1 | !> @file vertical_nesting_mod.f90 |
---|
2 | !------------------------------------------------------------------------------! |
---|
3 | ! This file is part of the PALM model system. |
---|
4 | ! |
---|
5 | ! PALM is free software: you can redistribute it and/or modify it under the |
---|
6 | ! terms of the GNU General Public License as published by the Free Software |
---|
7 | ! Foundation, either version 3 of the License, or (at your option) any later |
---|
8 | ! version. |
---|
9 | ! |
---|
10 | ! PALM is distributed in the hope that it will be useful, but WITHOUT ANY |
---|
11 | ! WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR |
---|
12 | ! A PARTICULAR PURPOSE. See the GNU General Public License for more details. |
---|
13 | ! |
---|
14 | ! You should have received a copy of the GNU General Public License along with |
---|
15 | ! PALM. If not, see <http://www.gnu.org/licenses/>. |
---|
16 | ! |
---|
17 | ! Copyright 1997-2020 Leibniz Universitaet Hannover |
---|
18 | ! Copyright 2017-2018 Karlsruhe Institute of Technology |
---|
19 | !------------------------------------------------------------------------------! |
---|
20 | ! |
---|
21 | ! Current revisions: |
---|
22 | ! ----------------- |
---|
23 | ! |
---|
24 | ! |
---|
25 | ! Former revisions: |
---|
26 | ! ----------------- |
---|
27 | ! $Id: vertical_nesting_mod.f90 4457 2020-03-11 14:20:43Z maronga $ |
---|
28 | ! use statement for exchange horiz added |
---|
29 | ! |
---|
30 | ! 4444 2020-03-05 15:59:50Z raasch |
---|
31 | ! bugfix: cpp-directives for serial mode added |
---|
32 | ! |
---|
33 | ! 4360 2020-01-07 11:25:50Z suehring |
---|
34 | ! Corrected "Former revisions" section |
---|
35 | ! |
---|
36 | ! 4102 2019-07-17 16:00:03Z suehring |
---|
37 | ! - Slightly revise setting of boundary conditions at horizontal walls, use |
---|
38 | ! data-structure offset index instead of pre-calculate it for each facing |
---|
39 | ! |
---|
40 | ! 4101 2019-07-17 15:14:26Z gronemeier |
---|
41 | ! remove old_dt |
---|
42 | ! |
---|
43 | ! 3802 2019-03-17 13:33:42Z raasch |
---|
44 | ! unused subroutines commented out |
---|
45 | ! |
---|
46 | ! 3655 2019-01-07 16:51:22Z knoop |
---|
47 | ! unused variables removed |
---|
48 | ! |
---|
49 | ! 2365 2017-08-21 14:59:59Z kanani |
---|
50 | ! Initial revision (SadiqHuq) |
---|
51 | ! |
---|
52 | ! |
---|
53 | ! Description: |
---|
54 | ! ------------ |
---|
55 | !> Module for vertical nesting. |
---|
56 | !> |
---|
57 | !> Definition of parameters and variables for vertical nesting |
---|
58 | !> The horizontal extent of the parent (Coarse Grid) and the child (Fine Grid) |
---|
59 | !> have to be identical. The vertical extent of the FG should be smaller than CG. |
---|
60 | !> Only integer nesting ratio supported. Odd nesting ratio preferred |
---|
61 | !> The code follows MPI-1 standards. The available processors are split into |
---|
62 | !> two groups using MPI_COMM_SPLIT. Exchange of data from CG to FG is called |
---|
63 | !> interpolation. FG initialization by interpolation is done once at the start. |
---|
64 | !> FG boundary conditions are set by interpolated at every timestep. |
---|
65 | !> Exchange of data from CG to FG is called anterpolation, the two-way interaction |
---|
66 | !> occurs at every timestep. |
---|
67 | !> vnest_start_time set in PARIN allows delayed start of the coupling |
---|
68 | !> after spin-up of the CG |
---|
69 | !> |
---|
70 | !> @todo Replace dz(1) appropriatly to account for grid stretching |
---|
71 | !> @todo Ensure that code can be compiled for serial and parallel mode. Please |
---|
72 | !> check the placement of the directive "__parallel". |
---|
73 | !> @todo Add descriptions for all declared variables/parameters, one declaration |
---|
74 | !> statement per variable |
---|
75 | !> @todo Add a descriptive header above each subroutine (see land_surface_model) |
---|
76 | !> @todo FORTRAN language statements must not be used as names for variables |
---|
77 | !> (e.g. if). Please rename it. |
---|
78 | !> @todo Revise code according to PALM Coding Standard |
---|
79 | !------------------------------------------------------------------------------! |
---|
80 | MODULE vertical_nesting_mod |
---|
81 | |
---|
82 | USE exchange_horiz_mod, & |
---|
83 | ONLY: exchange_horiz, exchange_horiz_2d |
---|
84 | |
---|
85 | USE kinds |
---|
86 | |
---|
87 | IMPLICIT NONE |
---|
88 | |
---|
89 | LOGICAL :: vnested = .FALSE. !> set to true if palmrun |
---|
90 | !> provides specific information via stdin |
---|
91 | LOGICAL :: vnest_init = .FALSE. !> set to true when FG is initialized |
---|
92 | REAL(wp) :: vnest_start_time = 9999999.9 !> simulated time when FG should be |
---|
93 | !> initialized. Should be |
---|
94 | !> identical in PARIN & PARIN_N |
---|
95 | |
---|
96 | #if defined( __parallel ) |
---|
97 | |
---|
98 | INTEGER(iwp),DIMENSION(3,2) :: bdims = 0 !> sub-domain grid topology of current PE |
---|
99 | INTEGER(iwp),DIMENSION(3,2) :: bdims_rem = 0 !> sub-domain grid topology of partner PE |
---|
100 | INTEGER(iwp) :: cg_nprocs !> no. of PE in CG. Set by palmrun -Y |
---|
101 | INTEGER(iwp) :: fg_nprocs !> no. of PE in FG. Set by palmrun -Y |
---|
102 | INTEGER(iwp) :: TYPE_VNEST_BC !> derived contiguous data type for interpolation |
---|
103 | INTEGER(iwp) :: TYPE_VNEST_ANTER !> derived contiguous data type for anterpolation |
---|
104 | INTEGER(iwp),DIMENSION(:,:,:),ALLOCATABLE :: c2f_dims_cg !> One CG PE sends data to multiple FG PEs |
---|
105 | !> list of grid-topology of partners |
---|
106 | INTEGER(iwp),DIMENSION(:,:,:),ALLOCATABLE :: f2c_dims_cg !> One CG PE receives data from multiple FG PEs |
---|
107 | !> list of grid-topology of partners |
---|
108 | INTEGER(iwp),DIMENSION(:),ALLOCATABLE :: c2f_dims_fg !> One FG PE sends data to multiple CG PE |
---|
109 | !> list of grid-topology of partner |
---|
110 | INTEGER(iwp),DIMENSION(:),ALLOCATABLE :: f2c_dims_fg !> One FG PE sends data to only one CG PE |
---|
111 | !> list of grid-topology of partner |
---|
112 | |
---|
113 | INTEGER(iwp),DIMENSION(:,:),ALLOCATABLE :: f_rnk_lst !> list storing rank of FG PE denoted by pdims |
---|
114 | INTEGER(iwp),DIMENSION(:,:),ALLOCATABLE :: c_rnk_lst !> list storing rank of CG PE denoted by pdims |
---|
115 | INTEGER(iwp),DIMENSION(3) :: cfratio !> Nesting ratio in x,y and z-directions |
---|
116 | |
---|
117 | INTEGER(iwp) :: nxc !> no. of CG grid points in x-direction |
---|
118 | INTEGER(iwp) :: nxf !> no. of FG grid points in x-direction |
---|
119 | INTEGER(iwp) :: nyc !> no. of CG grid points in y-direction |
---|
120 | INTEGER(iwp) :: nyf !> no. of FG grid points in y-direction |
---|
121 | INTEGER(iwp) :: nzc !> no. of CG grid points in z-direction |
---|
122 | INTEGER(iwp) :: nzf !> no. of FG grid points in z-direction |
---|
123 | INTEGER(iwp) :: ngp_c !> no. of CG grid points in one vertical level |
---|
124 | INTEGER(iwp) :: ngp_f !> no. of FG grid points in one vertical level |
---|
125 | |
---|
126 | INTEGER(iwp) :: n_cell_c !> total no. of CG grid points in a PE |
---|
127 | INTEGER(iwp),DIMENSION(2) :: pdims_partner !> processor topology of partner PE |
---|
128 | INTEGER(iwp) :: target_idex !> temporary variable |
---|
129 | INTEGER(iwp),DIMENSION(2) :: offset !> temporary variable |
---|
130 | INTEGER(iwp),DIMENSION(2) :: map_coord !> temporary variable |
---|
131 | |
---|
132 | REAL(wp) :: dxc !> CG grid pacing in x-direction |
---|
133 | REAL(wp) :: dyc !> FG grid pacing in x-direction |
---|
134 | REAL(wp) :: dxf !> CG grid pacing in y-direction |
---|
135 | REAL(wp) :: dyf !> FG grid pacing in y-direction |
---|
136 | REAL(wp) :: dzc !> CG grid pacing in z-direction |
---|
137 | REAL(wp) :: dzf !> FG grid pacing in z-direction |
---|
138 | REAL(wp) :: dtc !> dt calculated for CG |
---|
139 | REAL(wp) :: dtf !> dt calculated for FG |
---|
140 | |
---|
141 | REAL(wp), DIMENSION(:), ALLOCATABLE :: zuc !> CG vertical u-levels |
---|
142 | REAL(wp), DIMENSION(:), ALLOCATABLE :: zuf !> FG vertical u-levels |
---|
143 | REAL(wp), DIMENSION(:), ALLOCATABLE :: zwc !> CG vertical w-levels |
---|
144 | REAL(wp), DIMENSION(:), ALLOCATABLE :: zwf !> FG vertical w-levels |
---|
145 | REAL(wp), DIMENSION(:,:,:), POINTER :: interpol3d !> pointers to simplify function calls |
---|
146 | REAL(wp), DIMENSION(:,:,:), POINTER :: anterpol3d !> pointers to simplify function calls |
---|
147 | |
---|
148 | |
---|
149 | REAL(wp),DIMENSION(:,:,:), ALLOCATABLE :: work3d !> temporary array for exchange of 3D data |
---|
150 | REAL(wp),DIMENSION(:,:), ALLOCATABLE :: work2dusws !> temporary array for exchange of 2D data |
---|
151 | REAL(wp),DIMENSION(:,:), ALLOCATABLE :: work2dvsws !> temporary array for exchange of 2D data |
---|
152 | REAL(wp),DIMENSION(:,:), ALLOCATABLE :: work2dts !> temporary array for exchange of 2D data |
---|
153 | REAL(wp),DIMENSION(:,:), ALLOCATABLE :: work2dus !> temporary array for exchange of 2D data |
---|
154 | |
---|
155 | SAVE |
---|
156 | |
---|
157 | !-- Public functions |
---|
158 | PUBLIC vnest_init_fine, vnest_boundary_conds, vnest_anterpolate, & |
---|
159 | vnest_boundary_conds_khkm, vnest_anterpolate_e, & |
---|
160 | vnest_init_pegrid_rank, vnest_init_pegrid_domain, vnest_init_grid, & |
---|
161 | vnest_timestep_sync, vnest_deallocate |
---|
162 | |
---|
163 | !-- Public constants and variables |
---|
164 | PUBLIC vnested, vnest_init, vnest_start_time |
---|
165 | |
---|
166 | PRIVATE bdims, bdims_rem, & |
---|
167 | work3d, work2dusws, work2dvsws, work2dts, work2dus, & |
---|
168 | dxc, dyc, dxf, dyf, dzc, dzf, dtc, dtf, & |
---|
169 | zuc, zuf, zwc, zwf, interpol3d, anterpol3d, & |
---|
170 | cg_nprocs, fg_nprocs, & |
---|
171 | c2f_dims_cg, c2f_dims_fg, f2c_dims_cg, f2c_dims_fg, & |
---|
172 | f_rnk_lst, c_rnk_lst, cfratio, pdims_partner, & |
---|
173 | nxc, nxf, nyc, nyf, nzc, nzf, & |
---|
174 | ngp_c, ngp_f, target_idex, n_cell_c, & |
---|
175 | offset, map_coord, TYPE_VNEST_BC, TYPE_VNEST_ANTER |
---|
176 | |
---|
177 | INTERFACE vnest_anterpolate |
---|
178 | MODULE PROCEDURE vnest_anterpolate |
---|
179 | END INTERFACE vnest_anterpolate |
---|
180 | |
---|
181 | INTERFACE vnest_anterpolate_e |
---|
182 | MODULE PROCEDURE vnest_anterpolate_e |
---|
183 | END INTERFACE vnest_anterpolate_e |
---|
184 | |
---|
185 | INTERFACE vnest_boundary_conds |
---|
186 | MODULE PROCEDURE vnest_boundary_conds |
---|
187 | END INTERFACE vnest_boundary_conds |
---|
188 | |
---|
189 | INTERFACE vnest_boundary_conds_khkm |
---|
190 | MODULE PROCEDURE vnest_boundary_conds_khkm |
---|
191 | END INTERFACE vnest_boundary_conds_khkm |
---|
192 | |
---|
193 | INTERFACE vnest_check_parameters |
---|
194 | MODULE PROCEDURE vnest_check_parameters |
---|
195 | END INTERFACE vnest_check_parameters |
---|
196 | |
---|
197 | INTERFACE vnest_deallocate |
---|
198 | MODULE PROCEDURE vnest_deallocate |
---|
199 | END INTERFACE vnest_deallocate |
---|
200 | |
---|
201 | INTERFACE vnest_init_fine |
---|
202 | MODULE PROCEDURE vnest_init_fine |
---|
203 | END INTERFACE vnest_init_fine |
---|
204 | |
---|
205 | INTERFACE vnest_init_grid |
---|
206 | MODULE PROCEDURE vnest_init_grid |
---|
207 | END INTERFACE vnest_init_grid |
---|
208 | |
---|
209 | INTERFACE vnest_init_pegrid_domain |
---|
210 | MODULE PROCEDURE vnest_init_pegrid_domain |
---|
211 | END INTERFACE vnest_init_pegrid_domain |
---|
212 | |
---|
213 | INTERFACE vnest_init_pegrid_rank |
---|
214 | MODULE PROCEDURE vnest_init_pegrid_rank |
---|
215 | END INTERFACE vnest_init_pegrid_rank |
---|
216 | |
---|
217 | INTERFACE vnest_timestep_sync |
---|
218 | MODULE PROCEDURE vnest_timestep_sync |
---|
219 | END INTERFACE vnest_timestep_sync |
---|
220 | |
---|
221 | CONTAINS |
---|
222 | |
---|
223 | |
---|
224 | |
---|
225 | SUBROUTINE vnest_init_fine |
---|
226 | #if defined( __parallel ) |
---|
227 | |
---|
228 | !--------------------------------------------------------------------------------! |
---|
229 | ! Description: |
---|
230 | ! ------------ |
---|
231 | ! At the specified vnest_start_time initialize the Fine Grid based on the coarse |
---|
232 | ! grid values |
---|
233 | !------------------------------------------------------------------------------! |
---|
234 | |
---|
235 | |
---|
236 | USE arrays_3d |
---|
237 | USE control_parameters |
---|
238 | USE grid_variables |
---|
239 | USE indices |
---|
240 | USE interfaces |
---|
241 | USE pegrid |
---|
242 | USE turbulence_closure_mod, & |
---|
243 | ONLY : tcm_diffusivities |
---|
244 | |
---|
245 | |
---|
246 | IMPLICIT NONE |
---|
247 | |
---|
248 | REAL(wp) :: time_since_reference_point_rem |
---|
249 | INTEGER(iwp) :: i |
---|
250 | INTEGER(iwp) :: j |
---|
251 | INTEGER(iwp) :: iif |
---|
252 | INTEGER(iwp) :: jjf |
---|
253 | INTEGER(iwp) :: kkf |
---|
254 | |
---|
255 | |
---|
256 | if (myid ==0 ) print *, ' TIME TO INIT FINE from COARSE', simulated_time |
---|
257 | |
---|
258 | ! |
---|
259 | !-- In case of model termination initiated by the remote model |
---|
260 | !-- (terminate_coupled_remote > 0), initiate termination of the local model. |
---|
261 | !-- The rest of the coupler must then be skipped because it would cause an MPI |
---|
262 | !-- intercomminucation hang. |
---|
263 | !-- If necessary, the coupler will be called at the beginning of the next |
---|
264 | !-- restart run. |
---|
265 | |
---|
266 | IF ( myid == 0) THEN |
---|
267 | CALL MPI_SENDRECV( terminate_coupled, 1, MPI_INTEGER, & |
---|
268 | target_id, 0, & |
---|
269 | terminate_coupled_remote, 1, MPI_INTEGER, & |
---|
270 | target_id, 0, & |
---|
271 | comm_inter, status, ierr ) |
---|
272 | ENDIF |
---|
273 | CALL MPI_BCAST( terminate_coupled_remote, 1, MPI_INTEGER, 0, comm2d, & |
---|
274 | ierr ) |
---|
275 | |
---|
276 | IF ( terminate_coupled_remote > 0 ) THEN |
---|
277 | WRITE( message_string, * ) 'remote model "', & |
---|
278 | TRIM( coupling_mode_remote ), & |
---|
279 | '" terminated', & |
---|
280 | '&with terminate_coupled_remote = ', & |
---|
281 | terminate_coupled_remote, & |
---|
282 | '&local model "', TRIM( coupling_mode ), & |
---|
283 | '" has', & |
---|
284 | '&terminate_coupled = ', & |
---|
285 | terminate_coupled |
---|
286 | CALL message( 'vnest_init_fine', 'PA0310', 1, 2, 0, 6, 0 ) |
---|
287 | RETURN |
---|
288 | ENDIF |
---|
289 | |
---|
290 | |
---|
291 | ! |
---|
292 | !-- Exchange the current simulated time between the models, |
---|
293 | !-- currently just for total_2ding |
---|
294 | IF ( myid == 0 ) THEN |
---|
295 | |
---|
296 | CALL MPI_SEND( time_since_reference_point, 1, MPI_REAL, target_id, & |
---|
297 | 11, comm_inter, ierr ) |
---|
298 | CALL MPI_RECV( time_since_reference_point_rem, 1, MPI_REAL, & |
---|
299 | target_id, 11, comm_inter, status, ierr ) |
---|
300 | |
---|
301 | ENDIF |
---|
302 | |
---|
303 | CALL MPI_BCAST( time_since_reference_point_rem, 1, MPI_REAL, 0, comm2d, & |
---|
304 | ierr ) |
---|
305 | |
---|
306 | |
---|
307 | IF ( coupling_mode == 'vnested_crse' ) THEN |
---|
308 | !-- Send data to fine grid for initialization |
---|
309 | |
---|
310 | offset(1) = ( pdims_partner(1) / pdims(1) ) * pcoord(1) |
---|
311 | offset(2) = ( pdims_partner(2) / pdims(2) ) * pcoord(2) |
---|
312 | |
---|
313 | do j = 0, ( pdims_partner(2) / pdims(2) ) - 1 |
---|
314 | do i = 0, ( pdims_partner(1) / pdims(1) ) - 1 |
---|
315 | map_coord(1) = i+offset(1) |
---|
316 | map_coord(2) = j+offset(2) |
---|
317 | |
---|
318 | target_idex = f_rnk_lst(map_coord(1),map_coord(2)) + numprocs |
---|
319 | |
---|
320 | CALL MPI_RECV( bdims_rem, 6, MPI_INTEGER, target_idex, 10, & |
---|
321 | comm_inter,status, ierr ) |
---|
322 | |
---|
323 | bdims (1,1) = bdims_rem (1,1) / cfratio(1) |
---|
324 | bdims (1,2) = bdims_rem (1,2) / cfratio(1) |
---|
325 | bdims (2,1) = bdims_rem (2,1) / cfratio(2) |
---|
326 | bdims (2,2) = bdims_rem (2,2) / cfratio(2) |
---|
327 | bdims (3,1) = bdims_rem (3,1) |
---|
328 | bdims (3,2) = bdims_rem (3,2) / cfratio(3) |
---|
329 | |
---|
330 | |
---|
331 | CALL MPI_SEND( bdims, 6, MPI_INTEGER, target_idex, 9, & |
---|
332 | comm_inter, ierr ) |
---|
333 | |
---|
334 | |
---|
335 | n_cell_c = (bdims(1,2)-bdims(1,1)+3) * & |
---|
336 | (bdims(2,2)-bdims(2,1)+3) * & |
---|
337 | (bdims(3,2)-bdims(3,1)+3) |
---|
338 | |
---|
339 | CALL MPI_SEND( u( bdims(3,1):bdims(3,2)+2, & |
---|
340 | bdims(2,1)-1:bdims(2,2)+1, & |
---|
341 | bdims(1,1)-1:bdims(1,2)+1),& |
---|
342 | n_cell_c, MPI_REAL, target_idex, & |
---|
343 | 101, comm_inter, ierr) |
---|
344 | |
---|
345 | CALL MPI_SEND( v( bdims(3,1):bdims(3,2)+2, & |
---|
346 | bdims(2,1)-1:bdims(2,2)+1, & |
---|
347 | bdims(1,1)-1:bdims(1,2)+1),& |
---|
348 | n_cell_c, MPI_REAL, target_idex, & |
---|
349 | 102, comm_inter, ierr) |
---|
350 | |
---|
351 | CALL MPI_SEND( w( bdims(3,1):bdims(3,2)+2, & |
---|
352 | bdims(2,1)-1:bdims(2,2)+1, & |
---|
353 | bdims(1,1)-1:bdims(1,2)+1),& |
---|
354 | n_cell_c, MPI_REAL, target_idex, & |
---|
355 | 103, comm_inter, ierr) |
---|
356 | |
---|
357 | CALL MPI_SEND( pt(bdims(3,1):bdims(3,2)+2, & |
---|
358 | bdims(2,1)-1:bdims(2,2)+1, & |
---|
359 | bdims(1,1)-1:bdims(1,2)+1),& |
---|
360 | n_cell_c, MPI_REAL, target_idex, & |
---|
361 | 105, comm_inter, ierr) |
---|
362 | |
---|
363 | IF ( humidity ) THEN |
---|
364 | CALL MPI_SEND( q(bdims(3,1):bdims(3,2)+2, & |
---|
365 | bdims(2,1)-1:bdims(2,2)+1, & |
---|
366 | bdims(1,1)-1:bdims(1,2)+1),& |
---|
367 | n_cell_c, MPI_REAL, target_idex, & |
---|
368 | 116, comm_inter, ierr) |
---|
369 | ENDIF |
---|
370 | |
---|
371 | CALL MPI_SEND( e( bdims(3,1):bdims(3,2)+2, & |
---|
372 | bdims(2,1)-1:bdims(2,2)+1, & |
---|
373 | bdims(1,1)-1:bdims(1,2)+1),& |
---|
374 | n_cell_c, MPI_REAL, target_idex, & |
---|
375 | 104, comm_inter, ierr) |
---|
376 | |
---|
377 | CALL MPI_SEND(kh( bdims(3,1):bdims(3,2)+2, & |
---|
378 | bdims(2,1)-1:bdims(2,2)+1, & |
---|
379 | bdims(1,1)-1:bdims(1,2)+1),& |
---|
380 | n_cell_c, MPI_REAL, target_idex, & |
---|
381 | 106, comm_inter, ierr) |
---|
382 | |
---|
383 | CALL MPI_SEND(km( bdims(3,1):bdims(3,2)+2, & |
---|
384 | bdims(2,1)-1:bdims(2,2)+1, & |
---|
385 | bdims(1,1)-1:bdims(1,2)+1),& |
---|
386 | n_cell_c, MPI_REAL, target_idex, & |
---|
387 | 107, comm_inter, ierr) |
---|
388 | |
---|
389 | !-- Send Surface fluxes |
---|
390 | IF ( use_surface_fluxes ) THEN |
---|
391 | |
---|
392 | n_cell_c = (bdims(1,2)-bdims(1,1)+3) * & |
---|
393 | (bdims(2,2)-bdims(2,1)+3) |
---|
394 | |
---|
395 | ! |
---|
396 | !-- shf and z0 for CG / FG need to initialized in input file or user_code |
