1 | !> @file vertical_nesting_mod.f90 |
---|
2 | !------------------------------------------------------------------------------! |
---|
3 | ! This file is part of the PALM model system. |
---|
4 | ! |
---|
5 | ! PALM is free software: you can redistribute it and/or modify it under the |
---|
6 | ! terms of the GNU General Public License as published by the Free Software |
---|
7 | ! Foundation, either version 3 of the License, or (at your option) any later |
---|
8 | ! version. |
---|
9 | ! |
---|
10 | ! PALM is distributed in the hope that it will be useful, but WITHOUT ANY |
---|
11 | ! WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR |
---|
12 | ! A PARTICULAR PURPOSE. See the GNU General Public License for more details. |
---|
13 | ! |
---|
14 | ! You should have received a copy of the GNU General Public License along with |
---|
15 | ! PALM. If not, see <http://www.gnu.org/licenses/>. |
---|
16 | ! |
---|
17 | ! Copyright 1997-2019 Leibniz Universitaet Hannover |
---|
18 | ! Copyright 2017-2018 Karlsruhe Institute of Technology |
---|
19 | !------------------------------------------------------------------------------! |
---|
20 | ! |
---|
21 | ! Current revisions: |
---|
22 | ! ----------------- |
---|
23 | ! |
---|
24 | ! |
---|
25 | ! Former revisions: |
---|
26 | ! ----------------- |
---|
27 | ! $Id: vertical_nesting_mod.f90 3802 2019-03-17 13:33:42Z pavelkrc $ |
---|
28 | ! unused subroutines commented out |
---|
29 | ! |
---|
30 | ! 3655 2019-01-07 16:51:22Z knoop |
---|
31 | ! unused variables removed |
---|
32 | ! |
---|
33 | ! 3232 2018-09-07 12:21:44Z raasch |
---|
34 | ! references to mrun replaced by palmrun, and updated |
---|
35 | ! |
---|
36 | ! 3083 2018-06-19 14:03:12Z gronemeier |
---|
37 | ! Error messages revised |
---|
38 | ! |
---|
39 | ! 3065 2018-06-12 07:03:02Z Giersch |
---|
40 | ! dz was replaced by dz(1), error messages related to vertical grid stretching |
---|
41 | ! have been added |
---|
42 | ! |
---|
43 | ! 3049 2018-05-29 13:52:36Z Giersch |
---|
44 | ! Error messages revised |
---|
45 | ! |
---|
46 | ! 3045 2018-05-28 07:55:41Z Giersch |
---|
47 | ! Error message revised |
---|
48 | ! |
---|
49 | ! 2718 2018-01-02 08:49:38Z maronga |
---|
50 | ! Corrected "Former revisions" section |
---|
51 | ! |
---|
52 | ! 2712 2017-12-20 17:32:50Z kanani |
---|
53 | ! Formatting and clean-up (SadiqHuq) |
---|
54 | ! |
---|
55 | ! 2696 2017-12-14 17:12:51Z kanani |
---|
56 | ! Change in file header (GPL part) |
---|
57 | ! Renamed diffusivities to tcm_diffusivities (TG) |
---|
58 | ! |
---|
59 | ! 2516 2017-10-04 11:03:04Z suehring |
---|
60 | ! Remove tabs |
---|
61 | ! |
---|
62 | ! 2514 2017-10-04 09:52:37Z suehring |
---|
63 | ! Remove tabs |
---|
64 | ! |
---|
65 | ! 2514 2017-10-04 09:52:37Z suehring |
---|
66 | ! Added todo list |
---|
67 | ! |
---|
68 | ! 2365 2017-08-21 14:59:59Z kanani |
---|
69 | ! Initial revision (SadiqHuq) |
---|
70 | ! |
---|
71 | ! |
---|
72 | ! |
---|
73 | ! |
---|
74 | ! Description: |
---|
75 | ! ------------ |
---|
76 | !> Module for vertical nesting. |
---|
77 | !> |
---|
78 | !> Definition of parameters and variables for vertical nesting |
---|
79 | !> The horizontal extent of the parent (Coarse Grid) and the child (Fine Grid) |
---|
80 | !> have to be identical. The vertical extent of the FG should be smaller than CG. |
---|
81 | !> Only integer nesting ratio supported. Odd nesting ratio preferred |
---|
82 | !> The code follows MPI-1 standards. The available processors are split into |
---|
83 | !> two groups using MPI_COMM_SPLIT. Exchange of data from CG to FG is called |
---|
84 | !> interpolation. FG initialization by interpolation is done once at the start. |
---|
85 | !> FG boundary conditions are set by interpolated at every timestep. |
---|
86 | !> Exchange of data from CG to FG is called anterpolation, the two-way interaction |
---|
87 | !> occurs at every timestep. |
---|
88 | !> vnest_start_time set in PARIN allows delayed start of the coupling |
---|
89 | !> after spin-up of the CG |
---|
90 | !> |
---|
91 | !> @todo Replace dz(1) appropriatly to account for grid stretching |
---|
92 | !> @todo Ensure that code can be compiled for serial and parallel mode. Please |
---|
93 | !> check the placement of the directive "__parallel". |
---|
94 | !> @todo Add descriptions for all declared variables/parameters, one declaration |
---|
95 | !> statement per variable |
---|
96 | !> @todo Add a descriptive header above each subroutine (see land_surface_model) |
---|
97 | !> @todo FORTRAN language statements must not be used as names for variables |
---|
98 | !> (e.g. if). Please rename it. |
---|
99 | !> @todo Revise code according to PALM Coding Standard |
---|
100 | !------------------------------------------------------------------------------! |
---|
101 | MODULE vertical_nesting_mod |
---|
102 | |
---|
103 | USE kinds |
---|
104 | |
---|
105 | IMPLICIT NONE |
---|
106 | |
---|
107 | LOGICAL :: vnested = .FALSE. !> set to true if palmrun |
---|
108 | !> provides specific information via stdin |
---|
109 | LOGICAL :: vnest_init = .FALSE. !> set to true when FG is initialized |
---|
110 | REAL(wp) :: vnest_start_time = 9999999.9 !> simulated time when FG should be |
---|
111 | !> initialized. Should be |
---|
112 | !> identical in PARIN & PARIN_N |
---|
113 | |
---|
114 | |
---|
115 | |
---|
116 | INTEGER(iwp),DIMENSION(3,2) :: bdims = 0 !> sub-domain grid topology of current PE |
---|
117 | INTEGER(iwp),DIMENSION(3,2) :: bdims_rem = 0 !> sub-domain grid topology of partner PE |
---|
118 | INTEGER(iwp) :: cg_nprocs !> no. of PE in CG. Set by palmrun -Y |
---|
119 | INTEGER(iwp) :: fg_nprocs !> no. of PE in FG. Set by palmrun -Y |
---|
120 | INTEGER(iwp) :: TYPE_VNEST_BC !> derived contiguous data type for interpolation |
---|
121 | INTEGER(iwp) :: TYPE_VNEST_ANTER !> derived contiguous data type for anterpolation |
---|
122 | INTEGER(iwp),DIMENSION(:,:,:),ALLOCATABLE :: c2f_dims_cg !> One CG PE sends data to multiple FG PEs |
---|
123 | !> list of grid-topology of partners |
---|
124 | INTEGER(iwp),DIMENSION(:,:,:),ALLOCATABLE :: f2c_dims_cg !> One CG PE receives data from multiple FG PEs |
---|
125 | !> list of grid-topology of partners |
---|
126 | INTEGER(iwp),DIMENSION(:),ALLOCATABLE :: c2f_dims_fg !> One FG PE sends data to multiple CG PE |
---|
127 | !> list of grid-topology of partner |
---|
