 689 | us_wall = kappa * vel_total / ( & |
---|
| 690 | LOG( zp / z0(j,i) ) - & |
---|
| 691 | LOG( ( 1.0 + h1 )**2 * ( 1.0 + h1**2 ) / ( & |
---|
| 692 | ( 1.0 + h2 )**2 * ( 1.0 + h2**2 ) ) ) + & |
---|
| 693 | 2.0 * ( ATAN( h1 ) - ATAN( h2 ) ) & |
---|
| 694 | ) |
---|
| 695 | ENDIF |
---|
| 696 | |
---|
| 697 | ! |
---|
| 698 | !-- Skip step (4) of wall_fluxes, because here rifs is already |
---|
| 699 | !-- available from (1) |
---|
| 700 | ! |
---|
| 701 | !-- (5) Compute wall_flux (u'v', v'u', w'v', or w'u') |
---|
| 702 | |
---|
| 703 | IF ( rifs >= 0.0 ) THEN |
---|
| 704 | |
---|
| 705 | ! |
---|
| 706 | !-- Stable stratification (and neutral) |
---|
| 707 | wall_flux(k,j,i) = kappa * vel_zp / & |
---|
| 708 | ( LOG( zp/z0(j,i) ) + 5.0*rifs * ( zp-z0(j,i) ) / zp ) |
---|
| 709 | ELSE |
---|
| 710 | |
---|
| 711 | ! |
---|
| 712 | !-- Unstable stratification |
---|
| 713 | h1 = SQRT( SQRT( 1.0 - 16.0 * rifs ) ) |
---|
| 714 | h2 = SQRT( SQRT( 1.0 - 16.0 * rifs * z0(j,i) / zp ) ) |
---|
| 715 | |
---|
| 716 | wall_flux(k,j,i) = kappa * vel_zp / ( & |
---|
| 717 | LOG( zp / z0(j,i) ) - & |
---|
| 718 | LOG( ( 1.0 + h1 )**2 * ( 1.0 + h1**2 ) / ( & |
---|
| 719 | ( 1.0 + h2 )**2 * ( 1.0 + h2**2 ) ) ) + & |
---|
| 720 | 2.0 * ( ATAN( h1 ) - ATAN( h2 ) ) & |
---|
| 721 | ) |
---|
| 722 | ENDIF |
---|
| 723 | wall_flux(k,j,i) = - wall_flux(k,j,i) * us_wall |
---|
| 724 | |
---|
| 725 | ENDIF |
---|
| 726 | |
---|
| 727 | ENDDO |
---|
| 728 | ENDDO |
---|
| 729 | ENDDO |
---|
| 730 | !$acc end kernels |
---|
| 731 | |
---|
| 732 | END SUBROUTINE wall_fluxes_e_acc |
---|
| 733 | |
---|
| 734 | |
---|
| 735 | !------------------------------------------------------------------------------! |
---|
[56] | 736 | ! Call for grid point i,j |
---|
| 737 | !------------------------------------------------------------------------------! |
---|
| 738 | SUBROUTINE wall_fluxes_e_ij( i, j, nzb_w, nzt_w, wall_flux, a, b, c1, c2 ) |
---|
| 739 | |
---|
| 740 | USE arrays_3d |
---|
| 741 | USE control_parameters |
---|
| 742 | USE grid_variables |
---|
| 743 | USE indices |
---|
| 744 | USE statistics |
---|
| 745 | |
---|
| 746 | IMPLICIT NONE |
---|
| 747 | |
---|
| 748 | INTEGER :: i, j, k, kk, nzb_w, nzt_w, wall_index |
---|
[187] | 749 | REAL :: a, b, c1, c2, h1, h2, u_i, v_i, us_wall, vel_total, vel_zp, & |
---|
| 750 | ws, zp |
---|
[56] | 751 | |
---|
| 752 | REAL :: rifs |
---|
| 753 | |
---|
| 754 | REAL, DIMENSION(nzb:nzt+1) :: wall_flux |
---|
| 755 | |
---|
| 756 | |
---|
| 757 | zp = 0.5 * ( (a+c1) * dy + (b+c2) * dx ) |
---|
| 758 | wall_flux = 0.0 |
---|
| 759 | wall_index = NINT( a+ 2*b + 3*c1 + 4*c2 ) |
---|
| 760 | |
---|
| 761 | ! |
---|
[187] | 762 | !-- All subsequent variables are computed for scalar locations. |
---|
[56] | 763 | DO k = nzb_w, nzt_w |
---|
| 764 | |
---|
| 765 | ! |
---|
[187] | 766 | !-- (1) Compute rifs, u_i, v_i, and ws |
---|
[56] | 767 | IF ( k == nzb_w ) THEN |
---|
| 768 | kk = nzb_w |
---|
[53] | 769 | ELSE |
---|
[56] | 770 | kk = k-1 |
---|
| 771 | ENDIF |
---|
| 772 | rifs = 0.5 * ( rif_wall(k,j,i,wall_index) + & |
---|
| 773 | a * rif_wall(k,j,i+1,1) + b * rif_wall(k,j+1,i,2) + & |