---|
397 | !-- TODO |
---|
398 | !-- initialization of usws, vsws, ts and us not vital to vnest FG |
---|
399 | !-- variables are not compatible with the new surface layer module |
---|
400 | ! |
---|
401 | ! CALL MPI_SEND(surf_def_h(0)%usws( bdims(2,1)-1:bdims(2,2)+1, & |
---|
402 | ! bdims(1,1)-1:bdims(1,2)+1),& |
---|
403 | ! n_cell_c, MPI_REAL, target_idex, & |
---|
404 | ! 110, comm_inter, ierr ) |
---|
405 | ! |
---|
406 | ! CALL MPI_SEND(surf_def_h(0)%vsws( bdims(2,1)-1:bdims(2,2)+1, & |
---|
407 | ! bdims(1,1)-1:bdims(1,2)+1),& |
---|
408 | ! n_cell_c, MPI_REAL, target_idex, & |
---|
409 | ! 111, comm_inter, ierr ) |
---|
410 | ! |
---|
411 | ! CALL MPI_SEND(ts ( bdims(2,1)-1:bdims(2,2)+1, & |
---|
412 | ! bdims(1,1)-1:bdims(1,2)+1),& |
---|
413 | ! n_cell_c, MPI_REAL, target_idex, & |
---|
414 | ! 112, comm_inter, ierr ) |
---|
415 | ! |
---|
416 | ! CALL MPI_SEND(us ( bdims(2,1)-1:bdims(2,2)+1, & |
---|
417 | ! bdims(1,1)-1:bdims(1,2)+1),& |
---|
418 | ! n_cell_c, MPI_REAL, target_idex, & |
---|
419 | ! 113, comm_inter, ierr ) |
---|
420 | ! |
---|
421 | ENDIF |
---|
422 | |
---|
423 | |
---|
424 | |
---|
425 | |
---|
426 | end do |
---|
427 | end do |
---|
428 | |
---|
429 | ELSEIF ( coupling_mode == 'vnested_fine' ) THEN |
---|
430 | !-- Receive data from coarse grid for initialization |
---|
431 | |
---|
432 | offset(1) = pcoord(1) / ( pdims(1)/pdims_partner(1) ) |
---|
433 | offset(2) = pcoord(2) / ( pdims(2)/pdims_partner(2) ) |
---|
434 | map_coord(1) = offset(1) |
---|
435 | map_coord(2) = offset(2) |
---|
436 | target_idex = c_rnk_lst(map_coord(1),map_coord(2)) |
---|
437 | |
---|
438 | bdims (1,1) = nxl |
---|
439 | bdims (1,2) = nxr |
---|
440 | bdims (2,1) = nys |
---|
441 | bdims (2,2) = nyn |
---|
442 | bdims (3,1) = nzb |
---|
443 | bdims (3,2) = nzt |
---|
444 | |
---|
445 | CALL MPI_SEND( bdims, 6, MPI_INTEGER, target_idex, 10, & |
---|
446 | comm_inter, ierr ) |
---|
447 | |
---|
448 | CALL MPI_RECV( bdims_rem, 6, MPI_INTEGER, target_idex, 9, & |
---|
449 | comm_inter,status, ierr ) |
---|
450 | |
---|
451 | n_cell_c = (bdims_rem(1,2)-bdims_rem(1,1)+3) * & |
---|
452 | (bdims_rem(2,2)-bdims_rem(2,1)+3) * & |
---|
453 | (bdims_rem(3,2)-bdims_rem(3,1)+3) |
---|
454 | |
---|
455 | ALLOCATE( work3d ( bdims_rem(3,1) :bdims_rem(3,2)+2, & |
---|
456 | bdims_rem(2,1)-1:bdims_rem(2,2)+1, & |
---|
457 | bdims_rem(1,1)-1:bdims_rem(1,2)+1)) |
---|
458 | |
---|
459 | |
---|
460 | CALL MPI_RECV( work3d,n_cell_c, MPI_REAL, target_idex, 101, & |
---|
461 | comm_inter,status, ierr ) |
---|
462 | interpol3d => u |
---|
463 | call interpolate_to_fine_u |
---|
464 | |
---|
465 | CALL MPI_RECV( work3d,n_cell_c, MPI_REAL, target_idex, 102, & |
---|
466 | comm_inter,status, ierr ) |
---|
467 | interpol3d => v |
---|
468 | call interpolate_to_fine_v |
---|
469 | |
---|
470 | CALL MPI_RECV( work3d,n_cell_c, MPI_REAL, target_idex, 103, & |
---|
471 | comm_inter,status, ierr ) |
---|
472 | interpol3d => w |
---|
473 | call interpolate_to_fine_w |
---|
474 | |
---|
475 | CALL MPI_RECV( work3d,n_cell_c, MPI_REAL, target_idex, 105, & |
---|
476 | comm_inter,status, ierr ) |
---|
477 | interpol3d => pt |
---|
478 | call interpolate_to_fine_s |
---|
479 | |
---|
480 | IF ( humidity ) THEN |
---|
481 | CALL MPI_RECV( work3d,n_cell_c, MPI_REAL, target_idex, 116, & |
---|
482 | comm_inter,status, ierr ) |
---|
483 | interpol3d => q |
---|
484 | call interpolate_to_fine_s |
---|
485 | ENDIF |
---|
486 | |
---|
487 | CALL MPI_RECV( work3d,n_cell_c, MPI_REAL, target_idex, 104, & |
---|
488 | comm_inter,status, ierr ) |
---|
489 | interpol3d => e |
---|
490 | call interpolate_to_fine_s |
---|
491 | |
---|
492 | !-- kh,km no target attribute, use of pointer not possible |
---|
493 | CALL MPI_RECV( work3d,n_cell_c, MPI_REAL, target_idex, 106, & |
---|
494 | comm_inter,status, ierr ) |
---|
495 | call interpolate_to_fine_kh |
---|
496 | |
---|
497 | CALL MPI_RECV( work3d,n_cell_c, MPI_REAL, target_idex, 107, & |
---|
498 | comm_inter,status, ierr ) |
---|
499 | call interpolate_to_fine_km |
---|
500 | |
---|
501 | DEALLOCATE( work3d ) |
---|
502 | NULLIFY ( interpol3d ) |
---|
503 | |
---|
504 | !-- Recv Surface Fluxes |
---|
505 | IF ( use_surface_fluxes ) THEN |
---|
506 | n_cell_c = (bdims_rem(1,2)-bdims_rem(1,1)+3) * & |
---|
507 | (bdims_rem(2,2)-bdims_rem(2,1)+3) |
---|
508 | |
---|
509 | ALLOCATE( work2dusws ( bdims_rem(2,1)-1:bdims_rem(2,2)+1, & |
---|
510 | bdims_rem(1,1)-1:bdims_rem(1,2)+1) ) |
---|
511 | ALLOCATE( work2dvsws ( bdims_rem(2,1)-1:bdims_rem(2,2)+1, & |
---|
512 | bdims_rem(1,1)-1:bdims_rem(1,2)+1) ) |
---|
513 | ALLOCATE( work2dts ( bdims_rem(2,1)-1:bdims_rem(2,2)+1, & |
---|
514 | bdims_rem(1,1)-1:bdims_rem(1,2)+1) ) |
---|
515 | ALLOCATE( work2dus ( bdims_rem(2,1)-1:bdims_rem(2,2)+1, & |
---|
516 | bdims_rem(1,1)-1:bdims_rem(1,2)+1) ) |
---|
517 | |
---|
518 | ! |
---|
519 | !-- shf and z0 for CG / FG need to initialized in input file or user_code |
---|
520 | !-- TODO |
---|
521 | !-- initialization of usws, vsws, ts and us not vital to vnest FG |
---|
522 | !-- variables are not compatible with the new surface layer module |
---|
523 | ! |
---|
524 | ! CALL MPI_RECV( work2dusws,n_cell_c, MPI_REAL, target_idex, 110, & |
---|
525 | ! comm_inter,status, ierr ) |
---|
526 | ! |
---|
527 | ! CALL MPI_RECV( work2dvsws,n_cell_c, MPI_REAL, target_idex, 111, & |
---|
528 | ! comm_inter,status, ierr ) |
---|
529 | ! |
---|
530 | ! CALL MPI_RECV( work2dts ,n_cell_c, MPI_REAL, target_idex, 112, & |
---|
531 | ! comm_inter,status, ierr ) |
---|
532 | ! |
---|
533 | ! CALL MPI_RECV( work2dus ,n_cell_c, MPI_REAL, target_idex, 113, & |
---|
534 | ! comm_inter,status, ierr ) |
---|
535 | ! |
---|
536 | ! CALL interpolate_to_fine_flux ( 108 ) |
---|
537 | |
---|
538 | DEALLOCATE( work2dusws ) |
---|
539 | DEALLOCATE( work2dvsws ) |
---|
540 | DEALLOCATE( work2dts ) |
---|
541 | DEALLOCATE( work2dus ) |
---|
542 | ENDIF |
---|
543 | |
---|
544 | IF ( .NOT. constant_diffusion ) THEN |
---|
545 | DO kkf = bdims(3,1)+1,bdims(3,2)+1 |
---|
546 | DO jjf = bdims(2,1),bdims(2,2) |
---|
547 | DO iif = bdims(1,1),bdims(1,2) |
---|
548 | |
---|
549 | IF ( e(kkf,jjf,iif) < 0.0 ) THEN |
---|
550 | e(kkf,jjf,iif) = 1E-15_wp |
---|
551 | END IF |
---|
552 | |
---|
553 | END DO |
---|
554 | END DO |
---|
555 | END DO |
---|
556 | ENDIF |
---|
557 | |
---|
558 | w(nzt+1,:,:) = w(nzt,:,:) |
---|
559 | |
---|
560 | CALL exchange_horiz( u, nbgp ) |
---|
561 | CALL exchange_horiz( v, nbgp ) |
---|
562 | CALL exchange_horiz( w, nbgp ) |
---|
563 | CALL exchange_horiz( pt, nbgp ) |
---|
564 | IF ( .NOT. constant_diffusion ) CALL exchange_horiz( e, nbgp ) |
---|
565 | IF ( humidity ) CALL exchange_horiz( q, nbgp ) |
---|
566 | |
---|
567 | ! |
---|
568 | !-- Velocity boundary conditions at the bottom boundary |
---|
569 | IF ( ibc_uv_b == 0 ) THEN |
---|
570 | u(nzb,:,:) = 0.0_wp |
---|
571 | v(nzb,:,:) = 0.0_wp |
---|
572 | ELSE |
---|
573 | u(nzb,:,:) = u(nzb+1,:,:) |
---|
574 | v(nzb,:,:) = v(nzb+1,:,:) |
---|
575 | END IF |
---|
576 | |
---|
577 | |
---|
578 | w(nzb,:,:) = 0.0_wp |
---|
579 | |
---|
580 | ! |
---|
581 | !-- Temperature boundary conditions at the bottom boundary |
---|
582 | IF ( ibc_pt_b /= 0 ) THEN |
---|
583 | pt(nzb,:,:) = pt(nzb+1,:,:) |
---|
584 | END IF |
---|
585 | |
---|
586 | ! |
---|
587 | !-- Bottom boundary condition for the turbulent kinetic energy |
---|
588 | !-- Generally a Neumann condition with de/dz=0 is assumed |
---|
589 | IF ( .NOT. constant_diffusion ) THEN |
---|
590 | e(nzb,:,:) = e(nzb+1,:,:) |
---|
591 | END IF |
---|
592 | |
---|
593 | ! |
---|
594 | !-- Bottom boundary condition for turbulent diffusion coefficients |
---|
595 | km(nzb,:,:) = km(nzb+1,:,:) |
---|
596 | kh(nzb,:,:) = kh(nzb+1,:,:) |
---|
597 | |
---|
598 | !diffusivities required |
---|
599 | IF ( .NOT. humidity ) THEN |
---|
600 | CALL tcm_diffusivities( pt, pt_reference ) |
---|
601 | ELSE |
---|
602 | CALL tcm_diffusivities( vpt, pt_reference ) |
---|
603 | ENDIF |
---|
604 | |
---|
605 | |
---|
606 | ! |
---|
607 | !-- Reset Fine Grid top Boundary Condition |
---|
608 | !-- At the top of the FG, the scalars always follow Dirichlet condition |
---|
609 | |
---|
610 | ibc_pt_t = 0 |
---|
611 | |
---|
612 | !-- Initialize old time levels |
---|
613 | pt_p = pt; u_p = u; v_p = v; w_p = w |
---|
614 | IF ( .NOT. constant_diffusion ) e_p = e |
---|
615 | IF ( humidity ) THEN |
---|
616 | ibc_q_t = 0 |
---|
617 | q_p = q |
---|
618 | ENDIF |
---|
619 | |
---|
620 | ENDIF |
---|
621 | |
---|
622 | |
---|
623 | if (myid==0) print *, '** Fine Initalized ** simulated_time:', simulated_time |
---|
624 | |
---|
625 | CONTAINS |
---|
626 | |
---|
627 | SUBROUTINE interpolate_to_fine_w |
---|
628 | |
---|
629 | USE arrays_3d |
---|
630 | USE control_parameters |
---|
631 | USE grid_variables |
---|
632 | USE indices |
---|
633 | USE pegrid |
---|
634 | |
---|
635 | |
---|
636 | IMPLICIT NONE |
---|
637 | |
---|
638 | INTEGER(iwp) :: i |
---|
639 | INTEGER(iwp) :: j |
---|
640 | INTEGER(iwp) :: k |
---|
641 | INTEGER(iwp) :: iif |
---|
642 | INTEGER(iwp) :: jjf |
---|
643 | INTEGER(iwp) :: kkf |
---|
644 | INTEGER(iwp) :: nzbottom |
---|
645 | INTEGER(iwp) :: nztop |
---|
646 | INTEGER(iwp) :: bottomx |
---|
647 | INTEGER(iwp) :: bottomy |
---|
648 | INTEGER(iwp) :: bottomz |
---|
649 | INTEGER(iwp) :: topx |
---|
650 | INTEGER(iwp) :: topy |
---|
651 | INTEGER(iwp) :: topz |
---|
652 | REAL(wp) :: eps |
---|
653 | REAL(wp) :: alpha |
---|
654 | REAL(wp) :: eminus |
---|
655 | REAL(wp) :: edot |
---|
656 | REAL(wp) :: eplus |
---|
657 | REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: wprs |
---|
658 | REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: wprf |
---|
659 | |
---|
660 | |
---|
661 | nzbottom = bdims_rem (3,1) |
---|
662 | nztop = bdims_rem (3,2) |
---|
663 | |
---|
664 | ALLOCATE( wprf(nzbottom:nztop, bdims_rem(2,1)-1: bdims_rem(2,2)+1,nxl:nxr) ) |
---|
665 | ALLOCATE( wprs(nzbottom:nztop,nys:nyn,nxl:nxr) ) |
---|
666 | |
---|
667 | |
---|
668 | ! |
---|
669 | !-- Initialisation of the velocity component w |
---|
670 | ! |
---|
671 | !-- Interpolation in x-direction |
---|
672 | DO k = nzbottom, nztop |
---|
673 | DO j = bdims_rem(2,1)-1, bdims_rem(2,2)+1 |
---|
674 | DO i = bdims_rem(1,1),bdims_rem(1,2) |
---|
675 | |
---|
676 | bottomx = (nxf+1)/(nxc+1) * i |
---|
677 | topx = (nxf+1)/(nxc+1) * (i+1) - 1 |
---|
678 | |
---|
679 | DO iif = bottomx, topx |
---|
680 | |
---|
681 | eps = ( iif * dxf + 0.5 * dxf - i * dxc - 0.5 * dxc ) / dxc |
---|
682 | alpha = ( ( dxf / dxc )**2.0 - 1.0 ) / 24.0 |
---|
683 | eminus = eps * ( eps - 1.0 ) / 2.0 + alpha |
---|
684 | edot = ( 1.0 - eps**2.0 ) - 2.0 * alpha |
---|
685 | eplus = eps * ( eps + 1.0 ) / 2.0 + alpha |
---|
686 | |
---|
687 | wprf(k,j,iif) = eminus * work3d(k,j,i-1) & |
---|
688 | + edot * work3d(k,j,i) & |
---|
689 | + eplus * work3d(k,j,i+1) |
---|
690 | END DO |
---|
691 | |
---|
692 | END DO |
---|
693 | END DO |
---|
694 | END DO |
---|
695 | |
---|
696 | ! |
---|
697 | !-- Interpolation in y-direction (quadratic, Clark and Farley) |
---|
698 | DO k = nzbottom, nztop |
---|
699 | DO j = bdims_rem(2,1), bdims_rem(2,2) |
---|
700 | |
---|
701 | bottomy = (nyf+1)/(nyc+1) * j |
---|
702 | topy = (nyf+1)/(nyc+1) * (j+1) - 1 |
---|
703 | |
---|
704 | DO iif = nxl, nxr |
---|
705 | DO jjf = bottomy, topy |
---|
706 | |
---|
707 | eps = ( jjf * dyf + 0.5 * dyf - j * dyc - 0.5 * dyc ) / dyc |
---|
708 | alpha = ( ( dyf / dyc )**2.0 - 1.0 ) / 24.0 |
---|
709 | eminus = eps * ( eps - 1.0 ) / 2.0 + alpha |
---|
710 | edot = ( 1.0 - eps**2.0 ) - 2.0 * alpha |
---|
711 | eplus = eps * ( eps + 1.0 ) / 2.0 + alpha |
---|
712 | |
---|
713 | wprs(k,jjf,iif) = eminus * wprf(k,j-1,iif) & |
---|
714 | + edot * wprf(k,j,iif) & |
---|
715 | + eplus * wprf(k,j+1,iif) |
---|
716 | |
---|
717 | END DO |
---|
718 | END DO |
---|
719 | |
---|
720 | END DO |
---|
721 | END DO |
---|
722 | |
---|
723 | ! |
---|
724 | !-- Interpolation in z-direction (linear) |
---|
725 | |
---|
726 | DO k = nzbottom, nztop-1 |
---|
727 | |
---|
728 | bottomz = (dzc/dzf) * k |
---|
729 | topz = (dzc/dzf) * (k+1) - 1 |
---|
730 | |
---|
731 | DO jjf = nys, nyn |
---|
732 | DO iif = nxl, nxr |
---|
733 | DO kkf = bottomz, topz |
---|
734 | |
---|
735 | w(kkf,jjf,iif) = wprs(k,jjf,iif) + ( zwf(kkf) - zwc(k) ) & |
---|
736 | * ( wprs(k+1,jjf,iif) - wprs(k,jjf,iif) ) / dzc |
---|
737 | |
---|
738 | END DO |
---|
739 | END DO |
---|
740 | END DO |
---|
741 | |
---|
742 | END DO |
---|
743 | |
---|
744 | DO jjf = nys, nyn |
---|
745 | DO iif = nxl, nxr |
---|
746 | |
---|
747 | w(nzt,jjf,iif) = wprs(nztop,jjf,iif) |
---|
748 | |
---|
749 | END DO |
---|
750 | END DO |
---|
751 | ! |
---|
752 | ! w(nzb:nzt+1,nys:nyn,nxl:nxr) = 0 |
---|
753 | |
---|
754 | DEALLOCATE( wprf, wprs ) |
---|
755 | |
---|
756 | END SUBROUTINE interpolate_to_fine_w |
---|
757 | |
---|
758 | SUBROUTINE interpolate_to_fine_u |
---|
759 | |
---|
760 | |
---|
761 | USE arrays_3d |
---|
762 | USE control_parameters |
---|
763 | USE grid_variables |
---|
764 | USE indices |
---|
765 | USE pegrid |
---|
766 | |
---|
767 | |
---|
768 | IMPLICIT NONE |
---|
769 | |
---|
770 | INTEGER(iwp) :: i |
---|
771 | INTEGER(iwp) :: j |
---|
772 | INTEGER(iwp) :: k |
---|
773 | INTEGER(iwp) :: iif |
---|
774 | INTEGER(iwp) :: jjf |
---|
775 | INTEGER(iwp) :: kkf |
---|
776 | INTEGER(iwp) :: nzbottom |
---|
777 | INTEGER(iwp) :: nztop |
---|
778 | INTEGER(iwp) :: bottomx |
---|
779 | INTEGER(iwp) :: bottomy |
---|
780 | INTEGER(iwp) :: bottomz |
---|
781 | INTEGER(iwp) :: topx |
---|
782 | INTEGER(iwp) :: topy |
---|
783 | INTEGER(iwp) :: topz |
---|
784 | REAL(wp) :: eps |
---|
785 | REAL(wp) :: alpha |
---|
786 | REAL(wp) :: eminus |
---|
787 | REAL(wp) :: edot |
---|
788 | REAL(wp) :: eplus |
---|
789 | REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: uprf |
---|
790 | REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: uprs |
---|
791 | |
---|
792 | |
---|
793 | |
---|
794 | nzbottom = bdims_rem (3,1) |
---|
795 | nztop = bdims_rem (3,2) |
---|
796 | |
---|
797 | ALLOCATE( uprf(nzbottom:nztop+2,nys:nyn,bdims_rem(1,1)-1:bdims_rem(1,2)+1) ) |
---|
798 | ALLOCATE( uprs(nzb+1:nzt+1,nys:nyn,bdims_rem(1,1)-1:bdims_rem(1,2)+1) ) |
---|
799 | |
---|
800 | ! |
---|
801 | !-- Initialisation of the velocity component uf |
---|
802 | |
---|
803 | ! |
---|
804 | !-- Interpolation in y-direction (quadratic, Clark and Farley) |
---|
805 | |
---|
806 | DO k = nzbottom, nztop+2 |
---|
807 | DO j = bdims_rem(2,1), bdims_rem(2,2) |
---|
808 | |
---|
809 | bottomy = (nyf+1)/(nyc+1) * j |
---|
810 | topy = (nyf+1)/(nyc+1) * (j+1) - 1 |
---|
811 | |
---|
812 | DO i = bdims_rem(1,1)-1, bdims_rem(1,2)+1 |
---|
813 | DO jjf = bottomy, topy |
---|
814 | |
---|
815 | eps = ( jjf * dyf + 0.5 * dyf - j * dyc - 0.5 * dyc ) / dyc |
---|
816 | alpha = ( ( dyf / dyc )**2.0 - 1.0 ) / 24.0 |
---|
817 | eminus = eps * ( eps - 1.0 ) / 2.0 + alpha |
---|
818 | edot = ( 1.0 - eps**2.0 ) - 2.0 * alpha |
---|
819 | eplus = eps * ( eps + 1.0 ) / 2.0 + alpha |
---|
820 | |
---|
821 | uprf(k,jjf,i) = eminus * work3d(k,j-1,i) & |
---|
822 | + edot * work3d(k,j,i) & |
---|
823 | + eplus * work3d(k,j+1,i) |
---|
824 | |
---|
825 | END DO |
---|
826 | END DO |
---|
827 | |
---|
828 | END DO |
---|
829 | END DO |
---|
830 | |
---|
831 | ! |
---|
832 | !-- Interpolation in z-direction (quadratic, Clark and Farley) |
---|
833 | |
---|
834 | DO k = nzbottom+1, nztop |
---|
835 | |
---|
836 | bottomz = (dzc/dzf) * (k-1) + 1 |
---|
837 | topz = (dzc/dzf) * k |
---|
838 | |
---|
839 | DO jjf = nys, nyn |
---|
840 | DO i = bdims_rem(1,1)-1, bdims_rem(1,2)+1 |
---|
841 | DO kkf = bottomz, topz |
---|
842 | |
---|
843 | eps = ( zuf(kkf) - zuc(k) ) / dzc |
---|
844 | alpha = ( ( dzf / dzc )**2.0 - 1.0 ) / 24.0 |
---|
845 | eminus = eps * ( eps - 1.0 ) / 2.0 + alpha |
---|
846 | edot = ( 1.0 - eps**2.0 ) - 2.0 * alpha |
---|
847 | eplus = eps * ( eps + 1.0 ) / 2.0 + alpha |
---|
848 | |
---|
849 | uprs(kkf,jjf,i) = eminus * uprf(k-1,jjf,i) & |
---|
850 | + edot * uprf(k,jjf,i) & |
---|
851 | + eplus * uprf(k+1,jjf,i) |
---|
852 | |
---|
853 | END DO |
---|
854 | END DO |
---|
855 | END DO |
---|
856 | |
---|
857 | END DO |
---|
858 | |
---|
859 | DO jjf = nys, nyn |
---|
860 | DO i = bdims_rem(1,1)-1, bdims_rem(1,2)+1 |
---|
861 | |
---|
862 | eps = ( zuf(nzt+1) - zuc(nztop+1) ) / dzc |
---|
863 | alpha = ( ( dzf / dzc )**2.0 - 1.0 ) / 24.0 |
---|
864 | eminus = eps * ( eps - 1.0 ) / 2.0 + alpha |
---|
865 | edot = ( 1.0 - eps**2.0 ) - 2.0 * alpha |
---|
866 | eplus = eps * ( eps + 1.0 ) / 2.0 + alpha |
---|
867 | |
---|
868 | uprs(nzt+1,jjf,i) = eminus * uprf(nztop,jjf,i) & |
---|
869 | + edot * uprf(nztop+1,jjf,i) & |
---|
870 | + eplus * uprf(nztop+2,jjf,i) |
---|
871 | |
---|
872 | END DO |
---|
873 | END DO |
---|
874 | |
---|
875 | ! |
---|
876 | !-- Interpolation in x-direction (linear) |
---|
877 | |
---|
878 | DO kkf = nzb+1, nzt+1 |
---|
879 | DO jjf = nys, nyn |
---|
880 | DO i = bdims_rem(1,1), bdims_rem(1,2) |
---|
881 | |
---|
882 | bottomx = (nxf+1)/(nxc+1) * i |
---|
883 | topx = (nxf+1)/(nxc+1) * (i+1) - 1 |
---|
884 | |
---|
885 | DO iif = bottomx, topx |
---|
886 | u(kkf,jjf,iif) = uprs(kkf,jjf,i) + ( iif * dxf - i * dxc ) & |
---|
887 | * ( uprs(kkf,jjf,i+1) - uprs(kkf,jjf,i) ) / dxc |
---|
888 | END DO |
---|
889 | |
---|
890 | END DO |
---|
891 | END DO |
---|
892 | END DO |
---|
893 | ! |
---|
894 | !-- Determination of uf at the bottom boundary |
---|
895 | |
---|
896 | |
---|
897 | |
---|
898 | DEALLOCATE( uprf, uprs ) |
---|
899 | |
---|
900 | END SUBROUTINE interpolate_to_fine_u |
---|
901 | |
---|
902 | |
---|
903 | SUBROUTINE interpolate_to_fine_v |
---|
904 | |
---|
905 | |
---|
906 | USE arrays_3d |
---|
907 | USE control_parameters |
---|
908 | USE grid_variables |
---|
909 | USE indices |
---|
910 | USE pegrid |
---|
911 | |
---|
912 | |
---|
913 | IMPLICIT NONE |
---|
914 | |
---|
915 | INTEGER(iwp) :: i |
---|
916 | INTEGER(iwp) :: j |
---|
917 | INTEGER(iwp) :: k |
---|
918 | INTEGER(iwp) :: iif |
---|
919 | INTEGER(iwp) :: jjf |
---|
920 | INTEGER(iwp) :: kkf |
---|
921 | INTEGER(iwp) :: nzbottom |
---|
922 | INTEGER(iwp) :: nztop |
---|
923 | INTEGER(iwp) :: bottomx |
---|
924 | INTEGER(iwp) :: bottomy |
---|
925 | INTEGER(iwp) :: bottomz |
---|
926 | INTEGER(iwp) :: topx |
---|
927 | INTEGER(iwp) :: topy |
---|
928 | INTEGER(iwp) :: topz |
---|
929 | REAL(wp) :: eps |
---|