128 | INTEGER(iwp),DIMENSION(:),ALLOCATABLE :: f2c_dims_fg !> One FG PE sends data to only one CG PE |
---|
129 | !> list of grid-topology of partner |
---|
130 | |
---|
131 | INTEGER(iwp),DIMENSION(:,:),ALLOCATABLE :: f_rnk_lst !> list storing rank of FG PE denoted by pdims |
---|
132 | INTEGER(iwp),DIMENSION(:,:),ALLOCATABLE :: c_rnk_lst !> list storing rank of CG PE denoted by pdims |
---|
133 | INTEGER(iwp),DIMENSION(3) :: cfratio !> Nesting ratio in x,y and z-directions |
---|
134 | |
---|
135 | INTEGER(iwp) :: nxc !> no. of CG grid points in x-direction |
---|
136 | INTEGER(iwp) :: nxf !> no. of FG grid points in x-direction |
---|
137 | INTEGER(iwp) :: nyc !> no. of CG grid points in y-direction |
---|
138 | INTEGER(iwp) :: nyf !> no. of FG grid points in y-direction |
---|
139 | INTEGER(iwp) :: nzc !> no. of CG grid points in z-direction |
---|
140 | INTEGER(iwp) :: nzf !> no. of FG grid points in z-direction |
---|
141 | INTEGER(iwp) :: ngp_c !> no. of CG grid points in one vertical level |
---|
142 | INTEGER(iwp) :: ngp_f !> no. of FG grid points in one vertical level |
---|
143 | |
---|
144 | INTEGER(iwp) :: n_cell_c !> total no. of CG grid points in a PE |
---|
145 | INTEGER(iwp),DIMENSION(2) :: pdims_partner !> processor topology of partner PE |
---|
146 | INTEGER(iwp) :: target_idex !> temporary variable |
---|
147 | INTEGER(iwp),DIMENSION(2) :: offset !> temporary variable |
---|
148 | INTEGER(iwp),DIMENSION(2) :: map_coord !> temporary variable |
---|
149 | |
---|
150 | REAL(wp) :: dxc !> CG grid pacing in x-direction |
---|
151 | REAL(wp) :: dyc !> FG grid pacing in x-direction |
---|
152 | REAL(wp) :: dxf !> CG grid pacing in y-direction |
---|
153 | REAL(wp) :: dyf !> FG grid pacing in y-direction |
---|
154 | REAL(wp) :: dzc !> CG grid pacing in z-direction |
---|
155 | REAL(wp) :: dzf !> FG grid pacing in z-direction |
---|
156 | REAL(wp) :: dtc !> dt calculated for CG |
---|
157 | REAL(wp) :: dtf !> dt calculated for FG |
---|
158 | |
---|
159 | REAL(wp), DIMENSION(:), ALLOCATABLE :: zuc !> CG vertical u-levels |
---|
160 | REAL(wp), DIMENSION(:), ALLOCATABLE :: zuf !> FG vertical u-levels |
---|
161 | REAL(wp), DIMENSION(:), ALLOCATABLE :: zwc !> CG vertical w-levels |
---|
162 | REAL(wp), DIMENSION(:), ALLOCATABLE :: zwf !> FG vertical w-levels |
---|
163 | REAL(wp), DIMENSION(:,:,:), POINTER :: interpol3d !> pointers to simplify function calls |
---|
164 | REAL(wp), DIMENSION(:,:,:), POINTER :: anterpol3d !> pointers to simplify function calls |
---|
165 | |
---|
166 | |
---|
167 | REAL(wp),DIMENSION(:,:,:), ALLOCATABLE :: work3d !> temporary array for exchange of 3D data |
---|
168 | REAL(wp),DIMENSION(:,:), ALLOCATABLE :: work2dusws !> temporary array for exchange of 2D data |
---|
169 | REAL(wp),DIMENSION(:,:), ALLOCATABLE :: work2dvsws !> temporary array for exchange of 2D data |
---|
170 | REAL(wp),DIMENSION(:,:), ALLOCATABLE :: work2dts !> temporary array for exchange of 2D data |
---|
171 | REAL(wp),DIMENSION(:,:), ALLOCATABLE :: work2dus !> temporary array for exchange of 2D data |
---|
172 | |
---|
173 | SAVE |
---|
174 | |
---|
175 | !-- Public functions |
---|
176 | PUBLIC vnest_init_fine, vnest_boundary_conds, vnest_anterpolate, & |
---|
177 | vnest_boundary_conds_khkm, vnest_anterpolate_e, & |
---|
178 | vnest_init_pegrid_rank, vnest_init_pegrid_domain, vnest_init_grid, & |
---|
179 | vnest_timestep_sync, vnest_deallocate |
---|
180 | |
---|
181 | !-- Public constants and variables |
---|
182 | PUBLIC vnested, vnest_init, vnest_start_time |
---|
183 | |
---|
184 | PRIVATE bdims, bdims_rem, & |
---|
185 | work3d, work2dusws, work2dvsws, work2dts, work2dus, & |
---|
186 | dxc, dyc, dxf, dyf, dzc, dzf, dtc, dtf, & |
---|
187 | zuc, zuf, zwc, zwf, interpol3d, anterpol3d, & |
---|
188 | cg_nprocs, fg_nprocs, & |
---|
189 | c2f_dims_cg, c2f_dims_fg, f2c_dims_cg, f2c_dims_fg, & |
---|
190 | f_rnk_lst, c_rnk_lst, cfratio, pdims_partner, & |
---|
191 | nxc, nxf, nyc, nyf, nzc, nzf, & |
---|
192 | ngp_c, ngp_f, target_idex, n_cell_c, & |
---|
193 | offset, map_coord, TYPE_VNEST_BC, TYPE_VNEST_ANTER |
---|
194 | |
---|
195 | INTERFACE vnest_anterpolate |
---|
196 | MODULE PROCEDURE vnest_anterpolate |
---|
197 | END INTERFACE vnest_anterpolate |
---|
198 | |
---|
199 | INTERFACE vnest_anterpolate_e |
---|
200 | MODULE PROCEDURE vnest_anterpolate_e |
---|
201 | END INTERFACE vnest_anterpolate_e |
---|
202 | |
---|
203 | INTERFACE vnest_boundary_conds |
---|
204 | MODULE PROCEDURE vnest_boundary_conds |
---|
205 | END INTERFACE vnest_boundary_conds |
---|
206 | |
---|
207 | INTERFACE vnest_boundary_conds_khkm |
---|
208 | MODULE PROCEDURE vnest_boundary_conds_khkm |
---|
209 | END INTERFACE vnest_boundary_conds_khkm |
---|
210 | |
---|
211 | INTERFACE vnest_check_parameters |
---|
212 | MODULE PROCEDURE vnest_check_parameters |
---|
213 | END INTERFACE vnest_check_parameters |
---|
214 | |
---|
215 | INTERFACE vnest_deallocate |
---|
216 | MODULE PROCEDURE vnest_deallocate |
---|
217 | END INTERFACE vnest_deallocate |
---|
218 | |
---|
219 | INTERFACE vnest_init_fine |
---|
220 | MODULE PROCEDURE vnest_init_fine |
---|
221 | END INTERFACE vnest_init_fine |
---|
222 | |
---|
223 | INTERFACE vnest_init_grid |
---|
224 | MODULE PROCEDURE vnest_init_grid |
---|
225 | END INTERFACE vnest_init_grid |
---|
226 | |
---|
227 | INTERFACE vnest_init_pegrid_domain |
---|
228 | MODULE PROCEDURE vnest_init_pegrid_domain |
---|
229 | END INTERFACE vnest_init_pegrid_domain |
---|
230 | |
---|
231 | INTERFACE vnest_init_pegrid_rank |
---|
232 | MODULE PROCEDURE vnest_init_pegrid_rank |
---|
233 | END INTERFACE vnest_init_pegrid_rank |
---|
234 | |
---|
235 | INTERFACE vnest_timestep_sync |
---|
236 | MODULE PROCEDURE vnest_timestep_sync |
---|
237 | END INTERFACE vnest_timestep_sync |
---|
238 | |
---|
239 | CONTAINS |
---|
240 | |
---|
241 | |
---|
242 | |
---|
243 | SUBROUTINE vnest_init_fine |
---|
244 | #if defined( __parallel ) |
---|
245 | |
---|
246 | !--------------------------------------------------------------------------------! |
---|
247 | ! Description: |
---|
248 | ! ------------ |
---|
249 | ! At the specified vnest_start_time initialize the Fine Grid based on the coarse |
---|
250 | ! grid values |
---|
251 | !------------------------------------------------------------------------------! |
---|
252 | |
---|
253 | |
---|
254 | USE arrays_3d |
---|
255 | USE control_parameters |
---|
256 | USE grid_variables |
---|
257 | USE indices |
---|