---|
| 774 | c1 * rif_wall(kk,j,i,3) + c2 * rif_wall(kk,j,i,4) & |
---|
| 775 | ) |
---|
| 776 | |
---|
[187] | 777 | u_i = 0.5 * ( u(k,j,i) + u(k,j,i+1) ) |
---|
| 778 | v_i = 0.5 * ( v(k,j,i) + v(k,j+1,i) ) |
---|
| 779 | ws = 0.5 * ( w(k,j,i) + w(k-1,j,i) ) |
---|
[56] | 780 | ! |
---|
[187] | 781 | !-- (2) Compute wall-parallel absolute velocity vel_total and |
---|
| 782 | !-- interpolate appropriate velocity component vel_zp. |
---|
| 783 | vel_total = SQRT( ws**2 + (a+c1) * u_i**2 + (b+c2) * v_i**2 ) |
---|
| 784 | vel_zp = 0.5 * ( a * u_i + b * v_i + (c1+c2) * ws ) |
---|
| 785 | ! |
---|
| 786 | !-- (3) Compute wall friction velocity us_wall |
---|
| 787 | IF ( rifs >= 0.0 ) THEN |
---|
[56] | 788 | |
---|
| 789 | ! |
---|
[187] | 790 | !-- Stable stratification (and neutral) |
---|
| 791 | us_wall = kappa * vel_total / ( LOG( zp / z0(j,i) ) + & |
---|
| 792 | 5.0 * rifs * ( zp - z0(j,i) ) / zp & |
---|
| 793 | ) |
---|
| 794 | ELSE |
---|
| 795 | |
---|
| 796 | ! |
---|
| 797 | !-- Unstable stratification |
---|
| 798 | h1 = SQRT( SQRT( 1.0 - 16.0 * rifs ) ) |
---|
| 799 | h2 = SQRT( SQRT( 1.0 - 16.0 * rifs * z0(j,i) / zp ) ) |
---|
| 800 | |
---|
| 801 | us_wall = kappa * vel_total / ( & |
---|
| 802 | LOG( zp / z0(j,i) ) - & |
---|
| 803 | LOG( ( 1.0 + h1 )**2 * ( 1.0 + h1**2 ) / ( & |
---|
| 804 | ( 1.0 + h2 )**2 * ( 1.0 + h2**2 ) ) ) + & |
---|
| 805 | 2.0 * ( ATAN( h1 ) - ATAN( h2 ) ) & |
---|
| 806 | ) |
---|
| 807 | ENDIF |
---|
| 808 | |
---|
| 809 | ! |
---|
| 810 | !-- Skip step (4) of wall_fluxes, because here rifs is already |
---|
| 811 | !-- available from (1) |
---|
| 812 | ! |
---|
[56] | 813 | !-- (5) Compute wall_flux (u'v', v'u', w'v', or w'u') |
---|
[187] | 814 | !-- First interpolate the velocity (this is different from |
---|
| 815 | !-- subroutine wall_fluxes because fluxes in subroutine |
---|
| 816 | !-- wall_fluxes_e are defined at scalar locations). |
---|
[56] | 817 | vel_zp = 0.5 * ( a * ( u(k,j,i) + u(k,j,i+1) ) + & |
---|
| 818 | b * ( v(k,j,i) + v(k,j+1,i) ) + & |
---|
| 819 | (c1+c2) * ( w(k,j,i) + w(k-1,j,i) ) & |
---|
| 820 | ) |
---|
| 821 | |
---|
| 822 | IF ( rifs >= 0.0 ) THEN |
---|
| 823 | |
---|
| 824 | ! |
---|
| 825 | !-- Stable stratification (and neutral) |
---|
| 826 | wall_flux(k) = kappa * vel_zp / & |
---|
| 827 | ( LOG( zp/z0(j,i) ) + 5.0*rifs * ( zp-z0(j,i) ) / zp ) |
---|
| 828 | ELSE |
---|
| 829 | |
---|
| 830 | ! |
---|
| 831 | !-- Unstable stratification |
---|
[187] | 832 | h1 = SQRT( SQRT( 1.0 - 16.0 * rifs ) ) |
---|
| 833 | h2 = SQRT( SQRT( 1.0 - 16.0 * rifs * z0(j,i) / zp ) ) |
---|
[56] | 834 | |
---|
[187] | 835 | wall_flux(k) = kappa * vel_zp / ( & |
---|
| 836 | LOG( zp / z0(j,i) ) - & |
---|
| 837 | LOG( ( 1.0 + h1 )**2 * ( 1.0 + h1**2 ) / ( & |
---|
| 838 | ( 1.0 + h2 )**2 * ( 1.0 + h2**2 ) ) ) + & |
---|
| 839 | 2.0 * ( ATAN( h1 ) - ATAN( h2 ) ) & |
---|
| 840 | ) |
---|
[53] | 841 | ENDIF |
---|
[187] | 842 | wall_flux(k) = - wall_flux(k) * us_wall |
---|
[53] | 843 | |
---|
[56] | 844 | ENDDO |
---|
[53] | 845 | |
---|
[56] | 846 | END SUBROUTINE wall_fluxes_e_ij |
---|
| 847 | |
---|
| 848 | END MODULE wall_fluxes_mod |
---|