930 | REAL(wp) :: alpha |
---|
931 | REAL(wp) :: eminus |
---|
932 | REAL(wp) :: edot |
---|
933 | REAL(wp) :: eplus |
---|
934 | REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: vprs |
---|
935 | REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: vprf |
---|
936 | |
---|
937 | |
---|
938 | nzbottom = bdims_rem (3,1) |
---|
939 | nztop = bdims_rem (3,2) |
---|
940 | |
---|
941 | ALLOCATE( vprf(nzbottom:nztop+2,bdims_rem(2,1)-1:bdims_rem(2,2)+1,nxl:nxr) ) |
---|
942 | ALLOCATE( vprs(nzb+1:nzt+1, bdims_rem(2,1)-1:bdims_rem(2,2)+1,nxl:nxr) ) |
---|
943 | ! |
---|
944 | !-- Initialisation of the velocity component vf |
---|
945 | |
---|
946 | ! |
---|
947 | !-- Interpolation in x-direction (quadratic, Clark and Farley) |
---|
948 | |
---|
949 | DO k = nzbottom, nztop+2 |
---|
950 | DO j = bdims_rem(2,1)-1, bdims_rem(2,2)+1 |
---|
951 | DO i = bdims_rem(1,1), bdims_rem(1,2) |
---|
952 | |
---|
953 | bottomx = (nxf+1)/(nxc+1) * i |
---|
954 | topx = (nxf+1)/(nxc+1) * (i+1) - 1 |
---|
955 | |
---|
956 | DO iif = bottomx, topx |
---|
957 | |
---|
958 | eps = ( iif * dxf + 0.5 * dxf - i * dxc - 0.5 * dxc ) / dxc |
---|
959 | alpha = ( ( dxf / dxc )**2.0 - 1.0 ) / 24.0 |
---|
960 | eminus = eps * ( eps - 1.0 ) / 2.0 + alpha |
---|
961 | edot = ( 1.0 - eps**2.0 ) - 2.0 * alpha |
---|
962 | eplus = eps * ( eps + 1.0 ) / 2.0 + alpha |
---|
963 | |
---|
964 | vprf(k,j,iif) = eminus * work3d(k,j,i-1) & |
---|
965 | + edot * work3d(k,j,i) & |
---|
966 | + eplus * work3d(k,j,i+1) |
---|
967 | |
---|
968 | END DO |
---|
969 | |
---|
970 | END DO |
---|
971 | END DO |
---|
972 | END DO |
---|
973 | |
---|
974 | ! |
---|
975 | !-- Interpolation in z-direction (quadratic, Clark and Farley) |
---|
976 | |
---|
977 | DO k = nzbottom+1, nztop |
---|
978 | |
---|
979 | bottomz = (dzc/dzf) * (k-1) + 1 |
---|
980 | topz = (dzc/dzf) * k |
---|
981 | |
---|
982 | DO j = bdims_rem(2,1)-1, bdims_rem(2,2)+1 |
---|
983 | DO iif = nxl, nxr |
---|
984 | DO kkf = bottomz, topz |
---|
985 | |
---|
986 | eps = ( zuf(kkf) - zuc(k) ) / dzc |
---|
987 | alpha = ( ( dzf / dzc )**2.0 - 1.0 ) / 24.0 |
---|
988 | eminus = eps * ( eps - 1.0 ) / 2.0 + alpha |
---|
989 | edot = ( 1.0 - eps**2.0 ) - 2.0 * alpha |
---|
990 | eplus = eps * ( eps + 1.0 ) / 2.0 + alpha |
---|
991 | |
---|
992 | vprs(kkf,j,iif) = eminus * vprf(k-1,j,iif) & |
---|
993 | + edot * vprf(k,j,iif) & |
---|
994 | + eplus * vprf(k+1,j,iif) |
---|
995 | |
---|
996 | END DO |
---|
997 | END DO |
---|
998 | END DO |
---|
999 | |
---|
1000 | END DO |
---|
1001 | |
---|
1002 | DO j = bdims_rem(2,1)-1, bdims_rem(2,2)+1 |
---|
1003 | DO iif = nxl, nxr |
---|
1004 | |
---|
1005 | eps = ( zuf(nzt+1) - zuc(nztop+1) ) / dzc |
---|
1006 | alpha = ( ( dzf / dzc )**2.0 - 1.0 ) / 24.0 |
---|
1007 | eminus = eps * ( eps - 1.0 ) / 2.0 + alpha |
---|
1008 | edot = ( 1.0 - eps**2.0 ) - 2.0 * alpha |
---|
1009 | eplus = eps * ( eps + 1.0 ) / 2.0 + alpha |
---|
1010 | |
---|
1011 | vprs(nzt+1,j,iif) = eminus * vprf(nztop,j,iif) & |
---|
1012 | + edot * vprf(nztop+1,j,iif) & |
---|
1013 | + eplus * vprf(nztop+2,j,iif) |
---|
1014 | |
---|
1015 | END DO |
---|
1016 | END DO |
---|
1017 | |
---|
1018 | ! |
---|
1019 | !-- Interpolation in y-direction (linear) |
---|
1020 | |
---|
1021 | DO kkf = nzb+1, nzt+1 |
---|
1022 | DO j = bdims_rem(2,1), bdims_rem(2,2) |
---|
1023 | |
---|
1024 | bottomy = (nyf+1)/(nyc+1) * j |
---|
1025 | topy = (nyf+1)/(nyc+1) * (j+1) - 1 |
---|
1026 | |
---|
1027 | DO iif = nxl, nxr |
---|
1028 | DO jjf = bottomy, topy |
---|
1029 | v (kkf,jjf,iif) = vprs(kkf,j,iif) + ( jjf * dyf - j * dyc ) & |
---|
1030 | * ( vprs(kkf,j+1,iif) - vprs(kkf,j,iif) ) / dyc |
---|
1031 | END DO |
---|
1032 | END DO |
---|
1033 | |
---|
1034 | END DO |
---|
1035 | END DO |
---|
1036 | |
---|
1037 | ! |
---|
1038 | !-- Determination of vf at the bottom boundary |
---|
1039 | |
---|
1040 | |
---|
1041 | DEALLOCATE( vprf, vprs ) |
---|
1042 | |
---|
1043 | END SUBROUTINE interpolate_to_fine_v |
---|
1044 | |
---|
1045 | |
---|
1046 | SUBROUTINE interpolate_to_fine_s |
---|
1047 | |
---|
1048 | |
---|
1049 | USE arrays_3d |
---|
1050 | USE control_parameters |
---|
1051 | USE grid_variables |
---|
1052 | USE indices |
---|
1053 | USE pegrid |
---|
1054 | |
---|
1055 | |
---|
1056 | IMPLICIT NONE |
---|
1057 | |
---|
1058 | INTEGER(iwp) :: i |
---|
1059 | INTEGER(iwp) :: j |
---|
1060 | INTEGER(iwp) :: k |
---|
1061 | INTEGER(iwp) :: iif |
---|
1062 | INTEGER(iwp) :: jjf |
---|
1063 | INTEGER(iwp) :: kkf |
---|
1064 | INTEGER(iwp) :: nzbottom |
---|
1065 | INTEGER(iwp) :: nztop |
---|
1066 | INTEGER(iwp) :: bottomx |
---|
1067 | INTEGER(iwp) :: bottomy |
---|
1068 | INTEGER(iwp) :: bottomz |
---|
1069 | INTEGER(iwp) :: topx |
---|
1070 | INTEGER(iwp) :: topy |
---|
1071 | INTEGER(iwp) :: topz |
---|
1072 | REAL(wp) :: eps |
---|
1073 | REAL(wp) :: alpha |
---|
1074 | REAL(wp) :: eminus |
---|
1075 | REAL(wp) :: edot |
---|
1076 | REAL(wp) :: eplus |
---|
1077 | REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: ptprs |
---|
1078 | REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: ptprf |
---|
1079 | |
---|
1080 | |
---|
1081 | nzbottom = bdims_rem (3,1) |
---|
1082 | nztop = bdims_rem (3,2) |
---|
1083 | |
---|
1084 | ALLOCATE( ptprf(nzbottom:nztop+2,bdims_rem(2,1)-1:bdims_rem(2,2)+1,nxl:nxr) ) |
---|
1085 | ALLOCATE( ptprs(nzbottom:nztop+2,nys:nyn,nxl:nxr) ) |
---|
1086 | |
---|
1087 | ! |
---|
1088 | !-- Initialisation of scalar variables |
---|
1089 | |
---|
1090 | ! |
---|
1091 | !-- Interpolation in x-direction (quadratic, Clark and Farley) |
---|
1092 | |
---|
1093 | DO k = nzbottom, nztop+2 |
---|
1094 | DO j = bdims_rem(2,1)-1, bdims_rem(2,2)+1 |
---|
1095 | DO i = bdims_rem(1,1), bdims_rem(1,2) |
---|
1096 | |
---|
1097 | bottomx = (nxf+1)/(nxc+1) * i |
---|
1098 | topx = (nxf+1)/(nxc+1) * (i+1) - 1 |
---|
1099 | |
---|
1100 | DO iif = bottomx, topx |
---|
1101 | |
---|
1102 | eps = ( iif * dxf + 0.5 * dxf - i * dxc - 0.5 * dxc ) / dxc |
---|
1103 | alpha = ( ( dxf / dxc )**2.0 - 1.0 ) / 24.0 |
---|
1104 | eminus = eps * ( eps - 1.0 ) / 2.0 + alpha |
---|
1105 | edot = ( 1.0 - eps**2.0 ) - 2.0 * alpha |
---|
1106 | eplus = eps * ( eps + 1.0 ) / 2.0 + alpha |
---|
1107 | |
---|
1108 | ptprf(k,j,iif) = eminus * work3d(k,j,i-1) & |
---|
1109 | + edot * work3d(k,j,i) & |
---|
1110 | + eplus * work3d(k,j,i+1) |
---|
1111 | END DO |
---|
1112 | |
---|
1113 | END DO |
---|
1114 | END DO |
---|
1115 | END DO |
---|
1116 | |
---|
1117 | ! |
---|
1118 | !-- Interpolation in y-direction (quadratic, Clark and Farley) |
---|
1119 | |
---|
1120 | DO k = nzbottom, nztop+2 |
---|
1121 | DO j = bdims_rem(2,1), bdims_rem(2,2) |
---|
1122 | |
---|
1123 | bottomy = (nyf+1)/(nyc+1) * j |
---|
1124 | topy = (nyf+1)/(nyc+1) * (j+1) - 1 |
---|
1125 | |
---|
1126 | DO iif = nxl, nxr |
---|
1127 | DO jjf = bottomy, topy |
---|
1128 | |
---|
1129 | eps = ( jjf * dyf + 0.5 * dyf - j * dyc - 0.5 * dyc ) / dyc |
---|
1130 | alpha = ( ( dyf / dyc )**2.0 - 1.0 ) / 24.0 |
---|
1131 | eminus = eps * ( eps - 1.0 ) / 2.0 + alpha |
---|
1132 | edot = ( 1.0 - eps**2.0 ) - 2.0 * alpha |
---|
1133 | eplus = eps * ( eps + 1.0 ) / 2.0 + alpha |
---|
1134 | |
---|
1135 | ptprs(k,jjf,iif) = eminus * ptprf(k,j-1,iif) & |
---|
1136 | + edot * ptprf(k,j,iif) & |
---|
1137 | + eplus * ptprf(k,j+1,iif) |
---|
1138 | |
---|
1139 | END DO |
---|
1140 | END DO |
---|
1141 | |
---|
1142 | END DO |
---|
1143 | END DO |
---|
1144 | |
---|
1145 | ! |
---|
1146 | !-- Interpolation in z-direction (quadratic, Clark and Farley) |
---|
1147 | |
---|
1148 | DO k = nzbottom+1, nztop |
---|
1149 | |
---|
1150 | bottomz = (dzc/dzf) * (k-1) + 1 |
---|
1151 | topz = (dzc/dzf) * k |
---|
1152 | |
---|
1153 | DO jjf = nys, nyn |
---|
1154 | DO iif = nxl, nxr |
---|
1155 | DO kkf = bottomz, topz |
---|
1156 | |
---|
1157 | eps = ( zuf(kkf) - zuc(k) ) / dzc |
---|
1158 | alpha = ( ( dzf / dzc )**2.0 - 1.0 ) / 24.0 |
---|
1159 | eminus = eps * ( eps - 1.0 ) / 2.0 + alpha |
---|
1160 | edot = ( 1.0 - eps**2.0 ) - 2.0 * alpha |
---|
1161 | eplus = eps * ( eps + 1.0 ) / 2.0 + alpha |
---|
1162 | |
---|
1163 | interpol3d(kkf,jjf,iif) = eminus * ptprs(k-1,jjf,iif) & |
---|
1164 | + edot * ptprs(k,jjf,iif) & |
---|
1165 | + eplus * ptprs(k+1,jjf,iif) |
---|
1166 | |
---|
1167 | END DO |
---|
1168 | END DO |
---|
1169 | END DO |
---|
1170 | |
---|
1171 | END DO |
---|
1172 | |
---|
1173 | DO jjf = nys, nyn |
---|
1174 | DO iif = nxl, nxr |
---|
1175 | |
---|
1176 | eps = ( zuf(nzt+1) - zuc(nztop+1) ) / dzc |
---|
1177 | alpha = ( ( dzf / dzc )**2.0 - 1.0 ) / 24.0 |
---|
1178 | eminus = eps * ( eps - 1.0 ) / 2.0 + alpha |
---|
1179 | edot = ( 1.0 - eps**2.0 ) - 2.0 * alpha |
---|
1180 | eplus = eps * ( eps + 1.0 ) / 2.0 + alpha |
---|
1181 | |
---|
1182 | interpol3d(nzt+1,jjf,iif) = eminus * ptprs(nztop,jjf,iif) & |
---|
1183 | + edot * ptprs(nztop+1,jjf,iif) & |
---|
1184 | + eplus * ptprs(nztop+2,jjf,iif) |
---|
1185 | |
---|
1186 | END DO |
---|
1187 | END DO |
---|
1188 | |
---|
1189 | |
---|
1190 | DEALLOCATE( ptprf, ptprs ) |
---|
1191 | |
---|
1192 | END SUBROUTINE interpolate_to_fine_s |
---|
1193 | |
---|
1194 | |
---|
1195 | SUBROUTINE interpolate_to_fine_kh |
---|
1196 | |
---|
1197 | |
---|
1198 | USE arrays_3d |
---|
1199 | USE control_parameters |
---|
1200 | USE grid_variables |
---|
1201 | USE indices |
---|
1202 | USE pegrid |
---|
1203 | |
---|
1204 | |
---|
1205 | IMPLICIT NONE |
---|
1206 | |
---|
1207 | INTEGER(iwp) :: i |
---|
1208 | INTEGER(iwp) :: j |
---|
1209 | INTEGER(iwp) :: k |
---|
1210 | INTEGER(iwp) :: iif |
---|
1211 | INTEGER(iwp) :: jjf |
---|
1212 | INTEGER(iwp) :: kkf |
---|
1213 | INTEGER(iwp) :: nzbottom |
---|
1214 | INTEGER(iwp) :: nztop |
---|
1215 | INTEGER(iwp) :: bottomx |
---|
1216 | INTEGER(iwp) :: bottomy |
---|
1217 | INTEGER(iwp) :: bottomz |
---|
1218 | INTEGER(iwp) :: topx |
---|
1219 | INTEGER(iwp) :: topy |
---|
1220 | INTEGER(iwp) :: topz |
---|
1221 | REAL(wp) :: eps |
---|
1222 | REAL(wp) :: alpha |
---|
1223 | REAL(wp) :: eminus |
---|
1224 | REAL(wp) :: edot |
---|
1225 | REAL(wp) :: eplus |
---|
1226 | REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: ptprs |
---|
1227 | REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: ptprf |
---|
1228 | |
---|
1229 | |
---|
1230 | nzbottom = bdims_rem (3,1) |
---|
1231 | nztop = bdims_rem (3,2) |
---|
1232 | ! nztop = blk_dim_rem (3,2)+1 |
---|
1233 | |
---|
1234 | |
---|
1235 | ALLOCATE( ptprf(nzbottom:nztop+2,bdims_rem(2,1)-1:bdims_rem(2,2)+1,nxl:nxr) ) |
---|
1236 | ALLOCATE( ptprs(nzbottom:nztop+2,nys:nyn,nxl:nxr) ) |
---|
1237 | |
---|
1238 | |
---|
1239 | ! |
---|
1240 | !-- Initialisation of scalar variables |
---|
1241 | |
---|
1242 | ! |
---|
1243 | !-- Interpolation in x-direction (quadratic, Clark and Farley) |
---|
1244 | |
---|
1245 | DO k = nzbottom, nztop+2 |
---|
1246 | DO j = bdims_rem(2,1)-1, bdims_rem(2,2)+1 |
---|
1247 | DO i = bdims_rem(1,1), bdims_rem(1,2) |
---|
1248 | |
---|
1249 | bottomx = (nxf+1)/(nxc+1) * i |
---|
1250 | topx = (nxf+1)/(nxc+1) * (i+1) - 1 |
---|
1251 | |
---|
1252 | DO iif = bottomx, topx |
---|
1253 | |
---|
1254 | eps = ( iif * dxf + 0.5 * dxf - i * dxc - 0.5 * dxc ) / dxc |
---|
1255 | alpha = ( ( dxf / dxc )**2.0 - 1.0 ) / 24.0 |
---|
1256 | eminus = eps * ( eps - 1.0 ) / 2.0 + alpha |
---|
1257 | edot = ( 1.0 - eps**2.0 ) - 2.0 * alpha |
---|
1258 | eplus = eps * ( eps + 1.0 ) / 2.0 + alpha |
---|
1259 | |
---|
1260 | ptprf(k,j,iif) = eminus * work3d(k,j,i-1) & |
---|
1261 | + edot * work3d(k,j,i) & |
---|
1262 | + eplus * work3d(k,j,i+1) |
---|
1263 | END DO |
---|
1264 | |
---|
1265 | END DO |
---|
1266 | END DO |
---|
1267 | END DO |
---|
1268 | |
---|
1269 | ! |
---|
1270 | !-- Interpolation in y-direction (quadratic, Clark and Farley) |
---|
1271 | |
---|
1272 | DO k = nzbottom, nztop+2 |
---|
1273 | DO j = bdims_rem(2,1), bdims_rem(2,2) |
---|
1274 | |
---|
1275 | bottomy = (nyf+1)/(nyc+1) * j |
---|
1276 | topy = (nyf+1)/(nyc+1) * (j+1) - 1 |
---|
1277 | |
---|
1278 | DO iif = nxl, nxr |
---|
1279 | DO jjf = bottomy, topy |
---|
1280 | |
---|
1281 | eps = ( jjf * dyf + 0.5 * dyf - j * dyc - 0.5 * dyc ) / dyc |
---|
1282 | alpha = ( ( dyf / dyc )**2.0 - 1.0 ) / 24.0 |
---|
1283 | eminus = eps * ( eps - 1.0 ) / 2.0 + alpha |
---|
1284 | edot = ( 1.0 - eps**2.0 ) - 2.0 * alpha |
---|
1285 | eplus = eps * ( eps + 1.0 ) / 2.0 + alpha |
---|
1286 | |
---|
1287 | ptprs(k,jjf,iif) = eminus * ptprf(k,j-1,iif) & |
---|
1288 | + edot * ptprf(k,j,iif) & |
---|
1289 | + eplus * ptprf(k,j+1,iif) |
---|
1290 | |
---|
1291 | END DO |
---|
1292 | END DO |
---|
1293 | |
---|
1294 | END DO |
---|
1295 | END DO |
---|
1296 | |
---|
1297 | ! |
---|
1298 | !-- Interpolation in z-direction (quadratic, Clark and Farley) |
---|
1299 | |
---|
1300 | DO k = nzbottom+1, nztop |
---|
1301 | |
---|
1302 | bottomz = (dzc/dzf) * (k-1) + 1 |
---|
1303 | topz = (dzc/dzf) * k |
---|
1304 | |
---|
1305 | DO jjf = nys, nyn |
---|
1306 | DO iif = nxl, nxr |
---|
1307 | DO kkf = bottomz, topz |
---|
1308 | |
---|
1309 | eps = ( zuf(kkf) - zuc(k) ) / dzc |
---|
1310 | alpha = ( ( dzf / dzc )**2.0 - 1.0 ) / 24.0 |
---|
1311 | eminus = eps * ( eps - 1.0 ) / 2.0 + alpha |
---|
1312 | edot = ( 1.0 - eps**2.0 ) - 2.0 * alpha |
---|
1313 | eplus = eps * ( eps + 1.0 ) / 2.0 + alpha |
---|
1314 | |
---|
1315 | kh(kkf,jjf,iif) = eminus * ptprs(k-1,jjf,iif) & |
---|
1316 | + edot * ptprs(k,jjf,iif) & |
---|
1317 | + eplus * ptprs(k+1,jjf,iif) |
---|
1318 | |
---|
1319 | END DO |
---|
1320 | END DO |
---|
1321 | END DO |
---|
1322 | |
---|
1323 | END DO |
---|
1324 | |
---|
1325 | DO jjf = nys, nyn |
---|
1326 | DO iif = nxl, nxr |
---|
1327 | |
---|
1328 | eps = ( zuf(nzt+1) - zuc(nztop+1) ) / dzc |
---|
1329 | alpha = ( ( dzf / dzc )**2.0 - 1.0 ) / 24.0 |
---|
1330 | eminus = eps * ( eps - 1.0 ) / 2.0 + alpha |
---|
1331 | edot = ( 1.0 - eps**2.0 ) - 2.0 * alpha |
---|
1332 | eplus = eps * ( eps + 1.0 ) / 2.0 + alpha |
---|
1333 | |
---|
1334 | kh(nzt+1,jjf,iif) = eminus * ptprs(nztop,jjf,iif) & |
---|
1335 | + edot * ptprs(nztop+1,jjf,iif) & |
---|
1336 | + eplus * ptprs(nztop+2,jjf,iif) |
---|
1337 | |
---|
1338 | END DO |
---|
1339 | END DO |
---|
1340 | |
---|
1341 | |
---|
1342 | DEALLOCATE( ptprf, ptprs ) |
---|
1343 | |
---|
1344 | END SUBROUTINE interpolate_to_fine_kh |
---|
1345 | |
---|
1346 | SUBROUTINE interpolate_to_fine_km |
---|
1347 | |
---|
1348 | |
---|
1349 | USE arrays_3d |
---|
1350 | USE control_parameters |
---|
1351 | USE grid_variables |
---|
1352 | USE indices |
---|
1353 | USE pegrid |
---|
1354 | |
---|
1355 | |
---|
1356 | IMPLICIT NONE |
---|
1357 | |
---|
1358 | INTEGER(iwp) :: i |
---|
1359 | INTEGER(iwp) :: j |
---|
1360 | INTEGER(iwp) :: k |
---|
1361 | INTEGER(iwp) :: iif |
---|
1362 | INTEGER(iwp) :: jjf |
---|
1363 | INTEGER(iwp) :: kkf |
---|
1364 | INTEGER(iwp) :: nzbottom |
---|
1365 | INTEGER(iwp) :: nztop |
---|
1366 | INTEGER(iwp) :: bottomx |
---|
1367 | INTEGER(iwp) :: bottomy |
---|
1368 | INTEGER(iwp) :: bottomz |
---|
1369 | INTEGER(iwp) :: topx |
---|
1370 | INTEGER(iwp) :: topy |
---|
1371 | INTEGER(iwp) :: topz |
---|
1372 | REAL(wp) :: eps |
---|
1373 | REAL(wp) :: alpha |
---|
1374 | REAL(wp) :: eminus |
---|
1375 | REAL(wp) :: edot |
---|
1376 | REAL(wp) :: eplus |
---|
1377 | REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: ptprs |
---|
1378 | REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: ptprf |
---|
1379 | |
---|
1380 | |
---|
1381 | nzbottom = bdims_rem (3,1) |
---|
1382 | nztop = bdims_rem (3,2) |
---|
1383 | ! nztop = blk_dim_rem (3,2)+1 |
---|
1384 | |
---|
1385 | |
---|
1386 | ALLOCATE( ptprf(nzbottom:nztop+2,bdims_rem(2,1)-1:bdims_rem(2,2)+1,nxl:nxr) ) |
---|
1387 | ALLOCATE( ptprs(nzbottom:nztop+2,nys:nyn,nxl:nxr) ) |
---|
1388 | |
---|
1389 | |
---|
1390 | ! |
---|
1391 | !-- Initialisation of scalar variables |
---|
1392 | |
---|
1393 | ! |
---|
1394 | !-- Interpolation in x-direction (quadratic, Clark and Farley) |
---|
1395 | |
---|
1396 | DO k = nzbottom, nztop+2 |
---|
1397 | DO j = bdims_rem(2,1)-1, bdims_rem(2,2)+1 |
---|
1398 | DO i = bdims_rem(1,1), bdims_rem(1,2) |
---|
1399 | |
---|
1400 | bottomx = (nxf+1)/(nxc+1) * i |
---|
1401 | topx = (nxf+1)/(nxc+1) * (i+1) - 1 |
---|
1402 | |
---|
1403 | DO iif = bottomx, topx |
---|
1404 | |
---|
1405 | eps = ( iif * dxf + 0.5 * dxf - i * dxc - 0.5 * dxc ) / dxc |
---|
1406 | alpha = ( ( dxf / dxc )**2.0 - 1.0 ) / 24.0 |
---|
1407 | eminus = eps * ( eps - 1.0 ) / 2.0 + alpha |
---|
1408 | edot = ( 1.0 - eps**2.0 ) - 2.0 * alpha |
---|
1409 | eplus = eps * ( eps + 1.0 ) / 2.0 + alpha |
---|
1410 | |
---|
1411 | ptprf(k,j,iif) = eminus * work3d(k,j,i-1) & |
---|
1412 | + edot * work3d(k,j,i) & |
---|
1413 | + eplus * work3d(k,j,i+1) |
---|
1414 | END DO |
---|
1415 | |
---|
1416 | END DO |
---|
1417 | END DO |
---|
1418 | END DO |
---|
1419 | |
---|
1420 | ! |
---|
1421 | !-- Interpolation in y-direction (quadratic, Clark and Farley) |
---|
1422 | |
---|
1423 | DO k = nzbottom, nztop+2 |
---|
1424 | DO j = bdims_rem(2,1), bdims_rem(2,2) |
---|
1425 | |
---|
1426 | bottomy = (nyf+1)/(nyc+1) * j |
---|
1427 | topy = (nyf+1)/(nyc+1) * (j+1) - 1 |
---|
1428 | |
---|
1429 | DO iif = nxl, nxr |
---|
1430 | DO jjf = bottomy, topy |
---|
1431 | |
---|
1432 | eps = ( jjf * dyf + 0.5 * dyf - j * dyc - 0.5 * dyc ) / dyc |
---|
1433 | alpha = ( ( dyf / dyc )**2.0 - 1.0 ) / 24.0 |
---|
1434 | eminus = eps * ( eps - 1.0 ) / 2.0 + alpha |
---|
1435 | edot = ( 1.0 - eps**2.0 ) - 2.0 * alpha |
---|
1436 | eplus = eps * ( eps + 1.0 ) / 2.0 + alpha |
---|
1437 | |
---|
1438 | ptprs(k,jjf,iif) = eminus * ptprf(k,j-1,iif) & |
---|
1439 | + edot * ptprf(k,j,iif) & |
---|
1440 | + eplus * ptprf(k,j+1,iif) |
---|
1441 | |
---|
1442 | END DO |
---|
1443 | END DO |
---|
1444 | |
---|
1445 | END DO |
---|
1446 | END DO |
---|
1447 | |
---|
1448 | ! |
---|
1449 | !-- Interpolation in z-direction (quadratic, Clark and Farley) |
---|
1450 | |
---|
1451 | DO k = nzbottom+1, nztop |
---|
1452 | |
---|
1453 | bottomz = (dzc/dzf) * (k-1) + 1 |
---|
1454 | topz = (dzc/dzf) * k |
---|
1455 | |
---|
1456 | DO jjf = nys, nyn |
---|
1457 | DO iif = nxl, nxr |
---|
1458 | DO kkf = bottomz, topz |
---|
1459 | |
---|
1460 | eps = ( zuf(kkf) - zuc(k) ) / dzc |
---|
1461 | alpha = ( ( dzf / dzc )**2.0 - 1.0 ) / 24.0 |
---|
1462 | eminus = eps * ( eps - 1.0 ) / 2.0 + alpha |
---|
1463 | edot = ( 1.0 - eps**2.0 ) - 2.0 * alpha |
---|
1464 | eplus = eps * ( eps + 1.0 ) / 2.0 + alpha |
---|
1465 | |
---|
