1 | !> @file vertical_nesting_mod.f90 |
---|
2 | !------------------------------------------------------------------------------! |
---|
3 | ! This file is part of the PALM model system. |
---|
4 | ! |
---|
5 | ! PALM is free software: you can redistribute it and/or modify it under the |
---|
6 | ! terms of the GNU General Public License as published by the Free Software |
---|
7 | ! Foundation, either version 3 of the License, or (at your option) any later |
---|
8 | ! version. |
---|
9 | ! |
---|
10 | ! PALM is distributed in the hope that it will be useful, but WITHOUT ANY |
---|
11 | ! WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR |
---|
12 | ! A PARTICULAR PURPOSE. See the GNU General Public License for more details. |
---|
13 | ! |
---|
14 | ! You should have received a copy of the GNU General Public License along with |
---|
15 | ! PALM. If not, see <http://www.gnu.org/licenses/>. |
---|
16 | ! |
---|
17 | ! Copyright 1997-2019 Leibniz Universitaet Hannover |
---|
18 | ! Copyright 2017-2018 Karlsruhe Institute of Technology |
---|
19 | !------------------------------------------------------------------------------! |
---|
20 | ! |
---|
21 | ! Current revisions: |
---|
22 | ! ----------------- |
---|
23 | ! |
---|
24 | ! |
---|
25 | ! Former revisions: |
---|
26 | ! ----------------- |
---|
27 | ! $Id: vertical_nesting_mod.f90 4182 2019-08-22 15:20:23Z gronemeier $ |
---|
28 | ! Corrected "Former revisions" section |
---|
29 | ! |
---|
30 | ! 4102 2019-07-17 16:00:03Z suehring |
---|
31 | ! - Slightly revise setting of boundary conditions at horizontal walls, use |
---|
32 | ! data-structure offset index instead of pre-calculate it for each facing |
---|
33 | ! |
---|
34 | ! 4101 2019-07-17 15:14:26Z gronemeier |
---|
35 | ! remove old_dt |
---|
36 | ! |
---|
37 | ! 3802 2019-03-17 13:33:42Z raasch |
---|
38 | ! unused subroutines commented out |
---|
39 | ! |
---|
40 | ! 3655 2019-01-07 16:51:22Z knoop |
---|
41 | ! unused variables removed |
---|
42 | ! |
---|
43 | ! 2365 2017-08-21 14:59:59Z kanani |
---|
44 | ! Initial revision (SadiqHuq) |
---|
45 | ! |
---|
46 | ! |
---|
47 | ! Description: |
---|
48 | ! ------------ |
---|
49 | !> Module for vertical nesting. |
---|
50 | !> |
---|
51 | !> Definition of parameters and variables for vertical nesting |
---|
52 | !> The horizontal extent of the parent (Coarse Grid) and the child (Fine Grid) |
---|
53 | !> have to be identical. The vertical extent of the FG should be smaller than CG. |
---|
54 | !> Only integer nesting ratio supported. Odd nesting ratio preferred |
---|
55 | !> The code follows MPI-1 standards. The available processors are split into |
---|
56 | !> two groups using MPI_COMM_SPLIT. Exchange of data from CG to FG is called |
---|
57 | !> interpolation. FG initialization by interpolation is done once at the start. |
---|
58 | !> FG boundary conditions are set by interpolated at every timestep. |
---|
59 | !> Exchange of data from CG to FG is called anterpolation, the two-way interaction |
---|
60 | !> occurs at every timestep. |
---|
61 | !> vnest_start_time set in PARIN allows delayed start of the coupling |
---|
62 | !> after spin-up of the CG |
---|
63 | !> |
---|
64 | !> @todo Replace dz(1) appropriatly to account for grid stretching |
---|
65 | !> @todo Ensure that code can be compiled for serial and parallel mode. Please |
---|
66 | !> check the placement of the directive "__parallel". |
---|
67 | !> @todo Add descriptions for all declared variables/parameters, one declaration |
---|
68 | !> statement per variable |
---|
69 | !> @todo Add a descriptive header above each subroutine (see land_surface_model) |
---|
70 | !> @todo FORTRAN language statements must not be used as names for variables |
---|
71 | !> (e.g. if). Please rename it. |
---|
72 | !> @todo Revise code according to PALM Coding Standard |
---|
73 | !------------------------------------------------------------------------------! |
---|
74 | MODULE vertical_nesting_mod |
---|
75 | |
---|
76 | USE kinds |
---|
77 | |
---|
78 | IMPLICIT NONE |
---|
79 | |
---|
80 | LOGICAL :: vnested = .FALSE. !> set to true if palmrun |
---|
81 | !> provides specific information via stdin |
---|
82 | LOGICAL :: vnest_init = .FALSE. !> set to true when FG is initialized |
---|
83 | REAL(wp) :: vnest_start_time = 9999999.9 !> simulated time when FG should be |
---|
84 | !> initialized. Should be |
---|
85 | !> identical in PARIN & PARIN_N |
---|
86 | |
---|
87 | |
---|
88 | |
---|
89 | INTEGER(iwp),DIMENSION(3,2) :: bdims = 0 !> sub-domain grid topology of current PE |
---|
90 | INTEGER(iwp),DIMENSION(3,2) :: bdims_rem = 0 !> sub-domain grid topology of partner PE |
---|
91 | INTEGER(iwp) :: cg_nprocs !> no. of PE in CG. Set by palmrun -Y |
---|
92 | INTEGER(iwp) :: fg_nprocs !> no. of PE in FG. Set by palmrun -Y |
---|
93 | INTEGER(iwp) :: TYPE_VNEST_BC !> derived contiguous data type for interpolation |
---|
94 | INTEGER(iwp) :: TYPE_VNEST_ANTER !> derived contiguous data type for anterpolation |
---|
95 | INTEGER(iwp),DIMENSION(:,:,:),ALLOCATABLE :: c2f_dims_cg !> One CG PE sends data to multiple FG PEs |
---|
96 | !> list of grid-topology of partners |
---|
97 | INTEGER(iwp),DIMENSION(:,:,:),ALLOCATABLE :: f2c_dims_cg !> One CG PE receives data from multiple FG PEs |
---|
98 | !> list of grid-topology of partners |
---|
99 | INTEGER(iwp),DIMENSION(:),ALLOCATABLE :: c2f_dims_fg !> One FG PE sends data to multiple CG PE |
---|
100 | !> list of grid-topology of partner |
---|
101 | INTEGER(iwp),DIMENSION(:),ALLOCATABLE :: f2c_dims_fg !> One FG PE sends data to only one CG PE |
---|
102 | !> list of grid-topology of partner |
---|
103 | |
---|
104 | INTEGER(iwp),DIMENSION(:,:),ALLOCATABLE :: f_rnk_lst !> list storing rank of FG PE denoted by pdims |
---|
105 | INTEGER(iwp),DIMENSION(:,:),ALLOCATABLE :: c_rnk_lst !> list storing rank of CG PE denoted by pdims |
---|
106 | INTEGER(iwp),DIMENSION(3) :: cfratio !> Nesting ratio in x,y and z-directions |
---|
107 | |
---|
108 | INTEGER(iwp) :: nxc !> no. of CG grid points in x-direction |
---|
109 | INTEGER(iwp) :: nxf !> no. of FG grid points in x-direction |
---|
110 | INTEGER(iwp) :: nyc !> no. of CG grid points in y-direction |
---|
111 | INTEGER(iwp) :: nyf !> no. of FG grid points in y-direction |
---|
112 | INTEGER(iwp) :: nzc !> no. of CG grid points in z-direction |
---|
113 | INTEGER(iwp) :: nzf !> no. of FG grid points in z-direction |
---|
114 | INTEGER(iwp) :: ngp_c !> no. of CG grid points in one vertical level |
---|
115 | INTEGER(iwp) :: ngp_f !> no. of FG grid points in one vertical level |
---|
116 | |
---|
117 | INTEGER(iwp) :: n_cell_c !> total no. of CG grid points in a PE |
---|
118 | INTEGER(iwp),DIMENSION(2) :: pdims_partner !> processor topology of partner PE |
---|
119 | INTEGER(iwp) :: target_idex !> temporary variable |
---|
120 | INTEGER(iwp),DIMENSION(2) :: offset !> temporary variable |
---|
121 | INTEGER(iwp),DIMENSION(2) :: map_coord !> temporary variable |
---|
122 | |
---|
123 | REAL(wp) :: dxc !> CG grid pacing in x-direction |
---|
124 | REAL(wp) :: dyc !> FG grid pacing in x-direction |
---|
125 | REAL(wp) :: dxf !> CG grid pacing in y-direction |
---|
126 | REAL(wp) :: dyf !> FG grid pacing in y-direction |
---|
127 | REAL(wp) :: dzc !> CG grid pacing in z-direction |
---|
128 | REAL(wp) :: dzf !> FG grid pacing in z-direction |
---|
129 | REAL(wp) :: dtc !> dt calculated for CG |
---|
130 | REAL(wp) :: dtf !> dt calculated for FG |
---|
131 | |
---|
132 | REAL(wp), DIMENSION(:), ALLOCATABLE :: zuc !> CG vertical u-levels |
---|
133 | REAL(wp), DIMENSION(:), ALLOCATABLE :: zuf !> FG vertical u-levels |
---|
134 | REAL(wp), DIMENSION(:), ALLOCATABLE :: zwc !> CG vertical w-levels |
---|
135 | REAL(wp), DIMENSION(:), ALLOCATABLE :: zwf !> FG vertical w-levels |
---|
136 | REAL(wp), DIMENSION(:,:,:), POINTER :: interpol3d !> pointers to simplify function calls |
---|
137 | REAL(wp), DIMENSION(:,:,:), POINTER :: anterpol3d !> pointers to simplify function calls |
---|
138 | |
---|
139 | |
---|
140 | REAL(wp),DIMENSION(:,:,:), ALLOCATABLE :: work3d !> temporary array for exchange of 3D data |
---|
141 | REAL(wp),DIMENSION(:,:), ALLOCATABLE :: work2dusws !> temporary array for exchange of 2D data |
---|
142 | REAL(wp),DIMENSION(:,:), ALLOCATABLE :: work2dvsws !> temporary array for exchange of 2D data |
---|
143 | REAL(wp),DIMENSION(:,:), ALLOCATABLE :: work2dts !> temporary array for exchange of 2D data |
---|
144 | REAL(wp),DIMENSION(:,:), ALLOCATABLE :: work2dus !> temporary array for exchange of 2D data |
---|
145 | |
---|
146 | SAVE |
---|
147 | |
---|
148 | !-- Public functions |
---|
149 | PUBLIC vnest_init_fine, vnest_boundary_conds, vnest_anterpolate, & |
---|
150 | vnest_boundary_conds_khkm, vnest_anterpolate_e, & |
---|
151 | vnest_init_pegrid_rank, vnest_init_pegrid_domain, vnest_init_grid, & |
---|
152 | vnest_timestep_sync, vnest_deallocate |
---|
153 | |
---|
154 | !-- Public constants and variables |
---|
155 | PUBLIC vnested, vnest_init, vnest_start_time |
---|
156 | |
---|
157 | PRIVATE bdims, bdims_rem, & |
---|
158 | work3d, work2dusws, work2dvsws, work2dts, work2dus, & |
---|
159 | dxc, dyc, dxf, dyf, dzc, dzf, dtc, dtf, & |
---|
160 | zuc, zuf, zwc, zwf, interpol3d, anterpol3d, & |
---|
161 | cg_nprocs, fg_nprocs, & |
---|
162 | c2f_dims_cg, c2f_dims_fg, f2c_dims_cg, f2c_dims_fg, & |
---|
163 | f_rnk_lst, c_rnk_lst, cfratio, pdims_partner, & |
---|
164 | nxc, nxf, nyc, nyf, nzc, nzf, & |
---|
165 | ngp_c, ngp_f, target_idex, n_cell_c, & |
---|
166 | offset, map_coord, TYPE_VNEST_BC, TYPE_VNEST_ANTER |
---|
167 | |
---|
168 | INTERFACE vnest_anterpolate |
---|
169 | MODULE PROCEDURE vnest_anterpolate |
---|
170 | END INTERFACE vnest_anterpolate |
---|
171 | |
---|
172 | INTERFACE vnest_anterpolate_e |
---|
173 | MODULE PROCEDURE vnest_anterpolate_e |
---|
174 | END INTERFACE vnest_anterpolate_e |
---|
175 | |
---|
176 | INTERFACE vnest_boundary_conds |
---|
177 | MODULE PROCEDURE vnest_boundary_conds |
---|
178 | END INTERFACE vnest_boundary_conds |
---|
179 | |
---|
180 | INTERFACE vnest_boundary_conds_khkm |
---|
181 | MODULE PROCEDURE vnest_boundary_conds_khkm |
---|
182 | END INTERFACE vnest_boundary_conds_khkm |
---|
183 | |
---|
184 | INTERFACE vnest_check_parameters |
---|
185 | MODULE PROCEDURE vnest_check_parameters |
---|
186 | END INTERFACE vnest_check_parameters |
---|
187 | |
---|
188 | INTERFACE vnest_deallocate |
---|
189 | MODULE PROCEDURE vnest_deallocate |
---|
190 | END INTERFACE vnest_deallocate |
---|
191 | |
---|
192 | INTERFACE vnest_init_fine |
---|
193 | MODULE PROCEDURE vnest_init_fine |
---|
194 | END INTERFACE vnest_init_fine |
---|
195 | |
---|
196 | INTERFACE vnest_init_grid |
---|
197 | MODULE PROCEDURE vnest_init_grid |
---|
198 | END INTERFACE vnest_init_grid |
---|
199 | |
---|
200 | INTERFACE vnest_init_pegrid_domain |
---|
201 | MODULE PROCEDURE vnest_init_pegrid_domain |
---|
202 | END INTERFACE vnest_init_pegrid_domain |
---|
203 | |
---|
204 | INTERFACE vnest_init_pegrid_rank |
---|
205 | MODULE PROCEDURE vnest_init_pegrid_rank |
---|
206 | END INTERFACE vnest_init_pegrid_rank |
---|
207 | |
---|
208 | INTERFACE vnest_timestep_sync |
---|
209 | MODULE PROCEDURE vnest_timestep_sync |
---|
210 | END INTERFACE vnest_timestep_sync |
---|
211 | |
---|
212 | CONTAINS |
---|
213 | |
---|
214 | |
---|
215 | |
---|
216 | SUBROUTINE vnest_init_fine |
---|
217 | #if defined( __parallel ) |
---|
218 | |
---|
219 | !--------------------------------------------------------------------------------! |
---|
220 | ! Description: |
---|
221 | ! ------------ |
---|
222 | ! At the specified vnest_start_time initialize the Fine Grid based on the coarse |
---|
223 | ! grid values |
---|
224 | !------------------------------------------------------------------------------! |
---|
225 | |
---|
226 | |
---|
227 | USE arrays_3d |
---|
228 | USE control_parameters |
---|
229 | USE grid_variables |
---|
230 | USE indices |
---|
231 | USE interfaces |
---|
232 | USE pegrid |
---|
233 | USE turbulence_closure_mod, & |
---|
234 | ONLY : tcm_diffusivities |
---|
235 | |
---|
236 | |
---|
237 | IMPLICIT NONE |
---|
238 | |
---|
239 | REAL(wp) :: time_since_reference_point_rem |
---|
240 | INTEGER(iwp) :: i |
---|
241 | INTEGER(iwp) :: j |
---|
242 | INTEGER(iwp) :: iif |
---|
243 | INTEGER(iwp) :: jjf |
---|
244 | INTEGER(iwp) :: kkf |
---|
245 | |
---|
246 | |
---|
247 | if (myid ==0 ) print *, ' TIME TO INIT FINE from COARSE', simulated_time |
---|
248 | |
---|
249 | ! |
---|
250 | !-- In case of model termination initiated by the remote model |
---|
251 | !-- (terminate_coupled_remote > 0), initiate termination of the local model. |
---|
252 | !-- The rest of the coupler must then be skipped because it would cause an MPI |
---|
253 | !-- intercomminucation hang. |
---|
254 | !-- If necessary, the coupler will be called at the beginning of the next |
---|
255 | !-- restart run. |
---|
256 | |
---|
257 | IF ( myid == 0) THEN |
---|
258 | CALL MPI_SENDRECV( terminate_coupled, 1, MPI_INTEGER, & |
---|
259 | target_id, 0, & |
---|
260 | terminate_coupled_remote, 1, MPI_INTEGER, & |
---|
261 | target_id, 0, & |
---|
262 | comm_inter, status, ierr ) |
---|
263 | ENDIF |
---|
264 | CALL MPI_BCAST( terminate_coupled_remote, 1, MPI_INTEGER, 0, comm2d, & |
---|
265 | ierr ) |
---|
266 | |
---|
267 | IF ( terminate_coupled_remote > 0 ) THEN |
---|
268 | WRITE( message_string, * ) 'remote model "', & |
---|
269 | TRIM( coupling_mode_remote ), & |
---|
270 | '" terminated', & |
---|
271 | '&with terminate_coupled_remote = ', & |
---|
272 | terminate_coupled_remote, & |
---|
273 | '&local model "', TRIM( coupling_mode ), & |
---|
274 | '" has', & |
---|
275 | '&terminate_coupled = ', & |
---|
276 | terminate_coupled |
---|
277 | CALL message( 'vnest_init_fine', 'PA0310', 1, 2, 0, 6, 0 ) |
---|
278 | RETURN |
---|
279 | ENDIF |
---|
280 | |
---|
281 | |
---|
282 | ! |
---|
283 | !-- Exchange the current simulated time between the models, |
---|
284 | !-- currently just for total_2ding |
---|
285 | IF ( myid == 0 ) THEN |
---|
286 | |
---|
287 | CALL MPI_SEND( time_since_reference_point, 1, MPI_REAL, target_id, & |
---|
288 | 11, comm_inter, ierr ) |
---|
289 | CALL MPI_RECV( time_since_reference_point_rem, 1, MPI_REAL, & |
---|
290 | target_id, 11, comm_inter, status, ierr ) |
---|
291 | |
---|
292 | ENDIF |
---|
293 | |
---|
294 | CALL MPI_BCAST( time_since_reference_point_rem, 1, MPI_REAL, 0, comm2d, & |
---|
295 | ierr ) |
---|
296 | |
---|
297 | |
---|
298 | IF ( coupling_mode == 'vnested_crse' ) THEN |
---|
299 | !-- Send data to fine grid for initialization |
---|
300 | |
---|
301 | offset(1) = ( pdims_partner(1) / pdims(1) ) * pcoord(1) |
---|
302 | offset(2) = ( pdims_partner(2) / pdims(2) ) * pcoord(2) |
---|
303 | |
---|
304 | do j = 0, ( pdims_partner(2) / pdims(2) ) - 1 |
---|
305 | do i = 0, ( pdims_partner(1) / pdims(1) ) - 1 |
---|
306 | map_coord(1) = i+offset(1) |
---|
307 | map_coord(2) = j+offset(2) |
---|
308 | |
---|
309 | target_idex = f_rnk_lst(map_coord(1),map_coord(2)) + numprocs |
---|
310 | |
---|
311 | CALL MPI_RECV( bdims_rem, 6, MPI_INTEGER, target_idex, 10, & |
---|
312 | comm_inter,status, ierr ) |
---|
313 | |
---|
314 | bdims (1,1) = bdims_rem (1,1) / cfratio(1) |
---|
315 | bdims (1,2) = bdims_rem (1,2) / cfratio(1) |
---|
316 | bdims (2,1) = bdims_rem (2,1) / cfratio(2) |
---|
317 | bdims (2,2) = bdims_rem (2,2) / cfratio(2) |
---|
318 | bdims (3,1) = bdims_rem (3,1) |
---|
319 | bdims (3,2) = bdims_rem (3,2) / cfratio(3) |
---|
320 | |
---|
321 | |
---|
322 | CALL MPI_SEND( bdims, 6, MPI_INTEGER, target_idex, 9, & |
---|
323 | comm_inter, ierr ) |
---|
324 | |
---|
325 | |
---|
326 | n_cell_c = (bdims(1,2)-bdims(1,1)+3) * & |
---|
327 | (bdims(2,2)-bdims(2,1)+3) * & |
---|
328 | (bdims(3,2)-bdims(3,1)+3) |
---|
329 | |
---|
330 | CALL MPI_SEND( u( bdims(3,1):bdims(3,2)+2, & |
---|
331 | bdims(2,1)-1:bdims(2,2)+1, & |
---|
332 | bdims(1,1)-1:bdims(1,2)+1),& |
---|
333 | n_cell_c, MPI_REAL, target_idex, & |
---|
334 | 101, comm_inter, ierr) |
---|
335 | |
---|
336 | CALL MPI_SEND( v( bdims(3,1):bdims(3,2)+2, & |
---|
337 | bdims(2,1)-1:bdims(2,2)+1, & |
---|
338 | bdims(1,1)-1:bdims(1,2)+1),& |
---|
339 | n_cell_c, MPI_REAL, target_idex, & |
---|
340 | 102, comm_inter, ierr) |
---|
341 | |
---|
342 | CALL MPI_SEND( w( bdims(3,1):bdims(3,2)+2, & |
---|
343 | bdims(2,1)-1:bdims(2,2)+1, & |
---|
344 | bdims(1,1)-1:bdims(1,2)+1),& |
---|
345 | n_cell_c, MPI_REAL, target_idex, & |
---|
346 | 103, comm_inter, ierr) |
---|
347 | |
---|
348 | CALL MPI_SEND( pt(bdims(3,1):bdims(3,2)+2, & |
---|
349 | bdims(2,1)-1:bdims(2,2)+1, & |
---|
350 | bdims(1,1)-1:bdims(1,2)+1),& |
---|
351 | n_cell_c, MPI_REAL, target_idex, & |
---|
352 | 105, comm_inter, ierr) |
---|
353 | |
---|
354 | IF ( humidity ) THEN |
---|
355 | CALL MPI_SEND( q(bdims(3,1):bdims(3,2)+2, & |
---|
356 | bdims(2,1)-1:bdims(2,2)+1, & |
---|
357 | bdims(1,1)-1:bdims(1,2)+1),& |
---|
358 | n_cell_c, MPI_REAL, target_idex, & |
---|
359 | 116, comm_inter, ierr) |
---|
360 | ENDIF |
---|
361 | |
---|
362 | CALL MPI_SEND( e( bdims(3,1):bdims(3,2)+2, & |
---|
363 | bdims(2,1)-1:bdims(2,2)+1, & |
---|
364 | bdims(1,1)-1:bdims(1,2)+1),& |
---|
365 | n_cell_c, MPI_REAL, target_idex, & |
---|
366 | 104, comm_inter, ierr) |
---|
367 | |
---|
368 | CALL MPI_SEND(kh( bdims(3,1):bdims(3,2)+2, & |
---|
369 | bdims(2,1)-1:bdims(2,2)+1, & |
---|
370 | bdims(1,1)-1:bdims(1,2)+1),& |
---|
371 | n_cell_c, MPI_REAL, target_idex, & |
---|
372 | 106, comm_inter, ierr) |
---|
373 | |
---|
374 | CALL MPI_SEND(km( bdims(3,1):bdims(3,2)+2, & |
---|
375 | bdims(2,1)-1:bdims(2,2)+1, & |
---|
376 | bdims(1,1)-1:bdims(1,2)+1),& |
---|
377 | n_cell_c, MPI_REAL, target_idex, & |
---|
378 | 107, comm_inter, ierr) |
---|
379 | |
---|
380 | !-- Send Surface fluxes |
---|
381 | IF ( use_surface_fluxes ) THEN |
---|
382 | |
---|
383 | n_cell_c = (bdims(1,2)-bdims(1,1)+3) * & |
---|
384 | (bdims(2,2)-bdims(2,1)+3) |
---|
385 | |
---|
386 | ! |
---|
387 | !-- shf and z0 for CG / FG need to initialized in input file or user_code |
---|
388 | !-- TODO |
---|
389 | !-- initialization of usws, vsws, ts and us not vital to vnest FG |
---|
390 | !-- variables are not compatible with the new surface layer module |
---|
391 | ! |
---|
392 | ! CALL MPI_SEND(surf_def_h(0)%usws( bdims(2,1)-1:bdims(2,2)+1, & |
---|
393 | ! bdims(1,1)-1:bdims(1,2)+1),& |