258 | USE interfaces |
---|
259 | USE pegrid |
---|
260 | USE turbulence_closure_mod, & |
---|
261 | ONLY : tcm_diffusivities |
---|
262 | |
---|
263 | |
---|
264 | IMPLICIT NONE |
---|
265 | |
---|
266 | REAL(wp) :: time_since_reference_point_rem |
---|
267 | INTEGER(iwp) :: i |
---|
268 | INTEGER(iwp) :: j |
---|
269 | INTEGER(iwp) :: iif |
---|
270 | INTEGER(iwp) :: jjf |
---|
271 | INTEGER(iwp) :: kkf |
---|
272 | |
---|
273 | |
---|
274 | if (myid ==0 ) print *, ' TIME TO INIT FINE from COARSE', simulated_time |
---|
275 | |
---|
276 | ! |
---|
277 | !-- In case of model termination initiated by the remote model |
---|
278 | !-- (terminate_coupled_remote > 0), initiate termination of the local model. |
---|
279 | !-- The rest of the coupler must then be skipped because it would cause an MPI |
---|
280 | !-- intercomminucation hang. |
---|
281 | !-- If necessary, the coupler will be called at the beginning of the next |
---|
282 | !-- restart run. |
---|
283 | |
---|
284 | IF ( myid == 0) THEN |
---|
285 | CALL MPI_SENDRECV( terminate_coupled, 1, MPI_INTEGER, & |
---|
286 | target_id, 0, & |
---|
287 | terminate_coupled_remote, 1, MPI_INTEGER, & |
---|
288 | target_id, 0, & |
---|
289 | comm_inter, status, ierr ) |
---|
290 | ENDIF |
---|
291 | CALL MPI_BCAST( terminate_coupled_remote, 1, MPI_INTEGER, 0, comm2d, & |
---|
292 | ierr ) |
---|
293 | |
---|
294 | IF ( terminate_coupled_remote > 0 ) THEN |
---|
295 | WRITE( message_string, * ) 'remote model "', & |
---|
296 | TRIM( coupling_mode_remote ), & |
---|
297 | '" terminated', & |
---|
298 | '&with terminate_coupled_remote = ', & |
---|
299 | terminate_coupled_remote, & |
---|
300 | '&local model "', TRIM( coupling_mode ), & |
---|
301 | '" has', & |
---|
302 | '&terminate_coupled = ', & |
---|
303 | terminate_coupled |
---|
304 | CALL message( 'vnest_init_fine', 'PA0310', 1, 2, 0, 6, 0 ) |
---|
305 | RETURN |
---|
306 | ENDIF |
---|
307 | |
---|
308 | |
---|
309 | ! |
---|
310 | !-- Exchange the current simulated time between the models, |
---|
311 | !-- currently just for total_2ding |
---|
312 | IF ( myid == 0 ) THEN |
---|
313 | |
---|
314 | CALL MPI_SEND( time_since_reference_point, 1, MPI_REAL, target_id, & |
---|
315 | 11, comm_inter, ierr ) |
---|
316 | CALL MPI_RECV( time_since_reference_point_rem, 1, MPI_REAL, & |
---|
317 | target_id, 11, comm_inter, status, ierr ) |
---|
318 | |
---|
319 | ENDIF |
---|
320 | |
---|
321 | CALL MPI_BCAST( time_since_reference_point_rem, 1, MPI_REAL, 0, comm2d, & |
---|
322 | ierr ) |
---|
323 | |
---|
324 | |
---|
325 | IF ( coupling_mode == 'vnested_crse' ) THEN |
---|
326 | !-- Send data to fine grid for initialization |
---|
327 | |
---|
328 | offset(1) = ( pdims_partner(1) / pdims(1) ) * pcoord(1) |
---|
329 | offset(2) = ( pdims_partner(2) / pdims(2) ) * pcoord(2) |
---|
330 | |
---|
331 | do j = 0, ( pdims_partner(2) / pdims(2) ) - 1 |
---|
332 | do i = 0, ( pdims_partner(1) / pdims(1) ) - 1 |
---|
333 | map_coord(1) = i+offset(1) |
---|
334 | map_coord(2) = j+offset(2) |
---|
335 | |
---|
336 | target_idex = f_rnk_lst(map_coord(1),map_coord(2)) + numprocs |
---|
337 | |
---|
338 | CALL MPI_RECV( bdims_rem, 6, MPI_INTEGER, target_idex, 10, & |
---|
339 | comm_inter,status, ierr ) |
---|
340 | |
---|
341 | bdims (1,1) = bdims_rem (1,1) / cfratio(1) |
---|
342 | bdims (1,2) = bdims_rem (1,2) / cfratio(1) |
---|
343 | bdims (2,1) = bdims_rem (2,1) / cfratio(2) |
---|
344 | bdims (2,2) = bdims_rem (2,2) / cfratio(2) |
---|
345 | bdims (3,1) = bdims_rem (3,1) |
---|
346 | bdims (3,2) = bdims_rem (3,2) / cfratio(3) |
---|
347 | |
---|
348 | |
---|
349 | CALL MPI_SEND( bdims, 6, MPI_INTEGER, target_idex, 9, & |
---|
350 | comm_inter, ierr ) |
---|
351 | |
---|
352 | |
---|
353 | n_cell_c = (bdims(1,2)-bdims(1,1)+3) * & |
---|
354 | (bdims(2,2)-bdims(2,1)+3) * & |
---|
355 | (bdims(3,2)-bdims(3,1)+3) |
---|
356 | |
---|
357 | CALL MPI_SEND( u( bdims(3,1):bdims(3,2)+2, & |
---|
358 | bdims(2,1)-1:bdims(2,2)+1, & |
---|
359 | bdims(1,1)-1:bdims(1,2)+1),& |
---|
360 | n_cell_c, MPI_REAL, target_idex, & |
---|
361 | 101, comm_inter, ierr) |
---|
362 | |
---|
363 | CALL MPI_SEND( v( bdims(3,1):bdims(3,2)+2, & |
---|
364 | bdims(2,1)-1:bdims(2,2)+1, & |
---|
365 | bdims(1,1)-1:bdims(1,2)+1),& |
---|
366 | n_cell_c, MPI_REAL, target_idex, & |
---|
367 | 102, comm_inter, ierr) |
---|
368 | |
---|
369 | CALL MPI_SEND( w( bdims(3,1):bdims(3,2)+2, & |
---|
370 | bdims(2,1)-1:bdims(2,2)+1, & |
---|
371 | bdims(1,1)-1:bdims(1,2)+1),& |
---|
372 | n_cell_c, MPI_REAL, target_idex, & |
---|
373 | 103, comm_inter, ierr) |
---|
374 | |
---|
375 | CALL MPI_SEND( pt(bdims(3,1):bdims(3,2)+2, & |
---|
376 | bdims(2,1)-1:bdims(2,2)+1, & |
---|
377 | bdims(1,1)-1:bdims(1,2)+1),& |
---|
378 | n_cell_c, MPI_REAL, target_idex, & |
---|
379 | 105, comm_inter, ierr) |
---|
380 | |
---|
381 | IF ( humidity ) THEN |
---|
382 | CALL MPI_SEND( q(bdims(3,1):bdims(3,2)+2, & |
---|
383 | bdims(2,1)-1:bdims(2,2)+1, & |
---|
384 | bdims(1,1)-1:bdims(1,2)+1),& |
---|
385 | n_cell_c, MPI_REAL, target_idex, & |
---|
386 | 116, comm_inter, ierr) |
---|
387 | ENDIF |
---|
388 | |
---|
389 | CALL MPI_SEND( e( bdims(3,1):bdims(3,2)+2, & |
---|
390 | bdims(2,1)-1:bdims(2,2)+1, & |
---|
391 | bdims(1,1)-1:bdims(1,2)+1),& |
---|
392 | n_cell_c, MPI_REAL, target_idex, & |
---|
393 | 104, comm_inter, ierr) |
---|
394 | |
---|
395 | CALL MPI_SEND(kh( bdims(3,1):bdims(3,2)+2, & |
---|
396 | bdims(2,1)-1:bdims(2,2)+1, & |
---|
397 | bdims(1,1)-1:bdims(1,2)+1),& |
---|
398 | n_cell_c, MPI_REAL, target_idex, & |
---|
399 | 106, comm_inter, ierr) |
---|
400 | |
---|
401 | CALL MPI_SEND(km( bdims(3,1):bdims(3,2)+2, & |
---|
402 | bdims(2,1)-1:bdims(2,2)+1, & |
---|
403 | bdims(1,1)-1:bdims(1,2)+1),& |
---|
404 | n_cell_c, MPI_REAL, target_idex, & |
---|
405 | 107, comm_inter, ierr) |
---|
406 | |
---|
407 | !-- Send Surface fluxes |
---|
408 | IF ( use_surface_fluxes ) THEN |
---|
409 | |
---|
410 | n_cell_c = (bdims(1,2)-bdims(1,1)+3) * & |
---|
411 | (bdims(2,2)-bdims(2,1)+3) |
---|
412 | |
---|
413 | ! |
---|
414 | !-- shf and z0 for CG / FG need to initialized in input file or user_code |
---|
415 | !-- TODO |
---|
416 | !-- initialization of usws, vsws, ts and us not vital to vnest FG |
---|
417 | !-- variables are not compatible with the new surface layer module |
---|
418 | ! |
---|
419 | ! CALL MPI_SEND(surf_def_h(0)%usws( bdims(2,1)-1:bdims(2,2)+1, & |
---|