1466 | km(kkf,jjf,iif) = eminus * ptprs(k-1,jjf,iif) & |
---|
1467 | + edot * ptprs(k,jjf,iif) & |
---|
1468 | + eplus * ptprs(k+1,jjf,iif) |
---|
1469 | |
---|
1470 | END DO |
---|
1471 | END DO |
---|
1472 | END DO |
---|
1473 | |
---|
1474 | END DO |
---|
1475 | |
---|
1476 | DO jjf = nys, nyn |
---|
1477 | DO iif = nxl, nxr |
---|
1478 | |
---|
1479 | eps = ( zuf(nzt+1) - zuc(nztop+1) ) / dzc |
---|
1480 | alpha = ( ( dzf / dzc )**2.0 - 1.0 ) / 24.0 |
---|
1481 | eminus = eps * ( eps - 1.0 ) / 2.0 + alpha |
---|
1482 | edot = ( 1.0 - eps**2.0 ) - 2.0 * alpha |
---|
1483 | eplus = eps * ( eps + 1.0 ) / 2.0 + alpha |
---|
1484 | |
---|
1485 | km(nzt+1,jjf,iif) = eminus * ptprs(nztop,jjf,iif) & |
---|
1486 | + edot * ptprs(nztop+1,jjf,iif) & |
---|
1487 | + eplus * ptprs(nztop+2,jjf,iif) |
---|
1488 | |
---|
1489 | END DO |
---|
1490 | END DO |
---|
1491 | |
---|
1492 | |
---|
1493 | DEALLOCATE( ptprf, ptprs ) |
---|
1494 | |
---|
1495 | END SUBROUTINE interpolate_to_fine_km |
---|
1496 | |
---|
1497 | |
---|
1498 | |
---|
1499 | |
---|
1500 | ! SUBROUTINE interpolate_to_fine_flux |
---|
1501 | ! |
---|
1502 | ! |
---|
1503 | ! USE arrays_3d |
---|
1504 | ! USE control_parameters |
---|
1505 | ! USE grid_variables |
---|
1506 | ! USE indices |
---|
1507 | ! USE pegrid |
---|
1508 | ! |
---|
1509 | ! |
---|
1510 | ! IMPLICIT NONE |
---|
1511 | ! |
---|
1512 | ! INTEGER(iwp) :: i |
---|
1513 | ! INTEGER(iwp) :: j |
---|
1514 | ! INTEGER(iwp) :: iif |
---|
1515 | ! INTEGER(iwp) :: jjf |
---|
1516 | ! INTEGER(iwp) :: bottomx |
---|
1517 | ! INTEGER(iwp) :: bottomy |
---|
1518 | ! INTEGER(iwp) :: topx |
---|
1519 | ! INTEGER(iwp) :: topy |
---|
1520 | ! REAL(wp) :: eps |
---|
1521 | ! REAL(wp) :: alpha |
---|
1522 | ! REAL(wp) :: eminus |
---|
1523 | ! REAL(wp) :: edot |
---|
1524 | ! REAL(wp) :: eplus |
---|
1525 | ! REAL(wp), DIMENSION(:,:), ALLOCATABLE :: uswspr |
---|
1526 | ! REAL(wp), DIMENSION(:,:), ALLOCATABLE :: vswspr |
---|
1527 | ! REAL(wp), DIMENSION(:,:), ALLOCATABLE :: tspr |
---|
1528 | ! REAL(wp), DIMENSION(:,:), ALLOCATABLE :: uspr |
---|
1529 | ! |
---|
1530 | ! ALLOCATE( uswspr(bdims_rem(2,1)-1:bdims_rem(2,2)+1,nxl:nxr) ) |
---|
1531 | ! ALLOCATE( vswspr(bdims_rem(2,1)-1:bdims_rem(2,2)+1,nxl:nxr) ) |
---|
1532 | ! ALLOCATE( tspr (bdims_rem(2,1)-1:bdims_rem(2,2)+1,nxl:nxr) ) |
---|
1533 | ! ALLOCATE( uspr (bdims_rem(2,1)-1:bdims_rem(2,2)+1,nxl:nxr) ) |
---|
1534 | ! |
---|
1535 | ! ! |
---|
1536 | ! !-- Initialisation of scalar variables (2D) |
---|
1537 | ! |
---|
1538 | ! ! |
---|
1539 | ! !-- Interpolation in x-direction (quadratic, Clark and Farley) |
---|
1540 | ! |
---|
1541 | ! DO j = bdims_rem(2,1)-1, bdims_rem(2,2)+1 |
---|
1542 | ! DO i = bdims_rem(1,1), bdims_rem(1,2) |
---|
1543 | ! |
---|
1544 | ! bottomx = (nxf+1)/(nxc+1) * i |
---|
1545 | ! topx = (nxf+1)/(nxc+1) * (i+1) - 1 |
---|
1546 | ! |
---|
1547 | ! DO iif = bottomx, topx |
---|
1548 | ! |
---|
1549 | ! eps = ( iif * dxf + 0.5 * dxf - i * dxc - 0.5 * dxc ) / dxc |
---|
1550 | ! alpha = ( ( dxf / dxc )**2.0 - 1.0 ) / 24.0 |
---|
1551 | ! eminus = eps * ( eps - 1.0 ) / 2.0 + alpha |
---|
1552 | ! edot = ( 1.0 - eps**2.0 ) - 2.0 * alpha |
---|
1553 | ! eplus = eps * ( eps + 1.0 ) / 2.0 + alpha |
---|
1554 | ! |
---|
1555 | ! uswspr(j,iif) = eminus * work2dusws(j,i-1) & |
---|
1556 | ! + edot * work2dusws(j,i) & |
---|
1557 | ! + eplus * work2dusws(j,i+1) |
---|
1558 | ! |
---|
1559 | ! vswspr(j,iif) = eminus * work2dvsws(j,i-1) & |
---|
1560 | ! + edot * work2dvsws(j,i) & |
---|
1561 | ! + eplus * work2dvsws(j,i+1) |
---|
1562 | ! |
---|
1563 | ! tspr(j,iif) = eminus * work2dts(j,i-1) & |
---|
1564 | ! + edot * work2dts(j,i) & |
---|
1565 | ! + eplus * work2dts(j,i+1) |
---|
1566 | ! |
---|
1567 | ! uspr(j,iif) = eminus * work2dus(j,i-1) & |
---|
1568 | ! + edot * work2dus(j,i) & |
---|
1569 | ! + eplus * work2dus(j,i+1) |
---|
1570 | ! |
---|
1571 | ! END DO |
---|
1572 | ! |
---|
1573 | ! END DO |
---|
1574 | ! END DO |
---|
1575 | ! |
---|
1576 | ! ! |
---|
1577 | ! !-- Interpolation in y-direction (quadratic, Clark and Farley) |
---|
1578 | ! |
---|
1579 | ! DO j = bdims_rem(2,1), bdims_rem(2,2) |
---|
1580 | ! |
---|
1581 | ! bottomy = (nyf+1)/(nyc+1) * j |
---|
1582 | ! topy = (nyf+1)/(nyc+1) * (j+1) - 1 |
---|
1583 | ! |
---|
1584 | ! DO iif = nxl, nxr |
---|
1585 | ! DO jjf = bottomy, topy |
---|
1586 | ! |
---|
1587 | ! eps = ( jjf * dyf + 0.5 * dyf - j * dyc - 0.5 * dyc ) / dyc |
---|
1588 | ! alpha = ( ( dyf / dyc )**2.0 - 1.0 ) / 24.0 |
---|
1589 | ! eminus = eps * ( eps - 1.0 ) / 2.0 + alpha |
---|
1590 | ! edot = ( 1.0 - eps**2.0 ) - 2.0 * alpha |
---|
1591 | ! eplus = eps * ( eps + 1.0 ) / 2.0 + alpha |
---|
1592 | ! |
---|
1593 | !! |
---|
1594 | !!-- TODO |
---|
1595 | !-- variables are not compatible with the new surface layer module |
---|
1596 | ! |
---|
1597 | ! surf_def_h(0)%usws(jjf,iif) = eminus * uswspr(j-1,if) & |
---|
1598 | ! + edot * uswspr(j,iif) & |
---|
1599 | ! + eplus * uswspr(j+1,iif) |
---|
1600 | ! |
---|
1601 | ! surf_def_h(0)%vsws(jjf,iif) = eminus * vswspr(j-1,if) & |
---|
1602 | ! + edot * vswspr(j,iif) & |
---|
1603 | ! + eplus * vswspr(j+1,iif) |
---|
1604 | ! |
---|
1605 | ! ts(jjf,iif) = eminus * tspr(j-1,if) & |
---|
1606 | ! + edot * tspr(j,iif) & |
---|
1607 | ! + eplus * tspr(j+1,iif) |
---|
1608 | ! |
---|
1609 | ! us(jjf,iif) = eminus * uspr(j-1,if) & |
---|
1610 | ! + edot * uspr(j,iif) & |
---|
1611 | ! + eplus * uspr(j+1,iif) |
---|
1612 | ! |
---|
1613 | ! END DO |
---|
1614 | ! END DO |
---|
1615 | ! |
---|
1616 | ! END DO |
---|
1617 | ! |
---|
1618 | ! |
---|
1619 | ! DEALLOCATE( uswspr, vswspr ) |
---|
1620 | ! DEALLOCATE( tspr, uspr ) |
---|
1621 | ! |
---|
1622 | ! |
---|
1623 | ! END SUBROUTINE interpolate_to_fine_flux |
---|
1624 | |
---|
1625 | |
---|
1626 | #endif |
---|
1627 | END SUBROUTINE vnest_init_fine |
---|
1628 | |
---|
1629 | SUBROUTINE vnest_boundary_conds |
---|
1630 | #if defined( __parallel ) |
---|
1631 | !------------------------------------------------------------------------------! |
---|
1632 | ! Description: |
---|
1633 | ! ------------ |
---|
1634 | ! Boundary conditions for the prognostic quantities. |
---|
1635 | ! One additional bottom boundary condition is applied for the TKE (=(u*)**2) |
---|
1636 | ! in prandtl_fluxes. The cyclic lateral boundary conditions are implicitly |
---|
1637 | ! handled in routine exchange_horiz. Pressure boundary conditions are |
---|
1638 | ! explicitly set in routines pres, poisfft, poismg and sor. |
---|
1639 | !------------------------------------------------------------------------------! |
---|
1640 | |
---|
1641 | USE arrays_3d |
---|
1642 | USE control_parameters |
---|
1643 | USE grid_variables |
---|
1644 | USE indices |
---|
1645 | USE pegrid |
---|
1646 | |
---|
1647 | |
---|
1648 | IMPLICIT NONE |
---|
1649 | |
---|
1650 | INTEGER(iwp) :: i |
---|
1651 | INTEGER(iwp) :: j |
---|
1652 | INTEGER(iwp) :: iif |
---|
1653 | INTEGER(iwp) :: jjf |
---|
1654 | |
---|
1655 | |
---|
1656 | ! |
---|
1657 | !-- vnest: top boundary conditions |
---|
1658 | |
---|
1659 | IF ( coupling_mode == 'vnested_crse' ) THEN |
---|
1660 | !-- Send data to fine grid for TOP BC |
---|
1661 | |
---|
1662 | offset(1) = ( pdims_partner(1) / pdims(1) ) * pcoord(1) |
---|
1663 | offset(2) = ( pdims_partner(2) / pdims(2) ) * pcoord(2) |
---|
1664 | |
---|
1665 | do j = 0, ( pdims_partner(2) / pdims(2) ) - 1 |
---|
1666 | do i = 0, ( pdims_partner(1) / pdims(1) ) - 1 |
---|
1667 | map_coord(1) = i+offset(1) |
---|
1668 | map_coord(2) = j+offset(2) |
---|
1669 | |
---|
1670 | target_idex = f_rnk_lst(map_coord(1),map_coord(2)) + numprocs |
---|
1671 | |
---|
1672 | bdims (1,1) = c2f_dims_cg (0,map_coord(1),map_coord(2)) |
---|
1673 | bdims (1,2) = c2f_dims_cg (1,map_coord(1),map_coord(2)) |
---|
1674 | bdims (2,1) = c2f_dims_cg (2,map_coord(1),map_coord(2)) |
---|
1675 | bdims (2,2) = c2f_dims_cg (3,map_coord(1),map_coord(2)) |
---|
1676 | bdims (3,1) = c2f_dims_cg (4,map_coord(1),map_coord(2)) |
---|
1677 | bdims (3,2) = c2f_dims_cg (5,map_coord(1),map_coord(2)) |
---|
1678 | |
---|
1679 | n_cell_c = ( (bdims(1,2)-bdims(1,1)) + 3 ) * & |
---|
1680 | ( (bdims(2,2)-bdims(2,1)) + 3 ) * & |
---|
1681 | ( (bdims(3,2)-bdims(3,1)) + 1 ) |
---|
1682 | |
---|
1683 | CALL MPI_SEND(u (bdims(3,1), bdims(2,1)-1, bdims(1,1)-1), & |
---|
1684 | 1, TYPE_VNEST_BC, target_idex, & |
---|
1685 | 201, comm_inter, ierr) |
---|
1686 | |
---|
1687 | CALL MPI_SEND(v(bdims(3,1), bdims(2,1)-1, bdims(1,1)-1),& |
---|
1688 | 1, TYPE_VNEST_BC, target_idex, & |
---|
1689 | 202, comm_inter, ierr) |
---|
1690 | |
---|
1691 | CALL MPI_SEND(w(bdims(3,1), bdims(2,1)-1, bdims(1,1)-1),& |
---|
1692 | 1, TYPE_VNEST_BC, target_idex, & |
---|
1693 | 203, comm_inter, ierr) |
---|
1694 | |
---|
1695 | CALL MPI_SEND(pt(bdims(3,1), bdims(2,1)-1, bdims(1,1)-1),& |
---|
1696 | 1, TYPE_VNEST_BC, target_idex, & |
---|
1697 | 205, comm_inter, ierr) |
---|
1698 | |
---|
1699 | IF ( humidity ) THEN |
---|
1700 | CALL MPI_SEND(q(bdims(3,1), bdims(2,1)-1, bdims(1,1)-1),& |
---|
1701 | 1, TYPE_VNEST_BC, target_idex, & |
---|
1702 | 209, comm_inter, ierr) |
---|
1703 | ENDIF |
---|
1704 | |
---|
1705 | end do |
---|
1706 | end do |
---|
1707 | |
---|
1708 | ELSEIF ( coupling_mode == 'vnested_fine' ) THEN |
---|
1709 | !-- Receive data from coarse grid for TOP BC |
---|
1710 | |
---|
1711 | offset(1) = pcoord(1) / ( pdims(1)/pdims_partner(1) ) |
---|
1712 | offset(2) = pcoord(2) / ( pdims(2)/pdims_partner(2) ) |
---|
1713 | map_coord(1) = offset(1) |
---|
1714 | map_coord(2) = offset(2) |
---|
1715 | target_idex = c_rnk_lst(map_coord(1),map_coord(2)) |
---|
1716 | |
---|
1717 | bdims_rem (1,1) = c2f_dims_fg(0) |
---|
1718 | bdims_rem (1,2) = c2f_dims_fg(1) |
---|
1719 | bdims_rem (2,1) = c2f_dims_fg(2) |
---|
1720 | bdims_rem (2,2) = c2f_dims_fg(3) |
---|
1721 | bdims_rem (3,1) = c2f_dims_fg(4) |
---|
1722 | bdims_rem (3,2) = c2f_dims_fg(5) |
---|
1723 | |
---|
1724 | n_cell_c = & |
---|
1725 | ( (bdims_rem(1,2)-bdims_rem(1,1)) + 3 ) * & |
---|
1726 | ( (bdims_rem(2,2)-bdims_rem(2,1)) + 3 ) * & |
---|
1727 | ( (bdims_rem(3,2)-bdims_rem(3,1)) + 1 ) |
---|
1728 | |
---|
1729 | ALLOCATE( work3d ( & |
---|
1730 | bdims_rem(3,1) :bdims_rem(3,2) , & |
---|
1731 | bdims_rem(2,1)-1:bdims_rem(2,2)+1, & |
---|
1732 | bdims_rem(1,1)-1:bdims_rem(1,2)+1)) |
---|
1733 | |
---|
1734 | |
---|
1735 | CALL MPI_RECV( work3d ,n_cell_c, MPI_REAL, target_idex, 201, & |
---|
1736 | comm_inter,status, ierr ) |
---|
1737 | interpol3d => u |
---|
1738 | call vnest_set_topbc_u |
---|
1739 | |
---|
1740 | CALL MPI_RECV( work3d ,n_cell_c, MPI_REAL, target_idex, 202, & |
---|
1741 | comm_inter,status, ierr ) |
---|
1742 | interpol3d => v |
---|
1743 | call vnest_set_topbc_v |
---|
1744 | |
---|
1745 | CALL MPI_RECV( work3d ,n_cell_c, MPI_REAL, target_idex, 203, & |
---|
1746 | comm_inter,status, ierr ) |
---|
1747 | interpol3d => w |
---|
1748 | call vnest_set_topbc_w |
---|
1749 | |
---|
1750 | CALL MPI_RECV( work3d,n_cell_c, MPI_REAL, target_idex, 205, & |
---|
1751 | comm_inter,status, ierr ) |
---|
1752 | interpol3d => pt |
---|
1753 | call vnest_set_topbc_s |
---|
1754 | |
---|
1755 | IF ( humidity ) THEN |
---|
1756 | CALL MPI_RECV( work3d,n_cell_c, MPI_REAL, target_idex, 209, & |
---|
1757 | comm_inter,status, ierr ) |
---|
1758 | interpol3d => q |
---|
1759 | call vnest_set_topbc_s |
---|
1760 | |
---|
1761 | CALL exchange_horiz_2d(q (nzt+1,:,:) ) |
---|
1762 | ENDIF |
---|
1763 | |
---|
1764 | !-- TKE Neumann BC for FG top |
---|
1765 | DO jjf = nys, nyn |
---|
1766 | DO iif = nxl, nxr |
---|
1767 | e(nzt+1,jjf,iif) = e(nzt,jjf,iif) |
---|
1768 | END DO |
---|
1769 | END DO |
---|
1770 | |
---|
1771 | ! |
---|
1772 | !-- w level nzt+1 does not impact results. Only to avoid jumps while |
---|
1773 | !-- plotting profiles |
---|
1774 | w(nzt+1,:,:) = w(nzt,:,:) |
---|
1775 | |
---|
1776 | CALL exchange_horiz_2d(u (nzt+1,:,:) ) |
---|
1777 | CALL exchange_horiz_2d(v (nzt+1,:,:) ) |
---|
1778 | CALL exchange_horiz_2d(pt(nzt+1,:,:) ) |
---|
1779 | CALL exchange_horiz_2d(e (nzt+1,:,:) ) |
---|
1780 | CALL exchange_horiz_2d(w (nzt+1,:,:) ) |
---|
1781 | CALL exchange_horiz_2d(w (nzt ,:,:) ) |
---|
1782 | |
---|
1783 | NULLIFY ( interpol3d ) |
---|
1784 | DEALLOCATE ( work3d ) |
---|
1785 | |
---|
1786 | ENDIF |
---|
1787 | |
---|
1788 | |
---|
1789 | CONTAINS |
---|
1790 | |
---|
1791 | SUBROUTINE vnest_set_topbc_w |
---|
1792 | |
---|
1793 | |
---|
1794 | USE arrays_3d |
---|
1795 | USE control_parameters |
---|
1796 | USE grid_variables |
---|
1797 | USE indices |
---|
1798 | USE pegrid |
---|
1799 | |
---|
1800 | |
---|
1801 | IMPLICIT NONE |
---|
1802 | |
---|
1803 | INTEGER(iwp) :: i |
---|
1804 | INTEGER(iwp) :: j |
---|
1805 | INTEGER(iwp) :: iif |
---|
1806 | INTEGER(iwp) :: jjf |
---|
1807 | INTEGER(iwp) :: bottomx |
---|
1808 | INTEGER(iwp) :: bottomy |
---|
1809 | INTEGER(iwp) :: topx |
---|
1810 | INTEGER(iwp) :: topy |
---|
1811 | REAL(wp) :: eps |
---|
1812 | REAL(wp) :: alpha |
---|
1813 | REAL(wp) :: eminus |
---|
1814 | REAL(wp) :: edot |
---|
1815 | REAL(wp) :: eplus |
---|
1816 | REAL(wp), DIMENSION(:,:), ALLOCATABLE :: wprf |
---|
1817 | |
---|
1818 | |
---|
1819 | ALLOCATE( wprf(bdims_rem(2,1)-1:bdims_rem(2,2)+1,nxl:nxr) ) |
---|
1820 | |
---|
1821 | ! |
---|
1822 | !-- Determination of a boundary condition for the vertical velocity component w: |
---|
1823 | !-- In this case only interpolation in x- and y- direction is necessary, as the |
---|
1824 | !-- boundary w-node of the fine grid coincides with a w-node in the coarse grid. |
---|
1825 | !-- For both interpolations the scheme of Clark and Farley is used. |
---|
1826 | |
---|
1827 | ! |
---|
1828 | !-- Interpolation in x-direction |
---|
1829 | |
---|
1830 | DO j = bdims_rem(2,1)-1, bdims_rem(2,2)+1 |
---|
1831 | |
---|
1832 | DO i = bdims_rem(1,1), bdims_rem(1,2) |
---|
1833 | |
---|
1834 | bottomx = (nxf+1)/(nxc+1) * i |
---|
1835 | topx = (nxf+1)/(nxc+1) * (i+1) - 1 |
---|
1836 | |
---|
1837 | DO iif = bottomx, topx |
---|
1838 | |
---|
1839 | eps = (iif * dxf + 0.5 * dxf - i * dxc - 0.5 * dxc) / dxc |
---|
1840 | alpha = ( (dxf/dxc)**2.0 - 1.0) / 24.0 |
---|
1841 | eminus = eps * ( eps - 1.0 ) / 2.0 + alpha |
---|
1842 | edot = ( 1.0 - eps**2.0 ) - 2.0 * alpha |
---|
1843 | eplus = eps * ( eps + 1.0 ) / 2.0 + alpha |
---|
1844 | wprf(j,iif) = eminus * work3d(bdims_rem(3,1),j,i-1) & |
---|
1845 | + edot * work3d(bdims_rem(3,1),j,i) & |
---|
1846 | + eplus * work3d(bdims_rem(3,1),j,i+1) |
---|
1847 | |
---|
1848 | END DO |
---|
1849 | |
---|
1850 | END DO |
---|
1851 | |
---|
1852 | END DO |
---|
1853 | |
---|
1854 | ! |
---|
1855 | !-- Interpolation in y-direction |
---|
1856 | |
---|
1857 | DO j = bdims_rem(2,1), bdims_rem(2,2) |
---|
1858 | |
---|
1859 | bottomy = (nyf+1)/(nyc+1) * j |
---|
1860 | topy = (nyf+1)/(nyc+1) * (j+1) - 1 |
---|
1861 | |
---|
1862 | DO iif = nxl, nxr |
---|
1863 | |
---|
1864 | DO jjf = bottomy, topy |
---|
1865 | |
---|
1866 | eps = (jjf * dyf + 0.5 * dyf - j * dyc - 0.5 * dyc) / dyc |
---|
1867 | |
---|
1868 | alpha = ( (dyf/dyc)**2.0 - 1.0) / 24.0 |
---|
1869 | |
---|
1870 | eminus = eps * ( eps - 1.0 ) / 2.0 + alpha |
---|
1871 | |
---|
1872 | edot = ( 1.0 - eps**2.0 ) - 2.0 * alpha |
---|
1873 | |
---|
1874 | eplus = eps * ( eps + 1.0 ) / 2.0 + alpha |
---|
1875 | |
---|
1876 | w(nzt,jjf,iif) = eminus * wprf(j-1,iif) & |
---|
1877 | + edot * wprf(j,iif) & |
---|
1878 | + eplus * wprf(j+1,iif) |
---|
1879 | |
---|
1880 | END DO |
---|
1881 | |
---|
1882 | END DO |
---|
1883 | |
---|
1884 | END DO |
---|
1885 | |
---|
1886 | DEALLOCATE( wprf ) |
---|
1887 | |
---|
1888 | END SUBROUTINE vnest_set_topbc_w |
---|
1889 | |
---|
1890 | |
---|
1891 | SUBROUTINE vnest_set_topbc_u |
---|
1892 | |
---|
1893 | |
---|
1894 | USE arrays_3d |
---|
1895 | USE control_parameters |
---|
1896 | USE grid_variables |
---|
1897 | USE indices |
---|
1898 | USE pegrid |
---|
1899 | |
---|
1900 | |
---|
1901 | IMPLICIT NONE |
---|
1902 | |
---|
1903 | INTEGER(iwp) :: i |
---|
1904 | INTEGER(iwp) :: j |
---|
1905 | INTEGER(iwp) :: k |
---|
1906 | INTEGER(iwp) :: iif |
---|
1907 | INTEGER(iwp) :: jjf |
---|
1908 | INTEGER(iwp) :: bottomx |
---|
1909 | INTEGER(iwp) :: bottomy |
---|
1910 | INTEGER(iwp) :: topx |
---|
1911 | INTEGER(iwp) :: topy |
---|
1912 | REAL(wp) :: eps |
---|
1913 | REAL(wp) :: alpha |
---|
1914 | REAL(wp) :: eminus |
---|
1915 | REAL(wp) :: edot |
---|
1916 | REAL(wp) :: eplus |
---|
1917 | REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: uprf |
---|
1918 | REAL(wp), DIMENSION(:,:), ALLOCATABLE :: uprs |
---|
1919 | |
---|
1920 | ALLOCATE( uprf(bdims_rem(3,1):bdims_rem(3,2),nys:nyn,bdims_rem(1,1)-1:bdims_rem(1,2)+1) ) |
---|
1921 | ALLOCATE( uprs(nys:nyn,bdims_rem(1,1)-1:bdims_rem(1,2)+1) ) |
---|
1922 | |
---|
1923 | |
---|
1924 | ! |
---|
1925 | !-- Interpolation in y-direction |
---|
1926 | |
---|
1927 | DO k = bdims_rem(3,1), bdims_rem(3,2) |
---|
1928 | DO j = bdims_rem(2,1), bdims_rem(2,2) |
---|
1929 | |
---|
1930 | bottomy = (nyf+1)/(nyc+1) * j |
---|
1931 | topy = (nyf+1)/(nyc+1) * (j+1) - 1 |
---|
1932 | |
---|
1933 | DO i = bdims_rem(1,1)-1, bdims_rem(1,2)+1 |
---|
1934 | DO jjf = bottomy, topy |
---|
1935 | |
---|
1936 | eps = (jjf * dyf + 0.5 * dyf - j * dyc - 0.5 * dyc) / dyc |
---|
1937 | alpha = ( (dyf/dyc)**2.0 - 1.0) / 24.0 |
---|
1938 | eminus = eps * ( eps - 1.0 ) / 2.0 + alpha |
---|
1939 | edot = ( 1.0 - eps**2.0 ) - 2.0 * alpha |
---|
1940 | eplus = eps * ( eps + 1.0 ) / 2.0 + alpha |
---|
1941 | |
---|
1942 | uprf(k,jjf,i) = eminus * work3d(k,j-1,i) & |
---|
1943 | + edot * work3d(k,j,i) & |
---|
1944 | + eplus * work3d(k,j+1,i) |
---|
1945 | END DO |
---|
1946 | END DO |
---|
1947 | |
---|
1948 | END DO |
---|
1949 | END DO |
---|
1950 | |
---|
1951 | ! |
---|
1952 | !-- Interpolation in z-direction |
---|
1953 | |
---|
1954 | DO jjf = nys, nyn |
---|
1955 | DO i = bdims_rem(1,1)-1, bdims_rem(1,2)+1 |
---|
1956 | eps = ( zuf(nzt+1) - zuc(bdims_rem(3,1)+1) ) / dzc |
---|
1957 | alpha = ( (dzf/dzc)**2.0 - 1.0) / 24.0 |
---|
1958 | eminus = eps * ( eps - 1.0 ) / 2.0 + alpha |
---|
1959 | edot = ( 1.0 - eps**2.0 ) - 2.0 * alpha |
---|
1960 | eplus = eps * ( eps + 1.0 ) / 2.0 + alpha |
---|
1961 | uprs(jjf,i) = eminus * uprf(bdims_rem(3,1),jjf,i) & |
---|
1962 | + edot * uprf(bdims_rem(3,1)+1,jjf,i) & |
---|
1963 | + eplus * uprf(bdims_rem(3,1)+2,jjf,i) |
---|
1964 | END DO |
---|
1965 | END DO |
---|
1966 | |
---|