---|
394 | ! n_cell_c, MPI_REAL, target_idex, & |
---|
395 | ! 110, comm_inter, ierr ) |
---|
396 | ! |
---|
397 | ! CALL MPI_SEND(surf_def_h(0)%vsws( bdims(2,1)-1:bdims(2,2)+1, & |
---|
398 | ! bdims(1,1)-1:bdims(1,2)+1),& |
---|
399 | ! n_cell_c, MPI_REAL, target_idex, & |
---|
400 | ! 111, comm_inter, ierr ) |
---|
401 | ! |
---|
402 | ! CALL MPI_SEND(ts ( bdims(2,1)-1:bdims(2,2)+1, & |
---|
403 | ! bdims(1,1)-1:bdims(1,2)+1),& |
---|
404 | ! n_cell_c, MPI_REAL, target_idex, & |
---|
405 | ! 112, comm_inter, ierr ) |
---|
406 | ! |
---|
407 | ! CALL MPI_SEND(us ( bdims(2,1)-1:bdims(2,2)+1, & |
---|
408 | ! bdims(1,1)-1:bdims(1,2)+1),& |
---|
409 | ! n_cell_c, MPI_REAL, target_idex, & |
---|
410 | ! 113, comm_inter, ierr ) |
---|
411 | ! |
---|
412 | ENDIF |
---|
413 | |
---|
414 | |
---|
415 | |
---|
416 | |
---|
417 | end do |
---|
418 | end do |
---|
419 | |
---|
420 | ELSEIF ( coupling_mode == 'vnested_fine' ) THEN |
---|
421 | !-- Receive data from coarse grid for initialization |
---|
422 | |
---|
423 | offset(1) = pcoord(1) / ( pdims(1)/pdims_partner(1) ) |
---|
424 | offset(2) = pcoord(2) / ( pdims(2)/pdims_partner(2) ) |
---|
425 | map_coord(1) = offset(1) |
---|
426 | map_coord(2) = offset(2) |
---|
427 | target_idex = c_rnk_lst(map_coord(1),map_coord(2)) |
---|
428 | |
---|
429 | bdims (1,1) = nxl |
---|
430 | bdims (1,2) = nxr |
---|
431 | bdims (2,1) = nys |
---|
432 | bdims (2,2) = nyn |
---|
433 | bdims (3,1) = nzb |
---|
434 | bdims (3,2) = nzt |
---|
435 | |
---|
436 | CALL MPI_SEND( bdims, 6, MPI_INTEGER, target_idex, 10, & |
---|
437 | comm_inter, ierr ) |
---|
438 | |
---|
439 | CALL MPI_RECV( bdims_rem, 6, MPI_INTEGER, target_idex, 9, & |
---|
440 | comm_inter,status, ierr ) |
---|
441 | |
---|
442 | n_cell_c = (bdims_rem(1,2)-bdims_rem(1,1)+3) * & |
---|
443 | (bdims_rem(2,2)-bdims_rem(2,1)+3) * & |
---|
444 | (bdims_rem(3,2)-bdims_rem(3,1)+3) |
---|
445 | |
---|
446 | ALLOCATE( work3d ( bdims_rem(3,1) :bdims_rem(3,2)+2, & |
---|
447 | bdims_rem(2,1)-1:bdims_rem(2,2)+1, & |
---|
448 | bdims_rem(1,1)-1:bdims_rem(1,2)+1)) |
---|
449 | |
---|
450 | |
---|
451 | CALL MPI_RECV( work3d,n_cell_c, MPI_REAL, target_idex, 101, & |
---|
452 | comm_inter,status, ierr ) |
---|
453 | interpol3d => u |
---|
454 | call interpolate_to_fine_u |
---|
455 | |
---|
456 | CALL MPI_RECV( work3d,n_cell_c, MPI_REAL, target_idex, 102, & |
---|
457 | comm_inter,status, ierr ) |
---|
458 | interpol3d => v |
---|
459 | call interpolate_to_fine_v |
---|
460 | |
---|
461 | CALL MPI_RECV( work3d,n_cell_c, MPI_REAL, target_idex, 103, & |
---|
462 | comm_inter,status, ierr ) |
---|
463 | interpol3d => w |
---|
464 | call interpolate_to_fine_w |
---|
465 | |
---|
466 | CALL MPI_RECV( work3d,n_cell_c, MPI_REAL, target_idex, 105, & |
---|
467 | comm_inter,status, ierr ) |
---|
468 | interpol3d => pt |
---|
469 | call interpolate_to_fine_s |
---|
470 | |
---|
471 | IF ( humidity ) THEN |
---|
472 | CALL MPI_RECV( work3d,n_cell_c, MPI_REAL, target_idex, 116, & |
---|
473 | comm_inter,status, ierr ) |
---|
474 | interpol3d => q |
---|
475 | call interpolate_to_fine_s |
---|
476 | ENDIF |
---|
477 | |
---|
478 | CALL MPI_RECV( work3d,n_cell_c, MPI_REAL, target_idex, 104, & |
---|
479 | comm_inter,status, ierr ) |
---|
480 | interpol3d => e |
---|
481 | call interpolate_to_fine_s |
---|
482 | |
---|
483 | !-- kh,km no target attribute, use of pointer not possible |
---|
484 | CALL MPI_RECV( work3d,n_cell_c, MPI_REAL, target_idex, 106, & |
---|
485 | comm_inter,status, ierr ) |
---|
486 | call interpolate_to_fine_kh |
---|
487 | |
---|
488 | CALL MPI_RECV( work3d,n_cell_c, MPI_REAL, target_idex, 107, & |
---|
489 | comm_inter,status, ierr ) |
---|
490 | call interpolate_to_fine_km |
---|
491 | |
---|
492 | DEALLOCATE( work3d ) |
---|
493 | NULLIFY ( interpol3d ) |
---|
494 | |
---|
495 | !-- Recv Surface Fluxes |
---|
496 | IF ( use_surface_fluxes ) THEN |
---|
497 | n_cell_c = (bdims_rem(1,2)-bdims_rem(1,1)+3) * & |
---|
498 | (bdims_rem(2,2)-bdims_rem(2,1)+3) |
---|
499 | |
---|
500 | ALLOCATE( work2dusws ( bdims_rem(2,1)-1:bdims_rem(2,2)+1, & |
---|
501 | bdims_rem(1,1)-1:bdims_rem(1,2)+1) ) |
---|
502 | ALLOCATE( work2dvsws ( bdims_rem(2,1)-1:bdims_rem(2,2)+1, & |
---|
503 | bdims_rem(1,1)-1:bdims_rem(1,2)+1) ) |
---|
504 | ALLOCATE( work2dts ( bdims_rem(2,1)-1:bdims_rem(2,2)+1, & |
---|
505 | bdims_rem(1,1)-1:bdims_rem(1,2)+1) ) |
---|
506 | ALLOCATE( work2dus ( bdims_rem(2,1)-1:bdims_rem(2,2)+1, & |
---|
507 | bdims_rem(1,1)-1:bdims_rem(1,2)+1) ) |
---|
508 | |
---|
509 | ! |
---|
510 | !-- shf and z0 for CG / FG need to initialized in input file or user_code |
---|
511 | !-- TODO |
---|
512 | !-- initialization of usws, vsws, ts and us not vital to vnest FG |
---|
513 | !-- variables are not compatible with the new surface layer module |
---|
514 | ! |
---|
515 | ! CALL MPI_RECV( work2dusws,n_cell_c, MPI_REAL, target_idex, 110, & |
---|
516 | ! comm_inter,status, ierr ) |
---|
517 | ! |
---|
518 | ! CALL MPI_RECV( work2dvsws,n_cell_c, MPI_REAL, target_idex, 111, & |
---|
519 | ! comm_inter,status, ierr ) |
---|
520 | ! |
---|
521 | ! CALL MPI_RECV( work2dts ,n_cell_c, MPI_REAL, target_idex, 112, & |
---|
522 | ! comm_inter,status, ierr ) |
---|
523 | ! |
---|
524 | ! CALL MPI_RECV( work2dus ,n_cell_c, MPI_REAL, target_idex, 113, & |
---|
525 | ! comm_inter,status, ierr ) |
---|
526 | ! |
---|
527 | ! CALL interpolate_to_fine_flux ( 108 ) |
---|
528 | |
---|
529 | DEALLOCATE( work2dusws ) |
---|
530 | DEALLOCATE( work2dvsws ) |
---|
531 | DEALLOCATE( work2dts ) |
---|
532 | DEALLOCATE( work2dus ) |
---|
533 | ENDIF |
---|
534 | |
---|
535 | IF ( .NOT. constant_diffusion ) THEN |
---|
536 | DO kkf = bdims(3,1)+1,bdims(3,2)+1 |
---|
537 | DO jjf = bdims(2,1),bdims(2,2) |
---|
538 | DO iif = bdims(1,1),bdims(1,2) |
---|
539 | |
---|
540 | IF ( e(kkf,jjf,iif) < 0.0 ) THEN |
---|
541 | e(kkf,jjf,iif) = 1E-15_wp |
---|
542 | END IF |
---|
543 | |
---|
544 | END DO |
---|
545 | END DO |
---|
546 | END DO |
---|
547 | ENDIF |
---|
548 | |
---|
549 | w(nzt+1,:,:) = w(nzt,:,:) |
---|
550 | |
---|
551 | CALL exchange_horiz( u, nbgp ) |
---|
552 | CALL exchange_horiz( v, nbgp ) |
---|
553 | CALL exchange_horiz( w, nbgp ) |
---|
554 | CALL exchange_horiz( pt, nbgp ) |
---|
555 | IF ( .NOT. constant_diffusion ) CALL exchange_horiz( e, nbgp ) |
---|
556 | IF ( humidity ) CALL exchange_horiz( q, nbgp ) |
---|
557 | |
---|
558 | ! |
---|
559 | !-- Velocity boundary conditions at the bottom boundary |
---|
560 | IF ( ibc_uv_b == 0 ) THEN |
---|
561 | u(nzb,:,:) = 0.0_wp |
---|
562 | v(nzb,:,:) = 0.0_wp |
---|
563 | ELSE |
---|
564 | u(nzb,:,:) = u(nzb+1,:,:) |
---|
565 | v(nzb,:,:) = v(nzb+1,:,:) |
---|
566 | END IF |
---|
567 | |
---|
568 | |
---|
569 | w(nzb,:,:) = 0.0_wp |
---|
570 | |
---|
571 | ! |
---|
572 | !-- Temperature boundary conditions at the bottom boundary |
---|
573 | IF ( ibc_pt_b /= 0 ) THEN |
---|
574 | pt(nzb,:,:) = pt(nzb+1,:,:) |
---|
575 | END IF |
---|
576 | |
---|
577 | ! |
---|
578 | !-- Bottom boundary condition for the turbulent kinetic energy |
---|
579 | !-- Generally a Neumann condition with de/dz=0 is assumed |
---|
580 | IF ( .NOT. constant_diffusion ) THEN |
---|
581 | e(nzb,:,:) = e(nzb+1,:,:) |
---|
582 | END IF |
---|
583 | |
---|
584 | ! |
---|
585 | !-- Bottom boundary condition for turbulent diffusion coefficients |
---|
586 | km(nzb,:,:) = km(nzb+1,:,:) |
---|
587 | kh(nzb,:,:) = kh(nzb+1,:,:) |
---|
588 | |
---|
589 | !diffusivities required |
---|
590 | IF ( .NOT. humidity ) THEN |
---|
591 | CALL tcm_diffusivities( pt, pt_reference ) |
---|
592 | ELSE |
---|
593 | CALL tcm_diffusivities( vpt, pt_reference ) |
---|
594 | ENDIF |
---|
595 | |
---|
596 | |
---|
597 | ! |
---|
598 | !-- Reset Fine Grid top Boundary Condition |
---|
599 | !-- At the top of the FG, the scalars always follow Dirichlet condition |
---|
600 | |
---|
601 | ibc_pt_t = 0 |
---|
602 | |
---|
603 | !-- Initialize old time levels |
---|
604 | pt_p = pt; u_p = u; v_p = v; w_p = w |
---|
605 | IF ( .NOT. constant_diffusion ) e_p = e |
---|
606 | IF ( humidity ) THEN |
---|
607 | ibc_q_t = 0 |
---|
608 | q_p = q |
---|
609 | ENDIF |
---|
610 | |
---|
611 | ENDIF |
---|
612 | |
---|
613 | |
---|
614 | if (myid==0) print *, '** Fine Initalized ** simulated_time:', simulated_time |
---|
615 | |
---|
616 | CONTAINS |
---|
617 | |
---|
618 | SUBROUTINE interpolate_to_fine_w |
---|
619 | |
---|
620 | USE arrays_3d |
---|
621 | USE control_parameters |
---|
622 | USE grid_variables |
---|
623 | USE indices |
---|
624 | USE pegrid |
---|
625 | |
---|
626 | |
---|
627 | IMPLICIT NONE |
---|
628 | |
---|
629 | INTEGER(iwp) :: i |
---|
630 | INTEGER(iwp) :: j |
---|
631 | INTEGER(iwp) :: k |
---|
632 | INTEGER(iwp) :: iif |
---|
633 | INTEGER(iwp) :: jjf |
---|
634 | INTEGER(iwp) :: kkf |
---|
635 | INTEGER(iwp) :: nzbottom |
---|
636 | INTEGER(iwp) :: nztop |
---|
637 | INTEGER(iwp) :: bottomx |
---|
638 | INTEGER(iwp) :: bottomy |
---|
639 | INTEGER(iwp) :: bottomz |
---|
640 | INTEGER(iwp) :: topx |
---|
641 | INTEGER(iwp) :: topy |
---|
642 | INTEGER(iwp) :: topz |
---|
643 | REAL(wp) :: eps |
---|
644 | REAL(wp) :: alpha |
---|
645 | REAL(wp) :: eminus |
---|
646 | REAL(wp) :: edot |
---|
647 | REAL(wp) :: eplus |
---|
648 | REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: wprs |
---|
649 | REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: wprf |
---|
650 | |
---|
651 | |
---|
652 | nzbottom = bdims_rem (3,1) |
---|
653 | nztop = bdims_rem (3,2) |
---|
654 | |
---|
655 | ALLOCATE( wprf(nzbottom:nztop, bdims_rem(2,1)-1: bdims_rem(2,2)+1,nxl:nxr) ) |
---|
656 | ALLOCATE( wprs(nzbottom:nztop,nys:nyn,nxl:nxr) ) |
---|
657 | |
---|
658 | |
---|
659 | ! |
---|
660 | !-- Initialisation of the velocity component w |
---|
661 | ! |
---|
662 | !-- Interpolation in x-direction |
---|
663 | DO k = nzbottom, nztop |
---|
664 | DO j = bdims_rem(2,1)-1, bdims_rem(2,2)+1 |
---|
665 | DO i = bdims_rem(1,1),bdims_rem(1,2) |
---|
666 | |
---|
667 | bottomx = (nxf+1)/(nxc+1) * i |
---|
668 | topx = (nxf+1)/(nxc+1) * (i+1) - 1 |
---|
669 | |
---|
670 | DO iif = bottomx, topx |
---|
671 | |
---|
672 | eps = ( iif * dxf + 0.5 * dxf - i * dxc - 0.5 * dxc ) / dxc |
---|
673 | alpha = ( ( dxf / dxc )**2.0 - 1.0 ) / 24.0 |
---|
674 | eminus = eps * ( eps - 1.0 ) / 2.0 + alpha |
---|
675 | edot = ( 1.0 - eps**2.0 ) - 2.0 * alpha |
---|
676 | eplus = eps * ( eps + 1.0 ) / 2.0 + alpha |
---|
677 | |
---|
678 | wprf(k,j,iif) = eminus * work3d(k,j,i-1) & |
---|
679 | + edot * work3d(k,j,i) & |
---|
680 | + eplus * work3d(k,j,i+1) |
---|
681 | END DO |
---|
682 | |
---|
683 | END DO |
---|
684 | END DO |
---|
685 | END DO |
---|
686 | |
---|
687 | ! |
---|
688 | !-- Interpolation in y-direction (quadratic, Clark and Farley) |
---|
689 | DO k = nzbottom, nztop |
---|
690 | DO j = bdims_rem(2,1), bdims_rem(2,2) |
---|
691 | |
---|
692 | bottomy = (nyf+1)/(nyc+1) * j |
---|
693 | topy = (nyf+1)/(nyc+1) * (j+1) - 1 |
---|
694 | |
---|
695 | DO iif = nxl, nxr |
---|
696 | DO jjf = bottomy, topy |
---|
697 | |
---|
698 | eps = ( jjf * dyf + 0.5 * dyf - j * dyc - 0.5 * dyc ) / dyc |
---|
699 | alpha = ( ( dyf / dyc )**2.0 - 1.0 ) / 24.0 |
---|
700 | eminus = eps * ( eps - 1.0 ) / 2.0 + alpha |
---|
701 | edot = ( 1.0 - eps**2.0 ) - 2.0 * alpha |
---|
702 | eplus = eps * ( eps + 1.0 ) / 2.0 + alpha |
---|
703 | |
---|
704 | wprs(k,jjf,iif) = eminus * wprf(k,j-1,iif) & |
---|
705 | + edot * wprf(k,j,iif) & |
---|
706 | + eplus * wprf(k,j+1,iif) |
---|
707 | |
---|
708 | END DO |
---|
709 | END DO |
---|
710 | |
---|
711 | END DO |
---|
712 | END DO |
---|
713 | |
---|
714 | ! |
---|
715 | !-- Interpolation in z-direction (linear) |
---|
716 | |
---|
717 | DO k = nzbottom, nztop-1 |
---|
718 | |
---|
719 | bottomz = (dzc/dzf) * k |
---|
720 | topz = (dzc/dzf) * (k+1) - 1 |
---|
721 | |
---|
722 | DO jjf = nys, nyn |
---|
723 | DO iif = nxl, nxr |
---|
724 | DO kkf = bottomz, topz |
---|
725 | |
---|
726 | w(kkf,jjf,iif) = wprs(k,jjf,iif) + ( zwf(kkf) - zwc(k) ) & |
---|
727 | * ( wprs(k+1,jjf,iif) - wprs(k,jjf,iif) ) / dzc |
---|
728 | |
---|
729 | END DO |
---|
730 | END DO |
---|
731 | END DO |
---|
732 | |
---|
733 | END DO |
---|
734 | |
---|
735 | DO jjf = nys, nyn |
---|
736 | DO iif = nxl, nxr |
---|
737 | |
---|
738 | w(nzt,jjf,iif) = wprs(nztop,jjf,iif) |
---|
739 | |
---|
740 | END DO |
---|
741 | END DO |
---|
742 | ! |
---|
743 | ! w(nzb:nzt+1,nys:nyn,nxl:nxr) = 0 |
---|
744 | |
---|
745 | DEALLOCATE( wprf, wprs ) |
---|
746 | |
---|
747 | END SUBROUTINE interpolate_to_fine_w |
---|
748 | |
---|
749 | SUBROUTINE interpolate_to_fine_u |
---|
750 | |
---|
751 | |
---|
752 | USE arrays_3d |
---|
753 | USE control_parameters |
---|
754 | USE grid_variables |
---|
755 | USE indices |
---|
756 | USE pegrid |
---|
757 | |
---|
758 | |
---|
759 | IMPLICIT NONE |
---|
760 | |
---|
761 | INTEGER(iwp) :: i |
---|
762 | INTEGER(iwp) :: j |
---|
763 | INTEGER(iwp) :: k |
---|
764 | INTEGER(iwp) :: iif |
---|
765 | INTEGER(iwp) :: jjf |
---|
766 | INTEGER(iwp) :: kkf |
---|
767 | INTEGER(iwp) :: nzbottom |
---|
768 | INTEGER(iwp) :: nztop |
---|
769 | INTEGER(iwp) :: bottomx |
---|
770 | INTEGER(iwp) :: bottomy |
---|
771 | INTEGER(iwp) :: bottomz |
---|
772 | INTEGER(iwp) :: topx |
---|
773 | INTEGER(iwp) :: topy |
---|
774 | INTEGER(iwp) :: topz |
---|
775 | REAL(wp) :: eps |
---|
776 | REAL(wp) :: alpha |
---|
777 | REAL(wp) :: eminus |
---|
778 | REAL(wp) :: edot |
---|
779 | REAL(wp) :: eplus |
---|
780 | REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: uprf |
---|
781 | REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: uprs |
---|
782 | |
---|
783 | |
---|
784 | |
---|
785 | nzbottom = bdims_rem (3,1) |
---|
786 | nztop = bdims_rem (3,2) |
---|
787 | |
---|
788 | ALLOCATE( uprf(nzbottom:nztop+2,nys:nyn,bdims_rem(1,1)-1:bdims_rem(1,2)+1) ) |
---|
789 | ALLOCATE( uprs(nzb+1:nzt+1,nys:nyn,bdims_rem(1,1)-1:bdims_rem(1,2)+1) ) |
---|
790 | |
---|
791 | ! |
---|
792 | !-- Initialisation of the velocity component uf |
---|
793 | |
---|
794 | ! |
---|
795 | !-- Interpolation in y-direction (quadratic, Clark and Farley) |
---|
796 | |
---|
797 | DO k = nzbottom, nztop+2 |
---|
798 | DO j = bdims_rem(2,1), bdims_rem(2,2) |
---|
799 | |
---|
800 | bottomy = (nyf+1)/(nyc+1) * j |
---|
801 | topy = (nyf+1)/(nyc+1) * (j+1) - 1 |
---|
802 | |
---|
803 | DO i = bdims_rem(1,1)-1, bdims_rem(1,2)+1 |
---|
804 | DO jjf = bottomy, topy |
---|
805 | |
---|
806 | eps = ( jjf * dyf + 0.5 * dyf - j * dyc - 0.5 * dyc ) / dyc |
---|
807 | alpha = ( ( dyf / dyc )**2.0 - 1.0 ) / 24.0 |
---|
808 | eminus = eps * ( eps - 1.0 ) / 2.0 + alpha |
---|
809 | edot = ( 1.0 - eps**2.0 ) - 2.0 * alpha |
---|
810 | eplus = eps * ( eps + 1.0 ) / 2.0 + alpha |
---|
811 | |
---|
812 | uprf(k,jjf,i) = eminus * work3d(k,j-1,i) & |
---|
813 | + edot * work3d(k,j,i) & |
---|
814 | + eplus * work3d(k,j+1,i) |
---|
815 | |
---|
816 | END DO |
---|
817 | END DO |
---|
818 | |
---|
819 | END DO |
---|
820 | END DO |
---|
821 | |
---|
822 | ! |
---|
823 | !-- Interpolation in z-direction (quadratic, Clark and Farley) |
---|
824 | |
---|
825 | DO k = nzbottom+1, nztop |
---|
826 | |
---|
827 | bottomz = (dzc/dzf) * (k-1) + 1 |
---|
828 | topz = (dzc/dzf) * k |
---|
829 | |
---|
830 | DO jjf = nys, nyn |
---|
831 | DO i = bdims_rem(1,1)-1, bdims_rem(1,2)+1 |
---|
832 | DO kkf = bottomz, topz |
---|
833 | |
---|
834 | eps = ( zuf(kkf) - zuc(k) ) / dzc |
---|
835 | alpha = ( ( dzf / dzc )**2.0 - 1.0 ) / 24.0 |
---|
836 | eminus = eps * ( eps - 1.0 ) / 2.0 + alpha |
---|
837 | edot = ( 1.0 - eps**2.0 ) - 2.0 * alpha |
---|
838 | eplus = eps * ( eps + 1.0 ) / 2.0 + alpha |
---|
839 | |
---|
840 | uprs(kkf,jjf,i) = eminus * uprf(k-1,jjf,i) & |
---|
841 | + edot * uprf(k,jjf,i) & |
---|
842 | + eplus * uprf(k+1,jjf,i) |
---|
843 | |
---|
844 | END DO |
---|
845 | END DO |
---|
846 | END DO |
---|
847 | |
---|
848 | END DO |
---|
849 | |
---|
850 | DO jjf = nys, nyn |
---|
851 | DO i = bdims_rem(1,1)-1, bdims_rem(1,2)+1 |
---|
852 | |
---|
853 | eps = ( zuf(nzt+1) - zuc(nztop+1) ) / dzc |
---|
854 | alpha = ( ( dzf / dzc )**2.0 - 1.0 ) / 24.0 |
---|
855 | eminus = eps * ( eps - 1.0 ) / 2.0 + alpha |
---|
856 | edot = ( 1.0 - eps**2.0 ) - 2.0 * alpha |
---|
857 | eplus = eps * ( eps + 1.0 ) / 2.0 + alpha |
---|
858 | |
---|
859 | uprs(nzt+1,jjf,i) = eminus * uprf(nztop,jjf,i) & |
---|
860 | + edot * uprf(nztop+1,jjf,i) & |
---|
861 | + eplus * uprf(nztop+2,jjf,i) |
---|
862 | |
---|
863 | END DO |
---|
864 | END DO |
---|
865 | |
---|
866 | ! |
---|
867 | !-- Interpolation in x-direction (linear) |
---|
868 | |
---|
869 | DO kkf = nzb+1, nzt+1 |
---|
870 | DO jjf = nys, nyn |
---|
871 | DO i = bdims_rem(1,1), bdims_rem(1,2) |
---|
872 | |
---|
873 | bottomx = (nxf+1)/(nxc+1) * i |
---|
874 | topx = (nxf+1)/(nxc+1) * (i+1) - 1 |
---|
875 | |
---|
876 | DO iif = bottomx, topx |
---|
877 | u(kkf,jjf,iif) = uprs(kkf,jjf,i) + ( iif * dxf - i * dxc ) & |
---|
878 | * ( uprs(kkf,jjf,i+1) - uprs(kkf,jjf,i) ) / dxc |
---|
879 | END DO |
---|
880 | |
---|
881 | END DO |
---|
882 | END DO |
---|
883 | END DO |
---|
884 | ! |
---|
885 | !-- Determination of uf at the bottom boundary |
---|
886 | |
---|
887 | |
---|
888 | |
---|
889 | DEALLOCATE( uprf, uprs ) |
---|
890 | |
---|
891 | END SUBROUTINE interpolate_to_fine_u |
---|
892 | |
---|
893 | |
---|
894 | SUBROUTINE interpolate_to_fine_v |
---|
895 | |
---|
896 | |
---|
897 | USE arrays_3d |
---|
898 | USE control_parameters |
---|
899 | USE grid_variables |
---|
900 | USE indices |
---|
901 | USE pegrid |
---|
902 | |
---|
903 | |
---|
904 | IMPLICIT NONE |
---|
905 | |
---|
906 | INTEGER(iwp) :: i |
---|
907 | INTEGER(iwp) :: j |
---|
908 | INTEGER(iwp) :: k |
---|
909 | INTEGER(iwp) :: iif |
---|
910 | INTEGER(iwp) :: jjf |
---|
911 | INTEGER(iwp) :: kkf |
---|
912 | INTEGER(iwp) :: nzbottom |
---|
913 | INTEGER(iwp) :: nztop |
---|
914 | INTEGER(iwp) :: bottomx |
---|
915 | INTEGER(iwp) :: bottomy |
---|
916 | INTEGER(iwp) :: bottomz |
---|
917 | INTEGER(iwp) :: topx |
---|
918 | INTEGER(iwp) :: topy |
---|
919 | INTEGER(iwp) :: topz |
---|
920 | REAL(wp) :: eps |
---|
921 | REAL(wp) :: alpha |
---|
922 | REAL(wp) :: eminus |
---|
923 | REAL(wp) :: edot |
---|
924 | REAL(wp) :: eplus |
---|
925 | REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: vprs |
---|
926 | REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: vprf |
---|
927 | |