420 | ! bdims(1,1)-1:bdims(1,2)+1),& |
---|
421 | ! n_cell_c, MPI_REAL, target_idex, & |
---|
422 | ! 110, comm_inter, ierr ) |
---|
423 | ! |
---|
424 | ! CALL MPI_SEND(surf_def_h(0)%vsws( bdims(2,1)-1:bdims(2,2)+1, & |
---|
425 | ! bdims(1,1)-1:bdims(1,2)+1),& |
---|
426 | ! n_cell_c, MPI_REAL, target_idex, & |
---|
427 | ! 111, comm_inter, ierr ) |
---|
428 | ! |
---|
429 | ! CALL MPI_SEND(ts ( bdims(2,1)-1:bdims(2,2)+1, & |
---|
430 | ! bdims(1,1)-1:bdims(1,2)+1),& |
---|
431 | ! n_cell_c, MPI_REAL, target_idex, & |
---|
432 | ! 112, comm_inter, ierr ) |
---|
433 | ! |
---|
434 | ! CALL MPI_SEND(us ( bdims(2,1)-1:bdims(2,2)+1, & |
---|
435 | ! bdims(1,1)-1:bdims(1,2)+1),& |
---|
436 | ! n_cell_c, MPI_REAL, target_idex, & |
---|
437 | ! 113, comm_inter, ierr ) |
---|
438 | ! |
---|
439 | ENDIF |
---|
440 | |
---|
441 | |
---|
442 | |
---|
443 | |
---|
444 | end do |
---|
445 | end do |
---|
446 | |
---|
447 | ELSEIF ( coupling_mode == 'vnested_fine' ) THEN |
---|
448 | !-- Receive data from coarse grid for initialization |
---|
449 | |
---|
450 | offset(1) = pcoord(1) / ( pdims(1)/pdims_partner(1) ) |
---|
451 | offset(2) = pcoord(2) / ( pdims(2)/pdims_partner(2) ) |
---|
452 | map_coord(1) = offset(1) |
---|
453 | map_coord(2) = offset(2) |
---|
454 | target_idex = c_rnk_lst(map_coord(1),map_coord(2)) |
---|
455 | |
---|
456 | bdims (1,1) = nxl |
---|
457 | bdims (1,2) = nxr |
---|
458 | bdims (2,1) = nys |
---|
459 | bdims (2,2) = nyn |
---|
460 | bdims (3,1) = nzb |
---|
461 | bdims (3,2) = nzt |
---|
462 | |
---|
463 | CALL MPI_SEND( bdims, 6, MPI_INTEGER, target_idex, 10, & |
---|
464 | comm_inter, ierr ) |
---|
465 | |
---|
466 | CALL MPI_RECV( bdims_rem, 6, MPI_INTEGER, target_idex, 9, & |
---|
467 | comm_inter,status, ierr ) |
---|
468 | |
---|
469 | n_cell_c = (bdims_rem(1,2)-bdims_rem(1,1)+3) * & |
---|
470 | (bdims_rem(2,2)-bdims_rem(2,1)+3) * & |
---|
471 | (bdims_rem(3,2)-bdims_rem(3,1)+3) |
---|
472 | |
---|
473 | ALLOCATE( work3d ( bdims_rem(3,1) :bdims_rem(3,2)+2, & |
---|
474 | bdims_rem(2,1)-1:bdims_rem(2,2)+1, & |
---|
475 | bdims_rem(1,1)-1:bdims_rem(1,2)+1)) |
---|
476 | |
---|
477 | |
---|
478 | CALL MPI_RECV( work3d,n_cell_c, MPI_REAL, target_idex, 101, & |
---|
479 | comm_inter,status, ierr ) |
---|
480 | interpol3d => u |
---|
481 | call interpolate_to_fine_u |
---|
482 | |
---|
483 | CALL MPI_RECV( work3d,n_cell_c, MPI_REAL, target_idex, 102, & |
---|
484 | comm_inter,status, ierr ) |
---|
485 | interpol3d => v |
---|
486 | call interpolate_to_fine_v |
---|
487 | |
---|
488 | CALL MPI_RECV( work3d,n_cell_c, MPI_REAL, target_idex, 103, & |
---|
489 | comm_inter,status, ierr ) |
---|
490 | interpol3d => w |
---|
491 | call interpolate_to_fine_w |
---|
492 | |
---|
493 | CALL MPI_RECV( work3d,n_cell_c, MPI_REAL, target_idex, 105, & |
---|
494 | comm_inter,status, ierr ) |
---|
495 | interpol3d => pt |
---|
496 | call interpolate_to_fine_s |
---|
497 | |
---|
498 | IF ( humidity ) THEN |
---|
499 | CALL MPI_RECV( work3d,n_cell_c, MPI_REAL, target_idex, 116, & |
---|
500 | comm_inter,status, ierr ) |
---|
501 | interpol3d => q |
---|
502 | call interpolate_to_fine_s |
---|
503 | ENDIF |
---|
504 | |
---|
505 | CALL MPI_RECV( work3d,n_cell_c, MPI_REAL, target_idex, 104, & |
---|
506 | comm_inter,status, ierr ) |
---|
507 | interpol3d => e |
---|
508 | call interpolate_to_fine_s |
---|
509 | |
---|
510 | !-- kh,km no target attribute, use of pointer not possible |
---|
511 | CALL MPI_RECV( work3d,n_cell_c, MPI_REAL, target_idex, 106, & |
---|
512 | comm_inter,status, ierr ) |
---|
513 | call interpolate_to_fine_kh |
---|
514 | |
---|
515 | CALL MPI_RECV( work3d,n_cell_c, MPI_REAL, target_idex, 107, & |
---|
516 | comm_inter,status, ierr ) |
---|
517 | call interpolate_to_fine_km |
---|
518 | |
---|
519 | DEALLOCATE( work3d ) |
---|
520 | NULLIFY ( interpol3d ) |
---|
521 | |
---|
522 | !-- Recv Surface Fluxes |
---|
523 | IF ( use_surface_fluxes ) THEN |
---|
524 | n_cell_c = (bdims_rem(1,2)-bdims_rem(1,1)+3) * & |
---|
525 | (bdims_rem(2,2)-bdims_rem(2,1)+3) |
---|
526 | |
---|
527 | ALLOCATE( work2dusws ( bdims_rem(2,1)-1:bdims_rem(2,2)+1, & |
---|
528 | bdims_rem(1,1)-1:bdims_rem(1,2)+1) ) |
---|
529 | ALLOCATE( work2dvsws ( bdims_rem(2,1)-1:bdims_rem(2,2)+1, & |
---|
530 | bdims_rem(1,1)-1:bdims_rem(1,2)+1) ) |
---|
531 | ALLOCATE( work2dts ( bdims_rem(2,1)-1:bdims_rem(2,2)+1, & |
---|
532 | bdims_rem(1,1)-1:bdims_rem(1,2)+1) ) |
---|
533 | ALLOCATE( work2dus ( bdims_rem(2,1)-1:bdims_rem(2,2)+1, & |
---|
534 | bdims_rem(1,1)-1:bdims_rem(1,2)+1) ) |
---|
535 | |
---|
536 | ! |
---|
537 | !-- shf and z0 for CG / FG need to initialized in input file or user_code |
---|
538 | !-- TODO |
---|
539 | !-- initialization of usws, vsws, ts and us not vital to vnest FG |
---|
540 | !-- variables are not compatible with the new surface layer module |
---|
541 | ! |
---|
542 | ! CALL MPI_RECV( work2dusws,n_cell_c, MPI_REAL, target_idex, 110, & |
---|
543 | ! comm_inter,status, ierr ) |
---|
544 | ! |
---|
545 | ! CALL MPI_RECV( work2dvsws,n_cell_c, MPI_REAL, target_idex, 111, & |
---|
546 | ! comm_inter,status, ierr ) |
---|
547 | ! |
---|
548 | ! CALL MPI_RECV( work2dts ,n_cell_c, MPI_REAL, target_idex, 112, & |
---|
549 | ! comm_inter,status, ierr ) |
---|
550 | ! |
---|
551 | ! CALL MPI_RECV( work2dus ,n_cell_c, MPI_REAL, target_idex, 113, & |
---|
552 | ! comm_inter,status, ierr ) |
---|
553 | ! |
---|
554 | ! CALL interpolate_to_fine_flux ( 108 ) |
---|
555 | |
---|
556 | DEALLOCATE( work2dusws ) |
---|
557 | DEALLOCATE( work2dvsws ) |
---|
558 | DEALLOCATE( work2dts ) |
---|
559 | DEALLOCATE( work2dus ) |
---|
560 | ENDIF |
---|
561 | |
---|
562 | IF ( .NOT. constant_diffusion ) THEN |
---|
563 | DO kkf = bdims(3,1)+1,bdims(3,2)+1 |
---|
564 | DO jjf = bdims(2,1),bdims(2,2) |
---|
565 | DO iif = bdims(1,1),bdims(1,2) |
---|
566 | |
---|
567 | IF ( e(kkf,jjf,iif) < 0.0 ) THEN |
---|
568 | e(kkf,jjf,iif) = 1E-15_wp |
---|
569 | END IF |
---|
570 | |
---|
571 | END DO |
---|
572 | END DO |
---|
573 | END DO |
---|
574 | ENDIF |
---|
575 | |
---|
576 | w(nzt+1,:,:) = w(nzt,:,:) |
---|
577 | |
---|
578 | CALL exchange_horiz( u, nbgp ) |
---|
579 | CALL exchange_horiz( v, nbgp ) |
---|
580 | CALL exchange_horiz( w, nbgp ) |
---|
581 | CALL exchange_horiz( pt, nbgp ) |
---|
582 | IF ( .NOT. constant_diffusion ) CALL exchange_horiz( e, nbgp ) |
---|
583 | IF ( humidity ) CALL exchange_horiz( q, nbgp ) |
---|
584 | |