1967 | ! |
---|
1968 | !-- Interpolation in x-direction |
---|
1969 | |
---|
1970 | DO jjf = nys, nyn |
---|
1971 | DO i = bdims_rem(1,1), bdims_rem(1,2) |
---|
1972 | |
---|
1973 | bottomx = (nxf+1)/(nxc+1) * i |
---|
1974 | topx = (nxf+1)/(nxc+1) * (i+1) - 1 |
---|
1975 | |
---|
1976 | DO iif = bottomx, topx |
---|
1977 | u(nzt+1,jjf,iif) = uprs(jjf,i) + ( iif * dxf - i * dxc ) * ( uprs(jjf,i+1) - uprs(jjf,i) ) / dxc |
---|
1978 | END DO |
---|
1979 | |
---|
1980 | END DO |
---|
1981 | END DO |
---|
1982 | |
---|
1983 | |
---|
1984 | |
---|
1985 | DEALLOCATE ( uprf, uprs ) |
---|
1986 | |
---|
1987 | END SUBROUTINE vnest_set_topbc_u |
---|
1988 | |
---|
1989 | |
---|
1990 | SUBROUTINE vnest_set_topbc_v |
---|
1991 | |
---|
1992 | |
---|
1993 | USE arrays_3d |
---|
1994 | USE control_parameters |
---|
1995 | USE grid_variables |
---|
1996 | USE indices |
---|
1997 | USE pegrid |
---|
1998 | |
---|
1999 | |
---|
2000 | IMPLICIT NONE |
---|
2001 | |
---|
2002 | INTEGER(iwp) :: i |
---|
2003 | INTEGER(iwp) :: j |
---|
2004 | INTEGER(iwp) :: k |
---|
2005 | INTEGER(iwp) :: iif |
---|
2006 | INTEGER(iwp) :: jjf |
---|
2007 | INTEGER(iwp) :: bottomx |
---|
2008 | INTEGER(iwp) :: bottomy |
---|
2009 | INTEGER(iwp) :: topx |
---|
2010 | INTEGER(iwp) :: topy |
---|
2011 | REAL(wp) :: eps |
---|
2012 | REAL(wp) :: alpha |
---|
2013 | REAL(wp) :: eminus |
---|
2014 | REAL(wp) :: edot |
---|
2015 | REAL(wp) :: eplus |
---|
2016 | REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: vprf |
---|
2017 | REAL(wp), DIMENSION(:,:), ALLOCATABLE :: vprs |
---|
2018 | |
---|
2019 | |
---|
2020 | |
---|
2021 | ALLOCATE( vprf(bdims_rem(3,1):bdims_rem(3,2),bdims_rem(2,1)-1:bdims_rem(2,2)+1,nxl:nxr) ) |
---|
2022 | ALLOCATE( vprs(bdims_rem(2,1)-1:bdims_rem(2,2)+1,nxl:nxr) ) |
---|
2023 | ! |
---|
2024 | !-- Determination of a boundary condition for the horizontal velocity component v: |
---|
2025 | !-- Interpolation in x- and z-direction is carried out by using the scheme, |
---|
2026 | !-- which was derived by Clark and Farley (1984). In y-direction a |
---|
2027 | !-- linear interpolation is carried out. |
---|
2028 | |
---|
2029 | ! |
---|
2030 | !-- Interpolation in x-direction |
---|
2031 | |
---|
2032 | DO k = bdims_rem(3,1), bdims_rem(3,2) |
---|
2033 | DO j = bdims_rem(2,1)-1, bdims_rem(2,2)+1 |
---|
2034 | DO i = bdims_rem(1,1), bdims_rem(1,2) |
---|
2035 | |
---|
2036 | bottomx = (nxf+1)/(nxc+1) * i |
---|
2037 | topx = (nxf+1)/(nxc+1) * (i+1) - 1 |
---|
2038 | |
---|
2039 | DO iif = bottomx, topx |
---|
2040 | |
---|
2041 | eps = (iif * dxf + 0.5 * dxf - i * dxc - 0.5 * dxc) / dxc |
---|
2042 | alpha = ( (dxf/dxc)**2.0 - 1.0) / 24.0 |
---|
2043 | eminus = eps * ( eps - 1.0 ) / 2.0 + alpha |
---|
2044 | edot = ( 1.0 - eps**2.0 ) - 2.0 * alpha |
---|
2045 | eplus = eps * ( eps + 1.0 ) / 2.0 + alpha |
---|
2046 | vprf(k,j,iif) = eminus * work3d(k,j,i-1) & |
---|
2047 | + edot * work3d(k,j,i) & |
---|
2048 | + eplus * work3d(k,j,i+1) |
---|
2049 | END DO |
---|
2050 | |
---|
2051 | END DO |
---|
2052 | END DO |
---|
2053 | END DO |
---|
2054 | |
---|
2055 | ! |
---|
2056 | !-- Interpolation in z-direction |
---|
2057 | |
---|
2058 | DO j = bdims_rem(2,1)-1, bdims_rem(2,2)+1 |
---|
2059 | DO iif = nxl, nxr |
---|
2060 | |
---|
2061 | eps = ( zuf(nzt+1) - zuc(bdims_rem(3,1)+1) ) / dzc |
---|
2062 | alpha = ( (dzf/dzc)**2.0 - 1.0) / 24.0 |
---|
2063 | eminus = eps * ( eps - 1.0 ) / 2.0 + alpha |
---|
2064 | edot = ( 1.0 - eps**2.0 ) - 2.0 * alpha |
---|
2065 | eplus = eps * ( eps + 1.0 ) / 2.0 + alpha |
---|
2066 | vprs(j,iif) = eminus * vprf(bdims_rem(3,1),j,iif) & |
---|
2067 | + edot * vprf(bdims_rem(3,1)+1,j,iif) & |
---|
2068 | + eplus * vprf(bdims_rem(3,1)+2,j,iif) |
---|
2069 | |
---|
2070 | END DO |
---|
2071 | END DO |
---|
2072 | |
---|
2073 | ! |
---|
2074 | !-- Interpolation in y-direction |
---|
2075 | |
---|
2076 | DO j = bdims_rem(2,1), bdims_rem(2,2) |
---|
2077 | DO iif = nxl, nxr |
---|
2078 | |
---|
2079 | bottomy = (nyf+1)/(nyc+1) * j |
---|
2080 | topy = (nyf+1)/(nyc+1) * (j+1) - 1 |
---|
2081 | |
---|
2082 | DO jjf = bottomy, topy |
---|
2083 | |
---|
2084 | v(nzt+1,jjf,iif) = vprs(j,iif) + ( jjf * dyf - j * dyc ) * ( vprs(j+1,iif) - vprs(j,iif) ) / dyc |
---|
2085 | |
---|
2086 | END DO |
---|
2087 | END DO |
---|
2088 | END DO |
---|
2089 | |
---|
2090 | |
---|
2091 | DEALLOCATE ( vprf, vprs) |
---|
2092 | |
---|
2093 | |
---|
2094 | |
---|
2095 | END SUBROUTINE vnest_set_topbc_v |
---|
2096 | |
---|
2097 | |
---|
2098 | SUBROUTINE vnest_set_topbc_s |
---|
2099 | |
---|
2100 | |
---|
2101 | USE arrays_3d |
---|
2102 | USE control_parameters |
---|
2103 | USE grid_variables |
---|
2104 | USE indices |
---|
2105 | USE pegrid |
---|
2106 | |
---|
2107 | |
---|
2108 | IMPLICIT NONE |
---|
2109 | |
---|
2110 | INTEGER(iwp) :: i |
---|
2111 | INTEGER(iwp) :: j |
---|
2112 | INTEGER(iwp) :: k |
---|
2113 | INTEGER(iwp) :: iif |
---|
2114 | INTEGER(iwp) :: jjf |
---|
2115 | INTEGER(iwp) :: bottomx |
---|
2116 | INTEGER(iwp) :: bottomy |
---|
2117 | INTEGER(iwp) :: topx |
---|
2118 | INTEGER(iwp) :: topy |
---|
2119 | REAL(wp) :: eps |
---|
2120 | REAL(wp) :: alpha |
---|
2121 | REAL(wp) :: eminus |
---|
2122 | REAL(wp) :: edot |
---|
2123 | REAL(wp) :: eplus |
---|
2124 | REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: ptprf |
---|
2125 | REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: ptprs |
---|
2126 | |
---|
2127 | |
---|
2128 | |
---|
2129 | ALLOCATE( ptprf(bdims_rem(3,1):bdims_rem(3,2),bdims_rem(2,1)-1:bdims_rem(2,2)+1,nxl:nxr) ) |
---|
2130 | ALLOCATE( ptprs(bdims_rem(3,1):bdims_rem(3,2),nys:nyn,nxl:nxr) ) |
---|
2131 | |
---|
2132 | ! |
---|
2133 | !-- Determination of a boundary condition for the potential temperature pt: |
---|
2134 | !-- The scheme derived by Clark and Farley can be used in all three dimensions. |
---|
2135 | |
---|
2136 | ! |
---|
2137 | !-- Interpolation in x-direction |
---|
2138 | |
---|
2139 | DO k = bdims_rem(3,1), bdims_rem(3,2) |
---|
2140 | |
---|
2141 | DO j = bdims_rem(2,1)-1, bdims_rem(2,2)+1 |
---|
2142 | |
---|
2143 | DO i = bdims_rem(1,1), bdims_rem(1,2) |
---|
2144 | |
---|
2145 | bottomx = (nxf+1)/(nxc+1) * i |
---|
2146 | topx = (nxf+1)/(nxc+1) *(i+1) - 1 |
---|
2147 | |
---|
2148 | DO iif = bottomx, topx |
---|
2149 | |
---|
2150 | eps = (iif * dxf + 0.5 * dxf - i * dxc - 0.5 * dxc) / dxc |
---|
2151 | |
---|
2152 | alpha = ( (dxf/dxc)**2.0 - 1.0) / 24.0 |
---|
2153 | |
---|
2154 | eminus = eps * (eps - 1.0 ) / 2.0 + alpha |
---|
2155 | |
---|
2156 | edot = ( 1.0 - eps**2.0 ) - 2.0 * alpha |
---|
2157 | |
---|
2158 | eplus = eps * ( eps + 1.0 ) / 2.0 + alpha |
---|
2159 | |
---|
2160 | ptprf(k,j,iif) = eminus * work3d(k,j,i-1) & |
---|
2161 | + edot * work3d(k,j,i) & |
---|
2162 | + eplus * work3d(k,j,i+1) |
---|
2163 | END DO |
---|
2164 | |
---|
2165 | END DO |
---|
2166 | |
---|
2167 | END DO |
---|
2168 | |
---|
2169 | END DO |
---|
2170 | |
---|
2171 | ! |
---|
2172 | !-- Interpolation in y-direction |
---|
2173 | |
---|
2174 | DO k = bdims_rem(3,1), bdims_rem(3,2) |
---|
2175 | |
---|
2176 | DO j = bdims_rem(2,1), bdims_rem(2,2) |
---|
2177 | |
---|
2178 | bottomy = (nyf+1)/(nyc+1) * j |
---|
2179 | topy = (nyf+1)/(nyc+1) * (j+1) - 1 |
---|
2180 | |
---|
2181 | DO iif = nxl, nxr |
---|
2182 | |
---|
2183 | DO jjf = bottomy, topy |
---|
2184 | |
---|
2185 | eps = (jjf * dyf + 0.5 * dyf - j * dyc - 0.5 * dyc) / dyc |
---|
2186 | |
---|
2187 | alpha = ( (dyf/dyc)**2.0 - 1.0) / 24.0 |
---|
2188 | |
---|
2189 | eminus = eps * (eps - 1.0) / 2.0 + alpha |
---|
2190 | |
---|
2191 | edot = ( 1.0 - eps**2.0 ) - 2.0 * alpha |
---|
2192 | |
---|
2193 | eplus = eps * ( eps + 1.0 ) / 2.0 + alpha |
---|
2194 | |
---|
2195 | ptprs(k,jjf,iif) = eminus * ptprf(k,j-1,iif) & |
---|
2196 | + edot * ptprf(k,j,iif) & |
---|
2197 | + eplus * ptprf(k,j+1,iif) |
---|
2198 | END DO |
---|
2199 | |
---|
2200 | END DO |
---|
2201 | |
---|
2202 | END DO |
---|
2203 | |
---|
2204 | END DO |
---|
2205 | |
---|
2206 | ! |
---|
2207 | !-- Interpolation in z-direction |
---|
2208 | |
---|
2209 | DO jjf = nys, nyn |
---|
2210 | DO iif = nxl, nxr |
---|
2211 | |
---|
2212 | eps = ( zuf(nzt+1) - zuc(bdims_rem(3,1)+1) ) / dzc |
---|
2213 | |
---|
2214 | alpha = ( (dzf/dzc)**2.0 - 1.0) / 24.0 |
---|
2215 | |
---|
2216 | eminus = eps * ( eps - 1.0 ) / 2.0 + alpha |
---|
2217 | |
---|
2218 | edot = ( 1.0 - eps**2.0 ) - 2.0 * alpha |
---|
2219 | |
---|
2220 | eplus = eps * ( eps + 1.0 ) / 2.0 + alpha |
---|
2221 | |
---|
2222 | interpol3d (nzt+1,jjf,iif) = eminus * ptprs(bdims_rem(3,1),jjf,iif) & |
---|
2223 | + edot * ptprs(bdims_rem(3,1)+1,jjf,iif) & |
---|
2224 | + eplus * ptprs(bdims_rem(3,1)+2,jjf,iif) |
---|
2225 | |
---|
2226 | END DO |
---|
2227 | END DO |
---|
2228 | |
---|
2229 | DEALLOCATE ( ptprf, ptprs ) |
---|
2230 | |
---|
2231 | |
---|
2232 | |
---|
2233 | END SUBROUTINE vnest_set_topbc_s |
---|
2234 | #endif |
---|
2235 | END SUBROUTINE vnest_boundary_conds |
---|
2236 | |
---|
2237 | |
---|
2238 | SUBROUTINE vnest_boundary_conds_khkm |
---|
2239 | #if defined( __parallel ) |
---|
2240 | |
---|
2241 | !--------------------------------------------------------------------------------! |
---|
2242 | ! Description: |
---|
2243 | ! ------------ |
---|
2244 | ! Boundary conditions for the prognostic quantities. |
---|
2245 | ! One additional bottom boundary condition is applied for the TKE (=(u*)**2) |
---|
2246 | ! in prandtl_fluxes. The cyclic lateral boundary conditions are implicitly |
---|
2247 | ! handled in routine exchange_horiz. Pressure boundary conditions are |
---|
2248 | ! explicitly set in routines pres, poisfft, poismg and sor. |
---|
2249 | !------------------------------------------------------------------------------! |
---|
2250 | |
---|
2251 | USE arrays_3d |
---|
2252 | USE control_parameters |
---|
2253 | USE grid_variables |
---|
2254 | USE indices |
---|
2255 | USE pegrid |
---|
2256 | |
---|
2257 | |
---|
2258 | IMPLICIT NONE |
---|
2259 | |
---|
2260 | INTEGER(iwp) :: i |
---|
2261 | INTEGER(iwp) :: j |
---|
2262 | INTEGER(iwp) :: iif |
---|
2263 | INTEGER(iwp) :: jjf |
---|
2264 | |
---|
2265 | |
---|
2266 | IF ( coupling_mode == 'vnested_crse' ) THEN |
---|
2267 | ! Send data to fine grid for TOP BC |
---|
2268 | |
---|
2269 | offset(1) = ( pdims_partner(1) / pdims(1) ) * pcoord(1) |
---|
2270 | offset(2) = ( pdims_partner(2) / pdims(2) ) * pcoord(2) |
---|
2271 | |
---|
2272 | do j = 0, ( pdims_partner(2) / pdims(2) ) - 1 |
---|
2273 | do i = 0, ( pdims_partner(1) / pdims(1) ) - 1 |
---|
2274 | map_coord(1) = i+offset(1) |
---|
2275 | map_coord(2) = j+offset(2) |
---|
2276 | |
---|
2277 | target_idex = f_rnk_lst(map_coord(1),map_coord(2)) + numprocs |
---|
2278 | |
---|
2279 | CALL MPI_RECV( bdims_rem, 6, MPI_INTEGER, target_idex, 10, & |
---|
2280 | comm_inter,status, ierr ) |
---|
2281 | |
---|
2282 | bdims (1,1) = bdims_rem (1,1) / cfratio(1) |
---|
2283 | bdims (1,2) = bdims_rem (1,2) / cfratio(1) |
---|
2284 | bdims (2,1) = bdims_rem (2,1) / cfratio(2) |
---|
2285 | bdims (2,2) = bdims_rem (2,2) / cfratio(2) |
---|
2286 | bdims (3,1) = bdims_rem (3,2) / cfratio(3) |
---|
2287 | bdims (3,2) = bdims (3,1) + 2 |
---|
2288 | |
---|
2289 | CALL MPI_SEND( bdims, 6, MPI_INTEGER, target_idex, 9, & |
---|
2290 | comm_inter, ierr ) |
---|
2291 | |
---|
2292 | |
---|
2293 | n_cell_c = ( (bdims(1,2)-bdims(1,1)) + 3 ) * & |
---|
2294 | ( (bdims(2,2)-bdims(2,1)) + 3 ) * & |
---|
2295 | ( (bdims(3,2)-bdims(3,1)) + 1 ) |
---|
2296 | |
---|
2297 | CALL MPI_SEND(kh(bdims(3,1) :bdims(3,2) , & |
---|
2298 | bdims(2,1)-1:bdims(2,2)+1, & |
---|
2299 | bdims(1,1)-1:bdims(1,2)+1),& |
---|
2300 | n_cell_c, MPI_REAL, target_idex, & |
---|
2301 | 207, comm_inter, ierr) |
---|
2302 | |
---|
2303 | CALL MPI_SEND(km(bdims(3,1) :bdims(3,2) , & |
---|
2304 | bdims(2,1)-1:bdims(2,2)+1, & |
---|
2305 | bdims(1,1)-1:bdims(1,2)+1),& |
---|
2306 | n_cell_c, MPI_REAL, target_idex, & |
---|
2307 | 208, comm_inter, ierr) |
---|
2308 | |
---|
2309 | |
---|
2310 | |
---|
2311 | end do |
---|
2312 | end do |
---|
2313 | |
---|
2314 | ELSEIF ( coupling_mode == 'vnested_fine' ) THEN |
---|
2315 | ! Receive data from coarse grid for TOP BC |
---|
2316 | |
---|
2317 | offset(1) = pcoord(1) / ( pdims(1)/pdims_partner(1) ) |
---|
2318 | offset(2) = pcoord(2) / ( pdims(2)/pdims_partner(2) ) |
---|
2319 | map_coord(1) = offset(1) |
---|
2320 | map_coord(2) = offset(2) |
---|
2321 | target_idex = c_rnk_lst(map_coord(1),map_coord(2)) |
---|
2322 | |
---|
2323 | bdims (1,1) = nxl |
---|
2324 | bdims (1,2) = nxr |
---|
2325 | bdims (2,1) = nys |
---|
2326 | bdims (2,2) = nyn |
---|
2327 | bdims (3,1) = nzb |
---|
2328 | bdims (3,2) = nzt |
---|
2329 | |
---|
2330 | CALL MPI_SEND( bdims, 6, MPI_INTEGER, target_idex, 10, & |
---|
2331 | comm_inter, ierr ) |
---|
2332 | |
---|
2333 | CALL MPI_RECV( bdims_rem, 6, MPI_INTEGER, target_idex, 9, & |
---|
2334 | comm_inter,status, ierr ) |
---|
2335 | |
---|
2336 | n_cell_c = ( (bdims_rem(1,2)-bdims_rem(1,1)) + 3 ) * & |
---|
2337 | ( (bdims_rem(2,2)-bdims_rem(2,1)) + 3 ) * & |
---|
2338 | ( (bdims_rem(3,2)-bdims_rem(3,1)) + 1 ) |
---|
2339 | |
---|
2340 | ALLOCATE( work3d ( bdims_rem(3,1) :bdims_rem(3,2) , & |
---|
2341 | bdims_rem(2,1)-1:bdims_rem(2,2)+1, & |
---|
2342 | bdims_rem(1,1)-1:bdims_rem(1,2)+1)) |
---|
2343 | |
---|
2344 | |
---|
2345 | CALL MPI_RECV( work3d,n_cell_c, MPI_REAL, target_idex, 207, & |
---|
2346 | comm_inter,status, ierr ) |
---|
2347 | |
---|
2348 | ! Neumann BC for FG kh |
---|
2349 | DO jjf = nys, nyn |
---|
2350 | DO iif = nxl, nxr |
---|
2351 | kh(nzt+1,jjf,iif) = kh(nzt,jjf,iif) |
---|
2352 | END DO |
---|
2353 | END DO |
---|
2354 | |
---|
2355 | CALL MPI_RECV( work3d,n_cell_c, MPI_REAL, target_idex, 208, & |
---|
2356 | comm_inter,status, ierr ) |
---|
2357 | |
---|
2358 | ! Neumann BC for FG kh |
---|
2359 | DO jjf = nys, nyn |
---|
2360 | DO iif = nxl, nxr |
---|
2361 | km(nzt+1,jjf,iif) = km(nzt,jjf,iif) |
---|
2362 | END DO |
---|
2363 | END DO |
---|
2364 | |
---|
2365 | |
---|
2366 | ! |
---|
2367 | !-- The following evaluation can only be performed, if the fine grid is situated below the inversion |
---|
2368 | !! DO jjf = nys-1, nyn+1 |
---|
2369 | !! DO iif = nxl-1, nxr+1 |
---|
2370 | !! |
---|
2371 | !! km(nzt+1,jjf,iif) = 0.1 * l_grid(nzt+1) * SQRT( e(nzt+1,jjf,iif) ) |
---|
2372 | !! kh(nzt+1,jjf,iif) = 3.0 * km(nzt+1,jjf,iif) |
---|
2373 | !! |
---|
2374 | !! END DO |
---|
2375 | !! END DO |
---|
2376 | |
---|
2377 | CALL exchange_horiz_2d(km(nzt+1,:,:) ) |
---|
2378 | CALL exchange_horiz_2d(kh(nzt+1,:,:) ) |
---|
2379 | |
---|
2380 | DEALLOCATE ( work3d ) |
---|
2381 | |
---|
2382 | ENDIF |
---|
2383 | |
---|
2384 | |
---|
2385 | ! CONTAINS |
---|
2386 | ! |
---|
2387 | ! SUBROUTINE vnest_set_topbc_kh |
---|
2388 | ! |
---|
2389 | ! |
---|
2390 | ! USE arrays_3d |
---|
2391 | ! USE control_parameters |
---|
2392 | ! USE grid_variables |
---|
2393 | ! USE indices |
---|
2394 | ! USE pegrid |
---|
2395 | ! |
---|
2396 | ! |
---|
2397 | ! IMPLICIT NONE |
---|
2398 | ! |
---|
2399 | ! INTEGER(iwp) :: i |
---|
2400 | ! INTEGER(iwp) :: j |
---|
2401 | ! INTEGER(iwp) :: k |
---|
2402 | ! INTEGER(iwp) :: iif |
---|
2403 | ! INTEGER(iwp) :: jjf |
---|
2404 | ! INTEGER(iwp) :: bottomx |
---|
2405 | ! INTEGER(iwp) :: bottomy |
---|
2406 | ! INTEGER(iwp) :: topx |
---|
2407 | ! INTEGER(iwp) :: topy |
---|
2408 | ! REAL(wp) :: eps |
---|
2409 | ! REAL(wp) :: alpha |
---|
2410 | ! REAL(wp) :: eminus |
---|
2411 | ! REAL(wp) :: edot |
---|
2412 | ! REAL(wp) :: eplus |
---|
2413 | ! REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: ptprf |
---|
2414 | ! REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: ptprs |
---|
2415 | ! |
---|
2416 | ! |
---|
2417 | ! |
---|
2418 | ! ALLOCATE( ptprf(bdims_rem(3,1):bdims_rem(3,2),bdims_rem(2,1)-1:bdims_rem(2,2)+1,nxl:nxr) ) |
---|
2419 | ! ALLOCATE( ptprs(bdims_rem(3,1):bdims_rem(3,2),nys:nyn,nxl:nxr) ) |
---|
2420 | ! |
---|
2421 | ! ! |
---|
2422 | ! !-- Determination of a boundary condition for the potential temperature pt: |
---|
2423 | ! !-- The scheme derived by Clark and Farley can be used in all three dimensions. |
---|
2424 | ! |
---|
2425 | ! ! |
---|
2426 | ! !-- Interpolation in x-direction |
---|
2427 | ! |
---|
2428 | ! DO k = bdims_rem(3,1), bdims_rem(3,2) |
---|
2429 | ! |
---|
2430 | ! DO j = bdims_rem(2,1)-1, bdims_rem(2,2)+1 |
---|
2431 | ! |
---|
2432 | ! DO i = bdims_rem(1,1), bdims_rem(1,2) |
---|
2433 | ! |
---|
2434 | ! bottomx = (nxf+1)/(nxc+1) * i |
---|
2435 | ! topx = (nxf+1)/(nxc+1) *(i+1) - 1 |
---|
2436 | ! |
---|
2437 | ! DO iif = bottomx, topx |
---|
2438 | ! |
---|
2439 | ! eps = (iif * dxf + 0.5 * dxf - i * dxc - 0.5 * dxc) / dxc |
---|
2440 | ! |
---|
2441 | ! alpha = ( (dxf/dxc)**2.0 - 1.0) / 24.0 |
---|
2442 | ! |
---|
2443 | ! eminus = eps * (eps - 1.0 ) / 2.0 + alpha |
---|
2444 | ! |
---|
2445 | ! edot = ( 1.0 - eps**2.0 ) - 2.0 * alpha |
---|
2446 | ! |
---|
2447 | ! eplus = eps * ( eps + 1.0 ) / 2.0 + alpha |
---|
2448 | ! |
---|
2449 | ! ptprf(k,j,iif) = eminus * work3d(k,j,i-1) & |
---|
2450 | ! + edot * work3d(k,j,i) & |
---|
2451 | ! + eplus * work3d(k,j,i+1) |
---|
2452 | ! END DO |
---|
2453 | ! |
---|
2454 | ! END DO |
---|
2455 | ! |
---|
2456 | ! END DO |
---|
2457 | ! |
---|
2458 | ! END DO |
---|
2459 | ! |
---|
2460 | ! ! |
---|
2461 | ! !-- Interpolation in y-direction |
---|
2462 | ! |
---|
2463 | ! DO k = bdims_rem(3,1), bdims_rem(3,2) |
---|
2464 | ! |
---|
2465 | ! DO j = bdims_rem(2,1), bdims_rem(2,2) |
---|
2466 | ! |
---|
2467 | ! bottomy = (nyf+1)/(nyc+1) * j |
---|
2468 | ! topy = (nyf+1)/(nyc+1) * (j+1) - 1 |
---|
2469 | ! |
---|
2470 | ! DO iif = nxl, nxr |
---|
2471 | ! |
---|
2472 | ! DO jjf = bottomy, topy |
---|
2473 | ! |
---|
2474 | ! eps = (jjf * dyf + 0.5 * dyf - j * dyc - 0.5 * dyc) / dyc |
---|
2475 | ! |
---|
2476 | ! alpha = ( (dyf/dyc)**2.0 - 1.0) / 24.0 |
---|
2477 | ! |
---|
2478 | ! eminus = eps * (eps - 1.0) / 2.0 + alpha |
---|
2479 | ! |
---|
2480 | ! edot = ( 1.0 - eps**2.0 ) - 2.0 * alpha |
---|
2481 | ! |
---|
2482 | ! eplus = eps * ( eps + 1.0 ) / 2.0 + alpha |
---|
2483 | ! |
---|
2484 | ! ptprs(k,jjf,iif) = eminus * ptprf(k,j-1,iif) & |
---|
2485 | ! + edot * ptprf(k,j,iif) & |
---|
2486 | ! + eplus * ptprf(k,j+1,iif) |
---|
2487 | ! END DO |
---|
2488 | ! |
---|
2489 | ! END DO |
---|
2490 | ! |
---|
2491 | ! END DO |
---|
2492 | ! |
---|
2493 | ! END DO |
---|
2494 | ! |
---|
2495 | ! ! |
---|
2496 | ! !-- Interpolation in z-direction |