---|
928 | |
---|
929 | nzbottom = bdims_rem (3,1) |
---|
930 | nztop = bdims_rem (3,2) |
---|
931 | |
---|
932 | ALLOCATE( vprf(nzbottom:nztop+2,bdims_rem(2,1)-1:bdims_rem(2,2)+1,nxl:nxr) ) |
---|
933 | ALLOCATE( vprs(nzb+1:nzt+1, bdims_rem(2,1)-1:bdims_rem(2,2)+1,nxl:nxr) ) |
---|
934 | ! |
---|
935 | !-- Initialisation of the velocity component vf |
---|
936 | |
---|
937 | ! |
---|
938 | !-- Interpolation in x-direction (quadratic, Clark and Farley) |
---|
939 | |
---|
940 | DO k = nzbottom, nztop+2 |
---|
941 | DO j = bdims_rem(2,1)-1, bdims_rem(2,2)+1 |
---|
942 | DO i = bdims_rem(1,1), bdims_rem(1,2) |
---|
943 | |
---|
944 | bottomx = (nxf+1)/(nxc+1) * i |
---|
945 | topx = (nxf+1)/(nxc+1) * (i+1) - 1 |
---|
946 | |
---|
947 | DO iif = bottomx, topx |
---|
948 | |
---|
949 | eps = ( iif * dxf + 0.5 * dxf - i * dxc - 0.5 * dxc ) / dxc |
---|
950 | alpha = ( ( dxf / dxc )**2.0 - 1.0 ) / 24.0 |
---|
951 | eminus = eps * ( eps - 1.0 ) / 2.0 + alpha |
---|
952 | edot = ( 1.0 - eps**2.0 ) - 2.0 * alpha |
---|
953 | eplus = eps * ( eps + 1.0 ) / 2.0 + alpha |
---|
954 | |
---|
955 | vprf(k,j,iif) = eminus * work3d(k,j,i-1) & |
---|
956 | + edot * work3d(k,j,i) & |
---|
957 | + eplus * work3d(k,j,i+1) |
---|
958 | |
---|
959 | END DO |
---|
960 | |
---|
961 | END DO |
---|
962 | END DO |
---|
963 | END DO |
---|
964 | |
---|
965 | ! |
---|
966 | !-- Interpolation in z-direction (quadratic, Clark and Farley) |
---|
967 | |
---|
968 | DO k = nzbottom+1, nztop |
---|
969 | |
---|
970 | bottomz = (dzc/dzf) * (k-1) + 1 |
---|
971 | topz = (dzc/dzf) * k |
---|
972 | |
---|
973 | DO j = bdims_rem(2,1)-1, bdims_rem(2,2)+1 |
---|
974 | DO iif = nxl, nxr |
---|
975 | DO kkf = bottomz, topz |
---|
976 | |
---|
977 | eps = ( zuf(kkf) - zuc(k) ) / dzc |
---|
978 | alpha = ( ( dzf / dzc )**2.0 - 1.0 ) / 24.0 |
---|
979 | eminus = eps * ( eps - 1.0 ) / 2.0 + alpha |
---|
980 | edot = ( 1.0 - eps**2.0 ) - 2.0 * alpha |
---|
981 | eplus = eps * ( eps + 1.0 ) / 2.0 + alpha |
---|
982 | |
---|
983 | vprs(kkf,j,iif) = eminus * vprf(k-1,j,iif) & |
---|
984 | + edot * vprf(k,j,iif) & |
---|
985 | + eplus * vprf(k+1,j,iif) |
---|
986 | |
---|
987 | END DO |
---|
988 | END DO |
---|
989 | END DO |
---|
990 | |
---|
991 | END DO |
---|
992 | |
---|
993 | DO j = bdims_rem(2,1)-1, bdims_rem(2,2)+1 |
---|
994 | DO iif = nxl, nxr |
---|
995 | |
---|
996 | eps = ( zuf(nzt+1) - zuc(nztop+1) ) / dzc |
---|
997 | alpha = ( ( dzf / dzc )**2.0 - 1.0 ) / 24.0 |
---|
998 | eminus = eps * ( eps - 1.0 ) / 2.0 + alpha |
---|
999 | edot = ( 1.0 - eps**2.0 ) - 2.0 * alpha |
---|
1000 | eplus = eps * ( eps + 1.0 ) / 2.0 + alpha |
---|
1001 | |
---|
1002 | vprs(nzt+1,j,iif) = eminus * vprf(nztop,j,iif) & |
---|
1003 | + edot * vprf(nztop+1,j,iif) & |
---|
1004 | + eplus * vprf(nztop+2,j,iif) |
---|
1005 | |
---|
1006 | END DO |
---|
1007 | END DO |
---|
1008 | |
---|
1009 | ! |
---|
1010 | !-- Interpolation in y-direction (linear) |
---|
1011 | |
---|
1012 | DO kkf = nzb+1, nzt+1 |
---|
1013 | DO j = bdims_rem(2,1), bdims_rem(2,2) |
---|
1014 | |
---|
1015 | bottomy = (nyf+1)/(nyc+1) * j |
---|
1016 | topy = (nyf+1)/(nyc+1) * (j+1) - 1 |
---|
1017 | |
---|
1018 | DO iif = nxl, nxr |
---|
1019 | DO jjf = bottomy, topy |
---|
1020 | v (kkf,jjf,iif) = vprs(kkf,j,iif) + ( jjf * dyf - j * dyc ) & |
---|
1021 | * ( vprs(kkf,j+1,iif) - vprs(kkf,j,iif) ) / dyc |
---|
1022 | END DO |
---|
1023 | END DO |
---|
1024 | |
---|
1025 | END DO |
---|
1026 | END DO |
---|
1027 | |
---|
1028 | ! |
---|
1029 | !-- Determination of vf at the bottom boundary |
---|
1030 | |
---|
1031 | |
---|
1032 | DEALLOCATE( vprf, vprs ) |
---|
1033 | |
---|
1034 | END SUBROUTINE interpolate_to_fine_v |
---|
1035 | |
---|
1036 | |
---|
1037 | SUBROUTINE interpolate_to_fine_s |
---|
1038 | |
---|
1039 | |
---|
1040 | USE arrays_3d |
---|
1041 | USE control_parameters |
---|
1042 | USE grid_variables |
---|
1043 | USE indices |
---|
1044 | USE pegrid |
---|
1045 | |
---|
1046 | |
---|
1047 | IMPLICIT NONE |
---|
1048 | |
---|
1049 | INTEGER(iwp) :: i |
---|
1050 | INTEGER(iwp) :: j |
---|
1051 | INTEGER(iwp) :: k |
---|
1052 | INTEGER(iwp) :: iif |
---|
1053 | INTEGER(iwp) :: jjf |
---|
1054 | INTEGER(iwp) :: kkf |
---|
1055 | INTEGER(iwp) :: nzbottom |
---|
1056 | INTEGER(iwp) :: nztop |
---|
1057 | INTEGER(iwp) :: bottomx |
---|
1058 | INTEGER(iwp) :: bottomy |
---|
1059 | INTEGER(iwp) :: bottomz |
---|
1060 | INTEGER(iwp) :: topx |
---|
1061 | INTEGER(iwp) :: topy |
---|
1062 | INTEGER(iwp) :: topz |
---|
1063 | REAL(wp) :: eps |
---|
1064 | REAL(wp) :: alpha |
---|
1065 | REAL(wp) :: eminus |
---|
1066 | REAL(wp) :: edot |
---|
1067 | REAL(wp) :: eplus |
---|
1068 | REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: ptprs |
---|
1069 | REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: ptprf |
---|
1070 | |
---|
1071 | |
---|
1072 | nzbottom = bdims_rem (3,1) |
---|
1073 | nztop = bdims_rem (3,2) |
---|
1074 | |
---|
1075 | ALLOCATE( ptprf(nzbottom:nztop+2,bdims_rem(2,1)-1:bdims_rem(2,2)+1,nxl:nxr) ) |
---|
1076 | ALLOCATE( ptprs(nzbottom:nztop+2,nys:nyn,nxl:nxr) ) |
---|
1077 | |
---|
1078 | ! |
---|
1079 | !-- Initialisation of scalar variables |
---|
1080 | |
---|
1081 | ! |
---|
1082 | !-- Interpolation in x-direction (quadratic, Clark and Farley) |
---|
1083 | |
---|
1084 | DO k = nzbottom, nztop+2 |
---|
1085 | DO j = bdims_rem(2,1)-1, bdims_rem(2,2)+1 |
---|
1086 | DO i = bdims_rem(1,1), bdims_rem(1,2) |
---|
1087 | |
---|
1088 | bottomx = (nxf+1)/(nxc+1) * i |
---|
1089 | topx = (nxf+1)/(nxc+1) * (i+1) - 1 |
---|
1090 | |
---|
1091 | DO iif = bottomx, topx |
---|
1092 | |
---|
1093 | eps = ( iif * dxf + 0.5 * dxf - i * dxc - 0.5 * dxc ) / dxc |
---|
1094 | alpha = ( ( dxf / dxc )**2.0 - 1.0 ) / 24.0 |
---|
1095 | eminus = eps * ( eps - 1.0 ) / 2.0 + alpha |
---|
1096 | edot = ( 1.0 - eps**2.0 ) - 2.0 * alpha |
---|
1097 | eplus = eps * ( eps + 1.0 ) / 2.0 + alpha |
---|
1098 | |
---|
1099 | ptprf(k,j,iif) = eminus * work3d(k,j,i-1) & |
---|
1100 | + edot * work3d(k,j,i) & |
---|
1101 | + eplus * work3d(k,j,i+1) |
---|
1102 | END DO |
---|
1103 | |
---|
1104 | END DO |
---|
1105 | END DO |
---|
1106 | END DO |
---|
1107 | |
---|
1108 | ! |
---|
1109 | !-- Interpolation in y-direction (quadratic, Clark and Farley) |
---|
1110 | |
---|
1111 | DO k = nzbottom, nztop+2 |
---|
1112 | DO j = bdims_rem(2,1), bdims_rem(2,2) |
---|
1113 | |
---|
1114 | bottomy = (nyf+1)/(nyc+1) * j |
---|
1115 | topy = (nyf+1)/(nyc+1) * (j+1) - 1 |
---|
1116 | |
---|
1117 | DO iif = nxl, nxr |
---|
1118 | DO jjf = bottomy, topy |
---|
1119 | |
---|
1120 | eps = ( jjf * dyf + 0.5 * dyf - j * dyc - 0.5 * dyc ) / dyc |
---|
1121 | alpha = ( ( dyf / dyc )**2.0 - 1.0 ) / 24.0 |
---|
1122 | eminus = eps * ( eps - 1.0 ) / 2.0 + alpha |
---|
1123 | edot = ( 1.0 - eps**2.0 ) - 2.0 * alpha |
---|
1124 | eplus = eps * ( eps + 1.0 ) / 2.0 + alpha |
---|
1125 | |
---|
1126 | ptprs(k,jjf,iif) = eminus * ptprf(k,j-1,iif) & |
---|
1127 | + edot * ptprf(k,j,iif) & |
---|
1128 | + eplus * ptprf(k,j+1,iif) |
---|
1129 | |
---|
1130 | END DO |
---|
1131 | END DO |
---|
1132 | |
---|
1133 | END DO |
---|
1134 | END DO |
---|
1135 | |
---|
1136 | ! |
---|
1137 | !-- Interpolation in z-direction (quadratic, Clark and Farley) |
---|
1138 | |
---|
1139 | DO k = nzbottom+1, nztop |
---|
1140 | |
---|
1141 | bottomz = (dzc/dzf) * (k-1) + 1 |
---|
1142 | topz = (dzc/dzf) * k |
---|
1143 | |
---|
1144 | DO jjf = nys, nyn |
---|
1145 | DO iif = nxl, nxr |
---|
1146 | DO kkf = bottomz, topz |
---|
1147 | |
---|
1148 | eps = ( zuf(kkf) - zuc(k) ) / dzc |
---|
1149 | alpha = ( ( dzf / dzc )**2.0 - 1.0 ) / 24.0 |
---|
1150 | eminus = eps * ( eps - 1.0 ) / 2.0 + alpha |
---|
1151 | edot = ( 1.0 - eps**2.0 ) - 2.0 * alpha |
---|
1152 | eplus = eps * ( eps + 1.0 ) / 2.0 + alpha |
---|
1153 | |
---|
1154 | interpol3d(kkf,jjf,iif) = eminus * ptprs(k-1,jjf,iif) & |
---|
1155 | + edot * ptprs(k,jjf,iif) & |
---|
1156 | + eplus * ptprs(k+1,jjf,iif) |
---|
1157 | |
---|
1158 | END DO |
---|
1159 | END DO |
---|
1160 | END DO |
---|
1161 | |
---|
1162 | END DO |
---|
1163 | |
---|
1164 | DO jjf = nys, nyn |
---|
1165 | DO iif = nxl, nxr |
---|
1166 | |
---|
1167 | eps = ( zuf(nzt+1) - zuc(nztop+1) ) / dzc |
---|
1168 | alpha = ( ( dzf / dzc )**2.0 - 1.0 ) / 24.0 |
---|
1169 | eminus = eps * ( eps - 1.0 ) / 2.0 + alpha |
---|
1170 | edot = ( 1.0 - eps**2.0 ) - 2.0 * alpha |
---|
1171 | eplus = eps * ( eps + 1.0 ) / 2.0 + alpha |
---|
1172 | |
---|
1173 | interpol3d(nzt+1,jjf,iif) = eminus * ptprs(nztop,jjf,iif) & |
---|
1174 | + edot * ptprs(nztop+1,jjf,iif) & |
---|
1175 | + eplus * ptprs(nztop+2,jjf,iif) |
---|
1176 | |
---|
1177 | END DO |
---|
1178 | END DO |
---|
1179 | |
---|
1180 | |
---|
1181 | DEALLOCATE( ptprf, ptprs ) |
---|
1182 | |
---|
1183 | END SUBROUTINE interpolate_to_fine_s |
---|
1184 | |
---|
1185 | |
---|
1186 | SUBROUTINE interpolate_to_fine_kh |
---|
1187 | |
---|
1188 | |
---|
1189 | USE arrays_3d |
---|
1190 | USE control_parameters |
---|
1191 | USE grid_variables |
---|
1192 | USE indices |
---|
1193 | USE pegrid |
---|
1194 | |
---|
1195 | |
---|
1196 | IMPLICIT NONE |
---|
1197 | |
---|
1198 | INTEGER(iwp) :: i |
---|
1199 | INTEGER(iwp) :: j |
---|
1200 | INTEGER(iwp) :: k |
---|
1201 | INTEGER(iwp) :: iif |
---|
1202 | INTEGER(iwp) :: jjf |
---|
1203 | INTEGER(iwp) :: kkf |
---|
1204 | INTEGER(iwp) :: nzbottom |
---|
1205 | INTEGER(iwp) :: nztop |
---|
1206 | INTEGER(iwp) :: bottomx |
---|
1207 | INTEGER(iwp) :: bottomy |
---|
1208 | INTEGER(iwp) :: bottomz |
---|
1209 | INTEGER(iwp) :: topx |
---|
1210 | INTEGER(iwp) :: topy |
---|
1211 | INTEGER(iwp) :: topz |
---|
1212 | REAL(wp) :: eps |
---|
1213 | REAL(wp) :: alpha |
---|
1214 | REAL(wp) :: eminus |
---|
1215 | REAL(wp) :: edot |
---|
1216 | REAL(wp) :: eplus |
---|
1217 | REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: ptprs |
---|
1218 | REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: ptprf |
---|
1219 | |
---|
1220 | |
---|
1221 | nzbottom = bdims_rem (3,1) |
---|
1222 | nztop = bdims_rem (3,2) |
---|
1223 | ! nztop = blk_dim_rem (3,2)+1 |
---|
1224 | |
---|
1225 | |
---|
1226 | ALLOCATE( ptprf(nzbottom:nztop+2,bdims_rem(2,1)-1:bdims_rem(2,2)+1,nxl:nxr) ) |
---|
1227 | ALLOCATE( ptprs(nzbottom:nztop+2,nys:nyn,nxl:nxr) ) |
---|
1228 | |
---|
1229 | |
---|
1230 | ! |
---|
1231 | !-- Initialisation of scalar variables |
---|
1232 | |
---|
1233 | ! |
---|
1234 | !-- Interpolation in x-direction (quadratic, Clark and Farley) |
---|
1235 | |
---|
1236 | DO k = nzbottom, nztop+2 |
---|
1237 | DO j = bdims_rem(2,1)-1, bdims_rem(2,2)+1 |
---|
1238 | DO i = bdims_rem(1,1), bdims_rem(1,2) |
---|
1239 | |
---|
1240 | bottomx = (nxf+1)/(nxc+1) * i |
---|
1241 | topx = (nxf+1)/(nxc+1) * (i+1) - 1 |
---|
1242 | |
---|
1243 | DO iif = bottomx, topx |
---|
1244 | |
---|
1245 | eps = ( iif * dxf + 0.5 * dxf - i * dxc - 0.5 * dxc ) / dxc |
---|
1246 | alpha = ( ( dxf / dxc )**2.0 - 1.0 ) / 24.0 |
---|
1247 | eminus = eps * ( eps - 1.0 ) / 2.0 + alpha |
---|
1248 | edot = ( 1.0 - eps**2.0 ) - 2.0 * alpha |
---|
1249 | eplus = eps * ( eps + 1.0 ) / 2.0 + alpha |
---|
1250 | |
---|
1251 | ptprf(k,j,iif) = eminus * work3d(k,j,i-1) & |
---|
1252 | + edot * work3d(k,j,i) & |
---|
1253 | + eplus * work3d(k,j,i+1) |
---|
1254 | END DO |
---|
1255 | |
---|
1256 | END DO |
---|
1257 | END DO |
---|
1258 | END DO |
---|
1259 | |
---|
1260 | ! |
---|
1261 | !-- Interpolation in y-direction (quadratic, Clark and Farley) |
---|
1262 | |
---|
1263 | DO k = nzbottom, nztop+2 |
---|
1264 | DO j = bdims_rem(2,1), bdims_rem(2,2) |
---|
1265 | |
---|
1266 | bottomy = (nyf+1)/(nyc+1) * j |
---|
1267 | topy = (nyf+1)/(nyc+1) * (j+1) - 1 |
---|
1268 | |
---|
1269 | DO iif = nxl, nxr |
---|
1270 | DO jjf = bottomy, topy |
---|
1271 | |
---|
1272 | eps = ( jjf * dyf + 0.5 * dyf - j * dyc - 0.5 * dyc ) / dyc |
---|
1273 | alpha = ( ( dyf / dyc )**2.0 - 1.0 ) / 24.0 |
---|
1274 | eminus = eps * ( eps - 1.0 ) / 2.0 + alpha |
---|
1275 | edot = ( 1.0 - eps**2.0 ) - 2.0 * alpha |
---|
1276 | eplus = eps * ( eps + 1.0 ) / 2.0 + alpha |
---|
1277 | |
---|
1278 | ptprs(k,jjf,iif) = eminus * ptprf(k,j-1,iif) & |
---|
1279 | + edot * ptprf(k,j,iif) & |
---|
1280 | + eplus * ptprf(k,j+1,iif) |
---|
1281 | |
---|
1282 | END DO |
---|
1283 | END DO |
---|
1284 | |
---|
1285 | END DO |
---|
1286 | END DO |
---|
1287 | |
---|
1288 | ! |
---|
1289 | !-- Interpolation in z-direction (quadratic, Clark and Farley) |
---|
1290 | |
---|
1291 | DO k = nzbottom+1, nztop |
---|
1292 | |
---|
1293 | bottomz = (dzc/dzf) * (k-1) + 1 |
---|
1294 | topz = (dzc/dzf) * k |
---|
1295 | |
---|
1296 | DO jjf = nys, nyn |
---|
1297 | DO iif = nxl, nxr |
---|
1298 | DO kkf = bottomz, topz |
---|
1299 | |
---|
1300 | eps = ( zuf(kkf) - zuc(k) ) / dzc |
---|
1301 | alpha = ( ( dzf / dzc )**2.0 - 1.0 ) / 24.0 |
---|
1302 | eminus = eps * ( eps - 1.0 ) / 2.0 + alpha |
---|
1303 | edot = ( 1.0 - eps**2.0 ) - 2.0 * alpha |
---|
1304 | eplus = eps * ( eps + 1.0 ) / 2.0 + alpha |
---|
1305 | |
---|
1306 | kh(kkf,jjf,iif) = eminus * ptprs(k-1,jjf,iif) & |
---|
1307 | + edot * ptprs(k,jjf,iif) & |
---|
1308 | + eplus * ptprs(k+1,jjf,iif) |
---|
1309 | |
---|
1310 | END DO |
---|
1311 | END DO |
---|
1312 | END DO |
---|
1313 | |
---|
1314 | END DO |
---|
1315 | |
---|
1316 | DO jjf = nys, nyn |
---|
1317 | DO iif = nxl, nxr |
---|
1318 | |
---|
1319 | eps = ( zuf(nzt+1) - zuc(nztop+1) ) / dzc |
---|
1320 | alpha = ( ( dzf / dzc )**2.0 - 1.0 ) / 24.0 |
---|
1321 | eminus = eps * ( eps - 1.0 ) / 2.0 + alpha |
---|
1322 | edot = ( 1.0 - eps**2.0 ) - 2.0 * alpha |
---|
1323 | eplus = eps * ( eps + 1.0 ) / 2.0 + alpha |
---|
1324 | |
---|
1325 | kh(nzt+1,jjf,iif) = eminus * ptprs(nztop,jjf,iif) & |
---|
1326 | + edot * ptprs(nztop+1,jjf,iif) & |
---|
1327 | + eplus * ptprs(nztop+2,jjf,iif) |
---|
1328 | |
---|
1329 | END DO |
---|
1330 | END DO |
---|
1331 | |
---|
1332 | |
---|
1333 | DEALLOCATE( ptprf, ptprs ) |
---|
1334 | |
---|
1335 | END SUBROUTINE interpolate_to_fine_kh |
---|
1336 | |
---|
1337 | SUBROUTINE interpolate_to_fine_km |
---|
1338 | |
---|
1339 | |
---|
1340 | USE arrays_3d |
---|
1341 | USE control_parameters |
---|
1342 | USE grid_variables |
---|
1343 | USE indices |
---|
1344 | USE pegrid |
---|
1345 | |
---|
1346 | |
---|
1347 | IMPLICIT NONE |
---|
1348 | |
---|
1349 | INTEGER(iwp) :: i |
---|
1350 | INTEGER(iwp) :: j |
---|
1351 | INTEGER(iwp) :: k |
---|
1352 | INTEGER(iwp) :: iif |
---|
1353 | INTEGER(iwp) :: jjf |
---|
1354 | INTEGER(iwp) :: kkf |
---|
1355 | INTEGER(iwp) :: nzbottom |
---|
1356 | INTEGER(iwp) :: nztop |
---|
1357 | INTEGER(iwp) :: bottomx |
---|
1358 | INTEGER(iwp) :: bottomy |
---|
1359 | INTEGER(iwp) :: bottomz |
---|
1360 | INTEGER(iwp) :: topx |
---|
1361 | INTEGER(iwp) :: topy |
---|
1362 | INTEGER(iwp) :: topz |
---|
1363 | REAL(wp) :: eps |
---|
1364 | REAL(wp) :: alpha |
---|
1365 | REAL(wp) :: eminus |
---|
1366 | REAL(wp) :: edot |
---|
1367 | REAL(wp) :: eplus |
---|
1368 | REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: ptprs |
---|
1369 | REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: ptprf |
---|
1370 | |
---|
1371 | |
---|
1372 | nzbottom = bdims_rem (3,1) |
---|
1373 | nztop = bdims_rem (3,2) |
---|
1374 | ! nztop = blk_dim_rem (3,2)+1 |
---|
1375 | |
---|
1376 | |
---|
1377 | ALLOCATE( ptprf(nzbottom:nztop+2,bdims_rem(2,1)-1:bdims_rem(2,2)+1,nxl:nxr) ) |
---|
1378 | ALLOCATE( ptprs(nzbottom:nztop+2,nys:nyn,nxl:nxr) ) |
---|
1379 | |
---|
1380 | |
---|
1381 | ! |
---|
1382 | !-- Initialisation of scalar variables |
---|
1383 | |
---|
1384 | ! |
---|
1385 | !-- Interpolation in x-direction (quadratic, Clark and Farley) |
---|
1386 | |
---|
1387 | DO k = nzbottom, nztop+2 |
---|
1388 | DO j = bdims_rem(2,1)-1, bdims_rem(2,2)+1 |
---|
1389 | DO i = bdims_rem(1,1), bdims_rem(1,2) |
---|
1390 | |
---|
1391 | bottomx = (nxf+1)/(nxc+1) * i |
---|
1392 | topx = (nxf+1)/(nxc+1) * (i+1) - 1 |
---|
1393 | |
---|
1394 | DO iif = bottomx, topx |
---|
1395 | |
---|
1396 | eps = ( iif * dxf + 0.5 * dxf - i * dxc - 0.5 * dxc ) / dxc |
---|
1397 | alpha = ( ( dxf / dxc )**2.0 - 1.0 ) / 24.0 |
---|
1398 | eminus = eps * ( eps - 1.0 ) / 2.0 + alpha |
---|
1399 | edot = ( 1.0 - eps**2.0 ) - 2.0 * alpha |
---|
1400 | eplus = eps * ( eps + 1.0 ) / 2.0 + alpha |
---|
1401 | |
---|
1402 | ptprf(k,j,iif) = eminus * work3d(k,j,i-1) & |
---|
1403 | + edot * work3d(k,j,i) & |
---|
1404 | + eplus * work3d(k,j,i+1) |
---|
1405 | END DO |
---|
1406 | |
---|
1407 | END DO |
---|
1408 | END DO |
---|
1409 | END DO |
---|
1410 | |
---|
1411 | ! |
---|
1412 | !-- Interpolation in y-direction (quadratic, Clark and Farley) |
---|
1413 | |
---|
1414 | DO k = nzbottom, nztop+2 |
---|
1415 | DO j = bdims_rem(2,1), bdims_rem(2,2) |
---|
1416 | |
---|
1417 | bottomy = (nyf+1)/(nyc+1) * j |
---|
1418 | topy = (nyf+1)/(nyc+1) * (j+1) - 1 |
---|
1419 | |
---|
1420 | DO iif = nxl, nxr |
---|
1421 | DO jjf = bottomy, topy |
---|
1422 | |
---|
1423 | eps = ( jjf * dyf + 0.5 * dyf - j * dyc - 0.5 * dyc ) / dyc |
---|
1424 | alpha = ( ( dyf / dyc )**2.0 - 1.0 ) / 24.0 |
---|
1425 | eminus = eps * ( eps - 1.0 ) / 2.0 + alpha |
---|
1426 | edot = ( 1.0 - eps**2.0 ) - 2.0 * alpha |
---|
1427 | eplus = eps * ( eps + 1.0 ) / 2.0 + alpha |
---|
1428 | |
---|
1429 | ptprs(k,jjf,iif) = eminus * ptprf(k,j-1,iif) & |
---|
1430 | + edot * ptprf(k,j,iif) & |
---|
1431 | + eplus * ptprf(k,j+1,iif) |
---|
1432 | |
---|
1433 | END DO |
---|
1434 | END DO |
---|
1435 | |
---|
1436 | END DO |
---|
1437 | END DO |
---|
1438 | |
---|
1439 | ! |
---|
1440 | !-- Interpolation in z-direction (quadratic, Clark and Farley) |
---|
1441 | |
---|
1442 | DO k = nzbottom+1, nztop |
---|
1443 | |
---|
1444 | bottomz = (dzc/dzf) * (k-1) + 1 |
---|
1445 | topz = (dzc/dzf) * k |
---|
1446 | |
---|
1447 | DO jjf = nys, nyn |
---|
1448 | DO iif = nxl, nxr |
---|
1449 | DO kkf = bottomz, topz |
---|
1450 | |
---|
1451 | eps = ( zuf(kkf) - zuc(k) ) / dzc |
---|
1452 | alpha = ( ( dzf / dzc )**2.0 - 1.0 ) / 24.0 |
---|
1453 | eminus = eps * ( eps - 1.0 ) / 2.0 + alpha |
---|
1454 | edot = ( 1.0 - eps**2.0 ) - 2.0 * alpha |
---|
1455 | eplus = eps * ( eps + 1.0 ) / 2.0 + alpha |
---|
1456 | |
---|
1457 | km(kkf,jjf,iif) = eminus * ptprs(k-1,jjf,iif) & |
---|
1458 | + edot * ptprs(k,jjf,iif) & |
---|
1459 | + eplus * ptprs(k+1,jjf,iif) |
---|
1460 | |
---|
1461 | END DO |
---|
1462 | END DO |
---|
1463 | END DO |
---|