---|
585 | ! |
---|
586 | !-- Velocity boundary conditions at the bottom boundary |
---|
587 | IF ( ibc_uv_b == 0 ) THEN |
---|
588 | u(nzb,:,:) = 0.0_wp |
---|
589 | v(nzb,:,:) = 0.0_wp |
---|
590 | ELSE |
---|
591 | u(nzb,:,:) = u(nzb+1,:,:) |
---|
592 | v(nzb,:,:) = v(nzb+1,:,:) |
---|
593 | END IF |
---|
594 | |
---|
595 | |
---|
596 | w(nzb,:,:) = 0.0_wp |
---|
597 | |
---|
598 | ! |
---|
599 | !-- Temperature boundary conditions at the bottom boundary |
---|
600 | IF ( ibc_pt_b /= 0 ) THEN |
---|
601 | pt(nzb,:,:) = pt(nzb+1,:,:) |
---|
602 | END IF |
---|
603 | |
---|
604 | ! |
---|
605 | !-- Bottom boundary condition for the turbulent kinetic energy |
---|
606 | !-- Generally a Neumann condition with de/dz=0 is assumed |
---|
607 | IF ( .NOT. constant_diffusion ) THEN |
---|
608 | e(nzb,:,:) = e(nzb+1,:,:) |
---|
609 | END IF |
---|
610 | |
---|
611 | ! |
---|
612 | !-- Bottom boundary condition for turbulent diffusion coefficients |
---|
613 | km(nzb,:,:) = km(nzb+1,:,:) |
---|
614 | kh(nzb,:,:) = kh(nzb+1,:,:) |
---|
615 | |
---|
616 | !diffusivities required |
---|
617 | IF ( .NOT. humidity ) THEN |
---|
618 | CALL tcm_diffusivities( pt, pt_reference ) |
---|
619 | ELSE |
---|
620 | CALL tcm_diffusivities( vpt, pt_reference ) |
---|
621 | ENDIF |
---|
622 | |
---|
623 | |
---|
624 | ! |
---|
625 | !-- Reset Fine Grid top Boundary Condition |
---|
626 | !-- At the top of the FG, the scalars always follow Dirichlet condition |
---|
627 | |
---|
628 | ibc_pt_t = 0 |
---|
629 | |
---|
630 | !-- Initialize old time levels |
---|
631 | pt_p = pt; u_p = u; v_p = v; w_p = w |
---|
632 | IF ( .NOT. constant_diffusion ) e_p = e |
---|
633 | IF ( humidity ) THEN |
---|
634 | ibc_q_t = 0 |
---|
635 | q_p = q |
---|
636 | ENDIF |
---|
637 | |
---|
638 | ENDIF |
---|
639 | |
---|
640 | |
---|
641 | if (myid==0) print *, '** Fine Initalized ** simulated_time:', simulated_time |
---|
642 | |
---|
643 | CONTAINS |
---|
644 | |
---|
645 | SUBROUTINE interpolate_to_fine_w |
---|
646 | |
---|
647 | USE arrays_3d |
---|
648 | USE control_parameters |
---|
649 | USE grid_variables |
---|
650 | USE indices |
---|
651 | USE pegrid |
---|
652 | |
---|
653 | |
---|
654 | IMPLICIT NONE |
---|
655 | |
---|
656 | INTEGER(iwp) :: i |
---|
657 | INTEGER(iwp) :: j |
---|
658 | INTEGER(iwp) :: k |
---|
659 | INTEGER(iwp) :: iif |
---|
660 | INTEGER(iwp) :: jjf |
---|
661 | INTEGER(iwp) :: kkf |
---|
662 | INTEGER(iwp) :: nzbottom |
---|
663 | INTEGER(iwp) :: nztop |
---|
664 | INTEGER(iwp) :: bottomx |
---|
665 | INTEGER(iwp) :: bottomy |
---|
666 | INTEGER(iwp) :: bottomz |
---|
667 | INTEGER(iwp) :: topx |
---|
668 | INTEGER(iwp) :: topy |
---|
669 | INTEGER(iwp) :: topz |
---|
670 | REAL(wp) :: eps |
---|
671 | REAL(wp) :: alpha |
---|
672 | REAL(wp) :: eminus |
---|
673 | REAL(wp) :: edot |
---|
674 | REAL(wp) :: eplus |
---|
675 | REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: wprs |
---|
676 | REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: wprf |
---|
677 | |
---|
678 | |
---|
679 | nzbottom = bdims_rem (3,1) |
---|
680 | nztop = bdims_rem (3,2) |
---|
681 | |
---|
682 | ALLOCATE( wprf(nzbottom:nztop, bdims_rem(2,1)-1: bdims_rem(2,2)+1,nxl:nxr) ) |
---|
683 | ALLOCATE( wprs(nzbottom:nztop,nys:nyn,nxl:nxr) ) |
---|
684 | |
---|
685 | |
---|
686 | ! |
---|
687 | !-- Initialisation of the velocity component w |
---|
688 | ! |
---|
689 | !-- Interpolation in x-direction |
---|
690 | DO k = nzbottom, nztop |
---|
691 | DO j = bdims_rem(2,1)-1, bdims_rem(2,2)+1 |
---|
692 | DO i = bdims_rem(1,1),bdims_rem(1,2) |
---|
693 | |
---|
694 | bottomx = (nxf+1)/(nxc+1) * i |
---|
695 | topx = (nxf+1)/(nxc+1) * (i+1) - 1 |
---|
696 | |
---|
697 | DO iif = bottomx, topx |
---|
698 | |
---|
699 | eps = ( iif * dxf + 0.5 * dxf - i * dxc - 0.5 * dxc ) / dxc |
---|
700 | alpha = ( ( dxf / dxc )**2.0 - 1.0 ) / 24.0 |
---|
701 | eminus = eps * ( eps - 1.0 ) / 2.0 + alpha |
---|
702 | edot = ( 1.0 - eps**2.0 ) - 2.0 * alpha |
---|
703 | eplus = eps * ( eps + 1.0 ) / 2.0 + alpha |
---|
704 | |
---|
705 | wprf(k,j,iif) = eminus * work3d(k,j,i-1) & |
---|
706 | + edot * work3d(k,j,i) & |
---|
707 | + eplus * work3d(k,j,i+1) |
---|
708 | END DO |
---|
709 | |
---|
710 | END DO |
---|
711 | END DO |
---|
712 | END DO |
---|
713 | |
---|
714 | ! |
---|
715 | !-- Interpolation in y-direction (quadratic, Clark and Farley) |
---|
716 | DO k = nzbottom, nztop |
---|
717 | DO j = bdims_rem(2,1), bdims_rem(2,2) |
---|
718 | |
---|
719 | bottomy = (nyf+1)/(nyc+1) * j |
---|
720 | topy = (nyf+1)/(nyc+1) * (j+1) - 1 |
---|
721 | |
---|
722 | DO iif = nxl, nxr |
---|
723 | DO jjf = bottomy, topy |
---|
724 | |
---|
725 | eps = ( jjf * dyf + 0.5 * dyf - j * dyc - 0.5 * dyc ) / dyc |
---|
726 | alpha = ( ( dyf / dyc )**2.0 - 1.0 ) / 24.0 |
---|
727 | eminus = eps * ( eps - 1.0 ) / 2.0 + alpha |
---|
728 | edot = ( 1.0 - eps**2.0 ) - 2.0 * alpha |
---|
729 | eplus = eps * ( eps + 1.0 ) / 2.0 + alpha |
---|
730 | |
---|
731 | wprs(k,jjf,iif) = eminus * wprf(k,j-1,iif) & |
---|
732 | + edot * wprf(k,j,iif) & |
---|
733 | + eplus * wprf(k,j+1,iif) |
---|
734 | |
---|
735 | END DO |
---|
736 | END DO |
---|
737 | |
---|
738 | END DO |
---|
739 | END DO |
---|
740 | |
---|
741 | ! |
---|
742 | !-- Interpolation in z-direction (linear) |
---|
743 | |
---|
744 | DO k = nzbottom, nztop-1 |
---|
745 | |
---|
746 | bottomz = (dzc/dzf) * k |
---|
747 | topz = (dzc/dzf) * (k+1) - 1 |
---|
748 | |
---|
749 | DO jjf = nys, nyn |
---|
750 | DO iif = nxl, nxr |
---|
751 | DO kkf = bottomz, topz |
---|
752 | |
---|
753 | w(kkf,jjf,iif) = wprs(k,jjf,iif) + ( zwf(kkf) - zwc(k) ) & |
---|
754 | * ( wprs(k+1,jjf,iif) - wprs(k,jjf,iif) ) / dzc |
---|
755 | |
---|
756 | END DO |
---|
757 | END DO |
---|
758 | END DO |
---|
759 | |
---|
760 | END DO |
---|
761 | |
---|
762 | DO jjf = nys, nyn |
---|
763 | DO iif = nxl, nxr |
---|
764 | |
---|
765 | w(nzt,jjf,iif) = wprs(nztop,jjf,iif) |
---|
766 | |
---|
767 | END DO |
---|
768 | END DO |
---|
769 | ! |
---|
770 | ! w(nzb:nzt+1,nys:nyn,nxl:nxr) = 0 |
---|
771 | |
---|
772 | DEALLOCATE( wprf, wprs ) |
---|
773 | |
---|
774 | END SUBROUTINE interpolate_to_fine_w |
---|
775 | |
---|
776 | SUBROUTINE interpolate_to_fine_u |
---|
777 | |
---|
778 | |
---|
779 | USE arrays_3d |
---|
780 | USE control_parameters |
---|
781 | USE grid_variables |
---|
782 | USE indices |
---|
783 | USE pegrid |
---|
784 | |
---|
785 | |
---|