---|
2497 | ! |
---|
2498 | ! DO jjf = nys, nyn |
---|
2499 | ! DO iif = nxl, nxr |
---|
2500 | ! |
---|
2501 | ! eps = ( zuf(nzt+1) - zuc(bdims_rem(3,1)+1) ) / dzc |
---|
2502 | ! |
---|
2503 | ! alpha = ( (dzf/dzc)**2.0 - 1.0) / 24.0 |
---|
2504 | ! |
---|
2505 | ! eminus = eps * ( eps - 1.0 ) / 2.0 + alpha |
---|
2506 | ! |
---|
2507 | ! edot = ( 1.0 - eps**2.0 ) - 2.0 * alpha |
---|
2508 | ! |
---|
2509 | ! eplus = eps * ( eps + 1.0 ) / 2.0 + alpha |
---|
2510 | ! |
---|
2511 | ! kh (nzt+1,jjf,iif) = eminus * ptprs(bdims_rem(3,1),jjf,iif) & |
---|
2512 | ! + edot * ptprs(bdims_rem(3,1)+1,jjf,iif) & |
---|
2513 | ! + eplus * ptprs(bdims_rem(3,1)+2,jjf,iif) |
---|
2514 | ! |
---|
2515 | ! END DO |
---|
2516 | ! END DO |
---|
2517 | ! |
---|
2518 | ! DEALLOCATE ( ptprf, ptprs ) |
---|
2519 | ! |
---|
2520 | ! |
---|
2521 | ! |
---|
2522 | ! END SUBROUTINE vnest_set_topbc_kh |
---|
2523 | |
---|
2524 | ! SUBROUTINE vnest_set_topbc_km |
---|
2525 | ! |
---|
2526 | ! |
---|
2527 | ! USE arrays_3d |
---|
2528 | ! USE control_parameters |
---|
2529 | ! USE grid_variables |
---|
2530 | ! USE indices |
---|
2531 | ! USE pegrid |
---|
2532 | ! |
---|
2533 | ! |
---|
2534 | ! IMPLICIT NONE |
---|
2535 | ! |
---|
2536 | ! INTEGER(iwp) :: i |
---|
2537 | ! INTEGER(iwp) :: j |
---|
2538 | ! INTEGER(iwp) :: k |
---|
2539 | ! INTEGER(iwp) :: iif |
---|
2540 | ! INTEGER(iwp) :: jjf |
---|
2541 | ! INTEGER(iwp) :: bottomx |
---|
2542 | ! INTEGER(iwp) :: bottomy |
---|
2543 | ! INTEGER(iwp) :: topx |
---|
2544 | ! INTEGER(iwp) :: topy |
---|
2545 | ! REAL(wp) :: eps |
---|
2546 | ! REAL(wp) :: alpha |
---|
2547 | ! REAL(wp) :: eminus |
---|
2548 | ! REAL(wp) :: edot |
---|
2549 | ! REAL(wp) :: eplus |
---|
2550 | ! REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: ptprf |
---|
2551 | ! REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: ptprs |
---|
2552 | ! |
---|
2553 | ! |
---|
2554 | ! |
---|
2555 | ! ALLOCATE( ptprf(bdims_rem(3,1):bdims_rem(3,2),bdims_rem(2,1)-1:bdims_rem(2,2)+1,nxl:nxr) ) |
---|
2556 | ! ALLOCATE( ptprs(bdims_rem(3,1):bdims_rem(3,2),nys:nyn,nxl:nxr) ) |
---|
2557 | ! |
---|
2558 | ! ! |
---|
2559 | ! !-- Determination of a boundary condition for the potential temperature pt: |
---|
2560 | ! !-- The scheme derived by Clark and Farley can be used in all three dimensions. |
---|
2561 | ! |
---|
2562 | ! ! |
---|
2563 | ! !-- Interpolation in x-direction |
---|
2564 | ! |
---|
2565 | ! DO k = bdims_rem(3,1), bdims_rem(3,2) |
---|
2566 | ! |
---|
2567 | ! DO j = bdims_rem(2,1)-1, bdims_rem(2,2)+1 |
---|
2568 | ! |
---|
2569 | ! DO i = bdims_rem(1,1), bdims_rem(1,2) |
---|
2570 | ! |
---|
2571 | ! bottomx = (nxf+1)/(nxc+1) * i |
---|
2572 | ! topx = (nxf+1)/(nxc+1) *(i+1) - 1 |
---|
2573 | ! |
---|
2574 | ! DO iif = bottomx, topx |
---|
2575 | ! |
---|
2576 | ! eps = (iif * dxf + 0.5 * dxf - i * dxc - 0.5 * dxc) / dxc |
---|
2577 | ! |
---|
2578 | ! alpha = ( (dxf/dxc)**2.0 - 1.0) / 24.0 |
---|
2579 | ! |
---|
2580 | ! eminus = eps * (eps - 1.0 ) / 2.0 + alpha |
---|
2581 | ! |
---|
2582 | ! edot = ( 1.0 - eps**2.0 ) - 2.0 * alpha |
---|
2583 | ! |
---|
2584 | ! eplus = eps * ( eps + 1.0 ) / 2.0 + alpha |
---|
2585 | ! |
---|
2586 | ! ptprf(k,j,iif) = eminus * work3d(k,j,i-1) & |
---|
2587 | ! + edot * work3d(k,j,i) & |
---|
2588 | ! + eplus * work3d(k,j,i+1) |
---|
2589 | ! END DO |
---|
2590 | ! |
---|
2591 | ! END DO |
---|
2592 | ! |
---|
2593 | ! END DO |
---|
2594 | ! |
---|
2595 | ! END DO |
---|
2596 | ! |
---|
2597 | ! ! |
---|
2598 | ! !-- Interpolation in y-direction |
---|
2599 | ! |
---|
2600 | ! DO k = bdims_rem(3,1), bdims_rem(3,2) |
---|
2601 | ! |
---|
2602 | ! DO j = bdims_rem(2,1), bdims_rem(2,2) |
---|
2603 | ! |
---|
2604 | ! bottomy = (nyf+1)/(nyc+1) * j |
---|
2605 | ! topy = (nyf+1)/(nyc+1) * (j+1) - 1 |
---|
2606 | ! |
---|
2607 | ! DO iif = nxl, nxr |
---|
2608 | ! |
---|
2609 | ! DO jjf = bottomy, topy |
---|
2610 | ! |
---|
2611 | ! eps = (jjf * dyf + 0.5 * dyf - j * dyc - 0.5 * dyc) / dyc |
---|
2612 | ! |
---|
2613 | ! alpha = ( (dyf/dyc)**2.0 - 1.0) / 24.0 |
---|
2614 | ! |
---|
2615 | ! eminus = eps * (eps - 1.0) / 2.0 + alpha |
---|
2616 | ! |
---|
2617 | ! edot = ( 1.0 - eps**2.0 ) - 2.0 * alpha |
---|
2618 | ! |
---|
2619 | ! eplus = eps * ( eps + 1.0 ) / 2.0 + alpha |
---|
2620 | ! |
---|
2621 | ! ptprs(k,jjf,iif) = eminus * ptprf(k,j-1,iif) & |
---|
2622 | ! + edot * ptprf(k,j,iif) & |
---|
2623 | ! + eplus * ptprf(k,j+1,iif) |
---|
2624 | ! END DO |
---|
2625 | ! |
---|
2626 | ! END DO |
---|
2627 | ! |
---|
2628 | ! END DO |
---|
2629 | ! |
---|
2630 | ! END DO |
---|
2631 | ! |
---|
2632 | ! ! |
---|
2633 | ! !-- Interpolation in z-direction |
---|
2634 | ! |
---|
2635 | ! DO jjf = nys, nyn |
---|
2636 | ! DO iif = nxl, nxr |
---|
2637 | ! |
---|
2638 | ! eps = ( zuf(nzt+1) - zuc(bdims_rem(3,1)+1) ) / dzc |
---|
2639 | ! |
---|
2640 | ! alpha = ( (dzf/dzc)**2.0 - 1.0) / 24.0 |
---|
2641 | ! |
---|
2642 | ! eminus = eps * ( eps - 1.0 ) / 2.0 + alpha |
---|
2643 | ! |
---|
2644 | ! edot = ( 1.0 - eps**2.0 ) - 2.0 * alpha |
---|
2645 | ! |
---|
2646 | ! eplus = eps * ( eps + 1.0 ) / 2.0 + alpha |
---|
2647 | ! |
---|
2648 | ! km (nzt+1,jjf,iif) = eminus * ptprs(bdims_rem(3,1),jjf,iif) & |
---|
2649 | ! + edot * ptprs(bdims_rem(3,1)+1,jjf,iif) & |
---|
2650 | ! + eplus * ptprs(bdims_rem(3,1)+2,jjf,iif) |
---|
2651 | ! |
---|
2652 | ! END DO |
---|
2653 | ! END DO |
---|
2654 | ! |
---|
2655 | ! DEALLOCATE ( ptprf, ptprs ) |
---|
2656 | ! |
---|
2657 | ! |
---|
2658 | ! |
---|
2659 | ! END SUBROUTINE vnest_set_topbc_km |
---|
2660 | |
---|
2661 | |
---|
2662 | #endif |
---|
2663 | END SUBROUTINE vnest_boundary_conds_khkm |
---|
2664 | |
---|
2665 | |
---|
2666 | |
---|
2667 | SUBROUTINE vnest_anterpolate |
---|
2668 | |
---|
2669 | #if defined( __parallel ) |
---|
2670 | |
---|
2671 | !--------------------------------------------------------------------------------! |
---|
2672 | ! Description: |
---|
2673 | ! ------------ |
---|
2674 | ! Anterpolate data from fine grid to coarse grid. |
---|
2675 | !------------------------------------------------------------------------------! |
---|
2676 | |
---|
2677 | USE arrays_3d |
---|
2678 | USE control_parameters |
---|
2679 | USE grid_variables |
---|
2680 | USE indices |
---|
2681 | USE interfaces |
---|
2682 | USE pegrid |
---|
2683 | USE surface_mod, & |
---|
2684 | ONLY : bc_h |
---|
2685 | |
---|
2686 | |
---|
2687 | IMPLICIT NONE |
---|
2688 | |
---|
2689 | REAL(wp) :: time_since_reference_point_rem |
---|
2690 | INTEGER(iwp) :: i |
---|
2691 | INTEGER(iwp) :: j |
---|
2692 | INTEGER(iwp) :: k |
---|
2693 | INTEGER(iwp) :: l !< running index boundary type, for up- and downward-facing walls |
---|
2694 | INTEGER(iwp) :: m !< running index surface elements |
---|
2695 | |
---|
2696 | |
---|
2697 | |
---|
2698 | ! |
---|
2699 | !-- In case of model termination initiated by the remote model |
---|
2700 | !-- (terminate_coupled_remote > 0), initiate termination of the local model. |
---|
2701 | !-- The rest of the coupler must then be skipped because it would cause an MPI |
---|
2702 | !-- intercomminucation hang. |
---|
2703 | !-- If necessary, the coupler will be called at the beginning of the next |
---|
2704 | !-- restart run. |
---|
2705 | |
---|
2706 | IF ( myid == 0) THEN |
---|
2707 | CALL MPI_SENDRECV( terminate_coupled, 1, MPI_INTEGER, & |
---|
2708 | target_id, 0, & |
---|
2709 | terminate_coupled_remote, 1, MPI_INTEGER, & |
---|
2710 | target_id, 0, & |
---|
2711 | comm_inter, status, ierr ) |
---|
2712 | ENDIF |
---|
2713 | CALL MPI_BCAST( terminate_coupled_remote, 1, MPI_INTEGER, 0, comm2d, & |
---|
2714 | ierr ) |
---|
2715 | |
---|
2716 | IF ( terminate_coupled_remote > 0 ) THEN |
---|
2717 | WRITE( message_string, * ) 'remote model "', & |
---|
2718 | TRIM( coupling_mode_remote ), & |
---|
2719 | '" terminated', & |
---|
2720 | '&with terminate_coupled_remote = ', & |
---|
2721 | terminate_coupled_remote, & |
---|
2722 | '&local model "', TRIM( coupling_mode ), & |
---|
2723 | '" has', & |
---|
2724 | '&terminate_coupled = ', & |
---|
2725 | terminate_coupled |
---|
2726 | CALL message( 'vnest_anterpolate', 'PA0310', 1, 2, 0, 6, 0 ) |
---|
2727 | RETURN |
---|
2728 | ENDIF |
---|
2729 | |
---|
2730 | |
---|
2731 | ! |
---|
2732 | !-- Exchange the current simulated time between the models |
---|
2733 | |
---|
2734 | IF ( myid == 0 ) THEN |
---|
2735 | |
---|
2736 | CALL MPI_SEND( time_since_reference_point, 1, MPI_REAL, target_id, & |
---|
2737 | 11, comm_inter, ierr ) |
---|
2738 | CALL MPI_RECV( time_since_reference_point_rem, 1, MPI_REAL, & |
---|
2739 | target_id, 11, comm_inter, status, ierr ) |
---|
2740 | |
---|
2741 | ENDIF |
---|
2742 | |
---|
2743 | CALL MPI_BCAST( time_since_reference_point_rem, 1, MPI_REAL, 0, comm2d, & |
---|
2744 | ierr ) |
---|
2745 | |
---|
2746 | IF ( coupling_mode == 'vnested_crse' ) THEN |
---|
2747 | ! Receive data from fine grid for anterpolation |
---|
2748 | |
---|
2749 | offset(1) = ( pdims_partner(1) / pdims(1) ) * pcoord(1) |
---|
2750 | offset(2) = ( pdims_partner(2) / pdims(2) ) * pcoord(2) |
---|
2751 | |
---|
2752 | do j = 0, ( pdims_partner(2) / pdims(2) ) - 1 |
---|
2753 | do i = 0, ( pdims_partner(1) / pdims(1) ) - 1 |
---|
2754 | map_coord(1) = i+offset(1) |
---|
2755 | map_coord(2) = j+offset(2) |
---|
2756 | |
---|
2757 | target_idex = f_rnk_lst(map_coord(1),map_coord(2)) + numprocs |
---|
2758 | |
---|
2759 | CALL MPI_RECV( bdims_rem, 6, MPI_INTEGER, target_idex, 10, & |
---|
2760 | comm_inter,status, ierr ) |
---|
2761 | |
---|
2762 | bdims (1,1) = bdims_rem (1,1) / cfratio(1) |
---|
2763 | bdims (1,2) = bdims_rem (1,2) / cfratio(1) |
---|
2764 | bdims (2,1) = bdims_rem (2,1) / cfratio(2) |
---|
2765 | bdims (2,2) = bdims_rem (2,2) / cfratio(2) |
---|
2766 | bdims (3,1) = bdims_rem (3,1) |
---|
2767 | bdims (3,2) = bdims_rem (3,2) / cfratio(3) |
---|
2768 | |
---|
2769 | CALL MPI_SEND( bdims, 6, MPI_INTEGER, target_idex, 9, & |
---|
2770 | comm_inter, ierr ) |
---|
2771 | |
---|
2772 | n_cell_c = & |
---|
2773 | (bdims(1,2)-bdims(1,1)+1) * & |
---|
2774 | (bdims(2,2)-bdims(2,1)+1) * & |
---|
2775 | (bdims(3,2)-bdims(3,1)+0) |
---|
2776 | |
---|
2777 | CALL MPI_RECV( u( & |
---|
2778 | bdims(3,1)+1:bdims(3,2), & |
---|
2779 | bdims(2,1) :bdims(2,2), & |
---|
2780 | bdims(1,1) :bdims(1,2)),& |
---|
2781 | n_cell_c, MPI_REAL, target_idex, 101, & |
---|
2782 | comm_inter,status, ierr ) |
---|
2783 | |
---|
2784 | CALL MPI_RECV( v( & |
---|
2785 | bdims(3,1)+1:bdims(3,2), & |
---|
2786 | bdims(2,1) :bdims(2,2), & |
---|
2787 | bdims(1,1) :bdims(1,2)),& |
---|
2788 | n_cell_c, MPI_REAL, target_idex, 102, & |
---|
2789 | comm_inter,status, ierr ) |
---|
2790 | |
---|
2791 | CALL MPI_RECV(pt( & |
---|
2792 | bdims(3,1)+1:bdims(3,2), & |
---|
2793 | bdims(2,1) :bdims(2,2), & |
---|
2794 | bdims(1,1) :bdims(1,2)),& |
---|
2795 | n_cell_c, MPI_REAL, target_idex, 105, & |
---|
2796 | comm_inter,status, ierr ) |
---|
2797 | |
---|
2798 | IF ( humidity ) THEN |
---|
2799 | CALL MPI_RECV(q( & |
---|
2800 | bdims(3,1)+1:bdims(3,2), & |
---|
2801 | bdims(2,1) :bdims(2,2), & |
---|
2802 | bdims(1,1) :bdims(1,2)),& |
---|
2803 | n_cell_c, MPI_REAL, target_idex, 106, & |
---|
2804 | comm_inter,status, ierr ) |
---|
2805 | ENDIF |
---|
2806 | |
---|
2807 | CALL MPI_RECV( w( & |
---|
2808 | bdims(3,1) :bdims(3,2)-1, & |
---|
2809 | bdims(2,1) :bdims(2,2), & |
---|
2810 | bdims(1,1) :bdims(1,2)), & |
---|
2811 | n_cell_c, MPI_REAL, target_idex, 103, & |
---|
2812 | comm_inter,status, ierr ) |
---|
2813 | |
---|
2814 | end do |
---|
2815 | end do |
---|
2816 | |
---|
2817 | |
---|
2818 | |
---|
2819 | ! |
---|
2820 | !-- Boundary conditions for the velocity components u and v |
---|
2821 | |
---|
2822 | |
---|
2823 | IF ( ibc_uv_b == 0 ) THEN |
---|
2824 | u(nzb,:,:) = 0.0_wp |
---|
2825 | v(nzb,:,:) = 0.0_wp |
---|
2826 | ELSE |
---|
2827 | u(nzb,:,:) = u(nzb+1,:,:) |
---|
2828 | v(nzb,:,:) = v(nzb+1,:,:) |
---|
2829 | END IF |
---|
2830 | ! |
---|
2831 | !-- Boundary conditions for the velocity components w |
---|
2832 | |
---|
2833 | w(nzb,:,:) = 0.0_wp |
---|
2834 | |
---|
2835 | ! |
---|
2836 | !-- Temperature at bottom boundary. |
---|
2837 | !-- Neumann, zero-gradient |
---|
2838 | IF ( ibc_pt_b == 1 ) THEN |
---|
2839 | DO l = 0, 1 |
---|
2840 | DO m = 1, bc_h(l)%ns |
---|
2841 | i = bc_h(l)%i(m) |
---|
2842 | j = bc_h(l)%j(m) |
---|
2843 | k = bc_h(l)%k(m) |
---|
2844 | pt(k+bc_h(l)%koff,j,i) = pt(k,j,i) |
---|
2845 | ENDDO |
---|
2846 | ENDDO |
---|
2847 | ENDIF |
---|
2848 | |
---|
2849 | |
---|
2850 | CALL exchange_horiz( u, nbgp ) |
---|
2851 | CALL exchange_horiz( v, nbgp ) |
---|
2852 | CALL exchange_horiz( w, nbgp ) |
---|
2853 | CALL exchange_horiz( pt, nbgp ) |
---|
2854 | |
---|
2855 | |
---|
2856 | ELSEIF ( coupling_mode == 'vnested_fine' ) THEN |
---|
2857 | ! Send data to coarse grid for anterpolation |
---|
2858 | |
---|
2859 | offset(1) = pcoord(1) / ( pdims(1)/pdims_partner(1) ) |
---|
2860 | offset(2) = pcoord(2) / ( pdims(2)/pdims_partner(2) ) |
---|
2861 | map_coord(1) = offset(1) |
---|
2862 | map_coord(2) = offset(2) |
---|
2863 | target_idex = c_rnk_lst(map_coord(1),map_coord(2)) |
---|
2864 | |
---|
2865 | !-- Limit anterpolation level to nzt - z nesting ratio (a pseudo-buffer layer) |
---|
2866 | bdims (1,1) = nxl |
---|
2867 | bdims (1,2) = nxr |
---|
2868 | bdims (2,1) = nys |
---|
2869 | bdims (2,2) = nyn |
---|
2870 | bdims (3,1) = nzb |
---|
2871 | bdims (3,2) = nzt-cfratio(3) |
---|
2872 | |
---|
2873 | CALL MPI_SEND( bdims, 6, MPI_INTEGER, target_idex, 10, & |
---|
2874 | comm_inter, ierr ) |
---|
2875 | |
---|
2876 | CALL MPI_RECV( bdims_rem, 6, MPI_INTEGER, target_idex, 9, & |
---|
2877 | comm_inter,status, ierr ) |
---|
2878 | |
---|
2879 | |
---|
2880 | ALLOCATE( work3d ( & |
---|
2881 | bdims_rem(3,1)+1:bdims_rem(3,2), & |
---|
2882 | bdims_rem(2,1) :bdims_rem(2,2), & |
---|
2883 | bdims_rem(1,1) :bdims_rem(1,2))) |
---|
2884 | |
---|
2885 | |
---|
2886 | anterpol3d => u |
---|
2887 | |
---|
2888 | CALL anterpolate_to_crse_u |
---|
2889 | CALL MPI_SEND( work3d, 1, TYPE_VNEST_ANTER, target_idex, & |
---|
2890 | 101, comm_inter, ierr) |
---|
2891 | |
---|
2892 | anterpol3d => v |
---|
2893 | |
---|
2894 | CALL anterpolate_to_crse_v |
---|
2895 | CALL MPI_SEND( work3d, 1, TYPE_VNEST_ANTER, target_idex, & |
---|
2896 | 102, comm_inter, ierr) |
---|
2897 | |
---|
2898 | anterpol3d => pt |
---|
2899 | |
---|
2900 | CALL anterpolate_to_crse_s |
---|
2901 | CALL MPI_SEND( work3d, 1, TYPE_VNEST_ANTER, target_idex, & |
---|
2902 | 105, comm_inter, ierr) |
---|
2903 | |
---|
2904 | |
---|
2905 | IF ( humidity ) THEN |
---|
2906 | |
---|
2907 | anterpol3d => q |
---|
2908 | |
---|
2909 | CALL anterpolate_to_crse_s |
---|
2910 | CALL MPI_SEND( work3d, 1, TYPE_VNEST_ANTER, target_idex, & |
---|
2911 | 106, comm_inter, ierr) |
---|
2912 | ENDIF |
---|
2913 | |
---|
2914 | |
---|
2915 | DEALLOCATE( work3d ) |
---|
2916 | ALLOCATE( work3d ( bdims_rem(3,1) :bdims_rem(3,2)-1, & |
---|
2917 | bdims_rem(2,1) :bdims_rem(2,2), & |
---|
2918 | bdims_rem(1,1) :bdims_rem(1,2))) |
---|
2919 | anterpol3d => w |
---|
2920 | CALL anterpolate_to_crse_w |
---|
2921 | CALL MPI_SEND( work3d, 1, TYPE_VNEST_ANTER, target_idex, & |
---|
2922 | 103, comm_inter, ierr) |
---|
2923 | |
---|
2924 | NULLIFY ( anterpol3d ) |
---|
2925 | DEALLOCATE( work3d ) |
---|
2926 | |
---|
2927 | ENDIF |
---|
2928 | |
---|
2929 | |
---|
2930 | |
---|
2931 | CONTAINS |
---|
2932 | SUBROUTINE anterpolate_to_crse_u |
---|
2933 | |
---|
2934 | |
---|
2935 | USE arrays_3d |
---|
2936 | USE control_parameters |
---|
2937 | USE grid_variables |
---|
2938 | USE indices |
---|
2939 | USE pegrid |
---|
2940 | |
---|
2941 | |
---|
2942 | IMPLICIT NONE |
---|
2943 | |
---|
2944 | INTEGER(iwp) :: i |
---|
2945 | INTEGER(iwp) :: j |
---|
2946 | INTEGER(iwp) :: k |
---|
2947 | INTEGER(iwp) :: iif |
---|
2948 | INTEGER(iwp) :: jjf |
---|
2949 | INTEGER(iwp) :: kkf |
---|
2950 | INTEGER(iwp) :: bottomy |
---|
2951 | INTEGER(iwp) :: bottomz |
---|
2952 | INTEGER(iwp) :: topy |
---|
2953 | INTEGER(iwp) :: topz |
---|
2954 | REAL(wp) :: aweight |
---|
2955 | |
---|
2956 | ! |
---|
2957 | !-- Anterpolation of the velocity components u |
---|
2958 | !-- only values in yz-planes that coincide in the fine and |
---|
2959 | !-- the coarse grid are considered |
---|
2960 | |
---|
2961 | DO k = bdims_rem(3,1)+1, bdims_rem(3,2) |
---|
2962 | |
---|
2963 | bottomz = (dzc/dzf) * (k-1) + 1 |
---|
2964 | topz = (dzc/dzf) * k |
---|
2965 | |
---|
2966 | DO j = bdims_rem(2,1),bdims_rem(2,2) |
---|
2967 | |
---|
2968 | bottomy = (nyf+1) / (nyc+1) * j |
---|
2969 | topy = (nyf+1) / (nyc+1) * (j+1) - 1 |
---|
2970 | |
---|
2971 | DO i = bdims_rem(1,1),bdims_rem(1,2) |
---|
2972 | |
---|
2973 | iif = (nxf+1) / (nxc+1) * i |
---|
2974 | |
---|
2975 | aweight = 0.0 |
---|
2976 | |
---|
2977 | DO kkf = bottomz, topz |
---|
2978 | DO jjf = bottomy, topy |
---|
2979 | |
---|
2980 | aweight = aweight + anterpol3d(kkf,jjf,iif) * & |
---|
2981 | (dzf/dzc) * (dyf/dyc) |
---|
2982 | |
---|
2983 | END DO |
---|
2984 | END DO |
---|
2985 | |
---|
2986 | work3d(k,j,i) = aweight |
---|
2987 | |
---|
2988 | END DO |
---|
2989 | |
---|
2990 | END DO |
---|
2991 | |
---|
2992 | END DO |
---|
2993 | |
---|
2994 | |
---|
2995 | |
---|
2996 | END SUBROUTINE anterpolate_to_crse_u |
---|
2997 | |
---|
2998 | |
---|
2999 | SUBROUTINE anterpolate_to_crse_v |
---|
3000 | |
---|
3001 | |
---|
3002 | USE arrays_3d |
---|
3003 | USE control_parameters |
---|
3004 | USE grid_variables |
---|
3005 | USE indices |
---|
3006 | USE pegrid |
---|
3007 | |
---|
3008 | |
---|
3009 | IMPLICIT NONE |
---|
3010 | |
---|
3011 | INTEGER(iwp) :: i |
---|
3012 | INTEGER(iwp) :: j |
---|
3013 | INTEGER(iwp) :: k |
---|
3014 | INTEGER(iwp) :: iif |
---|
3015 | INTEGER(iwp) :: jjf |
---|
3016 | INTEGER(iwp) :: kkf |
---|
3017 | INTEGER(iwp) :: bottomx |
---|
3018 | INTEGER(iwp) :: bottomz |
---|
3019 | INTEGER(iwp) :: topx |
---|
3020 | INTEGER(iwp) :: topz |
---|
3021 | REAL(wp) :: aweight |
---|
3022 | |
---|
3023 | ! |
---|
3024 | !-- Anterpolation of the velocity components v |
---|
3025 | !-- only values in xz-planes that coincide in the fine and |
---|
3026 | !-- the coarse grid are considered |
---|
3027 | |
---|
3028 | DO k = bdims_rem(3,1)+1, bdims_rem(3,2) |
---|
3029 | |
---|
3030 | bottomz = (dzc/dzf) * (k-1) + 1 |
---|
3031 | topz = (dzc/dzf) * k |
---|
3032 | |
---|