1464 | |
---|
1465 | END DO |
---|
1466 | |
---|
1467 | DO jjf = nys, nyn |
---|
1468 | DO iif = nxl, nxr |
---|
1469 | |
---|
1470 | eps = ( zuf(nzt+1) - zuc(nztop+1) ) / dzc |
---|
1471 | alpha = ( ( dzf / dzc )**2.0 - 1.0 ) / 24.0 |
---|
1472 | eminus = eps * ( eps - 1.0 ) / 2.0 + alpha |
---|
1473 | edot = ( 1.0 - eps**2.0 ) - 2.0 * alpha |
---|
1474 | eplus = eps * ( eps + 1.0 ) / 2.0 + alpha |
---|
1475 | |
---|
1476 | km(nzt+1,jjf,iif) = eminus * ptprs(nztop,jjf,iif) & |
---|
1477 | + edot * ptprs(nztop+1,jjf,iif) & |
---|
1478 | + eplus * ptprs(nztop+2,jjf,iif) |
---|
1479 | |
---|
1480 | END DO |
---|
1481 | END DO |
---|
1482 | |
---|
1483 | |
---|
1484 | DEALLOCATE( ptprf, ptprs ) |
---|
1485 | |
---|
1486 | END SUBROUTINE interpolate_to_fine_km |
---|
1487 | |
---|
1488 | |
---|
1489 | |
---|
1490 | |
---|
1491 | ! SUBROUTINE interpolate_to_fine_flux |
---|
1492 | ! |
---|
1493 | ! |
---|
1494 | ! USE arrays_3d |
---|
1495 | ! USE control_parameters |
---|
1496 | ! USE grid_variables |
---|
1497 | ! USE indices |
---|
1498 | ! USE pegrid |
---|
1499 | ! |
---|
1500 | ! |
---|
1501 | ! IMPLICIT NONE |
---|
1502 | ! |
---|
1503 | ! INTEGER(iwp) :: i |
---|
1504 | ! INTEGER(iwp) :: j |
---|
1505 | ! INTEGER(iwp) :: iif |
---|
1506 | ! INTEGER(iwp) :: jjf |
---|
1507 | ! INTEGER(iwp) :: bottomx |
---|
1508 | ! INTEGER(iwp) :: bottomy |
---|
1509 | ! INTEGER(iwp) :: topx |
---|
1510 | ! INTEGER(iwp) :: topy |
---|
1511 | ! REAL(wp) :: eps |
---|
1512 | ! REAL(wp) :: alpha |
---|
1513 | ! REAL(wp) :: eminus |
---|
1514 | ! REAL(wp) :: edot |
---|
1515 | ! REAL(wp) :: eplus |
---|
1516 | ! REAL(wp), DIMENSION(:,:), ALLOCATABLE :: uswspr |
---|
1517 | ! REAL(wp), DIMENSION(:,:), ALLOCATABLE :: vswspr |
---|
1518 | ! REAL(wp), DIMENSION(:,:), ALLOCATABLE :: tspr |
---|
1519 | ! REAL(wp), DIMENSION(:,:), ALLOCATABLE :: uspr |
---|
1520 | ! |
---|
1521 | ! ALLOCATE( uswspr(bdims_rem(2,1)-1:bdims_rem(2,2)+1,nxl:nxr) ) |
---|
1522 | ! ALLOCATE( vswspr(bdims_rem(2,1)-1:bdims_rem(2,2)+1,nxl:nxr) ) |
---|
1523 | ! ALLOCATE( tspr (bdims_rem(2,1)-1:bdims_rem(2,2)+1,nxl:nxr) ) |
---|
1524 | ! ALLOCATE( uspr (bdims_rem(2,1)-1:bdims_rem(2,2)+1,nxl:nxr) ) |
---|
1525 | ! |
---|
1526 | ! ! |
---|
1527 | ! !-- Initialisation of scalar variables (2D) |
---|
1528 | ! |
---|
1529 | ! ! |
---|
1530 | ! !-- Interpolation in x-direction (quadratic, Clark and Farley) |
---|
1531 | ! |
---|
1532 | ! DO j = bdims_rem(2,1)-1, bdims_rem(2,2)+1 |
---|
1533 | ! DO i = bdims_rem(1,1), bdims_rem(1,2) |
---|
1534 | ! |
---|
1535 | ! bottomx = (nxf+1)/(nxc+1) * i |
---|
1536 | ! topx = (nxf+1)/(nxc+1) * (i+1) - 1 |
---|
1537 | ! |
---|
1538 | ! DO iif = bottomx, topx |
---|
1539 | ! |
---|
1540 | ! eps = ( iif * dxf + 0.5 * dxf - i * dxc - 0.5 * dxc ) / dxc |
---|
1541 | ! alpha = ( ( dxf / dxc )**2.0 - 1.0 ) / 24.0 |
---|
1542 | ! eminus = eps * ( eps - 1.0 ) / 2.0 + alpha |
---|
1543 | ! edot = ( 1.0 - eps**2.0 ) - 2.0 * alpha |
---|
1544 | ! eplus = eps * ( eps + 1.0 ) / 2.0 + alpha |
---|
1545 | ! |
---|
1546 | ! uswspr(j,iif) = eminus * work2dusws(j,i-1) & |
---|
1547 | ! + edot * work2dusws(j,i) & |
---|
1548 | ! + eplus * work2dusws(j,i+1) |
---|
1549 | ! |
---|
1550 | ! vswspr(j,iif) = eminus * work2dvsws(j,i-1) & |
---|
1551 | ! + edot * work2dvsws(j,i) & |
---|
1552 | ! + eplus * work2dvsws(j,i+1) |
---|
1553 | ! |
---|
1554 | ! tspr(j,iif) = eminus * work2dts(j,i-1) & |
---|
1555 | ! + edot * work2dts(j,i) & |
---|
1556 | ! + eplus * work2dts(j,i+1) |
---|
1557 | ! |
---|
1558 | ! uspr(j,iif) = eminus * work2dus(j,i-1) & |
---|
1559 | ! + edot * work2dus(j,i) & |
---|
1560 | ! + eplus * work2dus(j,i+1) |
---|
1561 | ! |
---|
1562 | ! END DO |
---|
1563 | ! |
---|
1564 | ! END DO |
---|
1565 | ! END DO |
---|
1566 | ! |
---|
1567 | ! ! |
---|
1568 | ! !-- Interpolation in y-direction (quadratic, Clark and Farley) |
---|
1569 | ! |
---|
1570 | ! DO j = bdims_rem(2,1), bdims_rem(2,2) |
---|
1571 | ! |
---|
1572 | ! bottomy = (nyf+1)/(nyc+1) * j |
---|
1573 | ! topy = (nyf+1)/(nyc+1) * (j+1) - 1 |
---|
1574 | ! |
---|
1575 | ! DO iif = nxl, nxr |
---|
1576 | ! DO jjf = bottomy, topy |
---|
1577 | ! |
---|
1578 | ! eps = ( jjf * dyf + 0.5 * dyf - j * dyc - 0.5 * dyc ) / dyc |
---|
1579 | ! alpha = ( ( dyf / dyc )**2.0 - 1.0 ) / 24.0 |
---|
1580 | ! eminus = eps * ( eps - 1.0 ) / 2.0 + alpha |
---|
1581 | ! edot = ( 1.0 - eps**2.0 ) - 2.0 * alpha |
---|
1582 | ! eplus = eps * ( eps + 1.0 ) / 2.0 + alpha |
---|
1583 | ! |
---|
1584 | !! |
---|
1585 | !!-- TODO |
---|
1586 | !-- variables are not compatible with the new surface layer module |
---|
1587 | ! |
---|
1588 | ! surf_def_h(0)%usws(jjf,iif) = eminus * uswspr(j-1,if) & |
---|
1589 | ! + edot * uswspr(j,iif) & |
---|
1590 | ! + eplus * uswspr(j+1,iif) |
---|
1591 | ! |
---|
1592 | ! surf_def_h(0)%vsws(jjf,iif) = eminus * vswspr(j-1,if) & |
---|
1593 | ! + edot * vswspr(j,iif) & |
---|
1594 | ! + eplus * vswspr(j+1,iif) |
---|
1595 | ! |
---|
1596 | ! ts(jjf,iif) = eminus * tspr(j-1,if) & |
---|
1597 | ! + edot * tspr(j,iif) & |
---|
1598 | ! + eplus * tspr(j+1,iif) |
---|
1599 | ! |
---|
1600 | ! us(jjf,iif) = eminus * uspr(j-1,if) & |
---|
1601 | ! + edot * uspr(j,iif) & |
---|
1602 | ! + eplus * uspr(j+1,iif) |
---|
1603 | ! |
---|
1604 | ! END DO |
---|
1605 | ! END DO |
---|
1606 | ! |
---|
1607 | ! END DO |
---|
1608 | ! |
---|
1609 | ! |
---|
1610 | ! DEALLOCATE( uswspr, vswspr ) |
---|
1611 | ! DEALLOCATE( tspr, uspr ) |
---|
1612 | ! |
---|
1613 | ! |
---|
1614 | ! END SUBROUTINE interpolate_to_fine_flux |
---|
1615 | |
---|
1616 | |
---|
1617 | #endif |
---|
1618 | END SUBROUTINE vnest_init_fine |
---|
1619 | |
---|
1620 | SUBROUTINE vnest_boundary_conds |
---|
1621 | #if defined( __parallel ) |
---|
1622 | !------------------------------------------------------------------------------! |
---|
1623 | ! Description: |
---|
1624 | ! ------------ |
---|
1625 | ! Boundary conditions for the prognostic quantities. |
---|
1626 | ! One additional bottom boundary condition is applied for the TKE (=(u*)**2) |
---|
1627 | ! in prandtl_fluxes. The cyclic lateral boundary conditions are implicitly |
---|
1628 | ! handled in routine exchange_horiz. Pressure boundary conditions are |
---|
1629 | ! explicitly set in routines pres, poisfft, poismg and sor. |
---|
1630 | !------------------------------------------------------------------------------! |
---|
1631 | |
---|
1632 | USE arrays_3d |
---|
1633 | USE control_parameters |
---|
1634 | USE grid_variables |
---|
1635 | USE indices |
---|
1636 | USE pegrid |
---|
1637 | |
---|
1638 | |
---|
1639 | IMPLICIT NONE |
---|
1640 | |
---|
1641 | INTEGER(iwp) :: i |
---|
1642 | INTEGER(iwp) :: j |
---|
1643 | INTEGER(iwp) :: iif |
---|
1644 | INTEGER(iwp) :: jjf |
---|
1645 | |
---|
1646 | |
---|
1647 | ! |
---|
1648 | !-- vnest: top boundary conditions |
---|
1649 | |
---|
1650 | IF ( coupling_mode == 'vnested_crse' ) THEN |
---|
1651 | !-- Send data to fine grid for TOP BC |
---|
1652 | |
---|
1653 | offset(1) = ( pdims_partner(1) / pdims(1) ) * pcoord(1) |
---|
1654 | offset(2) = ( pdims_partner(2) / pdims(2) ) * pcoord(2) |
---|
1655 | |
---|
1656 | do j = 0, ( pdims_partner(2) / pdims(2) ) - 1 |
---|
1657 | do i = 0, ( pdims_partner(1) / pdims(1) ) - 1 |
---|
1658 | map_coord(1) = i+offset(1) |
---|
1659 | map_coord(2) = j+offset(2) |
---|
1660 | |
---|
1661 | target_idex = f_rnk_lst(map_coord(1),map_coord(2)) + numprocs |
---|
1662 | |
---|
1663 | bdims (1,1) = c2f_dims_cg (0,map_coord(1),map_coord(2)) |
---|
1664 | bdims (1,2) = c2f_dims_cg (1,map_coord(1),map_coord(2)) |
---|
1665 | bdims (2,1) = c2f_dims_cg (2,map_coord(1),map_coord(2)) |
---|
1666 | bdims (2,2) = c2f_dims_cg (3,map_coord(1),map_coord(2)) |
---|
1667 | bdims (3,1) = c2f_dims_cg (4,map_coord(1),map_coord(2)) |
---|
1668 | bdims (3,2) = c2f_dims_cg (5,map_coord(1),map_coord(2)) |
---|
1669 | |
---|
1670 | n_cell_c = ( (bdims(1,2)-bdims(1,1)) + 3 ) * & |
---|
1671 | ( (bdims(2,2)-bdims(2,1)) + 3 ) * & |
---|
1672 | ( (bdims(3,2)-bdims(3,1)) + 1 ) |
---|
1673 | |
---|
1674 | CALL MPI_SEND(u (bdims(3,1), bdims(2,1)-1, bdims(1,1)-1), & |
---|
1675 | 1, TYPE_VNEST_BC, target_idex, & |
---|
1676 | 201, comm_inter, ierr) |
---|
1677 | |
---|
1678 | CALL MPI_SEND(v(bdims(3,1), bdims(2,1)-1, bdims(1,1)-1),& |
---|
1679 | 1, TYPE_VNEST_BC, target_idex, & |
---|
1680 | 202, comm_inter, ierr) |
---|
1681 | |
---|
1682 | CALL MPI_SEND(w(bdims(3,1), bdims(2,1)-1, bdims(1,1)-1),& |
---|
1683 | 1, TYPE_VNEST_BC, target_idex, & |
---|
1684 | 203, comm_inter, ierr) |
---|
1685 | |
---|
1686 | CALL MPI_SEND(pt(bdims(3,1), bdims(2,1)-1, bdims(1,1)-1),& |
---|
1687 | 1, TYPE_VNEST_BC, target_idex, & |
---|
1688 | 205, comm_inter, ierr) |
---|
1689 | |
---|
1690 | IF ( humidity ) THEN |
---|
1691 | CALL MPI_SEND(q(bdims(3,1), bdims(2,1)-1, bdims(1,1)-1),& |
---|
1692 | 1, TYPE_VNEST_BC, target_idex, & |
---|
1693 | 209, comm_inter, ierr) |
---|
1694 | ENDIF |
---|
1695 | |
---|
1696 | end do |
---|
1697 | end do |
---|
1698 | |
---|
1699 | ELSEIF ( coupling_mode == 'vnested_fine' ) THEN |
---|
1700 | !-- Receive data from coarse grid for TOP BC |
---|
1701 | |
---|
1702 | offset(1) = pcoord(1) / ( pdims(1)/pdims_partner(1) ) |
---|
1703 | offset(2) = pcoord(2) / ( pdims(2)/pdims_partner(2) ) |
---|
1704 | map_coord(1) = offset(1) |
---|
1705 | map_coord(2) = offset(2) |
---|
1706 | target_idex = c_rnk_lst(map_coord(1),map_coord(2)) |
---|
1707 | |
---|
1708 | bdims_rem (1,1) = c2f_dims_fg(0) |
---|
1709 | bdims_rem (1,2) = c2f_dims_fg(1) |
---|
1710 | bdims_rem (2,1) = c2f_dims_fg(2) |
---|
1711 | bdims_rem (2,2) = c2f_dims_fg(3) |
---|
1712 | bdims_rem (3,1) = c2f_dims_fg(4) |
---|
1713 | bdims_rem (3,2) = c2f_dims_fg(5) |
---|
1714 | |
---|
1715 | n_cell_c = & |
---|
1716 | ( (bdims_rem(1,2)-bdims_rem(1,1)) + 3 ) * & |
---|
1717 | ( (bdims_rem(2,2)-bdims_rem(2,1)) + 3 ) * & |
---|
1718 | ( (bdims_rem(3,2)-bdims_rem(3,1)) + 1 ) |
---|
1719 | |
---|
1720 | ALLOCATE( work3d ( & |
---|
1721 | bdims_rem(3,1) :bdims_rem(3,2) , & |
---|
1722 | bdims_rem(2,1)-1:bdims_rem(2,2)+1, & |
---|
1723 | bdims_rem(1,1)-1:bdims_rem(1,2)+1)) |
---|
1724 | |
---|
1725 | |
---|
1726 | CALL MPI_RECV( work3d ,n_cell_c, MPI_REAL, target_idex, 201, & |
---|
1727 | comm_inter,status, ierr ) |
---|
1728 | interpol3d => u |
---|
1729 | call vnest_set_topbc_u |
---|
1730 | |
---|
1731 | CALL MPI_RECV( work3d ,n_cell_c, MPI_REAL, target_idex, 202, & |
---|
1732 | comm_inter,status, ierr ) |
---|
1733 | interpol3d => v |
---|
1734 | call vnest_set_topbc_v |
---|
1735 | |
---|
1736 | CALL MPI_RECV( work3d ,n_cell_c, MPI_REAL, target_idex, 203, & |
---|
1737 | comm_inter,status, ierr ) |
---|
1738 | interpol3d => w |
---|
1739 | call vnest_set_topbc_w |
---|
1740 | |
---|
1741 | CALL MPI_RECV( work3d,n_cell_c, MPI_REAL, target_idex, 205, & |
---|
1742 | comm_inter,status, ierr ) |
---|
1743 | interpol3d => pt |
---|
1744 | call vnest_set_topbc_s |
---|
1745 | |
---|
1746 | IF ( humidity ) THEN |
---|
1747 | CALL MPI_RECV( work3d,n_cell_c, MPI_REAL, target_idex, 209, & |
---|
1748 | comm_inter,status, ierr ) |
---|
1749 | interpol3d => q |
---|
1750 | call vnest_set_topbc_s |
---|
1751 | |
---|
1752 | CALL exchange_horiz_2d(q (nzt+1,:,:) ) |
---|
1753 | ENDIF |
---|
1754 | |
---|
1755 | !-- TKE Neumann BC for FG top |
---|
1756 | DO jjf = nys, nyn |
---|
1757 | DO iif = nxl, nxr |
---|
1758 | e(nzt+1,jjf,iif) = e(nzt,jjf,iif) |
---|
1759 | END DO |
---|
1760 | END DO |
---|
1761 | |
---|
1762 | ! |
---|
1763 | !-- w level nzt+1 does not impact results. Only to avoid jumps while |
---|
1764 | !-- plotting profiles |
---|
1765 | w(nzt+1,:,:) = w(nzt,:,:) |
---|
1766 | |
---|
1767 | CALL exchange_horiz_2d(u (nzt+1,:,:) ) |
---|
1768 | CALL exchange_horiz_2d(v (nzt+1,:,:) ) |
---|
1769 | CALL exchange_horiz_2d(pt(nzt+1,:,:) ) |
---|
1770 | CALL exchange_horiz_2d(e (nzt+1,:,:) ) |
---|
1771 | CALL exchange_horiz_2d(w (nzt+1,:,:) ) |
---|
1772 | CALL exchange_horiz_2d(w (nzt ,:,:) ) |
---|
1773 | |
---|
1774 | NULLIFY ( interpol3d ) |
---|
1775 | DEALLOCATE ( work3d ) |
---|
1776 | |
---|
1777 | ENDIF |
---|
1778 | |
---|
1779 | |
---|
1780 | CONTAINS |
---|
1781 | |
---|
1782 | SUBROUTINE vnest_set_topbc_w |
---|
1783 | |
---|
1784 | |
---|
1785 | USE arrays_3d |
---|
1786 | USE control_parameters |
---|
1787 | USE grid_variables |
---|
1788 | USE indices |
---|
1789 | USE pegrid |
---|
1790 | |
---|
1791 | |
---|
1792 | IMPLICIT NONE |
---|
1793 | |
---|
1794 | INTEGER(iwp) :: i |
---|
1795 | INTEGER(iwp) :: j |
---|
1796 | INTEGER(iwp) :: iif |
---|
1797 | INTEGER(iwp) :: jjf |
---|
1798 | INTEGER(iwp) :: bottomx |
---|
1799 | INTEGER(iwp) :: bottomy |
---|
1800 | INTEGER(iwp) :: topx |
---|
1801 | INTEGER(iwp) :: topy |
---|
1802 | REAL(wp) :: eps |
---|
1803 | REAL(wp) :: alpha |
---|
1804 | REAL(wp) :: eminus |
---|
1805 | REAL(wp) :: edot |
---|
1806 | REAL(wp) :: eplus |
---|
1807 | REAL(wp), DIMENSION(:,:), ALLOCATABLE :: wprf |
---|
1808 | |
---|
1809 | |
---|
1810 | ALLOCATE( wprf(bdims_rem(2,1)-1:bdims_rem(2,2)+1,nxl:nxr) ) |
---|
1811 | |
---|
1812 | ! |
---|
1813 | !-- Determination of a boundary condition for the vertical velocity component w: |
---|
1814 | !-- In this case only interpolation in x- and y- direction is necessary, as the |
---|
1815 | !-- boundary w-node of the fine grid coincides with a w-node in the coarse grid. |
---|
1816 | !-- For both interpolations the scheme of Clark and Farley is used. |
---|
1817 | |
---|
1818 | ! |
---|
1819 | !-- Interpolation in x-direction |
---|
1820 | |
---|
1821 | DO j = bdims_rem(2,1)-1, bdims_rem(2,2)+1 |
---|
1822 | |
---|
1823 | DO i = bdims_rem(1,1), bdims_rem(1,2) |
---|
1824 | |
---|
1825 | bottomx = (nxf+1)/(nxc+1) * i |
---|
1826 | topx = (nxf+1)/(nxc+1) * (i+1) - 1 |
---|
1827 | |
---|
1828 | DO iif = bottomx, topx |
---|
1829 | |
---|
1830 | eps = (iif * dxf + 0.5 * dxf - i * dxc - 0.5 * dxc) / dxc |
---|
1831 | alpha = ( (dxf/dxc)**2.0 - 1.0) / 24.0 |
---|
1832 | eminus = eps * ( eps - 1.0 ) / 2.0 + alpha |
---|
1833 | edot = ( 1.0 - eps**2.0 ) - 2.0 * alpha |
---|
1834 | eplus = eps * ( eps + 1.0 ) / 2.0 + alpha |
---|
1835 | wprf(j,iif) = eminus * work3d(bdims_rem(3,1),j,i-1) & |
---|
1836 | + edot * work3d(bdims_rem(3,1),j,i) & |
---|
1837 | + eplus * work3d(bdims_rem(3,1),j,i+1) |
---|
1838 | |
---|
1839 | END DO |
---|
1840 | |
---|
1841 | END DO |
---|
1842 | |
---|
1843 | END DO |
---|
1844 | |
---|
1845 | ! |
---|
1846 | !-- Interpolation in y-direction |
---|
1847 | |
---|
1848 | DO j = bdims_rem(2,1), bdims_rem(2,2) |
---|
1849 | |
---|
1850 | bottomy = (nyf+1)/(nyc+1) * j |
---|
1851 | topy = (nyf+1)/(nyc+1) * (j+1) - 1 |
---|
1852 | |
---|
1853 | DO iif = nxl, nxr |
---|
1854 | |
---|
1855 | DO jjf = bottomy, topy |
---|
1856 | |
---|
1857 | eps = (jjf * dyf + 0.5 * dyf - j * dyc - 0.5 * dyc) / dyc |
---|
1858 | |
---|
1859 | alpha = ( (dyf/dyc)**2.0 - 1.0) / 24.0 |
---|
1860 | |
---|
1861 | eminus = eps * ( eps - 1.0 ) / 2.0 + alpha |
---|
1862 | |
---|
1863 | edot = ( 1.0 - eps**2.0 ) - 2.0 * alpha |
---|
1864 | |
---|
1865 | eplus = eps * ( eps + 1.0 ) / 2.0 + alpha |
---|
1866 | |
---|
1867 | w(nzt,jjf,iif) = eminus * wprf(j-1,iif) & |
---|
1868 | + edot * wprf(j,iif) & |
---|
1869 | + eplus * wprf(j+1,iif) |
---|
1870 | |
---|
1871 | END DO |
---|
1872 | |
---|
1873 | END DO |
---|
1874 | |
---|
1875 | END DO |
---|
1876 | |
---|
1877 | DEALLOCATE( wprf ) |
---|
1878 | |
---|
1879 | END SUBROUTINE vnest_set_topbc_w |
---|
1880 | |
---|
1881 | |
---|
1882 | SUBROUTINE vnest_set_topbc_u |
---|
1883 | |
---|
1884 | |
---|
1885 | USE arrays_3d |
---|
1886 | USE control_parameters |
---|
1887 | USE grid_variables |
---|
1888 | USE indices |
---|
1889 | USE pegrid |
---|
1890 | |
---|
1891 | |
---|
1892 | IMPLICIT NONE |
---|
1893 | |
---|
1894 | INTEGER(iwp) :: i |
---|
1895 | INTEGER(iwp) :: j |
---|
1896 | INTEGER(iwp) :: k |
---|
1897 | INTEGER(iwp) :: iif |
---|
1898 | INTEGER(iwp) :: jjf |
---|
1899 | INTEGER(iwp) :: bottomx |
---|
1900 | INTEGER(iwp) :: bottomy |
---|
1901 | INTEGER(iwp) :: topx |
---|
1902 | INTEGER(iwp) :: topy |
---|
1903 | REAL(wp) :: eps |
---|
1904 | REAL(wp) :: alpha |
---|
1905 | REAL(wp) :: eminus |
---|
1906 | REAL(wp) :: edot |
---|
1907 | REAL(wp) :: eplus |
---|
1908 | REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: uprf |
---|
1909 | REAL(wp), DIMENSION(:,:), ALLOCATABLE :: uprs |
---|
1910 | |
---|
1911 | ALLOCATE( uprf(bdims_rem(3,1):bdims_rem(3,2),nys:nyn,bdims_rem(1,1)-1:bdims_rem(1,2)+1) ) |
---|
1912 | ALLOCATE( uprs(nys:nyn,bdims_rem(1,1)-1:bdims_rem(1,2)+1) ) |
---|
1913 | |
---|
1914 | |
---|
1915 | ! |
---|
1916 | !-- Interpolation in y-direction |
---|
1917 | |
---|
1918 | DO k = bdims_rem(3,1), bdims_rem(3,2) |
---|
1919 | DO j = bdims_rem(2,1), bdims_rem(2,2) |
---|
1920 | |
---|
1921 | bottomy = (nyf+1)/(nyc+1) * j |
---|
1922 | topy = (nyf+1)/(nyc+1) * (j+1) - 1 |
---|
1923 | |
---|
1924 | DO i = bdims_rem(1,1)-1, bdims_rem(1,2)+1 |
---|
1925 | DO jjf = bottomy, topy |
---|
1926 | |
---|
1927 | eps = (jjf * dyf + 0.5 * dyf - j * dyc - 0.5 * dyc) / dyc |
---|
1928 | alpha = ( (dyf/dyc)**2.0 - 1.0) / 24.0 |
---|
1929 | eminus = eps * ( eps - 1.0 ) / 2.0 + alpha |
---|
1930 | edot = ( 1.0 - eps**2.0 ) - 2.0 * alpha |
---|
1931 | eplus = eps * ( eps + 1.0 ) / 2.0 + alpha |
---|
1932 | |
---|
1933 | uprf(k,jjf,i) = eminus * work3d(k,j-1,i) & |
---|
1934 | + edot * work3d(k,j,i) & |
---|
1935 | + eplus * work3d(k,j+1,i) |
---|
1936 | END DO |
---|
1937 | END DO |
---|
1938 | |
---|
1939 | END DO |
---|
1940 | END DO |
---|
1941 | |
---|
1942 | ! |
---|
1943 | !-- Interpolation in z-direction |
---|
1944 | |
---|
1945 | DO jjf = nys, nyn |
---|
1946 | DO i = bdims_rem(1,1)-1, bdims_rem(1,2)+1 |
---|
1947 | eps = ( zuf(nzt+1) - zuc(bdims_rem(3,1)+1) ) / dzc |
---|
1948 | alpha = ( (dzf/dzc)**2.0 - 1.0) / 24.0 |
---|
1949 | eminus = eps * ( eps - 1.0 ) / 2.0 + alpha |
---|
1950 | edot = ( 1.0 - eps**2.0 ) - 2.0 * alpha |
---|
1951 | eplus = eps * ( eps + 1.0 ) / 2.0 + alpha |
---|
1952 | uprs(jjf,i) = eminus * uprf(bdims_rem(3,1),jjf,i) & |
---|
1953 | + edot * uprf(bdims_rem(3,1)+1,jjf,i) & |
---|
1954 | + eplus * uprf(bdims_rem(3,1)+2,jjf,i) |
---|
1955 | END DO |
---|
1956 | END DO |
---|
1957 | |
---|
1958 | ! |
---|
1959 | !-- Interpolation in x-direction |
---|
1960 | |
---|
1961 | DO jjf = nys, nyn |
---|
1962 | DO i = bdims_rem(1,1), bdims_rem(1,2) |
---|
1963 | |
---|