786 | IMPLICIT NONE |
---|
787 | |
---|
788 | INTEGER(iwp) :: i |
---|
789 | INTEGER(iwp) :: j |
---|
790 | INTEGER(iwp) :: k |
---|
791 | INTEGER(iwp) :: iif |
---|
792 | INTEGER(iwp) :: jjf |
---|
793 | INTEGER(iwp) :: kkf |
---|
794 | INTEGER(iwp) :: nzbottom |
---|
795 | INTEGER(iwp) :: nztop |
---|
796 | INTEGER(iwp) :: bottomx |
---|
797 | INTEGER(iwp) :: bottomy |
---|
798 | INTEGER(iwp) :: bottomz |
---|
799 | INTEGER(iwp) :: topx |
---|
800 | INTEGER(iwp) :: topy |
---|
801 | INTEGER(iwp) :: topz |
---|
802 | REAL(wp) :: eps |
---|
803 | REAL(wp) :: alpha |
---|
804 | REAL(wp) :: eminus |
---|
805 | REAL(wp) :: edot |
---|
806 | REAL(wp) :: eplus |
---|
807 | REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: uprf |
---|
808 | REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: uprs |
---|
809 | |
---|
810 | |
---|
811 | |
---|
812 | nzbottom = bdims_rem (3,1) |
---|
813 | nztop = bdims_rem (3,2) |
---|
814 | |
---|
815 | ALLOCATE( uprf(nzbottom:nztop+2,nys:nyn,bdims_rem(1,1)-1:bdims_rem(1,2)+1) ) |
---|
816 | ALLOCATE( uprs(nzb+1:nzt+1,nys:nyn,bdims_rem(1,1)-1:bdims_rem(1,2)+1) ) |
---|
817 | |
---|
818 | ! |
---|
819 | !-- Initialisation of the velocity component uf |
---|
820 | |
---|
821 | ! |
---|
822 | !-- Interpolation in y-direction (quadratic, Clark and Farley) |
---|
823 | |
---|
824 | DO k = nzbottom, nztop+2 |
---|
825 | DO j = bdims_rem(2,1), bdims_rem(2,2) |
---|
826 | |
---|
827 | bottomy = (nyf+1)/(nyc+1) * j |
---|
828 | topy = (nyf+1)/(nyc+1) * (j+1) - 1 |
---|
829 | |
---|
830 | DO i = bdims_rem(1,1)-1, bdims_rem(1,2)+1 |
---|
831 | DO jjf = bottomy, topy |
---|
832 | |
---|
833 | eps = ( jjf * dyf + 0.5 * dyf - j * dyc - 0.5 * dyc ) / dyc |
---|
834 | alpha = ( ( dyf / dyc )**2.0 - 1.0 ) / 24.0 |
---|
835 | eminus = eps * ( eps - 1.0 ) / 2.0 + alpha |
---|
836 | edot = ( 1.0 - eps**2.0 ) - 2.0 * alpha |
---|
837 | eplus = eps * ( eps + 1.0 ) / 2.0 + alpha |
---|
838 | |
---|
839 | uprf(k,jjf,i) = eminus * work3d(k,j-1,i) & |
---|
840 | + edot * work3d(k,j,i) & |
---|
841 | + eplus * work3d(k,j+1,i) |
---|
842 | |
---|
843 | END DO |
---|
844 | END DO |
---|
845 | |
---|
846 | END DO |
---|
847 | END DO |
---|
848 | |
---|
849 | ! |
---|
850 | !-- Interpolation in z-direction (quadratic, Clark and Farley) |
---|
851 | |
---|
852 | DO k = nzbottom+1, nztop |
---|
853 | |
---|
854 | bottomz = (dzc/dzf) * (k-1) + 1 |
---|
855 | topz = (dzc/dzf) * k |
---|
856 | |
---|
857 | DO jjf = nys, nyn |
---|
858 | DO i = bdims_rem(1,1)-1, bdims_rem(1,2)+1 |
---|
859 | DO kkf = bottomz, topz |
---|
860 | |
---|
861 | eps = ( zuf(kkf) - zuc(k) ) / dzc |
---|
862 | alpha = ( ( dzf / dzc )**2.0 - 1.0 ) / 24.0 |
---|
863 | eminus = eps * ( eps - 1.0 ) / 2.0 + alpha |
---|
864 | edot = ( 1.0 - eps**2.0 ) - 2.0 * alpha |
---|
865 | eplus = eps * ( eps + 1.0 ) / 2.0 + alpha |
---|
866 | |
---|
867 | uprs(kkf,jjf,i) = eminus * uprf(k-1,jjf,i) & |
---|
868 | + edot * uprf(k,jjf,i) & |
---|
869 | + eplus * uprf(k+1,jjf,i) |
---|
870 | |
---|
871 | END DO |
---|
872 | END DO |
---|
873 | END DO |
---|
874 | |
---|
875 | END DO |
---|
876 | |
---|
877 | DO jjf = nys, nyn |
---|
878 | DO i = bdims_rem(1,1)-1, bdims_rem(1,2)+1 |
---|
879 | |
---|
880 | eps = ( zuf(nzt+1) - zuc(nztop+1) ) / dzc |
---|
881 | alpha = ( ( dzf / dzc )**2.0 - 1.0 ) / 24.0 |
---|
882 | eminus = eps * ( eps - 1.0 ) / 2.0 + alpha |
---|
883 | edot = ( 1.0 - eps**2.0 ) - 2.0 * alpha |
---|
884 | eplus = eps * ( eps + 1.0 ) / 2.0 + alpha |
---|
885 | |
---|
886 | uprs(nzt+1,jjf,i) = eminus * uprf(nztop,jjf,i) & |
---|
887 | + edot * uprf(nztop+1,jjf,i) & |
---|
888 | + eplus * uprf(nztop+2,jjf,i) |
---|
889 | |
---|
890 | END DO |
---|
891 | END DO |
---|
892 | |
---|
893 | ! |
---|
894 | !-- Interpolation in x-direction (linear) |
---|
895 | |
---|
896 | DO kkf = nzb+1, nzt+1 |
---|
897 | DO jjf = nys, nyn |
---|
898 | DO i = bdims_rem(1,1), bdims_rem(1,2) |
---|
899 | |
---|
900 | bottomx = (nxf+1)/(nxc+1) * i |
---|
901 | topx = (nxf+1)/(nxc+1) * (i+1) - 1 |
---|
902 | |
---|
903 | DO iif = bottomx, topx |
---|
904 | u(kkf,jjf,iif) = uprs(kkf,jjf,i) + ( iif * dxf - i * dxc ) & |
---|
905 | * ( uprs(kkf,jjf,i+1) - uprs(kkf,jjf,i) ) / dxc |
---|
906 | END DO |
---|
907 | |
---|
908 | END DO |
---|
909 | END DO |
---|
910 | END DO |
---|
911 | ! |
---|
912 | !-- Determination of uf at the bottom boundary |
---|
913 | |
---|
914 | |
---|
915 | |
---|
916 | DEALLOCATE( uprf, uprs ) |
---|
917 | |
---|
918 | END SUBROUTINE interpolate_to_fine_u |
---|
919 | |
---|
920 | |
---|
921 | SUBROUTINE interpolate_to_fine_v |
---|
922 | |
---|
923 | |
---|
924 | USE arrays_3d |
---|
925 | USE control_parameters |
---|
926 | USE grid_variables |
---|
927 | USE indices |
---|
928 | USE pegrid |
---|
929 | |
---|
930 | |
---|
931 | IMPLICIT NONE |
---|
932 | |
---|
933 | INTEGER(iwp) :: i |
---|
934 | INTEGER(iwp) :: j |
---|
935 | INTEGER(iwp) :: k |
---|
936 | INTEGER(iwp) :: iif |
---|
937 | INTEGER(iwp) :: jjf |
---|
938 | INTEGER(iwp) :: kkf |
---|
939 | INTEGER(iwp) :: nzbottom |
---|
940 | INTEGER(iwp) :: nztop |
---|
941 | INTEGER(iwp) :: bottomx |
---|
942 | INTEGER(iwp) :: bottomy |
---|
943 | INTEGER(iwp) :: bottomz |
---|
944 | INTEGER(iwp) :: topx |
---|
945 | INTEGER(iwp) :: topy |
---|
946 | INTEGER(iwp) :: topz |
---|
947 | REAL(wp) :: eps |
---|
948 | REAL(wp) :: alpha |
---|
949 | REAL(wp) :: eminus |
---|
950 | REAL(wp) :: edot |
---|
951 | REAL(wp) :: eplus |
---|
952 | REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: vprs |
---|
953 | REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: vprf |
---|
954 | |
---|
955 | |
---|
956 | nzbottom = bdims_rem (3,1) |
---|
957 | nztop = bdims_rem (3,2) |
---|
958 | |
---|
959 | ALLOCATE( vprf(nzbottom:nztop+2,bdims_rem(2,1)-1:bdims_rem(2,2)+1,nxl:nxr) ) |
---|
960 | ALLOCATE( vprs(nzb+1:nzt+1, bdims_rem(2,1)-1:bdims_rem(2,2)+1,nxl:nxr) ) |
---|
961 | ! |
---|
962 | !-- Initialisation of the velocity component vf |
---|
963 | |
---|
964 | ! |
---|
965 | !-- Interpolation in x-direction (quadratic, Clark and Farley) |
---|
966 | |
---|
967 | DO k = nzbottom, nztop+2 |
---|
968 | DO j = bdims_rem(2,1)-1, bdims_rem(2,2)+1 |
---|
969 | DO i = bdims_rem(1,1), bdims_rem(1,2) |
---|
970 | |
---|
971 | bottomx = (nxf+1)/(nxc+1) * i |
---|
972 | topx = (nxf+1)/(nxc+1) * (i+1) - 1 |
---|
973 | |
---|
974 | DO iif = bottomx, topx |
---|
975 | |
---|
976 | eps = ( iif * dxf + 0.5 * dxf - i * dxc - 0.5 * dxc ) / dxc |