3033 | DO j = bdims_rem(2,1), bdims_rem(2,2) |
---|
3034 | |
---|
3035 | jjf = (nyf+1) / (nyc+1) * j |
---|
3036 | |
---|
3037 | DO i = bdims_rem(1,1), bdims_rem(1,2) |
---|
3038 | |
---|
3039 | bottomx = (nxf+1) / (nxc+1) * i |
---|
3040 | topx = (nxf+1) / (nxc+1) * (i+1) - 1 |
---|
3041 | |
---|
3042 | aweight = 0.0 |
---|
3043 | |
---|
3044 | DO kkf = bottomz, topz |
---|
3045 | DO iif = bottomx, topx |
---|
3046 | |
---|
3047 | aweight = aweight + anterpol3d(kkf,jjf,iif) * & |
---|
3048 | (dzf/dzc) * (dxf/dxc) |
---|
3049 | |
---|
3050 | |
---|
3051 | END DO |
---|
3052 | END DO |
---|
3053 | |
---|
3054 | work3d(k,j,i) = aweight |
---|
3055 | |
---|
3056 | END DO |
---|
3057 | END DO |
---|
3058 | END DO |
---|
3059 | |
---|
3060 | |
---|
3061 | |
---|
3062 | END SUBROUTINE anterpolate_to_crse_v |
---|
3063 | |
---|
3064 | |
---|
3065 | SUBROUTINE anterpolate_to_crse_w |
---|
3066 | |
---|
3067 | |
---|
3068 | USE arrays_3d |
---|
3069 | USE control_parameters |
---|
3070 | USE grid_variables |
---|
3071 | USE indices |
---|
3072 | USE pegrid |
---|
3073 | |
---|
3074 | |
---|
3075 | IMPLICIT NONE |
---|
3076 | |
---|
3077 | INTEGER(iwp) :: i |
---|
3078 | INTEGER(iwp) :: j |
---|
3079 | INTEGER(iwp) :: k |
---|
3080 | INTEGER(iwp) :: iif |
---|
3081 | INTEGER(iwp) :: jjf |
---|
3082 | INTEGER(iwp) :: kkf |
---|
3083 | INTEGER(iwp) :: bottomx |
---|
3084 | INTEGER(iwp) :: bottomy |
---|
3085 | INTEGER(iwp) :: topx |
---|
3086 | INTEGER(iwp) :: topy |
---|
3087 | REAL(wp) :: aweight |
---|
3088 | |
---|
3089 | ! |
---|
3090 | !-- Anterpolation of the velocity components w |
---|
3091 | !-- only values in xy-planes that coincide in the fine and |
---|
3092 | !-- the coarse grid are considered |
---|
3093 | |
---|
3094 | DO k = bdims_rem(3,1), bdims_rem(3,2)-1 |
---|
3095 | |
---|
3096 | kkf = cfratio(3) * k |
---|
3097 | |
---|
3098 | DO j = bdims_rem(2,1), bdims_rem(2,2) |
---|
3099 | |
---|
3100 | bottomy = (nyf+1) / (nyc+1) * j |
---|
3101 | topy = (nyf+1) / (nyc+1) * (j+1) - 1 |
---|
3102 | |
---|
3103 | DO i = bdims_rem(1,1), bdims_rem(1,2) |
---|
3104 | |
---|
3105 | bottomx = (nxf+1) / (nxc+1) * i |
---|
3106 | topx = (nxf+1) / (nxc+1) * (i+1) - 1 |
---|
3107 | |
---|
3108 | aweight = 0.0 |
---|
3109 | |
---|
3110 | DO jjf = bottomy, topy |
---|
3111 | DO iif = bottomx, topx |
---|
3112 | |
---|
3113 | aweight = aweight + anterpol3d (kkf,jjf,iif) * & |
---|
3114 | (dxf/dxc) * (dyf/dyc) |
---|
3115 | |
---|
3116 | END DO |
---|
3117 | END DO |
---|
3118 | |
---|
3119 | work3d(k,j,i) = aweight |
---|
3120 | |
---|
3121 | END DO |
---|
3122 | |
---|
3123 | END DO |
---|
3124 | |
---|
3125 | END DO |
---|
3126 | |
---|
3127 | |
---|
3128 | END SUBROUTINE anterpolate_to_crse_w |
---|
3129 | |
---|
3130 | |
---|
3131 | SUBROUTINE anterpolate_to_crse_s |
---|
3132 | |
---|
3133 | |
---|
3134 | USE arrays_3d |
---|
3135 | USE control_parameters |
---|
3136 | USE grid_variables |
---|
3137 | USE indices |
---|
3138 | USE pegrid |
---|
3139 | |
---|
3140 | |
---|
3141 | IMPLICIT NONE |
---|
3142 | |
---|
3143 | INTEGER(iwp) :: i |
---|
3144 | INTEGER(iwp) :: j |
---|
3145 | INTEGER(iwp) :: k |
---|
3146 | INTEGER(iwp) :: iif |
---|
3147 | INTEGER(iwp) :: jjf |
---|
3148 | INTEGER(iwp) :: kkf |
---|
3149 | INTEGER(iwp) :: bottomx |
---|
3150 | INTEGER(iwp) :: bottomy |
---|
3151 | INTEGER(iwp) :: bottomz |
---|
3152 | INTEGER(iwp) :: topx |
---|
3153 | INTEGER(iwp) :: topy |
---|
3154 | INTEGER(iwp) :: topz |
---|
3155 | REAL(wp) :: aweight |
---|
3156 | |
---|
3157 | ! |
---|
3158 | !-- Anterpolation of the potential temperature pt |
---|
3159 | !-- all fine grid values are considered |
---|
3160 | |
---|
3161 | DO k = bdims_rem(3,1)+1, bdims_rem(3,2) |
---|
3162 | |
---|
3163 | bottomz = (dzc/dzf) * (k-1) + 1 |
---|
3164 | topz = (dzc/dzf) * k |
---|
3165 | |
---|
3166 | DO j = bdims_rem(2,1), bdims_rem(2,2) |
---|
3167 | |
---|
3168 | bottomy = (nyf+1) / (nyc+1) * j |
---|
3169 | topy = (nyf+1) / (nyc+1) * (j+1) - 1 |
---|
3170 | |
---|
3171 | DO i = bdims_rem(1,1), bdims_rem(1,2) |
---|
3172 | |
---|
3173 | bottomx = (nxf+1) / (nxc+1) * i |
---|
3174 | topx = (nxf+1) / (nxc+1) * (i+1) - 1 |
---|
3175 | |
---|
3176 | aweight = 0.0 |
---|
3177 | |
---|
3178 | DO kkf = bottomz, topz |
---|
3179 | DO jjf = bottomy, topy |
---|
3180 | DO iif = bottomx, topx |
---|
3181 | |
---|
3182 | aweight = aweight + anterpol3d(kkf,jjf,iif) * & |
---|
3183 | (dzf/dzc) * (dyf/dyc) * (dxf/dxc) |
---|
3184 | |
---|
3185 | END DO |
---|
3186 | END DO |
---|
3187 | END DO |
---|
3188 | |
---|
3189 | work3d(k,j,i) = aweight |
---|
3190 | |
---|
3191 | END DO |
---|
3192 | |
---|
3193 | END DO |
---|
3194 | |
---|
3195 | END DO |
---|
3196 | |
---|
3197 | |
---|
3198 | END SUBROUTINE anterpolate_to_crse_s |
---|
3199 | #endif |
---|
3200 | END SUBROUTINE vnest_anterpolate |
---|
3201 | |
---|
3202 | |
---|
3203 | |
---|
3204 | SUBROUTINE vnest_anterpolate_e |
---|
3205 | #if defined( __parallel ) |
---|
3206 | |
---|
3207 | !--------------------------------------------------------------------------------! |
---|
3208 | ! Description: |
---|
3209 | ! ------------ |
---|
3210 | ! Anterpolate TKE from fine grid to coarse grid. |
---|
3211 | !------------------------------------------------------------------------------! |
---|
3212 | |
---|
3213 | USE arrays_3d |
---|
3214 | USE control_parameters |
---|
3215 | USE grid_variables |
---|
3216 | USE indices |
---|
3217 | USE interfaces |
---|
3218 | USE pegrid |
---|
3219 | |
---|
3220 | |
---|
3221 | IMPLICIT NONE |
---|
3222 | |
---|
3223 | REAL(wp) :: time_since_reference_point_rem |
---|
3224 | INTEGER(iwp) :: i |
---|
3225 | INTEGER(iwp) :: j |
---|
3226 | |
---|
3227 | ! |
---|
3228 | !-- In case of model termination initiated by the remote model |
---|
3229 | !-- (terminate_coupled_remote > 0), initiate termination of the local model. |
---|
3230 | !-- The rest of the coupler must then be skipped because it would cause an MPI |
---|
3231 | !-- intercomminucation hang. |
---|
3232 | !-- If necessary, the coupler will be called at the beginning of the next |
---|
3233 | !-- restart run. |
---|
3234 | |
---|
3235 | IF ( myid == 0) THEN |
---|
3236 | CALL MPI_SENDRECV( terminate_coupled, 1, MPI_INTEGER, & |
---|
3237 | target_id, 0, & |
---|
3238 | terminate_coupled_remote, 1, MPI_INTEGER, & |
---|
3239 | target_id, 0, & |
---|
3240 | comm_inter, status, ierr ) |
---|
3241 | ENDIF |
---|
3242 | CALL MPI_BCAST( terminate_coupled_remote, 1, MPI_INTEGER, 0, comm2d, & |
---|
3243 | ierr ) |
---|
3244 | |
---|
3245 | IF ( terminate_coupled_remote > 0 ) THEN |
---|
3246 | WRITE( message_string, * ) 'remote model "', & |
---|
3247 | TRIM( coupling_mode_remote ), & |
---|
3248 | '" terminated', & |
---|
3249 | '&with terminate_coupled_remote = ', & |
---|
3250 | terminate_coupled_remote, & |
---|
3251 | '&local model "', TRIM( coupling_mode ), & |
---|
3252 | '" has', & |
---|
3253 | '&terminate_coupled = ', & |
---|
3254 | terminate_coupled |
---|
3255 | CALL message( 'vnest_anterpolate_e', 'PA0310', 1, 2, 0, 6, 0 ) |
---|
3256 | RETURN |
---|
3257 | ENDIF |
---|
3258 | |
---|
3259 | |
---|
3260 | ! |
---|
3261 | !-- Exchange the current simulated time between the models |
---|
3262 | IF ( myid == 0 ) THEN |
---|
3263 | |
---|
3264 | CALL MPI_SEND( time_since_reference_point, 1, MPI_REAL, target_id, & |
---|
3265 | 11, comm_inter, ierr ) |
---|
3266 | CALL MPI_RECV( time_since_reference_point_rem, 1, MPI_REAL, & |
---|
3267 | target_id, 11, comm_inter, status, ierr ) |
---|
3268 | |
---|
3269 | ENDIF |
---|
3270 | |
---|
3271 | CALL MPI_BCAST( time_since_reference_point_rem, 1, MPI_REAL, 0, comm2d, & |
---|
3272 | ierr ) |
---|
3273 | |
---|
3274 | IF ( coupling_mode == 'vnested_crse' ) THEN |
---|
3275 | ! Receive data from fine grid for anterpolation |
---|
3276 | |
---|
3277 | offset(1) = ( pdims_partner(1) / pdims(1) ) * pcoord(1) |
---|
3278 | offset(2) = ( pdims_partner(2) / pdims(2) ) * pcoord(2) |
---|
3279 | |
---|
3280 | do j = 0, ( pdims_partner(2) / pdims(2) ) - 1 |
---|
3281 | do i = 0, ( pdims_partner(1) / pdims(1) ) - 1 |
---|
3282 | map_coord(1) = i+offset(1) |
---|
3283 | map_coord(2) = j+offset(2) |
---|
3284 | |
---|
3285 | target_idex = f_rnk_lst(map_coord(1),map_coord(2)) + numprocs |
---|
3286 | |
---|
3287 | bdims (1,1) = f2c_dims_cg (0,map_coord(1),map_coord(2)) |
---|
3288 | bdims (1,2) = f2c_dims_cg (1,map_coord(1),map_coord(2)) |
---|
3289 | bdims (2,1) = f2c_dims_cg (2,map_coord(1),map_coord(2)) |
---|
3290 | bdims (2,2) = f2c_dims_cg (3,map_coord(1),map_coord(2)) |
---|
3291 | bdims (3,1) = f2c_dims_cg (4,map_coord(1),map_coord(2)) |
---|
3292 | bdims (3,2) = f2c_dims_cg (5,map_coord(1),map_coord(2)) |
---|
3293 | |
---|
3294 | |
---|
3295 | n_cell_c = (bdims(1,2)-bdims(1,1)+1) * & |
---|
3296 | (bdims(2,2)-bdims(2,1)+1) * & |
---|
3297 | (bdims(3,2)-bdims(3,1)+0) |
---|
3298 | |
---|
3299 | |
---|
3300 | CALL MPI_RECV( e( bdims(3,1)+1:bdims(3,2), & |
---|
3301 | bdims(2,1) :bdims(2,2), & |
---|
3302 | bdims(1,1) :bdims(1,2)),& |
---|
3303 | n_cell_c, MPI_REAL, target_idex, 104, & |
---|
3304 | comm_inter,status, ierr ) |
---|
3305 | end do |
---|
3306 | end do |
---|
3307 | |
---|
3308 | |
---|
3309 | ! |
---|
3310 | !-- Boundary conditions |
---|
3311 | |
---|
3312 | IF ( .NOT. constant_diffusion ) THEN |
---|
3313 | e(nzb,:,:) = e(nzb+1,:,:) |
---|
3314 | END IF |
---|
3315 | |
---|
3316 | IF ( .NOT. constant_diffusion ) CALL exchange_horiz( e, nbgp ) |
---|
3317 | |
---|
3318 | ELSEIF ( coupling_mode == 'vnested_fine' ) THEN |
---|
3319 | ! Send data to coarse grid for anterpolation |
---|
3320 | |
---|
3321 | offset(1) = pcoord(1) / ( pdims(1)/pdims_partner(1) ) |
---|
3322 | offset(2) = pcoord(2) / ( pdims(2)/pdims_partner(2) ) |
---|
3323 | map_coord(1) = offset(1) |
---|
3324 | map_coord(2) = offset(2) |
---|
3325 | target_idex = c_rnk_lst(map_coord(1),map_coord(2)) |
---|
3326 | |
---|
3327 | bdims_rem (1,1) = f2c_dims_fg (0) |
---|
3328 | bdims_rem (1,2) = f2c_dims_fg (1) |
---|
3329 | bdims_rem (2,1) = f2c_dims_fg (2) |
---|
3330 | bdims_rem (2,2) = f2c_dims_fg (3) |
---|
3331 | bdims_rem (3,1) = f2c_dims_fg (4) |
---|
3332 | bdims_rem (3,2) = f2c_dims_fg (5) |
---|
3333 | |
---|
3334 | ALLOCATE( work3d ( & |
---|
3335 | bdims_rem(3,1)+1:bdims_rem(3,2), & |
---|
3336 | bdims_rem(2,1) :bdims_rem(2,2), & |
---|
3337 | bdims_rem(1,1) :bdims_rem(1,2))) |
---|
3338 | |
---|
3339 | anterpol3d => e |
---|
3340 | |
---|
3341 | CALL anterpolate_to_crse_e |
---|
3342 | |
---|
3343 | CALL MPI_SEND( work3d, 1, TYPE_VNEST_ANTER, target_idex, & |
---|
3344 | 104, comm_inter, ierr) |
---|
3345 | |
---|
3346 | NULLIFY ( anterpol3d ) |
---|
3347 | DEALLOCATE( work3d ) |
---|
3348 | ENDIF |
---|
3349 | |
---|
3350 | |
---|
3351 | CONTAINS |
---|
3352 | |
---|
3353 | |
---|
3354 | |
---|
3355 | |
---|
3356 | |
---|
3357 | SUBROUTINE anterpolate_to_crse_e |
---|
3358 | |
---|
3359 | |
---|
3360 | USE arrays_3d |
---|
3361 | USE control_parameters |
---|
3362 | USE grid_variables |
---|
3363 | USE indices |
---|
3364 | USE pegrid |
---|
3365 | |
---|
3366 | |
---|
3367 | IMPLICIT NONE |
---|
3368 | |
---|
3369 | INTEGER(iwp) :: i |
---|
3370 | INTEGER(iwp) :: j |
---|
3371 | INTEGER(iwp) :: k |
---|
3372 | INTEGER(iwp) :: iif |
---|
3373 | INTEGER(iwp) :: jjf |
---|
3374 | INTEGER(iwp) :: kkf |
---|
3375 | INTEGER(iwp) :: bottomx |
---|
3376 | INTEGER(iwp) :: bottomy |
---|
3377 | INTEGER(iwp) :: bottomz |
---|
3378 | INTEGER(iwp) :: topx |
---|
3379 | INTEGER(iwp) :: topy |
---|
3380 | INTEGER(iwp) :: topz |
---|
3381 | REAL(wp) :: aweight_a |
---|
3382 | REAL(wp) :: aweight_b |
---|
3383 | REAL(wp) :: aweight_c |
---|
3384 | REAL(wp) :: aweight_d |
---|
3385 | REAL(wp) :: aweight_e |
---|
3386 | REAL(wp) :: energ |
---|
3387 | |
---|
3388 | DO k = bdims_rem(3,1)+1, bdims_rem(3,2) |
---|
3389 | |
---|
3390 | bottomz = (dzc/dzf) * (k-1) + 1 |
---|
3391 | topz = (dzc/dzf) * k |
---|
3392 | |
---|
3393 | DO j = bdims_rem(2,1), bdims_rem(2,2) |
---|
3394 | |
---|
3395 | bottomy = (nyf+1) / (nyc+1) * j |
---|
3396 | topy = (nyf+1) / (nyc+1) * (j+1) - 1 |
---|
3397 | |
---|
3398 | DO i = bdims_rem(1,1), bdims_rem(1,2) |
---|
3399 | |
---|
3400 | bottomx = (nxf+1) / (nxc+1) * i |
---|
3401 | topx = (nxf+1) / (nxc+1) * (i+1) - 1 |
---|
3402 | |
---|
3403 | aweight_a = 0.0 |
---|
3404 | aweight_b = 0.0 |
---|
3405 | aweight_c = 0.0 |
---|
3406 | aweight_d = 0.0 |
---|
3407 | aweight_e = 0.0 |
---|
3408 | |
---|
3409 | DO kkf = bottomz, topz |
---|
3410 | DO jjf = bottomy, topy |
---|
3411 | DO iif = bottomx, topx |
---|
3412 | |
---|
3413 | aweight_a = aweight_a + anterpol3d(kkf,jjf,iif) * & |
---|
3414 | (dzf/dzc) * (dyf/dyc) * (dxf/dxc) |
---|
3415 | |
---|
3416 | |
---|
3417 | energ = ( 0.5 * ( u(kkf,jjf,iif) + u(kkf,jjf,iif+1) ) )**2.0 + & |
---|
3418 | ( 0.5 * ( v(kkf,jjf,iif) + v(kkf,jjf+1,iif) ) )**2.0 + & |
---|
3419 | ( 0.5 * ( w(kkf-1,jjf,iif) + w(kkf,jjf,iif) ) )**2.0 |
---|
3420 | |
---|
3421 | aweight_b = aweight_b + energ * & |
---|
3422 | (dzf/dzc) * (dyf/dyc) * (dxf/dxc) |
---|
3423 | |
---|
3424 | aweight_c = aweight_c + 0.5 * ( u(kkf,jjf,iif) + u(kkf,jjf,iif+1) ) * & |
---|
3425 | (dzf/dzc) * (dyf/dyc) * (dxf/dxc) |
---|
3426 | |
---|
3427 | aweight_d = aweight_d + 0.5 * ( v(kkf,jjf,iif) + v(kkf,jjf+1,iif) ) * & |
---|
3428 | (dzf/dzc) * (dyf/dyc) * (dxf/dxc) |
---|
3429 | |
---|
3430 | aweight_e = aweight_e + 0.5 * ( w(kkf-1,jjf,iif) + w(kkf,jjf,iif) ) * & |
---|
3431 | (dzf/dzc) * (dyf/dyc) * (dxf/dxc) |
---|
3432 | |
---|
3433 | |
---|
3434 | END DO |
---|
3435 | END DO |
---|
3436 | END DO |
---|
3437 | |
---|
3438 | work3d(k,j,i) = aweight_a + 0.5 * ( aweight_b - & |
---|
3439 | aweight_c**2.0 - & |
---|
3440 | aweight_d**2.0 - & |
---|
3441 | aweight_e**2.0 ) |
---|
3442 | |
---|
3443 | END DO |
---|
3444 | |
---|
3445 | END DO |
---|
3446 | |
---|
3447 | END DO |
---|
3448 | |
---|
3449 | |
---|
3450 | |
---|
3451 | END SUBROUTINE anterpolate_to_crse_e |
---|
3452 | #endif |
---|
3453 | END SUBROUTINE vnest_anterpolate_e |
---|
3454 | |
---|
3455 | SUBROUTINE vnest_init_pegrid_rank |
---|
3456 | #if defined( __parallel ) |
---|
3457 | ! Domain decomposition and exchange of grid variables between coarse and fine |
---|
3458 | ! Given processor coordinates as index f_rnk_lst(pcoord(1), pcoord(2)) |
---|
3459 | ! returns the rank. A single coarse block will have to send data to multiple |
---|
3460 | ! fine blocks. In the coarse grid the pcoords of the remote block is first found and then using |
---|
3461 | ! f_rnk_lst the target_idex is identified. |
---|
3462 | ! blk_dim stores the index limits of a given block. blk_dim_remote is received |
---|
3463 | ! from the asscoiated nest partner. |
---|
3464 | ! cf_ratio(1:3) is the ratio between fine and coarse grid: nxc/nxf, nyc/nyf and |
---|
3465 | ! ceiling(dxc/dxf) |
---|
3466 | |
---|
3467 | |
---|
3468 | USE control_parameters, & |
---|
3469 | ONLY: coupling_mode |
---|
3470 | |
---|
3471 | USE kinds |
---|
3472 | |
---|
3473 | USE pegrid |
---|
3474 | |
---|
3475 | |
---|
3476 | IMPLICIT NONE |
---|
3477 | |
---|
3478 | INTEGER(iwp) :: dest_rnk |
---|
3479 | INTEGER(iwp) :: i !< |
---|
3480 | |
---|
3481 | IF (myid == 0) THEN |
---|
3482 | IF ( coupling_mode == 'vnested_crse') THEN |
---|
3483 | CALL MPI_SEND( pdims, 2, MPI_INTEGER, numprocs, 33, comm_inter, & |
---|
3484 | ierr ) |
---|
3485 | CALL MPI_RECV( pdims_partner, 2, MPI_INTEGER, numprocs, 66, & |
---|
3486 | comm_inter, status, ierr ) |
---|
3487 | ELSEIF ( coupling_mode == 'vnested_fine') THEN |
---|
3488 | CALL MPI_RECV( pdims_partner, 2, MPI_INTEGER, 0, 33, & |
---|
3489 | comm_inter, status, ierr ) |
---|
3490 | CALL MPI_SEND( pdims, 2, MPI_INTEGER, 0, 66, comm_inter, & |
---|
3491 | ierr ) |
---|
3492 | ENDIF |
---|
3493 | ENDIF |
---|
3494 | |
---|
3495 | |
---|
3496 | IF ( coupling_mode == 'vnested_crse') THEN |
---|
3497 | CALL MPI_BCAST( pdims_partner, 2, MPI_INTEGER, 0, comm2d, ierr ) |
---|
3498 | ALLOCATE( c_rnk_lst( 0:(pdims(1)-1) ,0:(pdims(2)-1) ) ) |
---|
3499 | ALLOCATE( f_rnk_lst( 0:(pdims_partner(1)-1) ,0:(pdims_partner(2)-1) ) ) |
---|
3500 | do i=0,numprocs-1 |
---|
3501 | CALL MPI_CART_COORDS( comm2d, i, ndim, pcoord, ierr ) |
---|
3502 | call MPI_Cart_rank(comm2d, pcoord, dest_rnk, ierr) |
---|
3503 | c_rnk_lst(pcoord(1),pcoord(2)) = dest_rnk |
---|
3504 | end do |
---|
3505 | ELSEIF ( coupling_mode == 'vnested_fine') THEN |
---|
3506 | CALL MPI_BCAST( pdims_partner, 2, MPI_INTEGER, 0, comm2d, ierr ) |
---|
3507 | ALLOCATE( c_rnk_lst( 0:(pdims_partner(1)-1) ,0:(pdims_partner(2)-1) ) ) |
---|
3508 | ALLOCATE( f_rnk_lst( 0:(pdims(1)-1) ,0:(pdims(2)-1) ) ) |
---|
3509 | |
---|
3510 | do i=0,numprocs-1 |
---|
3511 | CALL MPI_CART_COORDS( comm2d, i, ndim, pcoord, ierr ) |
---|
3512 | call MPI_Cart_rank(comm2d, pcoord, dest_rnk, ierr) |
---|
3513 | f_rnk_lst(pcoord(1),pcoord(2)) = dest_rnk |
---|
3514 | enddo |
---|
3515 | ENDIF |
---|
3516 | |
---|
3517 | |
---|
3518 | IF ( coupling_mode == 'vnested_crse') THEN |
---|
3519 | if (myid == 0) then |
---|
3520 | CALL MPI_SEND( c_rnk_lst, pdims(1)*pdims(2), MPI_INTEGER, numprocs, 0, comm_inter, ierr ) |
---|
3521 | CALL MPI_RECV( f_rnk_lst, pdims_partner(1)*pdims_partner(2), MPI_INTEGER, numprocs, 4, comm_inter,status, ierr ) |
---|
3522 | end if |
---|
3523 | CALL MPI_BCAST( f_rnk_lst, pdims_partner(1)*pdims_partner(2), MPI_INTEGER, 0, comm2d, ierr ) |
---|
3524 | ELSEIF ( coupling_mode == 'vnested_fine') THEN |
---|
3525 | if (myid == 0) then |
---|
3526 | CALL MPI_RECV( c_rnk_lst, pdims_partner(1)*pdims_partner(2), MPI_INTEGER, 0, 0, comm_inter,status, ierr ) |
---|
3527 | CALL MPI_SEND( f_rnk_lst, pdims(1)*pdims(2), MPI_INTEGER, 0, 4, comm_inter, ierr ) |
---|
3528 | end if |
---|
3529 | CALL MPI_BCAST( c_rnk_lst, pdims_partner(1)*pdims_partner(2), MPI_INTEGER, 0, comm2d, ierr ) |
---|
3530 | ENDIF |
---|
3531 | |
---|
3532 | !-- Reason for MPI error unknown; solved if three lines duplicated |
---|
3533 | CALL MPI_CART_COORDS( comm2d, myid, ndim, pcoord, ierr ) |
---|
3534 | CALL MPI_CART_SHIFT( comm2d, 0, 1, pleft, pright, ierr ) |
---|
3535 | CALL MPI_CART_SHIFT( comm2d, 1, 1, psouth, pnorth, ierr ) |
---|
3536 | |
---|
3537 | |
---|
3538 | #endif |
---|
3539 | |
---|
3540 | END SUBROUTINE vnest_init_pegrid_rank |
---|
3541 | |
---|
3542 | |
---|
3543 | SUBROUTINE vnest_init_pegrid_domain |
---|
3544 | #if defined( __parallel ) |
---|
3545 | |
---|
3546 | USE control_parameters, & |
---|
3547 | ONLY: coupling_mode, coupling_topology, dz, & |