1964 | bottomx = (nxf+1)/(nxc+1) * i |
---|
1965 | topx = (nxf+1)/(nxc+1) * (i+1) - 1 |
---|
1966 | |
---|
1967 | DO iif = bottomx, topx |
---|
1968 | u(nzt+1,jjf,iif) = uprs(jjf,i) + ( iif * dxf - i * dxc ) * ( uprs(jjf,i+1) - uprs(jjf,i) ) / dxc |
---|
1969 | END DO |
---|
1970 | |
---|
1971 | END DO |
---|
1972 | END DO |
---|
1973 | |
---|
1974 | |
---|
1975 | |
---|
1976 | DEALLOCATE ( uprf, uprs ) |
---|
1977 | |
---|
1978 | END SUBROUTINE vnest_set_topbc_u |
---|
1979 | |
---|
1980 | |
---|
1981 | SUBROUTINE vnest_set_topbc_v |
---|
1982 | |
---|
1983 | |
---|
1984 | USE arrays_3d |
---|
1985 | USE control_parameters |
---|
1986 | USE grid_variables |
---|
1987 | USE indices |
---|
1988 | USE pegrid |
---|
1989 | |
---|
1990 | |
---|
1991 | IMPLICIT NONE |
---|
1992 | |
---|
1993 | INTEGER(iwp) :: i |
---|
1994 | INTEGER(iwp) :: j |
---|
1995 | INTEGER(iwp) :: k |
---|
1996 | INTEGER(iwp) :: iif |
---|
1997 | INTEGER(iwp) :: jjf |
---|
1998 | INTEGER(iwp) :: bottomx |
---|
1999 | INTEGER(iwp) :: bottomy |
---|
2000 | INTEGER(iwp) :: topx |
---|
2001 | INTEGER(iwp) :: topy |
---|
2002 | REAL(wp) :: eps |
---|
2003 | REAL(wp) :: alpha |
---|
2004 | REAL(wp) :: eminus |
---|
2005 | REAL(wp) :: edot |
---|
2006 | REAL(wp) :: eplus |
---|
2007 | REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: vprf |
---|
2008 | REAL(wp), DIMENSION(:,:), ALLOCATABLE :: vprs |
---|
2009 | |
---|
2010 | |
---|
2011 | |
---|
2012 | ALLOCATE( vprf(bdims_rem(3,1):bdims_rem(3,2),bdims_rem(2,1)-1:bdims_rem(2,2)+1,nxl:nxr) ) |
---|
2013 | ALLOCATE( vprs(bdims_rem(2,1)-1:bdims_rem(2,2)+1,nxl:nxr) ) |
---|
2014 | ! |
---|
2015 | !-- Determination of a boundary condition for the horizontal velocity component v: |
---|
2016 | !-- Interpolation in x- and z-direction is carried out by using the scheme, |
---|
2017 | !-- which was derived by Clark and Farley (1984). In y-direction a |
---|
2018 | !-- linear interpolation is carried out. |
---|
2019 | |
---|
2020 | ! |
---|
2021 | !-- Interpolation in x-direction |
---|
2022 | |
---|
2023 | DO k = bdims_rem(3,1), bdims_rem(3,2) |
---|
2024 | DO j = bdims_rem(2,1)-1, bdims_rem(2,2)+1 |
---|
2025 | DO i = bdims_rem(1,1), bdims_rem(1,2) |
---|
2026 | |
---|
2027 | bottomx = (nxf+1)/(nxc+1) * i |
---|
2028 | topx = (nxf+1)/(nxc+1) * (i+1) - 1 |
---|
2029 | |
---|
2030 | DO iif = bottomx, topx |
---|
2031 | |
---|
2032 | eps = (iif * dxf + 0.5 * dxf - i * dxc - 0.5 * dxc) / dxc |
---|
2033 | alpha = ( (dxf/dxc)**2.0 - 1.0) / 24.0 |
---|
2034 | eminus = eps * ( eps - 1.0 ) / 2.0 + alpha |
---|
2035 | edot = ( 1.0 - eps**2.0 ) - 2.0 * alpha |
---|
2036 | eplus = eps * ( eps + 1.0 ) / 2.0 + alpha |
---|
2037 | vprf(k,j,iif) = eminus * work3d(k,j,i-1) & |
---|
2038 | + edot * work3d(k,j,i) & |
---|
2039 | + eplus * work3d(k,j,i+1) |
---|
2040 | END DO |
---|
2041 | |
---|
2042 | END DO |
---|
2043 | END DO |
---|
2044 | END DO |
---|
2045 | |
---|
2046 | ! |
---|
2047 | !-- Interpolation in z-direction |
---|
2048 | |
---|
2049 | DO j = bdims_rem(2,1)-1, bdims_rem(2,2)+1 |
---|
2050 | DO iif = nxl, nxr |
---|
2051 | |
---|
2052 | eps = ( zuf(nzt+1) - zuc(bdims_rem(3,1)+1) ) / dzc |
---|
2053 | alpha = ( (dzf/dzc)**2.0 - 1.0) / 24.0 |
---|
2054 | eminus = eps * ( eps - 1.0 ) / 2.0 + alpha |
---|
2055 | edot = ( 1.0 - eps**2.0 ) - 2.0 * alpha |
---|
2056 | eplus = eps * ( eps + 1.0 ) / 2.0 + alpha |
---|
2057 | vprs(j,iif) = eminus * vprf(bdims_rem(3,1),j,iif) & |
---|
2058 | + edot * vprf(bdims_rem(3,1)+1,j,iif) & |
---|
2059 | + eplus * vprf(bdims_rem(3,1)+2,j,iif) |
---|
2060 | |
---|
2061 | END DO |
---|
2062 | END DO |
---|
2063 | |
---|
2064 | ! |
---|
2065 | !-- Interpolation in y-direction |
---|
2066 | |
---|
2067 | DO j = bdims_rem(2,1), bdims_rem(2,2) |
---|
2068 | DO iif = nxl, nxr |
---|
2069 | |
---|
2070 | bottomy = (nyf+1)/(nyc+1) * j |
---|
2071 | topy = (nyf+1)/(nyc+1) * (j+1) - 1 |
---|
2072 | |
---|
2073 | DO jjf = bottomy, topy |
---|
2074 | |
---|
2075 | v(nzt+1,jjf,iif) = vprs(j,iif) + ( jjf * dyf - j * dyc ) * ( vprs(j+1,iif) - vprs(j,iif) ) / dyc |
---|
2076 | |
---|
2077 | END DO |
---|
2078 | END DO |
---|
2079 | END DO |
---|
2080 | |
---|
2081 | |
---|
2082 | DEALLOCATE ( vprf, vprs) |
---|
2083 | |
---|
2084 | |
---|
2085 | |
---|
2086 | END SUBROUTINE vnest_set_topbc_v |
---|
2087 | |
---|
2088 | |
---|
2089 | SUBROUTINE vnest_set_topbc_s |
---|
2090 | |
---|
2091 | |
---|
2092 | USE arrays_3d |
---|
2093 | USE control_parameters |
---|
2094 | USE grid_variables |
---|
2095 | USE indices |
---|
2096 | USE pegrid |
---|
2097 | |
---|
2098 | |
---|
2099 | IMPLICIT NONE |
---|
2100 | |
---|
2101 | INTEGER(iwp) :: i |
---|
2102 | INTEGER(iwp) :: j |
---|
2103 | INTEGER(iwp) :: k |
---|
2104 | INTEGER(iwp) :: iif |
---|
2105 | INTEGER(iwp) :: jjf |
---|
2106 | INTEGER(iwp) :: bottomx |
---|
2107 | INTEGER(iwp) :: bottomy |
---|
2108 | INTEGER(iwp) :: topx |
---|
2109 | INTEGER(iwp) :: topy |
---|
2110 | REAL(wp) :: eps |
---|
2111 | REAL(wp) :: alpha |
---|
2112 | REAL(wp) :: eminus |
---|
2113 | REAL(wp) :: edot |
---|
2114 | REAL(wp) :: eplus |
---|
2115 | REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: ptprf |
---|
2116 | REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: ptprs |
---|
2117 | |
---|
2118 | |
---|
2119 | |
---|
2120 | ALLOCATE( ptprf(bdims_rem(3,1):bdims_rem(3,2),bdims_rem(2,1)-1:bdims_rem(2,2)+1,nxl:nxr) ) |
---|
2121 | ALLOCATE( ptprs(bdims_rem(3,1):bdims_rem(3,2),nys:nyn,nxl:nxr) ) |
---|
2122 | |
---|
2123 | ! |
---|
2124 | !-- Determination of a boundary condition for the potential temperature pt: |
---|
2125 | !-- The scheme derived by Clark and Farley can be used in all three dimensions. |
---|
2126 | |
---|
2127 | ! |
---|
2128 | !-- Interpolation in x-direction |
---|
2129 | |
---|
2130 | DO k = bdims_rem(3,1), bdims_rem(3,2) |
---|
2131 | |
---|
2132 | DO j = bdims_rem(2,1)-1, bdims_rem(2,2)+1 |
---|
2133 | |
---|
2134 | DO i = bdims_rem(1,1), bdims_rem(1,2) |
---|
2135 | |
---|
2136 | bottomx = (nxf+1)/(nxc+1) * i |
---|
2137 | topx = (nxf+1)/(nxc+1) *(i+1) - 1 |
---|
2138 | |
---|
2139 | DO iif = bottomx, topx |
---|
2140 | |
---|
2141 | eps = (iif * dxf + 0.5 * dxf - i * dxc - 0.5 * dxc) / dxc |
---|
2142 | |
---|
2143 | alpha = ( (dxf/dxc)**2.0 - 1.0) / 24.0 |
---|
2144 | |
---|
2145 | eminus = eps * (eps - 1.0 ) / 2.0 + alpha |
---|
2146 | |
---|
2147 | edot = ( 1.0 - eps**2.0 ) - 2.0 * alpha |
---|
2148 | |
---|
2149 | eplus = eps * ( eps + 1.0 ) / 2.0 + alpha |
---|
2150 | |
---|
2151 | ptprf(k,j,iif) = eminus * work3d(k,j,i-1) & |
---|
2152 | + edot * work3d(k,j,i) & |
---|
2153 | + eplus * work3d(k,j,i+1) |
---|
2154 | END DO |
---|
2155 | |
---|
2156 | END DO |
---|
2157 | |
---|
2158 | END DO |
---|
2159 | |
---|
2160 | END DO |
---|
2161 | |
---|
2162 | ! |
---|
2163 | !-- Interpolation in y-direction |
---|
2164 | |
---|
2165 | DO k = bdims_rem(3,1), bdims_rem(3,2) |
---|
2166 | |
---|
2167 | DO j = bdims_rem(2,1), bdims_rem(2,2) |
---|
2168 | |
---|
2169 | bottomy = (nyf+1)/(nyc+1) * j |
---|
2170 | topy = (nyf+1)/(nyc+1) * (j+1) - 1 |
---|
2171 | |
---|
2172 | DO iif = nxl, nxr |
---|
2173 | |
---|
2174 | DO jjf = bottomy, topy |
---|
2175 | |
---|
2176 | eps = (jjf * dyf + 0.5 * dyf - j * dyc - 0.5 * dyc) / dyc |
---|
2177 | |
---|
2178 | alpha = ( (dyf/dyc)**2.0 - 1.0) / 24.0 |
---|
2179 | |
---|
2180 | eminus = eps * (eps - 1.0) / 2.0 + alpha |
---|
2181 | |
---|
2182 | edot = ( 1.0 - eps**2.0 ) - 2.0 * alpha |
---|
2183 | |
---|
2184 | eplus = eps * ( eps + 1.0 ) / 2.0 + alpha |
---|
2185 | |
---|
2186 | ptprs(k,jjf,iif) = eminus * ptprf(k,j-1,iif) & |
---|
2187 | + edot * ptprf(k,j,iif) & |
---|
2188 | + eplus * ptprf(k,j+1,iif) |
---|
2189 | END DO |
---|
2190 | |
---|
2191 | END DO |
---|
2192 | |
---|
2193 | END DO |
---|
2194 | |
---|
2195 | END DO |
---|
2196 | |
---|
2197 | ! |
---|
2198 | !-- Interpolation in z-direction |
---|
2199 | |
---|
2200 | DO jjf = nys, nyn |
---|
2201 | DO iif = nxl, nxr |
---|
2202 | |
---|
2203 | eps = ( zuf(nzt+1) - zuc(bdims_rem(3,1)+1) ) / dzc |
---|
2204 | |
---|
2205 | alpha = ( (dzf/dzc)**2.0 - 1.0) / 24.0 |
---|
2206 | |
---|
2207 | eminus = eps * ( eps - 1.0 ) / 2.0 + alpha |
---|
2208 | |
---|
2209 | edot = ( 1.0 - eps**2.0 ) - 2.0 * alpha |
---|
2210 | |
---|
2211 | eplus = eps * ( eps + 1.0 ) / 2.0 + alpha |
---|
2212 | |
---|
2213 | interpol3d (nzt+1,jjf,iif) = eminus * ptprs(bdims_rem(3,1),jjf,iif) & |
---|
2214 | + edot * ptprs(bdims_rem(3,1)+1,jjf,iif) & |
---|
2215 | + eplus * ptprs(bdims_rem(3,1)+2,jjf,iif) |
---|
2216 | |
---|
2217 | END DO |
---|
2218 | END DO |
---|
2219 | |
---|
2220 | DEALLOCATE ( ptprf, ptprs ) |
---|
2221 | |
---|
2222 | |
---|
2223 | |
---|
2224 | END SUBROUTINE vnest_set_topbc_s |
---|
2225 | #endif |
---|
2226 | END SUBROUTINE vnest_boundary_conds |
---|
2227 | |
---|
2228 | |
---|
2229 | SUBROUTINE vnest_boundary_conds_khkm |
---|
2230 | #if defined( __parallel ) |
---|
2231 | |
---|
2232 | !--------------------------------------------------------------------------------! |
---|
2233 | ! Description: |
---|
2234 | ! ------------ |
---|
2235 | ! Boundary conditions for the prognostic quantities. |
---|
2236 | ! One additional bottom boundary condition is applied for the TKE (=(u*)**2) |
---|
2237 | ! in prandtl_fluxes. The cyclic lateral boundary conditions are implicitly |
---|
2238 | ! handled in routine exchange_horiz. Pressure boundary conditions are |
---|
2239 | ! explicitly set in routines pres, poisfft, poismg and sor. |
---|
2240 | !------------------------------------------------------------------------------! |
---|
2241 | |
---|
2242 | USE arrays_3d |
---|
2243 | USE control_parameters |
---|
2244 | USE grid_variables |
---|
2245 | USE indices |
---|
2246 | USE pegrid |
---|
2247 | |
---|
2248 | |
---|
2249 | IMPLICIT NONE |
---|
2250 | |
---|
2251 | INTEGER(iwp) :: i |
---|
2252 | INTEGER(iwp) :: j |
---|
2253 | INTEGER(iwp) :: iif |
---|
2254 | INTEGER(iwp) :: jjf |
---|
2255 | |
---|
2256 | |
---|
2257 | IF ( coupling_mode == 'vnested_crse' ) THEN |
---|
2258 | ! Send data to fine grid for TOP BC |
---|
2259 | |
---|
2260 | offset(1) = ( pdims_partner(1) / pdims(1) ) * pcoord(1) |
---|
2261 | offset(2) = ( pdims_partner(2) / pdims(2) ) * pcoord(2) |
---|
2262 | |
---|
2263 | do j = 0, ( pdims_partner(2) / pdims(2) ) - 1 |
---|
2264 | do i = 0, ( pdims_partner(1) / pdims(1) ) - 1 |
---|
2265 | map_coord(1) = i+offset(1) |
---|
2266 | map_coord(2) = j+offset(2) |
---|
2267 | |
---|
2268 | target_idex = f_rnk_lst(map_coord(1),map_coord(2)) + numprocs |
---|
2269 | |
---|
2270 | CALL MPI_RECV( bdims_rem, 6, MPI_INTEGER, target_idex, 10, & |
---|
2271 | comm_inter,status, ierr ) |
---|
2272 | |
---|
2273 | bdims (1,1) = bdims_rem (1,1) / cfratio(1) |
---|
2274 | bdims (1,2) = bdims_rem (1,2) / cfratio(1) |
---|
2275 | bdims (2,1) = bdims_rem (2,1) / cfratio(2) |
---|
2276 | bdims (2,2) = bdims_rem (2,2) / cfratio(2) |
---|
2277 | bdims (3,1) = bdims_rem (3,2) / cfratio(3) |
---|
2278 | bdims (3,2) = bdims (3,1) + 2 |
---|
2279 | |
---|
2280 | CALL MPI_SEND( bdims, 6, MPI_INTEGER, target_idex, 9, & |
---|
2281 | comm_inter, ierr ) |
---|
2282 | |
---|
2283 | |
---|
2284 | n_cell_c = ( (bdims(1,2)-bdims(1,1)) + 3 ) * & |
---|
2285 | ( (bdims(2,2)-bdims(2,1)) + 3 ) * & |
---|
2286 | ( (bdims(3,2)-bdims(3,1)) + 1 ) |
---|
2287 | |
---|
2288 | CALL MPI_SEND(kh(bdims(3,1) :bdims(3,2) , & |
---|
2289 | bdims(2,1)-1:bdims(2,2)+1, & |
---|
2290 | bdims(1,1)-1:bdims(1,2)+1),& |
---|
2291 | n_cell_c, MPI_REAL, target_idex, & |
---|
2292 | 207, comm_inter, ierr) |
---|
2293 | |
---|
2294 | CALL MPI_SEND(km(bdims(3,1) :bdims(3,2) , & |
---|
2295 | bdims(2,1)-1:bdims(2,2)+1, & |
---|
2296 | bdims(1,1)-1:bdims(1,2)+1),& |
---|
2297 | n_cell_c, MPI_REAL, target_idex, & |
---|
2298 | 208, comm_inter, ierr) |
---|
2299 | |
---|
2300 | |
---|
2301 | |
---|
2302 | end do |
---|
2303 | end do |
---|
2304 | |
---|
2305 | ELSEIF ( coupling_mode == 'vnested_fine' ) THEN |
---|
2306 | ! Receive data from coarse grid for TOP BC |
---|
2307 | |
---|
2308 | offset(1) = pcoord(1) / ( pdims(1)/pdims_partner(1) ) |
---|
2309 | offset(2) = pcoord(2) / ( pdims(2)/pdims_partner(2) ) |
---|
2310 | map_coord(1) = offset(1) |
---|
2311 | map_coord(2) = offset(2) |
---|
2312 | target_idex = c_rnk_lst(map_coord(1),map_coord(2)) |
---|
2313 | |
---|
2314 | bdims (1,1) = nxl |
---|
2315 | bdims (1,2) = nxr |
---|
2316 | bdims (2,1) = nys |
---|
2317 | bdims (2,2) = nyn |
---|
2318 | bdims (3,1) = nzb |
---|
2319 | bdims (3,2) = nzt |
---|
2320 | |
---|
2321 | CALL MPI_SEND( bdims, 6, MPI_INTEGER, target_idex, 10, & |
---|
2322 | comm_inter, ierr ) |
---|
2323 | |
---|
2324 | CALL MPI_RECV( bdims_rem, 6, MPI_INTEGER, target_idex, 9, & |
---|
2325 | comm_inter,status, ierr ) |
---|
2326 | |
---|
2327 | n_cell_c = ( (bdims_rem(1,2)-bdims_rem(1,1)) + 3 ) * & |
---|
2328 | ( (bdims_rem(2,2)-bdims_rem(2,1)) + 3 ) * & |
---|
2329 | ( (bdims_rem(3,2)-bdims_rem(3,1)) + 1 ) |
---|
2330 | |
---|
2331 | ALLOCATE( work3d ( bdims_rem(3,1) :bdims_rem(3,2) , & |
---|
2332 | bdims_rem(2,1)-1:bdims_rem(2,2)+1, & |
---|
2333 | bdims_rem(1,1)-1:bdims_rem(1,2)+1)) |
---|
2334 | |
---|
2335 | |
---|
2336 | CALL MPI_RECV( work3d,n_cell_c, MPI_REAL, target_idex, 207, & |
---|
2337 | comm_inter,status, ierr ) |
---|
2338 | |
---|
2339 | ! Neumann BC for FG kh |
---|
2340 | DO jjf = nys, nyn |
---|
2341 | DO iif = nxl, nxr |
---|
2342 | kh(nzt+1,jjf,iif) = kh(nzt,jjf,iif) |
---|
2343 | END DO |
---|
2344 | END DO |
---|
2345 | |
---|
2346 | CALL MPI_RECV( work3d,n_cell_c, MPI_REAL, target_idex, 208, & |
---|
2347 | comm_inter,status, ierr ) |
---|
2348 | |
---|
2349 | ! Neumann BC for FG kh |
---|
2350 | DO jjf = nys, nyn |
---|
2351 | DO iif = nxl, nxr |
---|
2352 | km(nzt+1,jjf,iif) = km(nzt,jjf,iif) |
---|
2353 | END DO |
---|
2354 | END DO |
---|
2355 | |
---|
2356 | |
---|
2357 | ! |
---|
2358 | !-- The following evaluation can only be performed, if the fine grid is situated below the inversion |
---|
2359 | !! DO jjf = nys-1, nyn+1 |
---|
2360 | !! DO iif = nxl-1, nxr+1 |
---|
2361 | !! |
---|
2362 | !! km(nzt+1,jjf,iif) = 0.1 * l_grid(nzt+1) * SQRT( e(nzt+1,jjf,iif) ) |
---|
2363 | !! kh(nzt+1,jjf,iif) = 3.0 * km(nzt+1,jjf,iif) |
---|
2364 | !! |
---|
2365 | !! END DO |
---|
2366 | !! END DO |
---|
2367 | |
---|
2368 | CALL exchange_horiz_2d(km(nzt+1,:,:) ) |
---|
2369 | CALL exchange_horiz_2d(kh(nzt+1,:,:) ) |
---|
2370 | |
---|
2371 | DEALLOCATE ( work3d ) |
---|
2372 | |
---|
2373 | ENDIF |
---|
2374 | |
---|
2375 | |
---|
2376 | ! CONTAINS |
---|
2377 | ! |
---|
2378 | ! SUBROUTINE vnest_set_topbc_kh |
---|
2379 | ! |
---|
2380 | ! |
---|
2381 | ! USE arrays_3d |
---|
2382 | ! USE control_parameters |
---|
2383 | ! USE grid_variables |
---|
2384 | ! USE indices |
---|
2385 | ! USE pegrid |
---|
2386 | ! |
---|
2387 | ! |
---|
2388 | ! IMPLICIT NONE |
---|
2389 | ! |
---|
2390 | ! INTEGER(iwp) :: i |
---|
2391 | ! INTEGER(iwp) :: j |
---|
2392 | ! INTEGER(iwp) :: k |
---|
2393 | ! INTEGER(iwp) :: iif |
---|
2394 | ! INTEGER(iwp) :: jjf |
---|
2395 | ! INTEGER(iwp) :: bottomx |
---|
2396 | ! INTEGER(iwp) :: bottomy |
---|
2397 | ! INTEGER(iwp) :: topx |
---|
2398 | ! INTEGER(iwp) :: topy |
---|
2399 | ! REAL(wp) :: eps |
---|
2400 | ! REAL(wp) :: alpha |
---|
2401 | ! REAL(wp) :: eminus |
---|
2402 | ! REAL(wp) :: edot |
---|
2403 | ! REAL(wp) :: eplus |
---|
2404 | ! REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: ptprf |
---|
2405 | ! REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: ptprs |
---|
2406 | ! |
---|
2407 | ! |
---|
2408 | ! |
---|
2409 | ! ALLOCATE( ptprf(bdims_rem(3,1):bdims_rem(3,2),bdims_rem(2,1)-1:bdims_rem(2,2)+1,nxl:nxr) ) |
---|
2410 | ! ALLOCATE( ptprs(bdims_rem(3,1):bdims_rem(3,2),nys:nyn,nxl:nxr) ) |
---|
2411 | ! |
---|
2412 | ! ! |
---|
2413 | ! !-- Determination of a boundary condition for the potential temperature pt: |
---|
2414 | ! !-- The scheme derived by Clark and Farley can be used in all three dimensions. |
---|
2415 | ! |
---|
2416 | ! ! |
---|
2417 | ! !-- Interpolation in x-direction |
---|
2418 | ! |
---|
2419 | ! DO k = bdims_rem(3,1), bdims_rem(3,2) |
---|
2420 | ! |
---|
2421 | ! DO j = bdims_rem(2,1)-1, bdims_rem(2,2)+1 |
---|
2422 | ! |
---|
2423 | ! DO i = bdims_rem(1,1), bdims_rem(1,2) |
---|
2424 | ! |
---|
2425 | ! bottomx = (nxf+1)/(nxc+1) * i |
---|
2426 | ! topx = (nxf+1)/(nxc+1) *(i+1) - 1 |
---|
2427 | ! |
---|
2428 | ! DO iif = bottomx, topx |
---|
2429 | ! |
---|
2430 | ! eps = (iif * dxf + 0.5 * dxf - i * dxc - 0.5 * dxc) / dxc |
---|
2431 | ! |
---|
2432 | ! alpha = ( (dxf/dxc)**2.0 - 1.0) / 24.0 |
---|
2433 | ! |
---|
2434 | ! eminus = eps * (eps - 1.0 ) / 2.0 + alpha |
---|
2435 | ! |
---|
2436 | ! edot = ( 1.0 - eps**2.0 ) - 2.0 * alpha |
---|
2437 | ! |
---|
2438 | ! eplus = eps * ( eps + 1.0 ) / 2.0 + alpha |
---|
2439 | ! |
---|
2440 | ! ptprf(k,j,iif) = eminus * work3d(k,j,i-1) & |
---|
2441 | ! + edot * work3d(k,j,i) & |
---|
2442 | ! + eplus * work3d(k,j,i+1) |
---|
2443 | ! END DO |
---|
2444 | ! |
---|
2445 | ! END DO |
---|
2446 | ! |
---|
2447 | ! END DO |
---|
2448 | ! |
---|
2449 | ! END DO |
---|
2450 | ! |
---|
2451 | ! ! |
---|
2452 | ! !-- Interpolation in y-direction |
---|
2453 | ! |
---|
2454 | ! DO k = bdims_rem(3,1), bdims_rem(3,2) |
---|
2455 | ! |
---|
2456 | ! DO j = bdims_rem(2,1), bdims_rem(2,2) |
---|
2457 | ! |
---|
2458 | ! bottomy = (nyf+1)/(nyc+1) * j |
---|
2459 | ! topy = (nyf+1)/(nyc+1) * (j+1) - 1 |
---|
2460 | ! |
---|
2461 | ! DO iif = nxl, nxr |
---|
2462 | ! |
---|
2463 | ! DO jjf = bottomy, topy |
---|
2464 | ! |
---|
2465 | ! eps = (jjf * dyf + 0.5 * dyf - j * dyc - 0.5 * dyc) / dyc |
---|
2466 | ! |
---|
2467 | ! alpha = ( (dyf/dyc)**2.0 - 1.0) / 24.0 |
---|
2468 | ! |
---|
2469 | ! eminus = eps * (eps - 1.0) / 2.0 + alpha |
---|
2470 | ! |
---|
2471 | ! edot = ( 1.0 - eps**2.0 ) - 2.0 * alpha |
---|
2472 | ! |
---|
2473 | ! eplus = eps * ( eps + 1.0 ) / 2.0 + alpha |
---|
2474 | ! |
---|
2475 | ! ptprs(k,jjf,iif) = eminus * ptprf(k,j-1,iif) & |
---|
2476 | ! + edot * ptprf(k,j,iif) & |
---|
2477 | ! + eplus * ptprf(k,j+1,iif) |
---|
2478 | ! END DO |
---|
2479 | ! |
---|
2480 | ! END DO |
---|
2481 | ! |
---|
2482 | ! END DO |
---|
2483 | ! |
---|
2484 | ! END DO |
---|
2485 | ! |
---|
2486 | ! ! |
---|
2487 | ! !-- Interpolation in z-direction |
---|
2488 | ! |
---|
2489 | ! DO jjf = nys, nyn |
---|
2490 | ! DO iif = nxl, nxr |
---|
2491 | ! |
---|