---|
977 | alpha = ( ( dxf / dxc )**2.0 - 1.0 ) / 24.0 |
---|
978 | eminus = eps * ( eps - 1.0 ) / 2.0 + alpha |
---|
979 | edot = ( 1.0 - eps**2.0 ) - 2.0 * alpha |
---|
980 | eplus = eps * ( eps + 1.0 ) / 2.0 + alpha |
---|
981 | |
---|
982 | vprf(k,j,iif) = eminus * work3d(k,j,i-1) & |
---|
983 | + edot * work3d(k,j,i) & |
---|
984 | + eplus * work3d(k,j,i+1) |
---|
985 | |
---|
986 | END DO |
---|
987 | |
---|
988 | END DO |
---|
989 | END DO |
---|
990 | END DO |
---|
991 | |
---|
992 | ! |
---|
993 | !-- Interpolation in z-direction (quadratic, Clark and Farley) |
---|
994 | |
---|
995 | DO k = nzbottom+1, nztop |
---|
996 | |
---|
997 | bottomz = (dzc/dzf) * (k-1) + 1 |
---|
998 | topz = (dzc/dzf) * k |
---|
999 | |
---|
1000 | DO j = bdims_rem(2,1)-1, bdims_rem(2,2)+1 |
---|
1001 | DO iif = nxl, nxr |
---|
1002 | DO kkf = bottomz, topz |
---|
1003 | |
---|
1004 | eps = ( zuf(kkf) - zuc(k) ) / dzc |
---|
1005 | alpha = ( ( dzf / dzc )**2.0 - 1.0 ) / 24.0 |
---|
1006 | eminus = eps * ( eps - 1.0 ) / 2.0 + alpha |
---|
1007 | edot = ( 1.0 - eps**2.0 ) - 2.0 * alpha |
---|
1008 | eplus = eps * ( eps + 1.0 ) / 2.0 + alpha |
---|
1009 | |
---|
1010 | vprs(kkf,j,iif) = eminus * vprf(k-1,j,iif) & |
---|
1011 | + edot * vprf(k,j,iif) & |
---|
1012 | + eplus * vprf(k+1,j,iif) |
---|
1013 | |
---|
1014 | END DO |
---|
1015 | END DO |
---|
1016 | END DO |
---|
1017 | |
---|
1018 | END DO |
---|
1019 | |
---|
1020 | DO j = bdims_rem(2,1)-1, bdims_rem(2,2)+1 |
---|
1021 | DO iif = nxl, nxr |
---|
1022 | |
---|
1023 | eps = ( zuf(nzt+1) - zuc(nztop+1) ) / dzc |
---|
1024 | alpha = ( ( dzf / dzc )**2.0 - 1.0 ) / 24.0 |
---|
1025 | eminus = eps * ( eps - 1.0 ) / 2.0 + alpha |
---|
1026 | edot = ( 1.0 - eps**2.0 ) - 2.0 * alpha |
---|
1027 | eplus = eps * ( eps + 1.0 ) / 2.0 + alpha |
---|
1028 | |
---|
1029 | vprs(nzt+1,j,iif) = eminus * vprf(nztop,j,iif) & |
---|
1030 | + edot * vprf(nztop+1,j,iif) & |
---|
1031 | + eplus * vprf(nztop+2,j,iif) |
---|
1032 | |
---|
1033 | END DO |
---|
1034 | END DO |
---|
1035 | |
---|
1036 | ! |
---|
1037 | !-- Interpolation in y-direction (linear) |
---|
1038 | |
---|
1039 | DO kkf = nzb+1, nzt+1 |
---|
1040 | DO j = bdims_rem(2,1), bdims_rem(2,2) |
---|
1041 | |
---|
1042 | bottomy = (nyf+1)/(nyc+1) * j |
---|
1043 | topy = (nyf+1)/(nyc+1) * (j+1) - 1 |
---|
1044 | |
---|
1045 | DO iif = nxl, nxr |
---|
1046 | DO jjf = bottomy, topy |
---|
1047 | v (kkf,jjf,iif) = vprs(kkf,j,iif) + ( jjf * dyf - j * dyc ) & |
---|
1048 | * ( vprs(kkf,j+1,iif) - vprs(kkf,j,iif) ) / dyc |
---|
1049 | END DO |
---|
1050 | END DO |
---|
1051 | |
---|
1052 | END DO |
---|
1053 | END DO |
---|
1054 | |
---|
1055 | ! |
---|
1056 | !-- Determination of vf at the bottom boundary |
---|
1057 | |
---|
1058 | |
---|
1059 | DEALLOCATE( vprf, vprs ) |
---|
1060 | |
---|
1061 | END SUBROUTINE interpolate_to_fine_v |
---|
1062 | |
---|
1063 | |
---|
1064 | SUBROUTINE interpolate_to_fine_s |
---|
1065 | |
---|
1066 | |
---|
1067 | USE arrays_3d |
---|
1068 | USE control_parameters |
---|
1069 | USE grid_variables |
---|
1070 | USE indices |
---|
1071 | USE pegrid |
---|
1072 | |
---|
1073 | |
---|
1074 | IMPLICIT NONE |
---|
1075 | |
---|
1076 | INTEGER(iwp) :: i |
---|
1077 | INTEGER(iwp) :: j |
---|
1078 | INTEGER(iwp) :: k |
---|
1079 | INTEGER(iwp) :: iif |
---|
1080 | INTEGER(iwp) :: jjf |
---|
1081 | INTEGER(iwp) :: kkf |
---|
1082 | INTEGER(iwp) :: nzbottom |
---|
1083 | INTEGER(iwp) :: nztop |
---|
1084 | INTEGER(iwp) :: bottomx |
---|
1085 | INTEGER(iwp) :: bottomy |
---|
1086 | INTEGER(iwp) :: bottomz |
---|
1087 | INTEGER(iwp) :: topx |
---|
1088 | INTEGER(iwp) :: topy |
---|
1089 | INTEGER(iwp) :: topz |
---|
1090 | REAL(wp) :: eps |
---|
1091 | REAL(wp) :: alpha |
---|
1092 | REAL(wp) :: eminus |
---|
1093 | REAL(wp) :: edot |
---|
1094 | REAL(wp) :: eplus |
---|
1095 | REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: ptprs |
---|
1096 | REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: ptprf |
---|
1097 | |
---|
1098 | |
---|
1099 | nzbottom = bdims_rem (3,1) |
---|
1100 | nztop = bdims_rem (3,2) |
---|
1101 | |
---|
1102 | ALLOCATE( ptprf(nzbottom:nztop+2,bdims_rem(2,1)-1:bdims_rem(2,2)+1,nxl:nxr) ) |
---|
1103 | ALLOCATE( ptprs(nzbottom:nztop+2,nys:nyn,nxl:nxr) ) |
---|
1104 | |
---|
1105 | ! |
---|
1106 | !-- Initialisation of scalar variables |
---|
1107 | |
---|
1108 | ! |
---|
1109 | !-- Interpolation in x-direction (quadratic, Clark and Farley) |
---|
1110 | |
---|
1111 | DO k = nzbottom, nztop+2 |
---|
1112 | DO j = bdims_rem(2,1)-1, bdims_rem(2,2)+1 |
---|
1113 | DO i = bdims_rem(1,1), bdims_rem(1,2) |
---|
1114 | |
---|
1115 | bottomx = (nxf+1)/(nxc+1) * i |
---|
1116 | topx = (nxf+1)/(nxc+1) * (i+1) - 1 |
---|
1117 | |
---|
1118 | DO iif = bottomx, topx |
---|
1119 | |
---|
1120 | eps = ( iif * dxf + 0.5 * dxf - i * dxc - 0.5 * dxc ) / dxc |
---|
1121 | alpha = ( ( dxf / dxc )**2.0 - 1.0 ) / 24.0 |
---|
1122 | eminus = eps * ( eps - 1.0 ) / 2.0 + alpha |
---|
1123 | edot = ( 1.0 - eps**2.0 ) - 2.0 * alpha |
---|
1124 | eplus = eps * ( eps + 1.0 ) / 2.0 + alpha |
---|
1125 | |
---|
1126 | ptprf(k,j,iif) = eminus * work3d(k,j,i-1) & |
---|
1127 | + edot * work3d(k,j,i) & |
---|
1128 | + eplus * work3d(k,j,i+1) |
---|
1129 | END DO |
---|
1130 | |
---|
1131 | END DO |
---|
1132 | END DO |
---|
1133 | END DO |
---|
1134 | |
---|
1135 | ! |
---|
1136 | !-- Interpolation in y-direction (quadratic, Clark and Farley) |
---|
1137 | |
---|
1138 | DO k = nzbottom, nztop+2 |
---|
1139 | DO j = bdims_rem(2,1), bdims_rem(2,2) |
---|
1140 | |
---|
1141 | bottomy = (nyf+1)/(nyc+1) * j |
---|
1142 | topy = (nyf+1)/(nyc+1) * (j+1) - 1 |
---|
1143 | |
---|
1144 | DO iif = nxl, nxr |
---|
1145 | DO jjf = bottomy, topy |
---|
1146 | |
---|
1147 | eps = ( jjf * dyf + 0.5 * dyf - j * dyc - 0.5 * dyc ) / dyc |
---|
1148 | alpha = ( ( dyf / dyc )**2.0 - 1.0 ) / 24.0 |
---|
1149 | eminus = eps * ( eps - 1.0 ) / 2.0 + alpha |
---|
1150 | edot = ( 1.0 - eps**2.0 ) - 2.0 * alpha |
---|
1151 | eplus = eps * ( eps + 1.0 ) / 2.0 + alpha |
---|
1152 | |
---|
1153 | ptprs(k,jjf,iif) = eminus * ptprf(k,j-1,iif) & |
---|
1154 | + edot * ptprf(k,j,iif) & |
---|
1155 | + eplus * ptprf(k,j+1,iif) |
---|
1156 | |
---|
1157 | END DO |
---|
1158 | END DO |
---|
1159 | |
---|
1160 | END DO |
---|
1161 | END DO |
---|
1162 | |
---|
1163 | ! |
---|
1164 | !-- Interpolation in z-direction (quadratic, Clark and Farley) |