---|
3548 | dz_stretch_level_start, message_string |
---|
3549 | |
---|
3550 | USE grid_variables, & |
---|
3551 | ONLY: dx, dy |
---|
3552 | |
---|
3553 | USE indices, & |
---|
3554 | ONLY: nbgp, nx, ny, nz, nxl, nxr, nys, nyn, nzb, nzt |
---|
3555 | |
---|
3556 | USE kinds |
---|
3557 | |
---|
3558 | USE pegrid |
---|
3559 | |
---|
3560 | IMPLICIT NONE |
---|
3561 | |
---|
3562 | INTEGER(iwp) :: i !< |
---|
3563 | INTEGER(iwp) :: j !< |
---|
3564 | INTEGER(iwp) :: tempx |
---|
3565 | INTEGER(iwp) :: tempy |
---|
3566 | INTEGER(iwp) :: TYPE_INT_YZ |
---|
3567 | INTEGER(iwp) :: SIZEOFREAL |
---|
3568 | INTEGER(iwp) :: MTV_X |
---|
3569 | INTEGER(iwp) :: MTV_Y |
---|
3570 | INTEGER(iwp) :: MTV_Z |
---|
3571 | INTEGER(iwp) :: MTV_RX |
---|
3572 | INTEGER(iwp) :: MTV_RY |
---|
3573 | INTEGER(iwp) :: MTV_RZ |
---|
3574 | |
---|
3575 | ! |
---|
3576 | !-- Pass the number of grid points of the coarse model to |
---|
3577 | !-- the nested model and vice versa |
---|
3578 | IF ( coupling_mode == 'vnested_crse' ) THEN |
---|
3579 | |
---|
3580 | nxc = nx |
---|
3581 | nyc = ny |
---|
3582 | nzc = nz |
---|
3583 | dxc = dx |
---|
3584 | dyc = dy |
---|
3585 | dzc = dz(1) |
---|
3586 | cg_nprocs = numprocs |
---|
3587 | |
---|
3588 | IF ( myid == 0 ) THEN |
---|
3589 | |
---|
3590 | CALL MPI_SEND( nxc, 1, MPI_INTEGER , numprocs, 1, comm_inter, & |
---|
3591 | ierr ) |
---|
3592 | CALL MPI_SEND( nyc, 1, MPI_INTEGER , numprocs, 2, comm_inter, & |
---|
3593 | ierr ) |
---|
3594 | CALL MPI_SEND( nzc, 1, MPI_INTEGER , numprocs, 3, comm_inter, & |
---|
3595 | ierr ) |
---|
3596 | CALL MPI_SEND( dxc, 1, MPI_REAL , numprocs, 4, comm_inter, & |
---|
3597 | ierr ) |
---|
3598 | CALL MPI_SEND( dyc, 1, MPI_REAL , numprocs, 5, comm_inter, & |
---|
3599 | ierr ) |
---|
3600 | CALL MPI_SEND( dzc, 1, MPI_REAL , numprocs, 6, comm_inter, & |
---|
3601 | ierr ) |
---|
3602 | CALL MPI_SEND( pdims, 2, MPI_INTEGER, numprocs, 7, comm_inter, & |
---|
3603 | ierr ) |
---|
3604 | CALL MPI_SEND( cg_nprocs, 1, MPI_INTEGER, numprocs, 8, comm_inter, & |
---|
3605 | ierr ) |
---|
3606 | CALL MPI_RECV( nxf, 1, MPI_INTEGER, numprocs, 21, comm_inter, & |
---|
3607 | status, ierr ) |
---|
3608 | CALL MPI_RECV( nyf, 1, MPI_INTEGER, numprocs, 22, comm_inter, & |
---|
3609 | status, ierr ) |
---|
3610 | CALL MPI_RECV( nzf, 1, MPI_INTEGER, numprocs, 23, comm_inter, & |
---|
3611 | status, ierr ) |
---|
3612 | CALL MPI_RECV( dxf, 1, MPI_REAL, numprocs, 24, comm_inter, & |
---|
3613 | status, ierr ) |
---|
3614 | CALL MPI_RECV( dyf, 1, MPI_REAL, numprocs, 25, comm_inter, & |
---|
3615 | status, ierr ) |
---|
3616 | CALL MPI_RECV( dzf, 1, MPI_REAL, numprocs, 26, comm_inter, & |
---|
3617 | status, ierr ) |
---|
3618 | CALL MPI_RECV( pdims_partner, 2, MPI_INTEGER, & |
---|
3619 | numprocs, 27, comm_inter, status, ierr ) |
---|
3620 | CALL MPI_RECV( fg_nprocs, 1, MPI_INTEGER, & |
---|
3621 | numprocs, 28, comm_inter, status, ierr ) |
---|
3622 | ENDIF |
---|
3623 | |
---|
3624 | CALL MPI_BCAST( nxf, 1, MPI_INTEGER, 0, comm2d, ierr ) |
---|
3625 | CALL MPI_BCAST( nyf, 1, MPI_INTEGER, 0, comm2d, ierr ) |
---|
3626 | CALL MPI_BCAST( nzf, 1, MPI_INTEGER, 0, comm2d, ierr ) |
---|
3627 | CALL MPI_BCAST( dxf, 1, MPI_REAL, 0, comm2d, ierr ) |
---|
3628 | CALL MPI_BCAST( dyf, 1, MPI_REAL, 0, comm2d, ierr ) |
---|
3629 | CALL MPI_BCAST( dzf, 1, MPI_REAL, 0, comm2d, ierr ) |
---|
3630 | CALL MPI_BCAST( pdims_partner, 2, MPI_INTEGER, 0, comm2d, ierr ) |
---|
3631 | CALL MPI_BCAST( fg_nprocs, 1, MPI_INTEGER, 0, comm2d, ierr ) |
---|
3632 | |
---|
3633 | ! |
---|
3634 | !-- Check if stretching is used within the nested domain. ABS(...) is |
---|
3635 | !-- necessary because of the default value of -9999999.9_wp (negative) |
---|
3636 | IF ( ABS( dz_stretch_level_start(1) ) <= (nzf+1)*dzf ) THEN |
---|
3637 | message_string = 'Stretching in the parent domain is '// & |
---|
3638 | 'only allowed above the nested domain' |
---|
3639 | CALL message( 'vnest_init_pegrid_domain', 'PA0497', 1, 2, 0, 6, 0 ) |
---|
3640 | ENDIF |
---|
3641 | |
---|
3642 | ELSEIF ( coupling_mode == 'vnested_fine' ) THEN |
---|
3643 | |
---|
3644 | nxf = nx |
---|
3645 | nyf = ny |
---|
3646 | nzf = nz |
---|
3647 | dxf = dx |
---|
3648 | dyf = dy |
---|
3649 | dzf = dz(1) |
---|
3650 | fg_nprocs = numprocs |
---|
3651 | |
---|
3652 | IF ( myid == 0 ) THEN |
---|
3653 | |
---|
3654 | CALL MPI_RECV( nxc, 1, MPI_INTEGER, 0, 1, comm_inter, status, & |
---|
3655 | ierr ) |
---|
3656 | CALL MPI_RECV( nyc, 1, MPI_INTEGER, 0, 2, comm_inter, status, & |
---|
3657 | ierr ) |
---|
3658 | CALL MPI_RECV( nzc, 1, MPI_INTEGER, 0, 3, comm_inter, status, & |
---|
3659 | ierr ) |
---|
3660 | CALL MPI_RECV( dxc, 1, MPI_REAL, 0, 4, comm_inter, status, & |
---|
3661 | ierr ) |
---|
3662 | CALL MPI_RECV( dyc, 1, MPI_REAL, 0, 5, comm_inter, status, & |
---|
3663 | ierr ) |
---|
3664 | CALL MPI_RECV( dzc, 1, MPI_REAL, 0, 6, comm_inter, status, & |
---|
3665 | ierr ) |
---|
3666 | CALL MPI_RECV( pdims_partner, 2, MPI_INTEGER, 0, 7, comm_inter, & |
---|
3667 | status, ierr ) |
---|
3668 | CALL MPI_RECV( cg_nprocs, 1, MPI_INTEGER, 0, 8, comm_inter, & |
---|
3669 | status, ierr ) |
---|
3670 | CALL MPI_SEND( nxf, 1, MPI_INTEGER, 0, 21, comm_inter, ierr ) |
---|
3671 | CALL MPI_SEND( nyf, 1, MPI_INTEGER, 0, 22, comm_inter, ierr ) |
---|
3672 | CALL MPI_SEND( nzf, 1, MPI_INTEGER, 0, 23, comm_inter, ierr ) |
---|
3673 | CALL MPI_SEND( dxf, 1, MPI_REAL, 0, 24, comm_inter, ierr ) |
---|
3674 | CALL MPI_SEND( dyf, 1, MPI_REAL, 0, 25, comm_inter, ierr ) |
---|
3675 | CALL MPI_SEND( dzf, 1, MPI_REAL, 0, 26, comm_inter, ierr ) |
---|
3676 | CALL MPI_SEND( pdims,2,MPI_INTEGER, 0, 27, comm_inter, ierr ) |
---|
3677 | CALL MPI_SEND( fg_nprocs,1,MPI_INTEGER, 0, 28, comm_inter, ierr ) |
---|
3678 | ENDIF |
---|
3679 | |
---|
3680 | CALL MPI_BCAST( nxc, 1, MPI_INTEGER, 0, comm2d, ierr) |
---|
3681 | CALL MPI_BCAST( nyc, 1, MPI_INTEGER, 0, comm2d, ierr) |
---|
3682 | CALL MPI_BCAST( nzc, 1, MPI_INTEGER, 0, comm2d, ierr) |
---|
3683 | CALL MPI_BCAST( dxc, 1, MPI_REAL, 0, comm2d, ierr) |
---|
3684 | CALL MPI_BCAST( dyc, 1, MPI_REAL, 0, comm2d, ierr) |
---|
3685 | CALL MPI_BCAST( dzc, 1, MPI_REAL, 0, comm2d, ierr) |
---|
3686 | CALL MPI_BCAST( pdims_partner, 2, MPI_INTEGER, 0, comm2d, ierr) |
---|
3687 | CALL MPI_BCAST( cg_nprocs, 1, MPI_INTEGER, 0, comm2d, ierr) |
---|
3688 | |
---|
3689 | ENDIF |
---|
3690 | |
---|
3691 | ngp_c = ( nxc+1 + 2 * nbgp ) * ( nyc+1 + 2 * nbgp ) |
---|
3692 | ngp_f = ( nxf+1 + 2 * nbgp ) * ( nyf+1 + 2 * nbgp ) |
---|
3693 | |
---|
3694 | IF ( coupling_mode(1:8) == 'vnested_') coupling_topology = 1 |
---|
3695 | |
---|
3696 | |
---|
3697 | !-- Nesting Ratio: For each coarse grid cell how many fine grid cells exist |
---|
3698 | cfratio(1) = INT ( (nxf+1) / (nxc+1) ) |
---|
3699 | cfratio(2) = INT ( (nyf+1) / (nyc+1) ) |
---|
3700 | cfratio(3) = CEILING ( dzc / dzf ) |
---|
3701 | |
---|
3702 | !-- target_id is used only for exhange of information like simulated_time |
---|
3703 | !-- which are then MPI_BCAST to other processors in the group |
---|
3704 | IF ( myid == 0 ) THEN |
---|
3705 | |
---|
3706 | IF ( TRIM( coupling_mode ) == 'vnested_crse' ) THEN |
---|
3707 | target_id = numprocs |
---|
3708 | ELSE IF ( TRIM( coupling_mode ) == 'vnested_fine' ) THEN |
---|
3709 | target_id = 0 |
---|
3710 | ENDIF |
---|
3711 | |
---|
3712 | ENDIF |
---|
3713 | |
---|
3714 | !-- Store partner grid dimenstions and create MPI derived types |
---|
3715 | |
---|
3716 | IF ( coupling_mode == 'vnested_crse' ) THEN |
---|
3717 | |
---|
3718 | offset(1) = ( pdims_partner(1) / pdims(1) ) * pcoord(1) |
---|
3719 | offset(2) = ( pdims_partner(2) / pdims(2) ) * pcoord(2) |
---|
3720 | |
---|
3721 | tempx = ( pdims_partner(1) / pdims(1) ) - 1 |
---|
3722 | tempy = ( pdims_partner(2) / pdims(2) ) - 1 |
---|
3723 | ALLOCATE( c2f_dims_cg (0:5,offset(1):tempx+offset(1),offset(2):tempy+offset(2) ) ) |
---|
3724 | ALLOCATE( f2c_dims_cg (0:5,offset(1):tempx+offset(1),offset(2):tempy+offset(2) ) ) |
---|
3725 | |
---|
3726 | do j = 0, ( pdims_partner(2) / pdims(2) ) - 1 |
---|
3727 | do i = 0, ( pdims_partner(1) / pdims(1) ) - 1 |
---|
3728 | map_coord(1) = i+offset(1) |
---|
3729 | map_coord(2) = j+offset(2) |
---|
3730 | |
---|
3731 | target_idex = f_rnk_lst(map_coord(1),map_coord(2)) + numprocs |
---|
3732 | |
---|
3733 | CALL MPI_RECV( bdims_rem, 6, MPI_INTEGER, target_idex, 10, & |
---|
3734 | comm_inter,status, ierr ) |
---|
3735 | |
---|
3736 | !-- Store the CG dimensions that correspond to the FG partner; needed for FG top BC |
---|
3737 | !-- One CG can have multiple FG partners. The 3D array is mapped by partner proc co-ord |
---|
3738 | c2f_dims_cg (0,map_coord(1),map_coord(2)) = bdims_rem (1,1) / cfratio(1) |
---|
3739 | c2f_dims_cg (1,map_coord(1),map_coord(2)) = bdims_rem (1,2) / cfratio(1) |
---|
3740 | c2f_dims_cg (2,map_coord(1),map_coord(2)) = bdims_rem (2,1) / cfratio(2) |
---|
3741 | c2f_dims_cg (3,map_coord(1),map_coord(2)) = bdims_rem (2,2) / cfratio(2) |
---|
3742 | c2f_dims_cg (4,map_coord(1),map_coord(2)) = bdims_rem (3,2) / cfratio(3) |
---|
3743 | c2f_dims_cg (5,map_coord(1),map_coord(2)) =(bdims_rem (3,2) / cfratio(3)) + 2 |
---|
3744 | |
---|
3745 | !-- Store the CG dimensions that correspond to the FG partner; needed for anterpolation |
---|
3746 | f2c_dims_cg (0,map_coord(1),map_coord(2)) = bdims_rem (1,1) / cfratio(1) |
---|
3747 | f2c_dims_cg (1,map_coord(1),map_coord(2)) = bdims_rem (1,2) / cfratio(1) |
---|
3748 | f2c_dims_cg (2,map_coord(1),map_coord(2)) = bdims_rem (2,1) / cfratio(2) |
---|
3749 | f2c_dims_cg (3,map_coord(1),map_coord(2)) = bdims_rem (2,2) / cfratio(2) |
---|
3750 | f2c_dims_cg (4,map_coord(1),map_coord(2)) = bdims_rem (3,1) |
---|
3751 | f2c_dims_cg (5,map_coord(1),map_coord(2)) =(bdims_rem (3,2)-cfratio(3))/ cfratio(3) |
---|
3752 | |
---|
3753 | CALL MPI_SEND( c2f_dims_cg (:,map_coord(1),map_coord(2)), 6, & |
---|
3754 | MPI_INTEGER, target_idex, 100, comm_inter, ierr ) |
---|
3755 | |
---|
3756 | CALL MPI_SEND( f2c_dims_cg (:,map_coord(1),map_coord(2)), 6, & |
---|
3757 | MPI_INTEGER, target_idex, 101, comm_inter, ierr ) |
---|
3758 | |
---|
3759 | end do |
---|
3760 | end do |
---|
3761 | |
---|
3762 | !-- A derived data type to pack 3 Z-levels of CG to set FG top BC |
---|
3763 | MTV_X = ( nxr - nxl + 1 ) + 2*nbgp |
---|
3764 | MTV_Y = ( nyn - nys + 1 ) + 2*nbgp |
---|
3765 | MTV_Z = nzt+1 - nzb +1 |
---|
3766 | |
---|
3767 | MTV_RX = ( c2f_dims_cg (1,offset(1),offset(2)) - c2f_dims_cg (0,offset(1),offset(2)) ) +1+2 |
---|
3768 | MTV_RY = ( c2f_dims_cg (3,offset(1),offset(2)) - c2f_dims_cg (2,offset(1),offset(2)) ) +1+2 |
---|
3769 | MTV_RZ = ( c2f_dims_cg (5,offset(1),offset(2)) - c2f_dims_cg (4,offset(1),offset(2)) ) +1 |
---|
3770 | |
---|
3771 | CALL MPI_TYPE_EXTENT(MPI_REAL, SIZEOFREAL, IERR) |
---|
3772 | |
---|
3773 | CALL MPI_TYPE_VECTOR ( MTV_RY, MTV_RZ, MTV_Z, MPI_REAL, TYPE_INT_YZ, IERR) |
---|
3774 | CALL MPI_TYPE_HVECTOR( MTV_RX, 1, MTV_Z*MTV_Y*SIZEOFREAL, & |
---|
3775 | TYPE_INT_YZ, TYPE_VNEST_BC, IERR) |
---|
3776 | CALL MPI_TYPE_FREE(TYPE_INT_YZ, IERR) |
---|
3777 | CALL MPI_TYPE_COMMIT(TYPE_VNEST_BC, IERR) |
---|
3778 | |
---|
3779 | |
---|
3780 | ELSEIF ( coupling_mode == 'vnested_fine' ) THEN |
---|
3781 | |
---|
3782 | ALLOCATE( c2f_dims_fg (0:5) ) |
---|
3783 | ALLOCATE( f2c_dims_fg (0:5) ) |
---|
3784 | |
---|
3785 | offset(1) = pcoord(1) / ( pdims(1)/pdims_partner(1) ) |
---|
3786 | offset(2) = pcoord(2) / ( pdims(2)/pdims_partner(2) ) |
---|
3787 | map_coord(1) = offset(1) |
---|
3788 | map_coord(2) = offset(2) |
---|
3789 | target_idex = c_rnk_lst(map_coord(1),map_coord(2)) |
---|
3790 | |
---|
3791 | bdims (1,1) = nxl |
---|
3792 | bdims (1,2) = nxr |
---|
3793 | bdims (2,1) = nys |
---|
3794 | bdims (2,2) = nyn |
---|
3795 | bdims (3,1) = nzb |
---|
3796 | bdims (3,2) = nzt |
---|
3797 | |
---|
3798 | CALL MPI_SEND( bdims, 6, MPI_INTEGER, target_idex, 10, & |
---|
3799 | comm_inter, ierr ) |
---|
3800 | |
---|
3801 | !-- Store the CG dimensions that correspond to the FG partner; needed for FG top BC |
---|
3802 | !-- One FG can have only one CG partner |
---|
3803 | CALL MPI_RECV( c2f_dims_fg, 6, MPI_INTEGER, target_idex, 100, & |
---|
3804 | comm_inter,status, ierr ) |
---|
3805 | |
---|
3806 | CALL MPI_RECV( f2c_dims_fg, 6, MPI_INTEGER, target_idex, 101, & |
---|
3807 | comm_inter,status, ierr ) |
---|
3808 | |
---|
3809 | !-- Store the CG dimensions that correspond to the FG partner; needed for anterpolation |
---|
3810 | |
---|
3811 | n_cell_c = (f2c_dims_fg(1)-f2c_dims_fg(0)+1) * & |
---|
3812 | (f2c_dims_fg(3)-f2c_dims_fg(2)+1) * & |
---|
3813 | (f2c_dims_fg(5)-f2c_dims_fg(4)+0) |
---|
3814 | |
---|
3815 | CALL MPI_TYPE_CONTIGUOUS(n_cell_c, MPI_REAL, TYPE_VNEST_ANTER, IERR) |
---|
3816 | CALL MPI_TYPE_COMMIT(TYPE_VNEST_ANTER, ierr) |
---|
3817 | |
---|
3818 | ENDIF |
---|
3819 | #endif |
---|
3820 | END SUBROUTINE vnest_init_pegrid_domain |
---|
3821 | |
---|
3822 | |
---|
3823 | SUBROUTINE vnest_init_grid |
---|
3824 | |
---|
3825 | #if defined( __parallel ) |
---|
3826 | USE arrays_3d, & |
---|
3827 | ONLY: zu, zw |
---|
3828 | |
---|
3829 | USE control_parameters, & |
---|
3830 | ONLY: coupling_mode, message_string, number_stretch_level_start |
---|
3831 | |
---|
3832 | USE indices, & |
---|
3833 | ONLY: nzt |
---|
3834 | |
---|
3835 | USE kinds |
---|
3836 | |
---|
3837 | USE pegrid |
---|
3838 | |
---|
3839 | IMPLICIT NONE |
---|
3840 | |
---|
3841 | ! |
---|
3842 | !-- Allocate and Exchange zuc and zuf, zwc and zwf |
---|
3843 | IF ( coupling_mode(1:8) == 'vnested_' ) THEN |
---|
3844 | |
---|
3845 | ALLOCATE( zuc(0:nzc+1), zuf(0:nzf+1) ) |
---|
3846 | ALLOCATE( zwc(0:nzc+1), zwf(0:nzf+1) ) |
---|
3847 | |
---|
3848 | IF ( coupling_mode == 'vnested_crse' ) THEN |
---|
3849 | |
---|
3850 | zuc = zu |
---|
3851 | zwc = zw |
---|
3852 | |
---|
3853 | IF ( myid == 0 ) THEN |
---|
3854 | |
---|
3855 | CALL MPI_SEND( zuc, nzt+2, MPI_REAL, numprocs, 41, comm_inter, & |
---|
3856 | ierr ) |
---|
3857 | CALL MPI_RECV( zuf, nzf+2, MPI_REAL, numprocs, 42, comm_inter, & |
---|
3858 | status, ierr ) |
---|
3859 | |
---|
3860 | CALL MPI_SEND( zwc, nzt+2, MPI_REAL, numprocs, 43, comm_inter, & |
---|
3861 | ierr ) |
---|
3862 | CALL MPI_RECV( zwf, nzf+2, MPI_REAL, numprocs, 44, comm_inter, & |
---|
3863 | status, ierr ) |
---|
3864 | |
---|
3865 | ENDIF |
---|
3866 | |
---|
3867 | CALL MPI_BCAST( zuf,nzf+2,MPI_REAL, 0, comm2d, ierr ) |
---|
3868 | CALL MPI_BCAST( zwf,nzf+2,MPI_REAL, 0, comm2d, ierr ) |
---|
3869 | |
---|
3870 | ELSEIF ( coupling_mode == 'vnested_fine' ) THEN |
---|
3871 | |
---|
3872 | ! |
---|
3873 | !-- Check if stretching is used within the nested domain |
---|
3874 | IF ( number_stretch_level_start > 0 ) THEN |
---|
3875 | message_string = 'Stretching in the nested domain is not '//& |
---|
3876 | 'allowed' |
---|
3877 | CALL message( 'vnest_init_grid', 'PA0498', 1, 2, 0, 6, 0 ) |
---|
3878 | ENDIF |
---|
3879 | |
---|
3880 | zuf = zu |
---|
3881 | zwf = zw |
---|
3882 | |
---|
3883 | IF ( myid == 0 ) THEN |
---|
3884 | |
---|
3885 | CALL MPI_RECV( zuc,nzc+2, MPI_REAL, 0, 41, comm_inter, status, & |
---|
3886 | ierr ) |
---|
3887 | CALL MPI_SEND( zuf,nzt+2, MPI_REAL, 0, 42, comm_inter, ierr ) |
---|
3888 | |
---|
3889 | CALL MPI_RECV( zwc,nzc+2, MPI_REAL, 0, 43, comm_inter, status, & |
---|
3890 | ierr ) |
---|
3891 | CALL MPI_SEND( zwf,nzt+2, MPI_REAL, 0, 44, comm_inter, ierr ) |
---|
3892 | ENDIF |
---|
3893 | |
---|
3894 | CALL MPI_BCAST( zuc,nzc+2,MPI_REAL, 0, comm2d, ierr ) |
---|
3895 | CALL MPI_BCAST( zwc,nzc+2,MPI_REAL, 0, comm2d, ierr ) |
---|
3896 | |
---|
3897 | ENDIF |
---|
3898 | ENDIF |
---|
3899 | |
---|
3900 | #endif |
---|
3901 | END SUBROUTINE vnest_init_grid |
---|
3902 | |
---|
3903 | |
---|
3904 | SUBROUTINE vnest_check_parameters |
---|
3905 | #if defined( __parallel ) |
---|
3906 | |
---|
3907 | USE pegrid, & |
---|
3908 | ONLY: myid |
---|
3909 | |
---|
3910 | IMPLICIT NONE |
---|
3911 | |
---|
3912 | IF (myid==0) PRINT*, '*** vnest: check parameters not implemented yet ***' |
---|
3913 | |
---|
3914 | #endif |
---|
3915 | END SUBROUTINE vnest_check_parameters |
---|
3916 | |
---|
3917 | |
---|
3918 | SUBROUTINE vnest_timestep_sync |
---|
3919 | |
---|
3920 | #if defined( __parallel ) |
---|
3921 | USE control_parameters, & |
---|
3922 | ONLY: coupling_mode, dt_3d |
---|
3923 | |
---|
3924 | USE interfaces |
---|
3925 | |
---|
3926 | USE kinds |
---|
3927 | |
---|
3928 | USE pegrid |
---|
3929 | |
---|
3930 | IMPLICIT NONE |
---|
3931 | |
---|
3932 | IF ( coupling_mode == 'vnested_crse') THEN |
---|
3933 | dtc = dt_3d |
---|
3934 | if (myid == 0) then |
---|
3935 | CALL MPI_SEND( dt_3d, 1, MPI_REAL, target_id, & |
---|
3936 | 31, comm_inter, ierr ) |
---|
3937 | CALL MPI_RECV( dtf, 1, MPI_REAL, & |
---|
3938 | target_id, 32, comm_inter, status, ierr ) |
---|
3939 | |
---|
3940 | endif |
---|
3941 | CALL MPI_BCAST( dtf, 1, MPI_REAL, 0, comm2d, ierr ) |
---|
3942 | ELSE |
---|
3943 | dtf = dt_3d |
---|
3944 | if (myid == 0) then |
---|
3945 | CALL MPI_RECV( dtc, 1, MPI_REAL, & |
---|
3946 | target_id, 31, comm_inter, status, ierr ) |
---|
3947 | CALL MPI_SEND( dt_3d, 1, MPI_REAL, target_id, & |
---|
3948 | 32, comm_inter, ierr ) |
---|
3949 | |
---|
3950 | endif |
---|
3951 | CALL MPI_BCAST( dtc, 1, MPI_REAL, 0, comm2d, ierr ) |
---|
3952 | |
---|
3953 | ENDIF |
---|
3954 | !-- Identical timestep for coarse and fine grids |
---|
3955 | dt_3d = MIN( dtc, dtf ) |
---|
3956 | #endif |
---|
3957 | END SUBROUTINE vnest_timestep_sync |
---|
3958 | |
---|
3959 | SUBROUTINE vnest_deallocate |
---|
3960 | #if defined( __parallel ) |
---|
3961 | USE control_parameters, & |
---|
3962 | ONLY: coupling_mode |
---|
3963 | |
---|
3964 | IMPLICIT NONE |
---|
3965 | |
---|
3966 | IF ( ALLOCATED(c_rnk_lst) ) DEALLOCATE (c_rnk_lst) |
---|
3967 | IF ( ALLOCATED(f_rnk_lst) ) DEALLOCATE (f_rnk_lst) |
---|
3968 | |
---|
3969 | IF ( coupling_mode == 'vnested_crse') THEN |
---|
3970 | IF ( ALLOCATED (c2f_dims_cg) ) DEALLOCATE (c2f_dims_cg) |
---|
3971 | IF ( ALLOCATED (f2c_dims_cg) ) DEALLOCATE (f2c_dims_cg) |
---|
3972 | ELSEIF( coupling_mode == 'vnested_fine' ) THEN |
---|
3973 | IF ( ALLOCATED (c2f_dims_fg) ) DEALLOCATE (c2f_dims_fg) |
---|
3974 | IF ( ALLOCATED (f2c_dims_fg) ) DEALLOCATE (f2c_dims_fg) |
---|
3975 | ENDIF |
---|
3976 | #endif |
---|
3977 | END SUBROUTINE vnest_deallocate |
---|
3978 | |
---|
3979 | #endif |
---|
3980 | END MODULE vertical_nesting_mod |
---|