2492 | ! eps = ( zuf(nzt+1) - zuc(bdims_rem(3,1)+1) ) / dzc |
---|
2493 | ! |
---|
2494 | ! alpha = ( (dzf/dzc)**2.0 - 1.0) / 24.0 |
---|
2495 | ! |
---|
2496 | ! eminus = eps * ( eps - 1.0 ) / 2.0 + alpha |
---|
2497 | ! |
---|
2498 | ! edot = ( 1.0 - eps**2.0 ) - 2.0 * alpha |
---|
2499 | ! |
---|
2500 | ! eplus = eps * ( eps + 1.0 ) / 2.0 + alpha |
---|
2501 | ! |
---|
2502 | ! kh (nzt+1,jjf,iif) = eminus * ptprs(bdims_rem(3,1),jjf,iif) & |
---|
2503 | ! + edot * ptprs(bdims_rem(3,1)+1,jjf,iif) & |
---|
2504 | ! + eplus * ptprs(bdims_rem(3,1)+2,jjf,iif) |
---|
2505 | ! |
---|
2506 | ! END DO |
---|
2507 | ! END DO |
---|
2508 | ! |
---|
2509 | ! DEALLOCATE ( ptprf, ptprs ) |
---|
2510 | ! |
---|
2511 | ! |
---|
2512 | ! |
---|
2513 | ! END SUBROUTINE vnest_set_topbc_kh |
---|
2514 | |
---|
2515 | ! SUBROUTINE vnest_set_topbc_km |
---|
2516 | ! |
---|
2517 | ! |
---|
2518 | ! USE arrays_3d |
---|
2519 | ! USE control_parameters |
---|
2520 | ! USE grid_variables |
---|
2521 | ! USE indices |
---|
2522 | ! USE pegrid |
---|
2523 | ! |
---|
2524 | ! |
---|
2525 | ! IMPLICIT NONE |
---|
2526 | ! |
---|
2527 | ! INTEGER(iwp) :: i |
---|
2528 | ! INTEGER(iwp) :: j |
---|
2529 | ! INTEGER(iwp) :: k |
---|
2530 | ! INTEGER(iwp) :: iif |
---|
2531 | ! INTEGER(iwp) :: jjf |
---|
2532 | ! INTEGER(iwp) :: bottomx |
---|
2533 | ! INTEGER(iwp) :: bottomy |
---|
2534 | ! INTEGER(iwp) :: topx |
---|
2535 | ! INTEGER(iwp) :: topy |
---|
2536 | ! REAL(wp) :: eps |
---|
2537 | ! REAL(wp) :: alpha |
---|
2538 | ! REAL(wp) :: eminus |
---|
2539 | ! REAL(wp) :: edot |
---|
2540 | ! REAL(wp) :: eplus |
---|
2541 | ! REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: ptprf |
---|
2542 | ! REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: ptprs |
---|
2543 | ! |
---|
2544 | ! |
---|
2545 | ! |
---|
2546 | ! ALLOCATE( ptprf(bdims_rem(3,1):bdims_rem(3,2),bdims_rem(2,1)-1:bdims_rem(2,2)+1,nxl:nxr) ) |
---|
2547 | ! ALLOCATE( ptprs(bdims_rem(3,1):bdims_rem(3,2),nys:nyn,nxl:nxr) ) |
---|
2548 | ! |
---|
2549 | ! ! |
---|
2550 | ! !-- Determination of a boundary condition for the potential temperature pt: |
---|
2551 | ! !-- The scheme derived by Clark and Farley can be used in all three dimensions. |
---|
2552 | ! |
---|
2553 | ! ! |
---|
2554 | ! !-- Interpolation in x-direction |
---|
2555 | ! |
---|
2556 | ! DO k = bdims_rem(3,1), bdims_rem(3,2) |
---|
2557 | ! |
---|
2558 | ! DO j = bdims_rem(2,1)-1, bdims_rem(2,2)+1 |
---|
2559 | ! |
---|
2560 | ! DO i = bdims_rem(1,1), bdims_rem(1,2) |
---|
2561 | ! |
---|
2562 | ! bottomx = (nxf+1)/(nxc+1) * i |
---|
2563 | ! topx = (nxf+1)/(nxc+1) *(i+1) - 1 |
---|
2564 | ! |
---|
2565 | ! DO iif = bottomx, topx |
---|
2566 | ! |
---|
2567 | ! eps = (iif * dxf + 0.5 * dxf - i * dxc - 0.5 * dxc) / dxc |
---|
2568 | ! |
---|
2569 | ! alpha = ( (dxf/dxc)**2.0 - 1.0) / 24.0 |
---|
2570 | ! |
---|
2571 | ! eminus = eps * (eps - 1.0 ) / 2.0 + alpha |
---|
2572 | ! |
---|
2573 | ! edot = ( 1.0 - eps**2.0 ) - 2.0 * alpha |
---|
2574 | ! |
---|
2575 | ! eplus = eps * ( eps + 1.0 ) / 2.0 + alpha |
---|
2576 | ! |
---|
2577 | ! ptprf(k,j,iif) = eminus * work3d(k,j,i-1) & |
---|
2578 | ! + edot * work3d(k,j,i) & |
---|
2579 | ! + eplus * work3d(k,j,i+1) |
---|
2580 | ! END DO |
---|
2581 | ! |
---|
2582 | ! END DO |
---|
2583 | ! |
---|
2584 | ! END DO |
---|
2585 | ! |
---|
2586 | ! END DO |
---|
2587 | ! |
---|
2588 | ! ! |
---|
2589 | ! !-- Interpolation in y-direction |
---|
2590 | ! |
---|
2591 | ! DO k = bdims_rem(3,1), bdims_rem(3,2) |
---|
2592 | ! |
---|
2593 | ! DO j = bdims_rem(2,1), bdims_rem(2,2) |
---|
2594 | ! |
---|
2595 | ! bottomy = (nyf+1)/(nyc+1) * j |
---|
2596 | ! topy = (nyf+1)/(nyc+1) * (j+1) - 1 |
---|
2597 | ! |
---|
2598 | ! DO iif = nxl, nxr |
---|
2599 | ! |
---|
2600 | ! DO jjf = bottomy, topy |
---|
2601 | ! |
---|
2602 | ! eps = (jjf * dyf + 0.5 * dyf - j * dyc - 0.5 * dyc) / dyc |
---|
2603 | ! |
---|
2604 | ! alpha = ( (dyf/dyc)**2.0 - 1.0) / 24.0 |
---|
2605 | ! |
---|
2606 | ! eminus = eps * (eps - 1.0) / 2.0 + alpha |
---|
2607 | ! |
---|
2608 | ! edot = ( 1.0 - eps**2.0 ) - 2.0 * alpha |
---|
2609 | ! |
---|
2610 | ! eplus = eps * ( eps + 1.0 ) / 2.0 + alpha |
---|
2611 | ! |
---|
2612 | ! ptprs(k,jjf,iif) = eminus * ptprf(k,j-1,iif) & |
---|
2613 | ! + edot * ptprf(k,j,iif) & |
---|
2614 | ! + eplus * ptprf(k,j+1,iif) |
---|
2615 | ! END DO |
---|
2616 | ! |
---|
2617 | ! END DO |
---|
2618 | ! |
---|
2619 | ! END DO |
---|
2620 | ! |
---|
2621 | ! END DO |
---|
2622 | ! |
---|
2623 | ! ! |
---|
2624 | ! !-- Interpolation in z-direction |
---|
2625 | ! |
---|
2626 | ! DO jjf = nys, nyn |
---|
2627 | ! DO iif = nxl, nxr |
---|
2628 | ! |
---|
2629 | ! eps = ( zuf(nzt+1) - zuc(bdims_rem(3,1)+1) ) / dzc |
---|
2630 | ! |
---|
2631 | ! alpha = ( (dzf/dzc)**2.0 - 1.0) / 24.0 |
---|
2632 | ! |
---|
2633 | ! eminus = eps * ( eps - 1.0 ) / 2.0 + alpha |
---|
2634 | ! |
---|
2635 | ! edot = ( 1.0 - eps**2.0 ) - 2.0 * alpha |
---|
2636 | ! |
---|
2637 | ! eplus = eps * ( eps + 1.0 ) / 2.0 + alpha |
---|
2638 | ! |
---|
2639 | ! km (nzt+1,jjf,iif) = eminus * ptprs(bdims_rem(3,1),jjf,iif) & |
---|
2640 | ! + edot * ptprs(bdims_rem(3,1)+1,jjf,iif) & |
---|
2641 | ! + eplus * ptprs(bdims_rem(3,1)+2,jjf,iif) |
---|
2642 | ! |
---|
2643 | ! END DO |
---|
2644 | ! END DO |
---|
2645 | ! |
---|
2646 | ! DEALLOCATE ( ptprf, ptprs ) |
---|
2647 | ! |
---|
2648 | ! |
---|
2649 | ! |
---|
2650 | ! END SUBROUTINE vnest_set_topbc_km |
---|
2651 | |
---|
2652 | |
---|
2653 | #endif |
---|
2654 | END SUBROUTINE vnest_boundary_conds_khkm |
---|
2655 | |
---|
2656 | |
---|
2657 | |
---|
2658 | SUBROUTINE vnest_anterpolate |
---|
2659 | |
---|
2660 | #if defined( __parallel ) |
---|
2661 | |
---|
2662 | !--------------------------------------------------------------------------------! |
---|
2663 | ! Description: |
---|
2664 | ! ------------ |
---|
2665 | ! Anterpolate data from fine grid to coarse grid. |
---|
2666 | !------------------------------------------------------------------------------! |
---|
2667 | |
---|
2668 | USE arrays_3d |
---|
2669 | USE control_parameters |
---|
2670 | USE grid_variables |
---|
2671 | USE indices |
---|
2672 | USE interfaces |
---|
2673 | USE pegrid |
---|
2674 | USE surface_mod, & |
---|
2675 | ONLY : bc_h |
---|
2676 | |
---|
2677 | |
---|
2678 | IMPLICIT NONE |
---|
2679 | |
---|
2680 | REAL(wp) :: time_since_reference_point_rem |
---|
2681 | INTEGER(iwp) :: i |
---|
2682 | INTEGER(iwp) :: j |
---|
2683 | INTEGER(iwp) :: k |
---|
2684 | INTEGER(iwp) :: l !< running index boundary type, for up- and downward-facing walls |
---|
2685 | INTEGER(iwp) :: m !< running index surface elements |
---|
2686 | |
---|
2687 | |
---|
2688 | |
---|
2689 | ! |
---|
2690 | !-- In case of model termination initiated by the remote model |
---|
2691 | !-- (terminate_coupled_remote > 0), initiate termination of the local model. |
---|
2692 | !-- The rest of the coupler must then be skipped because it would cause an MPI |
---|
2693 | !-- intercomminucation hang. |
---|
2694 | !-- If necessary, the coupler will be called at the beginning of the next |
---|
2695 | !-- restart run. |
---|
2696 | |
---|
2697 | IF ( myid == 0) THEN |
---|
2698 | CALL MPI_SENDRECV( terminate_coupled, 1, MPI_INTEGER, & |
---|
2699 | target_id, 0, & |
---|
2700 | terminate_coupled_remote, 1, MPI_INTEGER, & |
---|
2701 | target_id, 0, & |
---|
2702 | comm_inter, status, ierr ) |
---|
2703 | ENDIF |
---|
2704 | CALL MPI_BCAST( terminate_coupled_remote, 1, MPI_INTEGER, 0, comm2d, & |
---|
2705 | ierr ) |
---|
2706 | |
---|
2707 | IF ( terminate_coupled_remote > 0 ) THEN |
---|
2708 | WRITE( message_string, * ) 'remote model "', & |
---|
2709 | TRIM( coupling_mode_remote ), & |
---|
2710 | '" terminated', & |
---|
2711 | '&with terminate_coupled_remote = ', & |
---|
2712 | terminate_coupled_remote, & |
---|
2713 | '&local model "', TRIM( coupling_mode ), & |
---|
2714 | '" has', & |
---|
2715 | '&terminate_coupled = ', & |
---|
2716 | terminate_coupled |
---|
2717 | CALL message( 'vnest_anterpolate', 'PA0310', 1, 2, 0, 6, 0 ) |
---|
2718 | RETURN |
---|
2719 | ENDIF |
---|
2720 | |
---|
2721 | |
---|
2722 | ! |
---|
2723 | !-- Exchange the current simulated time between the models |
---|
2724 | |
---|
2725 | IF ( myid == 0 ) THEN |
---|
2726 | |
---|
2727 | CALL MPI_SEND( time_since_reference_point, 1, MPI_REAL, target_id, & |
---|
2728 | 11, comm_inter, ierr ) |
---|
2729 | CALL MPI_RECV( time_since_reference_point_rem, 1, MPI_REAL, & |
---|
2730 | target_id, 11, comm_inter, status, ierr ) |
---|
2731 | |
---|
2732 | ENDIF |
---|
2733 | |
---|
2734 | CALL MPI_BCAST( time_since_reference_point_rem, 1, MPI_REAL, 0, comm2d, & |
---|
2735 | ierr ) |
---|
2736 | |
---|
2737 | IF ( coupling_mode == 'vnested_crse' ) THEN |
---|
2738 | ! Receive data from fine grid for anterpolation |
---|
2739 | |
---|
2740 | offset(1) = ( pdims_partner(1) / pdims(1) ) * pcoord(1) |
---|
2741 | offset(2) = ( pdims_partner(2) / pdims(2) ) * pcoord(2) |
---|
2742 | |
---|
2743 | do j = 0, ( pdims_partner(2) / pdims(2) ) - 1 |
---|
2744 | do i = 0, ( pdims_partner(1) / pdims(1) ) - 1 |
---|
2745 | map_coord(1) = i+offset(1) |
---|
2746 | map_coord(2) = j+offset(2) |
---|
2747 | |
---|
2748 | target_idex = f_rnk_lst(map_coord(1),map_coord(2)) + numprocs |
---|
2749 | |
---|
2750 | CALL MPI_RECV( bdims_rem, 6, MPI_INTEGER, target_idex, 10, & |
---|
2751 | comm_inter,status, ierr ) |
---|
2752 | |
---|
2753 | bdims (1,1) = bdims_rem (1,1) / cfratio(1) |
---|
2754 | bdims (1,2) = bdims_rem (1,2) / cfratio(1) |
---|
2755 | bdims (2,1) = bdims_rem (2,1) / cfratio(2) |
---|
2756 | bdims (2,2) = bdims_rem (2,2) / cfratio(2) |
---|
2757 | bdims (3,1) = bdims_rem (3,1) |
---|
2758 | bdims (3,2) = bdims_rem (3,2) / cfratio(3) |
---|
2759 | |
---|
2760 | CALL MPI_SEND( bdims, 6, MPI_INTEGER, target_idex, 9, & |
---|
2761 | comm_inter, ierr ) |
---|
2762 | |
---|
2763 | n_cell_c = & |
---|
2764 | (bdims(1,2)-bdims(1,1)+1) * & |
---|
2765 | (bdims(2,2)-bdims(2,1)+1) * & |
---|
2766 | (bdims(3,2)-bdims(3,1)+0) |
---|
2767 | |
---|
2768 | CALL MPI_RECV( u( & |
---|
2769 | bdims(3,1)+1:bdims(3,2), & |
---|
2770 | bdims(2,1) :bdims(2,2), & |
---|
2771 | bdims(1,1) :bdims(1,2)),& |
---|
2772 | n_cell_c, MPI_REAL, target_idex, 101, & |
---|
2773 | comm_inter,status, ierr ) |
---|
2774 | |
---|
2775 | CALL MPI_RECV( v( & |
---|
2776 | bdims(3,1)+1:bdims(3,2), & |
---|
2777 | bdims(2,1) :bdims(2,2), & |
---|
2778 | bdims(1,1) :bdims(1,2)),& |
---|
2779 | n_cell_c, MPI_REAL, target_idex, 102, & |
---|
2780 | comm_inter,status, ierr ) |
---|
2781 | |
---|
2782 | CALL MPI_RECV(pt( & |
---|
2783 | bdims(3,1)+1:bdims(3,2), & |
---|
2784 | bdims(2,1) :bdims(2,2), & |
---|
2785 | bdims(1,1) :bdims(1,2)),& |
---|
2786 | n_cell_c, MPI_REAL, target_idex, 105, & |
---|
2787 | comm_inter,status, ierr ) |
---|
2788 | |
---|
2789 | IF ( humidity ) THEN |
---|
2790 | CALL MPI_RECV(q( & |
---|
2791 | bdims(3,1)+1:bdims(3,2), & |
---|
2792 | bdims(2,1) :bdims(2,2), & |
---|
2793 | bdims(1,1) :bdims(1,2)),& |
---|
2794 | n_cell_c, MPI_REAL, target_idex, 106, & |
---|
2795 | comm_inter,status, ierr ) |
---|
2796 | ENDIF |
---|
2797 | |
---|
2798 | CALL MPI_RECV( w( & |
---|
2799 | bdims(3,1) :bdims(3,2)-1, & |
---|
2800 | bdims(2,1) :bdims(2,2), & |
---|
2801 | bdims(1,1) :bdims(1,2)), & |
---|
2802 | n_cell_c, MPI_REAL, target_idex, 103, & |
---|
2803 | comm_inter,status, ierr ) |
---|
2804 | |
---|
2805 | end do |
---|
2806 | end do |
---|
2807 | |
---|
2808 | |
---|
2809 | |
---|
2810 | ! |
---|
2811 | !-- Boundary conditions for the velocity components u and v |
---|
2812 | |
---|
2813 | |
---|
2814 | IF ( ibc_uv_b == 0 ) THEN |
---|
2815 | u(nzb,:,:) = 0.0_wp |
---|
2816 | v(nzb,:,:) = 0.0_wp |
---|
2817 | ELSE |
---|
2818 | u(nzb,:,:) = u(nzb+1,:,:) |
---|
2819 | v(nzb,:,:) = v(nzb+1,:,:) |
---|
2820 | END IF |
---|
2821 | ! |
---|
2822 | !-- Boundary conditions for the velocity components w |
---|
2823 | |
---|
2824 | w(nzb,:,:) = 0.0_wp |
---|
2825 | |
---|
2826 | ! |
---|
2827 | !-- Temperature at bottom boundary. |
---|
2828 | !-- Neumann, zero-gradient |
---|
2829 | IF ( ibc_pt_b == 1 ) THEN |
---|
2830 | DO l = 0, 1 |
---|
2831 | DO m = 1, bc_h(l)%ns |
---|
2832 | i = bc_h(l)%i(m) |
---|
2833 | j = bc_h(l)%j(m) |
---|
2834 | k = bc_h(l)%k(m) |
---|
2835 | pt(k+bc_h(l)%koff,j,i) = pt(k,j,i) |
---|
2836 | ENDDO |
---|
2837 | ENDDO |
---|
2838 | ENDIF |
---|
2839 | |
---|
2840 | |
---|
2841 | CALL exchange_horiz( u, nbgp ) |
---|
2842 | CALL exchange_horiz( v, nbgp ) |
---|
2843 | CALL exchange_horiz( w, nbgp ) |
---|
2844 | CALL exchange_horiz( pt, nbgp ) |
---|
2845 | |
---|
2846 | |
---|
2847 | ELSEIF ( coupling_mode == 'vnested_fine' ) THEN |
---|
2848 | ! Send data to coarse grid for anterpolation |
---|
2849 | |
---|
2850 | offset(1) = pcoord(1) / ( pdims(1)/pdims_partner(1) ) |
---|
2851 | offset(2) = pcoord(2) / ( pdims(2)/pdims_partner(2) ) |
---|
2852 | map_coord(1) = offset(1) |
---|
2853 | map_coord(2) = offset(2) |
---|
2854 | target_idex = c_rnk_lst(map_coord(1),map_coord(2)) |
---|
2855 | |
---|
2856 | !-- Limit anterpolation level to nzt - z nesting ratio (a pseudo-buffer layer) |
---|
2857 | bdims (1,1) = nxl |
---|
2858 | bdims (1,2) = nxr |
---|
2859 | bdims (2,1) = nys |
---|
2860 | bdims (2,2) = nyn |
---|
2861 | bdims (3,1) = nzb |
---|
2862 | bdims (3,2) = nzt-cfratio(3) |
---|
2863 | |
---|
2864 | CALL MPI_SEND( bdims, 6, MPI_INTEGER, target_idex, 10, & |
---|
2865 | comm_inter, ierr ) |
---|
2866 | |
---|
2867 | CALL MPI_RECV( bdims_rem, 6, MPI_INTEGER, target_idex, 9, & |
---|
2868 | comm_inter,status, ierr ) |
---|
2869 | |
---|
2870 | |
---|
2871 | ALLOCATE( work3d ( & |
---|
2872 | bdims_rem(3,1)+1:bdims_rem(3,2), & |
---|
2873 | bdims_rem(2,1) :bdims_rem(2,2), & |
---|
2874 | bdims_rem(1,1) :bdims_rem(1,2))) |
---|
2875 | |
---|
2876 | |
---|
2877 | anterpol3d => u |
---|
2878 | |
---|
2879 | CALL anterpolate_to_crse_u |
---|
2880 | CALL MPI_SEND( work3d, 1, TYPE_VNEST_ANTER, target_idex, & |
---|
2881 | 101, comm_inter, ierr) |
---|
2882 | |
---|
2883 | anterpol3d => v |
---|
2884 | |
---|
2885 | CALL anterpolate_to_crse_v |
---|
2886 | CALL MPI_SEND( work3d, 1, TYPE_VNEST_ANTER, target_idex, & |
---|
2887 | 102, comm_inter, ierr) |
---|
2888 | |
---|
2889 | anterpol3d => pt |
---|
2890 | |
---|
2891 | CALL anterpolate_to_crse_s |
---|
2892 | CALL MPI_SEND( work3d, 1, TYPE_VNEST_ANTER, target_idex, & |
---|
2893 | 105, comm_inter, ierr) |
---|
2894 | |
---|
2895 | |
---|
2896 | IF ( humidity ) THEN |
---|
2897 | |
---|
2898 | anterpol3d => q |
---|
2899 | |
---|
2900 | CALL anterpolate_to_crse_s |
---|
2901 | CALL MPI_SEND( work3d, 1, TYPE_VNEST_ANTER, target_idex, & |
---|
2902 | 106, comm_inter, ierr) |
---|
2903 | ENDIF |
---|
2904 | |
---|
2905 | |
---|
2906 | DEALLOCATE( work3d ) |
---|
2907 | ALLOCATE( work3d ( bdims_rem(3,1) :bdims_rem(3,2)-1, & |
---|
2908 | bdims_rem(2,1) :bdims_rem(2,2), & |
---|
2909 | bdims_rem(1,1) :bdims_rem(1,2))) |
---|
2910 | anterpol3d => w |
---|
2911 | CALL anterpolate_to_crse_w |
---|
2912 | CALL MPI_SEND( work3d, 1, TYPE_VNEST_ANTER, target_idex, & |
---|
2913 | 103, comm_inter, ierr) |
---|
2914 | |
---|
2915 | NULLIFY ( anterpol3d ) |
---|
2916 | DEALLOCATE( work3d ) |
---|
2917 | |
---|
2918 | ENDIF |
---|
2919 | |
---|
2920 | |
---|
2921 | |
---|
2922 | CONTAINS |
---|
2923 | SUBROUTINE anterpolate_to_crse_u |
---|
2924 | |
---|
2925 | |
---|
2926 | USE arrays_3d |
---|
2927 | USE control_parameters |
---|
2928 | USE grid_variables |
---|
2929 | USE indices |
---|
2930 | USE pegrid |
---|
2931 | |
---|
2932 | |
---|
2933 | IMPLICIT NONE |
---|
2934 | |
---|
2935 | INTEGER(iwp) :: i |
---|
2936 | INTEGER(iwp) :: j |
---|
2937 | INTEGER(iwp) :: k |
---|
2938 | INTEGER(iwp) :: iif |
---|
2939 | INTEGER(iwp) :: jjf |
---|
2940 | INTEGER(iwp) :: kkf |
---|
2941 | INTEGER(iwp) :: bottomy |
---|
2942 | INTEGER(iwp) :: bottomz |
---|
2943 | INTEGER(iwp) :: topy |
---|
2944 | INTEGER(iwp) :: topz |
---|
2945 | REAL(wp) :: aweight |
---|
2946 | |
---|
2947 | ! |
---|
2948 | !-- Anterpolation of the velocity components u |
---|
2949 | !-- only values in yz-planes that coincide in the fine and |
---|
2950 | !-- the coarse grid are considered |
---|
2951 | |
---|
2952 | DO k = bdims_rem(3,1)+1, bdims_rem(3,2) |
---|
2953 | |
---|
2954 | bottomz = (dzc/dzf) * (k-1) + 1 |
---|
2955 | topz = (dzc/dzf) * k |
---|
2956 | |
---|
2957 | DO j = bdims_rem(2,1),bdims_rem(2,2) |
---|
2958 | |
---|
2959 | bottomy = (nyf+1) / (nyc+1) * j |
---|
2960 | topy = (nyf+1) / (nyc+1) * (j+1) - 1 |
---|
2961 | |
---|
2962 | DO i = bdims_rem(1,1),bdims_rem(1,2) |
---|
2963 | |
---|
2964 | iif = (nxf+1) / (nxc+1) * i |
---|
2965 | |
---|
2966 | aweight = 0.0 |
---|
2967 | |
---|
2968 | DO kkf = bottomz, topz |
---|
2969 | DO jjf = bottomy, topy |
---|
2970 | |
---|
2971 | aweight = aweight + anterpol3d(kkf,jjf,iif) * & |
---|
2972 | (dzf/dzc) * (dyf/dyc) |
---|
2973 | |
---|
2974 | END DO |
---|
2975 | END DO |
---|
2976 | |
---|
2977 | work3d(k,j,i) = aweight |
---|
2978 | |
---|
2979 | END DO |
---|
2980 | |
---|
2981 | END DO |
---|
2982 | |
---|
2983 | END DO |
---|
2984 | |
---|
2985 | |
---|
2986 | |
---|
2987 | END SUBROUTINE anterpolate_to_crse_u |
---|
2988 | |
---|
2989 | |
---|
2990 | SUBROUTINE anterpolate_to_crse_v |
---|
2991 | |
---|
2992 | |
---|
2993 | USE arrays_3d |
---|
2994 | USE control_parameters |
---|
2995 | USE grid_variables |
---|
2996 | USE indices |
---|
2997 | USE pegrid |
---|
2998 | |
---|
2999 | |
---|
3000 | IMPLICIT NONE |
---|
3001 | |
---|
3002 | INTEGER(iwp) :: i |
---|
3003 | INTEGER(iwp) :: j |
---|
3004 | INTEGER(iwp) :: k |
---|
3005 | INTEGER(iwp) :: iif |
---|
3006 | INTEGER(iwp) :: jjf |
---|
3007 | INTEGER(iwp) :: kkf |
---|
3008 | INTEGER(iwp) :: bottomx |
---|
3009 | INTEGER(iwp) :: bottomz |
---|
3010 | INTEGER(iwp) :: topx |
---|
3011 | INTEGER(iwp) :: topz |
---|
3012 | REAL(wp) :: aweight |
---|
3013 | |
---|
3014 | ! |
---|
3015 | !-- Anterpolation of the velocity components v |
---|
3016 | !-- only values in xz-planes that coincide in the fine and |
---|
3017 | !-- the coarse grid are considered |
---|
3018 | |
---|
3019 | DO k = bdims_rem(3,1)+1, bdims_rem(3,2) |
---|
3020 | |
---|
3021 | bottomz = (dzc/dzf) * (k-1) + 1 |
---|
3022 | topz = (dzc/dzf) * k |
---|
3023 | |
---|
3024 | DO j = bdims_rem(2,1), bdims_rem(2,2) |
---|
3025 | |
---|
3026 | jjf = (nyf+1) / (nyc+1) * j |
---|
3027 | |
---|
3028 | DO i = bdims_rem(1,1), bdims_rem(1,2) |
---|
3029 | |
---|
3030 | bottomx = (nxf+1) / (nxc+1) * i |
---|
3031 | topx = (nxf+1) / (nxc+1) * (i+1) - 1 |
---|
3032 | |
---|
3033 | aweight = 0.0 |
---|
3034 | |
---|
3035 | DO kkf = bottomz, topz |
---|
3036 | DO iif = bottomx, topx |
---|
3037 | |
---|
3038 | aweight = aweight + anterpol3d(kkf,jjf,iif) * & |
---|
3039 | (dzf/dzc) * (dxf/dxc) |
---|
3040 | |
---|
3041 | |
---|
3042 | END DO |
---|
3043 | END DO |
---|
3044 | |
---|
3045 | work3d(k,j,i) = aweight |
---|
3046 | |
---|
3047 | END DO |
---|
3048 | END DO |
---|
3049 | END DO |
---|
3050 | |
---|
3051 | |
---|
3052 | |
---|
3053 | END SUBROUTINE anterpolate_to_crse_v |
---|
3054 | |
---|
3055 | |
---|
3056 | SUBROUTINE anterpolate_to_crse_w |
---|
3057 | |
---|
3058 | |
---|
3059 | USE arrays_3d |
---|
3060 | USE control_parameters |
---|
3061 | USE grid_variables |
---|
3062 | USE indices |
---|
3063 | USE pegrid |
---|
3064 | |
---|
3065 | |
---|
3066 | IMPLICIT NONE |
---|
3067 | |
---|
3068 | INTEGER(iwp) :: i |
---|
3069 | INTEGER(iwp) :: j |
---|
3070 | INTEGER(iwp) :: k |
---|
3071 | INTEGER(iwp) :: iif |
---|
3072 | INTEGER(iwp) :: jjf |
---|
3073 | INTEGER(iwp) :: kkf |
---|
3074 | INTEGER(iwp) :: bottomx |
---|
3075 | INTEGER(iwp) :: bottomy |
---|
3076 | INTEGER(iwp) :: topx |
---|
3077 | INTEGER(iwp) :: topy |
---|
3078 | REAL(wp) :: aweight |
---|
3079 | |
---|
3080 | ! |
---|
3081 | !-- Anterpolation of the velocity components w |
---|
3082 | !-- only values in xy-planes that coincide in the fine and |
---|
3083 | !-- the coarse grid are considered |
---|
3084 | |
---|
3085 | DO k = bdims_rem(3,1), bdims_rem(3,2)-1 |
---|
3086 | |
---|
3087 | kkf = cfratio(3) * k |
---|
3088 | |
---|
3089 | DO j = bdims_rem(2,1), bdims_rem(2,2) |
---|
3090 | |
---|
3091 | bottomy = (nyf+1) / (nyc+1) * j |
---|
3092 | topy = (nyf+1) / (nyc+1) * (j+1) - 1 |
---|
3093 | |
---|
3094 | DO i = bdims_rem(1,1), bdims_rem(1,2) |
---|
3095 | |
---|
3096 | bottomx = (nxf+1) / (nxc+1) * i |
---|
3097 | topx = (nxf+1) / (nxc+1) * (i+1) - 1 |
---|
3098 | |
---|
3099 | aweight = 0.0 |
---|
3100 | |
---|
3101 | DO jjf = bottomy, topy |
---|
3102 | DO iif = bottomx, topx |
---|
3103 | |
---|
3104 | aweight = aweight + anterpol3d (kkf,jjf,iif) * & |
---|
3105 | (dxf/dxc) * (dyf/dyc) |
---|
3106 | |
---|
3107 | END DO |
---|
3108 | END DO |
---|
3109 | |
---|
3110 | work3d(k,j,i) = aweight |
---|
3111 | |
---|
3112 | END DO |
---|
3113 | |
---|
3114 | END DO |
---|
3115 | |
---|
3116 | END DO |
---|
3117 | |
---|
3118 | |
---|
3119 | END SUBROUTINE anterpolate_to_crse_w |
---|
3120 | |
---|
3121 | |
---|
3122 | SUBROUTINE anterpolate_to_crse_s |
---|
3123 | |
---|
3124 | |
---|
3125 | USE arrays_3d |
---|
3126 | USE control_parameters |
---|
3127 | USE grid_variables |
---|
3128 | USE indices |
---|
3129 | USE pegrid |
---|
3130 | |
---|
3131 | |
---|
3132 | IMPLICIT NONE |
---|
3133 | |
---|
3134 | INTEGER(iwp) :: i |
---|
3135 | INTEGER(iwp) :: j |
---|
3136 | INTEGER(iwp) :: k |
---|
3137 | INTEGER(iwp) :: iif |
---|
3138 | INTEGER(iwp) :: jjf |
---|
3139 | INTEGER(iwp) :: kkf |
---|
3140 | INTEGER(iwp) :: bottomx |
---|
3141 | INTEGER(iwp) :: bottomy |
---|
3142 | INTEGER(iwp) :: bottomz |
---|
3143 | INTEGER(iwp) :: topx |
---|
3144 | INTEGER(iwp) :: topy |
---|
3145 | INTEGER(iwp) :: topz |
---|
3146 | REAL(wp) :: aweight |
---|
3147 | |
---|
3148 | ! |
---|
3149 | !-- Anterpolation of the potential temperature pt |
---|
3150 | !-- all fine grid values are considered |
---|
3151 | |
---|
3152 | DO k = bdims_rem(3,1)+1, bdims_rem(3,2) |
---|
3153 | |
---|
3154 | bottomz = (dzc/dzf) * (k-1) + 1 |
---|
3155 | topz = (dzc/dzf) * k |
---|
3156 | |
---|
3157 | DO j = bdims_rem(2,1), bdims_rem(2,2) |
---|
3158 | |
---|
3159 | bottomy = (nyf+1) / (nyc+1) * j |
---|
3160 | topy = (nyf+1) / (nyc+1) * (j+1) - 1 |
---|
3161 | |
---|
3162 | DO i = bdims_rem(1,1), bdims_rem(1,2) |
---|
3163 | |
---|
3164 | bottomx = (nxf+1) / (nxc+1) * i |
---|
3165 | topx = (nxf+1) / (nxc+1) * (i+1) - 1 |
---|
3166 | |
---|
3167 | aweight = 0.0 |
---|
3168 | |
---|
3169 | DO kkf = bottomz, topz |
---|
3170 | DO jjf = bottomy, topy |
---|
3171 | DO iif = bottomx, topx |
---|
3172 | |
---|
3173 | aweight = aweight + anterpol3d(kkf,jjf,iif) * & |
---|
3174 | (dzf/dzc) * (dyf/dyc) * (dxf/dxc) |
---|
3175 | |
---|
3176 | END DO |
---|
3177 | END DO |
---|
3178 | END DO |
---|
3179 | |
---|
3180 | work3d(k,j,i) = aweight |
---|
3181 | |
---|
3182 | END DO |
---|
3183 | |
---|
3184 | END DO |
---|
3185 | |
---|
3186 | END DO |
---|
3187 | |
---|
3188 | |
---|
3189 | END SUBROUTINE anterpolate_to_crse_s |
---|
3190 | #endif |
---|
3191 | END SUBROUTINE vnest_anterpolate |
---|
3192 | |
---|
3193 | |
---|
3194 | |
---|
3195 | SUBROUTINE vnest_anterpolate_e |
---|
3196 | #if defined( __parallel ) |
---|
3197 | |
---|
3198 | !--------------------------------------------------------------------------------! |
---|
3199 | ! Description: |
---|
3200 | ! ------------ |
---|
3201 | ! Anterpolate TKE from fine grid to coarse grid. |
---|
3202 | !------------------------------------------------------------------------------! |
---|
3203 | |
---|
3204 | USE arrays_3d |
---|
3205 | USE control_parameters |
---|
3206 | USE grid_variables |
---|
3207 | USE indices |
---|
3208 | USE interfaces |
---|
3209 | USE pegrid |
---|
3210 | |
---|
3211 | |
---|
3212 | IMPLICIT NONE |
---|
3213 | |
---|
3214 | REAL(wp) :: time_since_reference_point_rem |
---|
3215 | INTEGER(iwp) :: i |
---|
3216 | INTEGER(iwp) :: j |
---|
3217 | |
---|
3218 | ! |
---|
3219 | !-- In case of model termination initiated by the remote model |
---|
3220 | !-- (terminate_coupled_remote > 0), initiate termination of the local model. |
---|
3221 | !-- The rest of the coupler must then be skipped because it would cause an MPI |
---|
3222 | !-- intercomminucation hang. |
---|
3223 | !-- If necessary, the coupler will be called at the beginning of the next |
---|
3224 | !-- restart run. |
---|
3225 | |
---|
3226 | IF ( myid == 0) THEN |
---|
3227 | CALL MPI_SENDRECV( terminate_coupled, 1, MPI_INTEGER, & |
---|
3228 | target_id, 0, & |
---|
3229 | terminate_coupled_remote, 1, MPI_INTEGER, & |
---|
3230 | target_id, 0, & |
---|
3231 | comm_inter, status, ierr ) |
---|
3232 | ENDIF |
---|
3233 | CALL MPI_BCAST( terminate_coupled_remote, 1, MPI_INTEGER, 0, comm2d, & |
---|
3234 | ierr ) |
---|
3235 | |
---|
3236 | IF ( terminate_coupled_remote > 0 ) THEN |
---|
3237 | WRITE( message_string, * ) 'remote model "', & |
---|
3238 | TRIM( coupling_mode_remote ), & |
---|
3239 | '" terminated', & |
---|
3240 | '&with terminate_coupled_remote = ', & |
---|
3241 | terminate_coupled_remote, & |
---|
3242 | '&local model "', TRIM( coupling_mode ), & |
---|
3243 | '" has', & |
---|
3244 | '&terminate_coupled = ', & |
---|
3245 | terminate_coupled |
---|
3246 | CALL message( 'vnest_anterpolate_e', 'PA0310', 1, 2, 0, 6, 0 ) |
---|
3247 | RETURN |
---|
3248 | ENDIF |
---|
3249 | |
---|
3250 | |
---|
3251 | ! |
---|
3252 | !-- Exchange the current simulated time between the models |
---|
3253 | IF ( myid == 0 ) THEN |
---|
3254 | |
---|
3255 | CALL MPI_SEND( time_since_reference_point, 1, MPI_REAL, target_id, & |
---|
3256 | 11, comm_inter, ierr ) |
---|
3257 | CALL MPI_RECV( time_since_reference_point_rem, 1, MPI_REAL, & |
---|
3258 | target_id, 11, comm_inter, status, ierr ) |
---|
3259 | |
---|
3260 | ENDIF |
---|
3261 | |
---|
3262 | CALL MPI_BCAST( time_since_reference_point_rem, 1, MPI_REAL, 0, comm2d, & |
---|
3263 | ierr ) |
---|
3264 | |
---|
3265 | IF ( coupling_mode == 'vnested_crse' ) THEN |
---|
3266 | ! Receive data from fine grid for anterpolation |
---|
3267 | |
---|
3268 | offset(1) = ( pdims_partner(1) / pdims(1) ) * pcoord(1) |
---|
3269 | offset(2) = ( pdims_partner(2) / pdims(2) ) * pcoord(2) |
---|
3270 | |
---|
3271 | do j = 0, ( pdims_partner(2) / pdims(2) ) - 1 |
---|
3272 | do i = 0, ( pdims_partner(1) / pdims(1) ) - 1 |
---|
3273 | map_coord(1) = i+offset(1) |
---|
3274 | map_coord(2) = j+offset(2) |
---|
3275 | |
---|
3276 | target_idex = f_rnk_lst(map_coord(1),map_coord(2)) + numprocs |
---|
3277 | |
---|
3278 | bdims (1,1) = f2c_dims_cg (0,map_coord(1),map_coord(2)) |
---|
3279 | bdims (1,2) = f2c_dims_cg (1,map_coord(1),map_coord(2)) |
---|
3280 | bdims (2,1) = f2c_dims_cg (2,map_coord(1),map_coord(2)) |
---|
3281 | bdims (2,2) = f2c_dims_cg (3,map_coord(1),map_coord(2)) |
---|
3282 | bdims (3,1) = f2c_dims_cg (4,map_coord(1),map_coord(2)) |
---|
3283 | bdims (3,2) = f2c_dims_cg (5,map_coord(1),map_coord(2)) |
---|
3284 | |
---|
3285 | |
---|
3286 | n_cell_c = (bdims(1,2)-bdims(1,1)+1) * & |
---|
3287 | (bdims(2,2)-bdims(2,1)+1) * & |
---|
3288 | (bdims(3,2)-bdims(3,1)+0) |
---|
3289 | |
---|
3290 | |
---|
3291 | CALL MPI_RECV( e( bdims(3,1)+1:bdims(3,2), & |
---|
3292 | bdims(2,1) :bdims(2,2), & |
---|
3293 | bdims(1,1) :bdims(1,2)),& |
---|
3294 | n_cell_c, MPI_REAL, target_idex, 104, & |
---|
3295 | comm_inter,status, ierr ) |
---|
3296 | end do |
---|
3297 | end do |
---|
3298 | |
---|
3299 | |
---|
3300 | ! |
---|
3301 | !-- Boundary conditions |
---|
3302 | |
---|
3303 | IF ( .NOT. constant_diffusion ) THEN |
---|
3304 | e(nzb,:,:) = e(nzb+1,:,:) |
---|
3305 | END IF |
---|
3306 | |
---|
3307 | IF ( .NOT. constant_diffusion ) CALL exchange_horiz( e, nbgp ) |
---|
3308 | |
---|
3309 | ELSEIF ( coupling_mode == 'vnested_fine' ) THEN |
---|
3310 | ! Send data to coarse grid for anterpolation |
---|
3311 | |
---|
3312 | offset(1) = pcoord(1) / ( pdims(1)/pdims_partner(1) ) |
---|
3313 | offset(2) = pcoord(2) / ( pdims(2)/pdims_partner(2) ) |
---|
3314 | map_coord(1) = offset(1) |
---|
3315 | map_coord(2) = offset(2) |
---|
3316 | target_idex = c_rnk_lst(map_coord(1),map_coord(2)) |
---|
3317 | |
---|
3318 | bdims_rem (1,1) = f2c_dims_fg (0) |
---|
3319 | bdims_rem (1,2) = f2c_dims_fg (1) |
---|
3320 | bdims_rem (2,1) = f2c_dims_fg (2) |
---|
3321 | bdims_rem (2,2) = f2c_dims_fg (3) |
---|
3322 | bdims_rem (3,1) = f2c_dims_fg (4) |
---|
3323 | bdims_rem (3,2) = f2c_dims_fg (5) |
---|
3324 | |
---|
3325 | ALLOCATE( work3d ( & |
---|
3326 | bdims_rem(3,1)+1:bdims_rem(3,2), & |
---|
3327 | bdims_rem(2,1) :bdims_rem(2,2), & |
---|
3328 | bdims_rem(1,1) :bdims_rem(1,2))) |
---|
3329 | |
---|
3330 | anterpol3d => e |
---|
3331 | |
---|
3332 | CALL anterpolate_to_crse_e |
---|
3333 | |
---|
3334 | CALL MPI_SEND( work3d, 1, TYPE_VNEST_ANTER, target_idex, & |
---|
3335 | 104, comm_inter, ierr) |
---|
3336 | |
---|
3337 | NULLIFY ( anterpol3d ) |
---|
3338 | DEALLOCATE( work3d ) |
---|
3339 | ENDIF |
---|
3340 | |
---|
3341 | |
---|
3342 | CONTAINS |
---|
3343 | |
---|
3344 | |
---|
3345 | |
---|
3346 | |
---|
3347 | |
---|
3348 | SUBROUTINE anterpolate_to_crse_e |
---|
3349 | |
---|
3350 | |
---|
3351 | USE arrays_3d |
---|
3352 | USE control_parameters |
---|
3353 | USE grid_variables |
---|
3354 | USE indices |
---|
3355 | USE pegrid |
---|
3356 | |
---|
3357 | |
---|
3358 | IMPLICIT NONE |
---|
3359 | |
---|
3360 | INTEGER(iwp) :: i |
---|
3361 | INTEGER(iwp) :: j |
---|
3362 | INTEGER(iwp) :: k |
---|
3363 | INTEGER(iwp) :: iif |
---|
3364 | INTEGER(iwp) :: jjf |
---|
3365 | INTEGER(iwp) :: kkf |
---|
3366 | INTEGER(iwp) :: bottomx |
---|
3367 | INTEGER(iwp) :: bottomy |
---|
3368 | INTEGER(iwp) :: bottomz |
---|
3369 | INTEGER(iwp) :: topx |
---|
3370 | INTEGER(iwp) :: topy |
---|
3371 | INTEGER(iwp) :: topz |
---|
3372 | REAL(wp) :: aweight_a |
---|
3373 | REAL(wp) :: aweight_b |
---|
3374 | REAL(wp) :: aweight_c |
---|
3375 | REAL(wp) :: aweight_d |
---|
3376 | REAL(wp) :: aweight_e |
---|
3377 | REAL(wp) :: energ |
---|
3378 | |
---|
3379 | DO k = bdims_rem(3,1)+1, bdims_rem(3,2) |
---|
3380 | |
---|
3381 | bottomz = (dzc/dzf) * (k-1) + 1 |
---|
3382 | topz = (dzc/dzf) * k |
---|
3383 | |
---|
3384 | DO j = bdims_rem(2,1), bdims_rem(2,2) |
---|
3385 | |
---|
3386 | bottomy = (nyf+1) / (nyc+1) * j |
---|
3387 | topy = (nyf+1) / (nyc+1) * (j+1) - 1 |
---|
3388 | |
---|
3389 | DO i = bdims_rem(1,1), bdims_rem(1,2) |
---|
3390 | |
---|
3391 | bottomx = (nxf+1) / (nxc+1) * i |
---|
3392 | topx = (nxf+1) / (nxc+1) * (i+1) - 1 |
---|
3393 | |
---|
3394 | aweight_a = 0.0 |
---|
3395 | aweight_b = 0.0 |
---|
3396 | aweight_c = 0.0 |
---|
3397 | aweight_d = 0.0 |
---|
3398 | aweight_e = 0.0 |
---|
3399 | |
---|
3400 | DO kkf = bottomz, topz |
---|
3401 | DO jjf = bottomy, topy |
---|
3402 | DO iif = bottomx, topx |
---|
3403 | |
---|
3404 | aweight_a = aweight_a + anterpol3d(kkf,jjf,iif) * & |
---|
3405 | (dzf/dzc) * (dyf/dyc) * (dxf/dxc) |
---|
3406 | |
---|
3407 | |
---|
3408 | energ = ( 0.5 * ( u(kkf,jjf,iif) + u(kkf,jjf,iif+1) ) )**2.0 + & |
---|
3409 | ( 0.5 * ( v(kkf,jjf,iif) + v(kkf,jjf+1,iif) ) )**2.0 + & |
---|
3410 | ( 0.5 * ( w(kkf-1,jjf,iif) + w(kkf,jjf,iif) ) )**2.0 |
---|
3411 | |
---|
3412 | aweight_b = aweight_b + energ * & |
---|
3413 | (dzf/dzc) * (dyf/dyc) * (dxf/dxc) |
---|
3414 | |
---|
3415 | aweight_c = aweight_c + 0.5 * ( u(kkf,jjf,iif) + u(kkf,jjf,iif+1) ) * & |
---|
3416 | (dzf/dzc) * (dyf/dyc) * (dxf/dxc) |
---|
3417 | |
---|
3418 | aweight_d = aweight_d + 0.5 * ( v(kkf,jjf,iif) + v(kkf,jjf+1,iif) ) * & |
---|
3419 | (dzf/dzc) * (dyf/dyc) * (dxf/dxc) |
---|
3420 | |
---|
3421 | aweight_e = aweight_e + 0.5 * ( w(kkf-1,jjf,iif) + w(kkf,jjf,iif) ) * & |
---|
3422 | (dzf/dzc) * (dyf/dyc) * (dxf/dxc) |
---|
3423 | |
---|
3424 | |
---|
3425 | END DO |
---|
3426 | END DO |
---|
3427 | END DO |
---|
3428 | |
---|
3429 | work3d(k,j,i) = aweight_a + 0.5 * ( aweight_b - & |
---|
3430 | aweight_c**2.0 - & |
---|
3431 | aweight_d**2.0 - & |
---|
3432 | aweight_e**2.0 ) |
---|
3433 | |
---|
3434 | END DO |
---|
3435 | |
---|
3436 | END DO |
---|
3437 | |
---|
3438 | END DO |
---|
3439 | |
---|
3440 | |
---|
3441 | |
---|
3442 | END SUBROUTINE anterpolate_to_crse_e |
---|
3443 | #endif |
---|
3444 | END SUBROUTINE vnest_anterpolate_e |
---|
3445 | |
---|
3446 | SUBROUTINE vnest_init_pegrid_rank |
---|
3447 | #if defined( __parallel ) |
---|
3448 | ! Domain decomposition and exchange of grid variables between coarse and fine |
---|
3449 | ! Given processor coordinates as index f_rnk_lst(pcoord(1), pcoord(2)) |
---|
3450 | ! returns the rank. A single coarse block will have to send data to multiple |
---|
3451 | ! fine blocks. In the coarse grid the pcoords of the remote block is first found and then using |
---|
3452 | ! f_rnk_lst the target_idex is identified. |
---|
3453 | ! blk_dim stores the index limits of a given block. blk_dim_remote is received |
---|
3454 | ! from the asscoiated nest partner. |
---|
3455 | ! cf_ratio(1:3) is the ratio between fine and coarse grid: nxc/nxf, nyc/nyf and |
---|
3456 | ! ceiling(dxc/dxf) |
---|
3457 | |
---|
3458 | |
---|
3459 | USE control_parameters, & |
---|
3460 | ONLY: coupling_mode |
---|
3461 | |
---|
3462 | USE kinds |
---|
3463 | |
---|
3464 | USE pegrid |
---|
3465 | |
---|
3466 | |
---|
3467 | IMPLICIT NONE |
---|
3468 | |
---|
3469 | INTEGER(iwp) :: dest_rnk |
---|
3470 | INTEGER(iwp) :: i !< |
---|
3471 | |
---|
3472 | IF (myid == 0) THEN |
---|
3473 | IF ( coupling_mode == 'vnested_crse') THEN |
---|
3474 | CALL MPI_SEND( pdims, 2, MPI_INTEGER, numprocs, 33, comm_inter, & |
---|
3475 | ierr ) |
---|
3476 | CALL MPI_RECV( pdims_partner, 2, MPI_INTEGER, numprocs, 66, & |
---|
3477 | comm_inter, status, ierr ) |
---|
3478 | ELSEIF ( coupling_mode == 'vnested_fine') THEN |
---|
3479 | CALL MPI_RECV( pdims_partner, 2, MPI_INTEGER, 0, 33, & |
---|
3480 | comm_inter, status, ierr ) |
---|
3481 | CALL MPI_SEND( pdims, 2, MPI_INTEGER, 0, 66, comm_inter, & |
---|
3482 | ierr ) |
---|
3483 | ENDIF |
---|
3484 | ENDIF |
---|
3485 | |
---|
3486 | |
---|
3487 | IF ( coupling_mode == 'vnested_crse') THEN |
---|
3488 | CALL MPI_BCAST( pdims_partner, 2, MPI_INTEGER, 0, comm2d, ierr ) |
---|
3489 | ALLOCATE( c_rnk_lst( 0:(pdims(1)-1) ,0:(pdims(2)-1) ) ) |
---|
3490 | ALLOCATE( f_rnk_lst( 0:(pdims_partner(1)-1) ,0:(pdims_partner(2)-1) ) ) |
---|
3491 | do i=0,numprocs-1 |
---|
3492 | CALL MPI_CART_COORDS( comm2d, i, ndim, pcoord, ierr ) |
---|
3493 | call MPI_Cart_rank(comm2d, pcoord, dest_rnk, ierr) |
---|
3494 | c_rnk_lst(pcoord(1),pcoord(2)) = dest_rnk |
---|
3495 | end do |
---|
3496 | ELSEIF ( coupling_mode == 'vnested_fine') THEN |
---|
3497 | CALL MPI_BCAST( pdims_partner, 2, MPI_INTEGER, 0, comm2d, ierr ) |
---|
3498 | ALLOCATE( c_rnk_lst( 0:(pdims_partner(1)-1) ,0:(pdims_partner(2)-1) ) ) |
---|
3499 | ALLOCATE( f_rnk_lst( 0:(pdims(1)-1) ,0:(pdims(2)-1) ) ) |
---|
3500 | |
---|
3501 | do i=0,numprocs-1 |
---|
3502 | CALL MPI_CART_COORDS( comm2d, i, ndim, pcoord, ierr ) |
---|
3503 | call MPI_Cart_rank(comm2d, pcoord, dest_rnk, ierr) |
---|
3504 | f_rnk_lst(pcoord(1),pcoord(2)) = dest_rnk |
---|
3505 | enddo |
---|
3506 | ENDIF |
---|
3507 | |
---|
3508 | |
---|
3509 | IF ( coupling_mode == 'vnested_crse') THEN |
---|
3510 | if (myid == 0) then |
---|
3511 | CALL MPI_SEND( c_rnk_lst, pdims(1)*pdims(2), MPI_INTEGER, numprocs, 0, comm_inter, ierr ) |
---|
3512 | CALL MPI_RECV( f_rnk_lst, pdims_partner(1)*pdims_partner(2), MPI_INTEGER, numprocs, 4, comm_inter,status, ierr ) |
---|
3513 | end if |
---|
3514 | CALL MPI_BCAST( f_rnk_lst, pdims_partner(1)*pdims_partner(2), MPI_INTEGER, 0, comm2d, ierr ) |
---|
3515 | ELSEIF ( coupling_mode == 'vnested_fine') THEN |
---|
3516 | if (myid == 0) then |
---|
3517 | CALL MPI_RECV( c_rnk_lst, pdims_partner(1)*pdims_partner(2), MPI_INTEGER, 0, 0, comm_inter,status, ierr ) |
---|
3518 | CALL MPI_SEND( f_rnk_lst, pdims(1)*pdims(2), MPI_INTEGER, 0, 4, comm_inter, ierr ) |
---|
3519 | end if |
---|
3520 | CALL MPI_BCAST( c_rnk_lst, pdims_partner(1)*pdims_partner(2), MPI_INTEGER, 0, comm2d, ierr ) |
---|
3521 | ENDIF |
---|
3522 | |
---|
3523 | !-- Reason for MPI error unknown; solved if three lines duplicated |
---|
3524 | CALL MPI_CART_COORDS( comm2d, myid, ndim, pcoord, ierr ) |
---|
3525 | CALL MPI_CART_SHIFT( comm2d, 0, 1, pleft, pright, ierr ) |
---|
3526 | CALL MPI_CART_SHIFT( comm2d, 1, 1, psouth, pnorth, ierr ) |
---|
3527 | |
---|
3528 | |
---|
3529 | #endif |
---|
3530 | |
---|
3531 | END SUBROUTINE vnest_init_pegrid_rank |
---|
3532 | |
---|
3533 | |
---|
3534 | SUBROUTINE vnest_init_pegrid_domain |
---|
3535 | #if defined( __parallel ) |
---|
3536 | |
---|
3537 | USE control_parameters, & |
---|
3538 | ONLY: coupling_mode, coupling_topology, dz, & |
---|
3539 | dz_stretch_level_start, message_string |
---|
3540 | |
---|
3541 | USE grid_variables, & |
---|
3542 | ONLY: dx, dy |
---|
3543 | |
---|
3544 | USE indices, & |
---|
3545 | ONLY: nbgp, nx, ny, nz, nxl, nxr, nys, nyn, nzb, nzt |
---|
3546 | |
---|
3547 | USE kinds |
---|
3548 | |
---|
3549 | USE pegrid |
---|
3550 | |
---|
3551 | IMPLICIT NONE |
---|
3552 | |
---|
3553 | INTEGER(iwp) :: i !< |
---|
3554 | INTEGER(iwp) :: j !< |
---|
3555 | INTEGER(iwp) :: tempx |
---|
3556 | INTEGER(iwp) :: tempy |
---|
3557 | INTEGER(iwp) :: TYPE_INT_YZ |
---|
3558 | INTEGER(iwp) :: SIZEOFREAL |
---|
3559 | INTEGER(iwp) :: MTV_X |
---|
3560 | INTEGER(iwp) :: MTV_Y |
---|
3561 | INTEGER(iwp) :: MTV_Z |
---|
3562 | INTEGER(iwp) :: MTV_RX |
---|
3563 | INTEGER(iwp) :: MTV_RY |
---|
3564 | INTEGER(iwp) :: MTV_RZ |
---|
3565 | |
---|
3566 | ! |
---|
3567 | !-- Pass the number of grid points of the coarse model to |
---|
3568 | !-- the nested model and vice versa |
---|
3569 | IF ( coupling_mode == 'vnested_crse' ) THEN |
---|
3570 | |
---|
3571 | nxc = nx |
---|
3572 | nyc = ny |
---|
3573 | nzc = nz |
---|
3574 | dxc = dx |
---|
3575 | dyc = dy |
---|
3576 | dzc = dz(1) |
---|
3577 | cg_nprocs = numprocs |
---|
3578 | |
---|
3579 | IF ( myid == 0 ) THEN |
---|
3580 | |
---|
3581 | CALL MPI_SEND( nxc, 1, MPI_INTEGER , numprocs, 1, comm_inter, & |
---|
3582 | ierr ) |
---|
3583 | CALL MPI_SEND( nyc, 1, MPI_INTEGER , numprocs, 2, comm_inter, & |
---|
3584 | ierr ) |
---|
3585 | CALL MPI_SEND( nzc, 1, MPI_INTEGER , numprocs, 3, comm_inter, & |
---|
3586 | ierr ) |
---|
3587 | CALL MPI_SEND( dxc, 1, MPI_REAL , numprocs, 4, comm_inter, & |
---|
3588 | ierr ) |
---|
3589 | CALL MPI_SEND( dyc, 1, MPI_REAL , numprocs, 5, comm_inter, & |
---|
3590 | ierr ) |
---|
3591 | CALL MPI_SEND( dzc, 1, MPI_REAL , numprocs, 6, comm_inter, & |
---|
3592 | ierr ) |
---|
3593 | CALL MPI_SEND( pdims, 2, MPI_INTEGER, numprocs, 7, comm_inter, & |
---|
3594 | ierr ) |
---|
3595 | CALL MPI_SEND( cg_nprocs, 1, MPI_INTEGER, numprocs, 8, comm_inter, & |
---|
3596 | ierr ) |
---|
3597 | CALL MPI_RECV( nxf, 1, MPI_INTEGER, numprocs, 21, comm_inter, & |
---|
3598 | status, ierr ) |
---|
3599 | CALL MPI_RECV( nyf, 1, MPI_INTEGER, numprocs, 22, comm_inter, & |
---|
3600 | status, ierr ) |
---|
3601 | CALL MPI_RECV( nzf, 1, MPI_INTEGER, numprocs, 23, comm_inter, & |
---|
3602 | status, ierr ) |
---|
3603 | CALL MPI_RECV( dxf, 1, MPI_REAL, numprocs, 24, comm_inter, & |
---|
3604 | status, ierr ) |
---|
3605 | CALL MPI_RECV( dyf, 1, MPI_REAL, numprocs, 25, comm_inter, & |
---|
3606 | status, ierr ) |
---|
3607 | CALL MPI_RECV( dzf, 1, MPI_REAL, numprocs, 26, comm_inter, & |
---|
3608 | status, ierr ) |
---|
3609 | CALL MPI_RECV( pdims_partner, 2, MPI_INTEGER, & |
---|
3610 | numprocs, 27, comm_inter, status, ierr ) |
---|
3611 | CALL MPI_RECV( fg_nprocs, 1, MPI_INTEGER, & |
---|
3612 | numprocs, 28, comm_inter, status, ierr ) |
---|
3613 | ENDIF |
---|
3614 | |
---|
3615 | CALL MPI_BCAST( nxf, 1, MPI_INTEGER, 0, comm2d, ierr ) |
---|
3616 | CALL MPI_BCAST( nyf, 1, MPI_INTEGER, 0, comm2d, ierr ) |
---|
3617 | CALL MPI_BCAST( nzf, 1, MPI_INTEGER, 0, comm2d, ierr ) |
---|
3618 | CALL MPI_BCAST( dxf, 1, MPI_REAL, 0, comm2d, ierr ) |
---|
3619 | CALL MPI_BCAST( dyf, 1, MPI_REAL, 0, comm2d, ierr ) |
---|
3620 | CALL MPI_BCAST( dzf, 1, MPI_REAL, 0, comm2d, ierr ) |
---|
3621 | CALL MPI_BCAST( pdims_partner, 2, MPI_INTEGER, 0, comm2d, ierr ) |
---|
3622 | CALL MPI_BCAST( fg_nprocs, 1, MPI_INTEGER, 0, comm2d, ierr ) |
---|
3623 | |
---|
3624 | ! |
---|
3625 | !-- Check if stretching is used within the nested domain. ABS(...) is |
---|
3626 | !-- necessary because of the default value of -9999999.9_wp (negative) |
---|
3627 | IF ( ABS( dz_stretch_level_start(1) ) <= (nzf+1)*dzf ) THEN |
---|
3628 | message_string = 'Stretching in the parent domain is '// & |
---|
3629 | 'only allowed above the nested domain' |
---|
3630 | CALL message( 'vnest_init_pegrid_domain', 'PA0497', 1, 2, 0, 6, 0 ) |
---|
3631 | ENDIF |
---|
3632 | |
---|
3633 | ELSEIF ( coupling_mode == 'vnested_fine' ) THEN |
---|
3634 | |
---|
3635 | nxf = nx |
---|
3636 | nyf = ny |
---|
3637 | nzf = nz |
---|
3638 | dxf = dx |
---|
3639 | dyf = dy |
---|
3640 | dzf = dz(1) |
---|
3641 | fg_nprocs = numprocs |
---|
3642 | |
---|
3643 | IF ( myid == 0 ) THEN |
---|
3644 | |
---|
3645 | CALL MPI_RECV( nxc, 1, MPI_INTEGER, 0, 1, comm_inter, status, & |
---|
3646 | ierr ) |
---|
3647 | CALL MPI_RECV( nyc, 1, MPI_INTEGER, 0, 2, comm_inter, status, & |
---|
3648 | ierr ) |
---|
3649 | CALL MPI_RECV( nzc, 1, MPI_INTEGER, 0, 3, comm_inter, status, & |
---|
3650 | ierr ) |
---|
3651 | CALL MPI_RECV( dxc, 1, MPI_REAL, 0, 4, comm_inter, status, & |
---|
3652 | ierr ) |
---|
3653 | CALL MPI_RECV( dyc, 1, MPI_REAL, 0, 5, comm_inter, status, & |
---|
3654 | ierr ) |
---|
3655 | CALL MPI_RECV( dzc, 1, MPI_REAL, 0, 6, comm_inter, status, & |
---|
3656 | ierr ) |
---|
3657 | CALL MPI_RECV( pdims_partner, 2, MPI_INTEGER, 0, 7, comm_inter, & |
---|
3658 | status, ierr ) |
---|
3659 | CALL MPI_RECV( cg_nprocs, 1, MPI_INTEGER, 0, 8, comm_inter, & |
---|
3660 | status, ierr ) |
---|
3661 | CALL MPI_SEND( nxf, 1, MPI_INTEGER, 0, 21, comm_inter, ierr ) |
---|
3662 | CALL MPI_SEND( nyf, 1, MPI_INTEGER, 0, 22, comm_inter, ierr ) |
---|
3663 | CALL MPI_SEND( nzf, 1, MPI_INTEGER, 0, 23, comm_inter, ierr ) |
---|
3664 | CALL MPI_SEND( dxf, 1, MPI_REAL, 0, 24, comm_inter, ierr ) |
---|
3665 | CALL MPI_SEND( dyf, 1, MPI_REAL, 0, 25, comm_inter, ierr ) |
---|
3666 | CALL MPI_SEND( dzf, 1, MPI_REAL, 0, 26, comm_inter, ierr ) |
---|
3667 | CALL MPI_SEND( pdims,2,MPI_INTEGER, 0, 27, comm_inter, ierr ) |
---|
3668 | CALL MPI_SEND( fg_nprocs,1,MPI_INTEGER, 0, 28, comm_inter, ierr ) |
---|
3669 | ENDIF |
---|
3670 | |
---|
3671 | CALL MPI_BCAST( nxc, 1, MPI_INTEGER, 0, comm2d, ierr) |
---|
3672 | CALL MPI_BCAST( nyc, 1, MPI_INTEGER, 0, comm2d, ierr) |
---|
3673 | CALL MPI_BCAST( nzc, 1, MPI_INTEGER, 0, comm2d, ierr) |
---|
3674 | CALL MPI_BCAST( dxc, 1, MPI_REAL, 0, comm2d, ierr) |
---|
3675 | CALL MPI_BCAST( dyc, 1, MPI_REAL, 0, comm2d, ierr) |
---|
3676 | CALL MPI_BCAST( dzc, 1, MPI_REAL, 0, comm2d, ierr) |
---|
3677 | CALL MPI_BCAST( pdims_partner, 2, MPI_INTEGER, 0, comm2d, ierr) |
---|
3678 | CALL MPI_BCAST( cg_nprocs, 1, MPI_INTEGER, 0, comm2d, ierr) |
---|
3679 | |
---|
3680 | ENDIF |
---|
3681 | |
---|
3682 | ngp_c = ( nxc+1 + 2 * nbgp ) * ( nyc+1 + 2 * nbgp ) |
---|
3683 | ngp_f = ( nxf+1 + 2 * nbgp ) * ( nyf+1 + 2 * nbgp ) |
---|
3684 | |
---|
3685 | IF ( coupling_mode(1:8) == 'vnested_') coupling_topology = 1 |
---|
3686 | |
---|
3687 | |
---|
3688 | !-- Nesting Ratio: For each coarse grid cell how many fine grid cells exist |
---|
3689 | cfratio(1) = INT ( (nxf+1) / (nxc+1) ) |
---|
3690 | cfratio(2) = INT ( (nyf+1) / (nyc+1) ) |
---|
3691 | cfratio(3) = CEILING ( dzc / dzf ) |
---|
3692 | |
---|
3693 | !-- target_id is used only for exhange of information like simulated_time |
---|
3694 | !-- which are then MPI_BCAST to other processors in the group |
---|
3695 | IF ( myid == 0 ) THEN |
---|
3696 | |
---|
3697 | IF ( TRIM( coupling_mode ) == 'vnested_crse' ) THEN |
---|
3698 | target_id = numprocs |
---|
3699 | ELSE IF ( TRIM( coupling_mode ) == 'vnested_fine' ) THEN |
---|
3700 | target_id = 0 |
---|
3701 | ENDIF |
---|
3702 | |
---|
3703 | ENDIF |
---|
3704 | |
---|
3705 | !-- Store partner grid dimenstions and create MPI derived types |
---|
3706 | |
---|
3707 | IF ( coupling_mode == 'vnested_crse' ) THEN |
---|
3708 | |
---|
3709 | offset(1) = ( pdims_partner(1) / pdims(1) ) * pcoord(1) |
---|
3710 | offset(2) = ( pdims_partner(2) / pdims(2) ) * pcoord(2) |
---|
3711 | |
---|
3712 | tempx = ( pdims_partner(1) / pdims(1) ) - 1 |
---|
3713 | tempy = ( pdims_partner(2) / pdims(2) ) - 1 |
---|
3714 | ALLOCATE( c2f_dims_cg (0:5,offset(1):tempx+offset(1),offset(2):tempy+offset(2) ) ) |
---|
3715 | ALLOCATE( f2c_dims_cg (0:5,offset(1):tempx+offset(1),offset(2):tempy+offset(2) ) ) |
---|
3716 | |
---|
3717 | do j = 0, ( pdims_partner(2) / pdims(2) ) - 1 |
---|
3718 | do i = 0, ( pdims_partner(1) / pdims(1) ) - 1 |
---|
3719 | map_coord(1) = i+offset(1) |
---|
3720 | map_coord(2) = j+offset(2) |
---|
3721 | |
---|
3722 | target_idex = f_rnk_lst(map_coord(1),map_coord(2)) + numprocs |
---|
3723 | |
---|
3724 | CALL MPI_RECV( bdims_rem, 6, MPI_INTEGER, target_idex, 10, & |
---|
3725 | comm_inter,status, ierr ) |
---|
3726 | |
---|
3727 | !-- Store the CG dimensions that correspond to the FG partner; needed for FG top BC |
---|
3728 | !-- One CG can have multiple FG partners. The 3D array is mapped by partner proc co-ord |
---|
3729 | c2f_dims_cg (0,map_coord(1),map_coord(2)) = bdims_rem (1,1) / cfratio(1) |
---|
3730 | c2f_dims_cg (1,map_coord(1),map_coord(2)) = bdims_rem (1,2) / cfratio(1) |
---|
3731 | c2f_dims_cg (2,map_coord(1),map_coord(2)) = bdims_rem (2,1) / cfratio(2) |
---|
3732 | c2f_dims_cg (3,map_coord(1),map_coord(2)) = bdims_rem (2,2) / cfratio(2) |
---|
3733 | c2f_dims_cg (4,map_coord(1),map_coord(2)) = bdims_rem (3,2) / cfratio(3) |
---|
3734 | c2f_dims_cg (5,map_coord(1),map_coord(2)) =(bdims_rem (3,2) / cfratio(3)) + 2 |
---|
3735 | |
---|
3736 | !-- Store the CG dimensions that correspond to the FG partner; needed for anterpolation |
---|
3737 | f2c_dims_cg (0,map_coord(1),map_coord(2)) = bdims_rem (1,1) / cfratio(1) |
---|
3738 | f2c_dims_cg (1,map_coord(1),map_coord(2)) = bdims_rem (1,2) / cfratio(1) |
---|
3739 | f2c_dims_cg (2,map_coord(1),map_coord(2)) = bdims_rem (2,1) / cfratio(2) |
---|
3740 | f2c_dims_cg (3,map_coord(1),map_coord(2)) = bdims_rem (2,2) / cfratio(2) |
---|
3741 | f2c_dims_cg (4,map_coord(1),map_coord(2)) = bdims_rem (3,1) |
---|
3742 | f2c_dims_cg (5,map_coord(1),map_coord(2)) =(bdims_rem (3,2)-cfratio(3))/ cfratio(3) |
---|
3743 | |
---|
3744 | CALL MPI_SEND( c2f_dims_cg (:,map_coord(1),map_coord(2)), 6, & |
---|
3745 | MPI_INTEGER, target_idex, 100, comm_inter, ierr ) |
---|
3746 | |
---|
3747 | CALL MPI_SEND( f2c_dims_cg (:,map_coord(1),map_coord(2)), 6, & |
---|
3748 | MPI_INTEGER, target_idex, 101, comm_inter, ierr ) |
---|
3749 | |
---|
3750 | end do |
---|
3751 | end do |
---|
3752 | |
---|
3753 | !-- A derived data type to pack 3 Z-levels of CG to set FG top BC |
---|
3754 | MTV_X = ( nxr - nxl + 1 ) + 2*nbgp |
---|
3755 | MTV_Y = ( nyn - nys + 1 ) + 2*nbgp |
---|
3756 | MTV_Z = nzt+1 - nzb +1 |
---|
3757 | |
---|
3758 | MTV_RX = ( c2f_dims_cg (1,offset(1),offset(2)) - c2f_dims_cg (0,offset(1),offset(2)) ) +1+2 |
---|
3759 | MTV_RY = ( c2f_dims_cg (3,offset(1),offset(2)) - c2f_dims_cg (2,offset(1),offset(2)) ) +1+2 |
---|
3760 | MTV_RZ = ( c2f_dims_cg (5,offset(1),offset(2)) - c2f_dims_cg (4,offset(1),offset(2)) ) +1 |
---|
3761 | |
---|
3762 | CALL MPI_TYPE_EXTENT(MPI_REAL, SIZEOFREAL, IERR) |
---|
3763 | |
---|
3764 | CALL MPI_TYPE_VECTOR ( MTV_RY, MTV_RZ, MTV_Z, MPI_REAL, TYPE_INT_YZ, IERR) |
---|
3765 | CALL MPI_TYPE_HVECTOR( MTV_RX, 1, MTV_Z*MTV_Y*SIZEOFREAL, & |
---|
3766 | TYPE_INT_YZ, TYPE_VNEST_BC, IERR) |
---|
3767 | CALL MPI_TYPE_FREE(TYPE_INT_YZ, IERR) |
---|
3768 | CALL MPI_TYPE_COMMIT(TYPE_VNEST_BC, IERR) |
---|
3769 | |
---|
3770 | |
---|
3771 | ELSEIF ( coupling_mode == 'vnested_fine' ) THEN |
---|
3772 | |
---|
3773 | ALLOCATE( c2f_dims_fg (0:5) ) |
---|
3774 | ALLOCATE( f2c_dims_fg (0:5) ) |
---|
3775 | |
---|
3776 | offset(1) = pcoord(1) / ( pdims(1)/pdims_partner(1) ) |
---|
3777 | offset(2) = pcoord(2) / ( pdims(2)/pdims_partner(2) ) |
---|
3778 | map_coord(1) = offset(1) |
---|
3779 | map_coord(2) = offset(2) |
---|
3780 | target_idex = c_rnk_lst(map_coord(1),map_coord(2)) |
---|
3781 | |
---|
3782 | bdims (1,1) = nxl |
---|
3783 | bdims (1,2) = nxr |
---|
3784 | bdims (2,1) = nys |
---|
3785 | bdims (2,2) = nyn |
---|
3786 | bdims (3,1) = nzb |
---|
3787 | bdims (3,2) = nzt |
---|
3788 | |
---|
3789 | CALL MPI_SEND( bdims, 6, MPI_INTEGER, target_idex, 10, & |
---|
3790 | comm_inter, ierr ) |
---|
3791 | |
---|
3792 | !-- Store the CG dimensions that correspond to the FG partner; needed for FG top BC |
---|
3793 | !-- One FG can have only one CG partner |
---|
3794 | CALL MPI_RECV( c2f_dims_fg, 6, MPI_INTEGER, target_idex, 100, & |
---|
3795 | comm_inter,status, ierr ) |
---|
3796 | |
---|
3797 | CALL MPI_RECV( f2c_dims_fg, 6, MPI_INTEGER, target_idex, 101, & |
---|
3798 | comm_inter,status, ierr ) |
---|
3799 | |
---|
3800 | !-- Store the CG dimensions that correspond to the FG partner; needed for anterpolation |
---|
3801 | |
---|
3802 | n_cell_c = (f2c_dims_fg(1)-f2c_dims_fg(0)+1) * & |
---|
3803 | (f2c_dims_fg(3)-f2c_dims_fg(2)+1) * & |
---|
3804 | (f2c_dims_fg(5)-f2c_dims_fg(4)+0) |
---|
3805 | |
---|
3806 | CALL MPI_TYPE_CONTIGUOUS(n_cell_c, MPI_REAL, TYPE_VNEST_ANTER, IERR) |
---|
3807 | CALL MPI_TYPE_COMMIT(TYPE_VNEST_ANTER, ierr) |
---|
3808 | |
---|
3809 | ENDIF |
---|
3810 | #endif |
---|
3811 | END SUBROUTINE vnest_init_pegrid_domain |
---|
3812 | |
---|
3813 | |
---|
3814 | SUBROUTINE vnest_init_grid |
---|
3815 | |
---|
3816 | #if defined( __parallel ) |
---|
3817 | USE arrays_3d, & |
---|
3818 | ONLY: zu, zw |
---|
3819 | |
---|
3820 | USE control_parameters, & |
---|
3821 | ONLY: coupling_mode, message_string, number_stretch_level_start |
---|
3822 | |
---|
3823 | USE indices, & |
---|
3824 | ONLY: nzt |
---|
3825 | |
---|
3826 | USE kinds |
---|
3827 | |
---|
3828 | USE pegrid |
---|
3829 | |
---|
3830 | IMPLICIT NONE |
---|
3831 | |
---|
3832 | ! |
---|
3833 | !-- Allocate and Exchange zuc and zuf, zwc and zwf |
---|
3834 | IF ( coupling_mode(1:8) == 'vnested_' ) THEN |
---|
3835 | |
---|
3836 | ALLOCATE( zuc(0:nzc+1), zuf(0:nzf+1) ) |
---|
3837 | ALLOCATE( zwc(0:nzc+1), zwf(0:nzf+1) ) |
---|
3838 | |
---|
3839 | IF ( coupling_mode == 'vnested_crse' ) THEN |
---|
3840 | |
---|
3841 | zuc = zu |
---|
3842 | zwc = zw |
---|
3843 | |
---|
3844 | IF ( myid == 0 ) THEN |
---|
3845 | |
---|
3846 | CALL MPI_SEND( zuc, nzt+2, MPI_REAL, numprocs, 41, comm_inter, & |
---|
3847 | ierr ) |
---|
3848 | CALL MPI_RECV( zuf, nzf+2, MPI_REAL, numprocs, 42, comm_inter, & |
---|
3849 | status, ierr ) |
---|
3850 | |
---|
3851 | CALL MPI_SEND( zwc, nzt+2, MPI_REAL, numprocs, 43, comm_inter, & |
---|
3852 | ierr ) |
---|
3853 | CALL MPI_RECV( zwf, nzf+2, MPI_REAL, numprocs, 44, comm_inter, & |
---|
3854 | status, ierr ) |
---|
3855 | |
---|
3856 | ENDIF |
---|
3857 | |
---|
3858 | CALL MPI_BCAST( zuf,nzf+2,MPI_REAL, 0, comm2d, ierr ) |
---|
3859 | CALL MPI_BCAST( zwf,nzf+2,MPI_REAL, 0, comm2d, ierr ) |
---|
3860 | |
---|
3861 | ELSEIF ( coupling_mode == 'vnested_fine' ) THEN |
---|
3862 | |
---|
3863 | ! |
---|
3864 | !-- Check if stretching is used within the nested domain |
---|
3865 | IF ( number_stretch_level_start > 0 ) THEN |
---|
3866 | message_string = 'Stretching in the nested domain is not '//& |
---|
3867 | 'allowed' |
---|
3868 | CALL message( 'vnest_init_grid', 'PA0498', 1, 2, 0, 6, 0 ) |
---|
3869 | ENDIF |
---|
3870 | |
---|
3871 | zuf = zu |
---|
3872 | zwf = zw |
---|
3873 | |
---|
3874 | IF ( myid == 0 ) THEN |
---|
3875 | |
---|
3876 | CALL MPI_RECV( zuc,nzc+2, MPI_REAL, 0, 41, comm_inter, status, & |
---|
3877 | ierr ) |
---|
3878 | CALL MPI_SEND( zuf,nzt+2, MPI_REAL, 0, 42, comm_inter, ierr ) |
---|
3879 | |
---|
3880 | CALL MPI_RECV( zwc,nzc+2, MPI_REAL, 0, 43, comm_inter, status, & |
---|
3881 | ierr ) |
---|
3882 | CALL MPI_SEND( zwf,nzt+2, MPI_REAL, 0, 44, comm_inter, ierr ) |
---|
3883 | ENDIF |
---|
3884 | |
---|
3885 | CALL MPI_BCAST( zuc,nzc+2,MPI_REAL, 0, comm2d, ierr ) |
---|
3886 | CALL MPI_BCAST( zwc,nzc+2,MPI_REAL, 0, comm2d, ierr ) |
---|
3887 | |
---|
3888 | ENDIF |
---|
3889 | ENDIF |
---|
3890 | |
---|
3891 | #endif |
---|
3892 | END SUBROUTINE vnest_init_grid |
---|
3893 | |
---|
3894 | |
---|
3895 | SUBROUTINE vnest_check_parameters |
---|
3896 | #if defined( __parallel ) |
---|
3897 | |
---|
3898 | USE pegrid, & |
---|
3899 | ONLY: myid |
---|
3900 | |
---|
3901 | IMPLICIT NONE |
---|
3902 | |
---|
3903 | IF (myid==0) PRINT*, '*** vnest: check parameters not implemented yet ***' |
---|
3904 | |
---|
3905 | #endif |
---|
3906 | END SUBROUTINE vnest_check_parameters |
---|
3907 | |
---|
3908 | |
---|
3909 | SUBROUTINE vnest_timestep_sync |
---|
3910 | |
---|
3911 | #if defined( __parallel ) |
---|
3912 | USE control_parameters, & |
---|
3913 | ONLY: coupling_mode, dt_3d |
---|
3914 | |
---|
3915 | USE interfaces |
---|
3916 | |
---|
3917 | USE kinds |
---|
3918 | |
---|
3919 | USE pegrid |
---|
3920 | |
---|
3921 | IMPLICIT NONE |
---|
3922 | |
---|
3923 | IF ( coupling_mode == 'vnested_crse') THEN |
---|
3924 | dtc = dt_3d |
---|
3925 | if (myid == 0) then |
---|
3926 | CALL MPI_SEND( dt_3d, 1, MPI_REAL, target_id, & |
---|
3927 | 31, comm_inter, ierr ) |
---|
3928 | CALL MPI_RECV( dtf, 1, MPI_REAL, & |
---|
3929 | target_id, 32, comm_inter, status, ierr ) |
---|
3930 | |
---|
3931 | endif |
---|
3932 | CALL MPI_BCAST( dtf, 1, MPI_REAL, 0, comm2d, ierr ) |
---|
3933 | ELSE |
---|
3934 | dtf = dt_3d |
---|
3935 | if (myid == 0) then |
---|
3936 | CALL MPI_RECV( dtc, 1, MPI_REAL, & |
---|
3937 | target_id, 31, comm_inter, status, ierr ) |
---|
3938 | CALL MPI_SEND( dt_3d, 1, MPI_REAL, target_id, & |
---|
3939 | 32, comm_inter, ierr ) |
---|
3940 | |
---|
3941 | endif |
---|
3942 | CALL MPI_BCAST( dtc, 1, MPI_REAL, 0, comm2d, ierr ) |
---|
3943 | |
---|
3944 | ENDIF |
---|
3945 | !-- Identical timestep for coarse and fine grids |
---|
3946 | dt_3d = MIN( dtc, dtf ) |
---|
3947 | #endif |
---|
3948 | END SUBROUTINE vnest_timestep_sync |
---|
3949 | |
---|
3950 | SUBROUTINE vnest_deallocate |
---|
3951 | #if defined( __parallel ) |
---|
3952 | USE control_parameters, & |
---|
3953 | ONLY: coupling_mode |
---|
3954 | |
---|
3955 | IMPLICIT NONE |
---|
3956 | |
---|
3957 | IF ( ALLOCATED(c_rnk_lst) ) DEALLOCATE (c_rnk_lst) |
---|
3958 | IF ( ALLOCATED(f_rnk_lst) ) DEALLOCATE (f_rnk_lst) |
---|
3959 | |
---|
3960 | IF ( coupling_mode == 'vnested_crse') THEN |
---|
3961 | IF ( ALLOCATED (c2f_dims_cg) ) DEALLOCATE (c2f_dims_cg) |
---|
3962 | IF ( ALLOCATED (f2c_dims_cg) ) DEALLOCATE (f2c_dims_cg) |
---|
3963 | ELSEIF( coupling_mode == 'vnested_fine' ) THEN |
---|
3964 | IF ( ALLOCATED (c2f_dims_fg) ) DEALLOCATE (c2f_dims_fg) |
---|
3965 | IF ( ALLOCATED (f2c_dims_fg) ) DEALLOCATE (f2c_dims_fg) |
---|
3966 | ENDIF |
---|
3967 | #endif |
---|
3968 | END SUBROUTINE vnest_deallocate |
---|
3969 | |
---|
3970 | END MODULE vertical_nesting_mod |
---|