---|
1165 | |
---|
1166 | DO k = nzbottom+1, nztop |
---|
1167 | |
---|
1168 | bottomz = (dzc/dzf) * (k-1) + 1 |
---|
1169 | topz = (dzc/dzf) * k |
---|
1170 | |
---|
1171 | DO jjf = nys, nyn |
---|
1172 | DO iif = nxl, nxr |
---|
1173 | DO kkf = bottomz, topz |
---|
1174 | |
---|
1175 | eps = ( zuf(kkf) - zuc(k) ) / dzc |
---|
1176 | alpha = ( ( dzf / dzc )**2.0 - 1.0 ) / 24.0 |
---|
1177 | eminus = eps * ( eps - 1.0 ) / 2.0 + alpha |
---|
1178 | edot = ( 1.0 - eps**2.0 ) - 2.0 * alpha |
---|
1179 | eplus = eps * ( eps + 1.0 ) / 2.0 + alpha |
---|
1180 | |
---|
1181 | interpol3d(kkf,jjf,iif) = eminus * ptprs(k-1,jjf,iif) & |
---|
1182 | + edot * ptprs(k,jjf,iif) & |
---|
1183 | + eplus * ptprs(k+1,jjf,iif) |
---|
1184 | |
---|
1185 | END DO |
---|
1186 | END DO |
---|
1187 | END DO |
---|
1188 | |
---|
1189 | END DO |
---|
1190 | |
---|
1191 | DO jjf = nys, nyn |
---|
1192 | DO iif = nxl, nxr |
---|
1193 | |
---|
1194 | eps = ( zuf(nzt+1) - zuc(nztop+1) ) / dzc |
---|
1195 | alpha = ( ( dzf / dzc )**2.0 - 1.0 ) / 24.0 |
---|
1196 | eminus = eps * ( eps - 1.0 ) / 2.0 + alpha |
---|
1197 | edot = ( 1.0 - eps**2.0 ) - 2.0 * alpha |
---|
1198 | eplus = eps * ( eps + 1.0 ) / 2.0 + alpha |
---|
1199 | |
---|
1200 | interpol3d(nzt+1,jjf,iif) = eminus * ptprs(nztop,jjf,iif) & |
---|
1201 | + edot * ptprs(nztop+1,jjf,iif) & |
---|
1202 | + eplus * ptprs(nztop+2,jjf,iif) |
---|
1203 | |
---|
1204 | END DO |
---|
1205 | END DO |
---|
1206 | |
---|
1207 | |
---|
1208 | DEALLOCATE( ptprf, ptprs ) |
---|
1209 | |
---|
1210 | END SUBROUTINE interpolate_to_fine_s |
---|
1211 | |
---|
1212 | |
---|
1213 | SUBROUTINE interpolate_to_fine_kh |
---|
1214 | |
---|
1215 | |
---|
1216 | USE arrays_3d |
---|
1217 | USE control_parameters |
---|
1218 | USE grid_variables |
---|
1219 | USE indices |
---|
1220 | USE pegrid |
---|
1221 | |
---|
1222 | |
---|
1223 | IMPLICIT NONE |
---|
1224 | |
---|
1225 | INTEGER(iwp) :: i |
---|
1226 | INTEGER(iwp) :: j |
---|
1227 | INTEGER(iwp) :: k |
---|
1228 | INTEGER(iwp) :: iif |
---|
1229 | INTEGER(iwp) :: jjf |
---|
1230 | INTEGER(iwp) :: kkf |
---|
1231 | INTEGER(iwp) :: nzbottom |
---|
1232 | INTEGER(iwp) :: nztop |
---|
1233 | INTEGER(iwp) :: bottomx |
---|
1234 | INTEGER(iwp) :: bottomy |
---|
1235 | INTEGER(iwp) :: bottomz |
---|
1236 | INTEGER(iwp) :: topx |
---|
1237 | INTEGER(iwp) :: topy |
---|
1238 | INTEGER(iwp) :: topz |
---|
1239 | REAL(wp) :: eps |
---|
1240 | REAL(wp) :: alpha |
---|
1241 | REAL(wp) :: eminus |
---|
1242 | REAL(wp) :: edot |
---|
1243 | REAL(wp) :: eplus |
---|
1244 | REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: ptprs |
---|
1245 | REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: ptprf |
---|
1246 | |
---|
1247 | |
---|
1248 | nzbottom = bdims_rem (3,1) |
---|
1249 | nztop = bdims_rem (3,2) |
---|
1250 | ! nztop = blk_dim_rem (3,2)+1 |
---|
1251 | |
---|
1252 | |
---|
1253 | ALLOCATE( ptprf(nzbottom:nztop+2,bdims_rem(2,1)-1:bdims_rem(2,2)+1,nxl:nxr) ) |
---|
1254 | ALLOCATE( ptprs(nzbottom:nztop+2,nys:nyn,nxl:nxr) ) |
---|
1255 | |
---|
1256 | |
---|
1257 | ! |
---|
1258 | !-- Initialisation of scalar variables |
---|
1259 | |
---|
1260 | ! |
---|
1261 | !-- Interpolation in x-direction (quadratic, Clark and Farley) |
---|
1262 | |
---|
1263 | DO k = nzbottom, nztop+2 |
---|
1264 | DO j = bdims_rem(2,1)-1, bdims_rem(2,2)+1 |
---|
1265 | DO i = bdims_rem(1,1), bdims_rem(1,2) |
---|
1266 | |
---|
1267 | bottomx = (nxf+1)/(nxc+1) * i |
---|
1268 | topx = (nxf+1)/(nxc+1) * (i+1) - 1 |
---|
1269 | |
---|
1270 | DO iif = bottomx, topx |
---|
1271 | |
---|
1272 | eps = ( iif * dxf + 0.5 * dxf - i * dxc - 0.5 * dxc ) / dxc |
---|
1273 | alpha = ( ( dxf / dxc )**2.0 - 1.0 ) / 24.0 |
---|
1274 | eminus = eps * ( eps - 1.0 ) / 2.0 + alpha |
---|
1275 | edot = ( 1.0 - eps**2.0 ) - 2.0 * alpha |
---|
1276 | eplus = eps * ( eps + 1.0 ) / 2.0 + alpha |
---|
1277 | |
---|
1278 | ptprf(k,j,iif) = eminus * work3d(k,j,i-1) & |
---|
1279 | + edot * work3d(k,j,i) & |
---|
1280 | + eplus * work3d(k,j,i+1) |
---|
1281 | END DO |
---|
1282 | |
---|
1283 | END DO |
---|
1284 | END DO |
---|
1285 | END DO |
---|
1286 | |
---|
1287 | ! |
---|
1288 | !-- Interpolation in y-direction (quadratic, Clark and Farley) |
---|
1289 | |
---|
1290 | DO k = nzbottom, nztop+2 |
---|
1291 | DO j = bdims_rem(2,1), bdims_rem(2,2) |
---|
1292 | |
---|
1293 | bottomy = (nyf+1)/(nyc+1) * j |
---|
1294 | topy = (nyf+1)/(nyc+1) * (j+1) - 1 |
---|
1295 | |
---|
1296 | DO iif = nxl, nxr |
---|
1297 | DO jjf = bottomy, topy |
---|
1298 | |
---|
1299 | eps = ( jjf * dyf + 0.5 * dyf - j * dyc - 0.5 * dyc ) / dyc |
---|
1300 | alpha = ( ( dyf / dyc )**2.0 - 1.0 ) / 24.0 |
---|
1301 | eminus = eps * ( eps - 1.0 ) / 2.0 + alpha |
---|
1302 | edot = ( 1.0 - eps**2.0 ) - 2.0 * alpha |
---|
1303 | eplus = eps * ( eps + 1.0 ) / 2.0 + alpha |
---|
1304 | |
---|
1305 | ptprs(k,jjf,iif) = eminus * ptprf(k,j-1,iif) & |
---|
1306 | + edot * ptprf(k,j,iif) & |
---|
1307 | + eplus * ptprf(k,j+1,iif) |
---|
1308 | |
---|
1309 | END DO |
---|
1310 | END DO |
---|
1311 | |
---|
1312 | END DO |
---|
1313 | END DO |
---|
1314 | |
---|
1315 | ! |
---|
1316 | !-- Interpolation in z-direction (quadratic, Clark and Farley) |
---|
1317 | |
---|
1318 | DO k = nzbottom+1, nztop |
---|
1319 | |
---|
1320 | bottomz = (dzc/dzf) * (k-1) + 1 |
---|
1321 | topz = (dzc/dzf) * k |
---|
1322 | |
---|
1323 | DO jjf = nys, nyn |
---|
1324 | DO iif = nxl, nxr |
---|
1325 | DO kkf = bottomz, topz |
---|
1326 | |
---|
1327 | eps = ( zuf(kkf) - zuc(k) ) / dzc |
---|
1328 | alpha = ( ( dzf / dzc )**2.0 - 1.0 ) / 24.0 |
---|
1329 | eminus = eps * ( eps - 1.0 ) / 2.0 + alpha |
---|
1330 | edot = ( 1.0 - eps**2.0 ) - 2.0 * alpha |
---|
1331 | eplus = eps * ( eps + 1.0 ) / 2.0 + alpha |
---|
1332 | |
---|
1333 | kh(kkf,jjf,iif) = eminus * ptprs(k-1,jjf,iif) & |
---|
1334 | + edot * ptprs(k,jjf,iif) & |
---|
1335 | + eplus * ptprs(k+1,jjf,iif) |
---|
1336 | |
---|
1337 | END DO |
---|
1338 | END DO |
---|
1339 | END DO |
---|
1340 | |
---|
1341 | END DO |
---|
1342 | |
---|
1343 | DO jjf = nys, nyn |
---|
1344 | DO iif = nxl, nxr |
---|
1345 | |
---|
1346 | eps = ( zuf(nzt+1) - zuc(nztop+1) ) / dzc |
---|
1347 | alpha = ( ( dzf / dzc )**2.0 - 1.0 ) / 24.0 |
---|
1348 | eminus = eps * ( eps - 1.0 ) / 2.0 + alpha |
---|
1349 | edot = ( 1.0 - eps**2.0 ) - 2.0 * alpha |
---|
1350 | eplus = eps * ( eps + 1.0 ) / 2.0 + alpha |
---|
1351 | |
---|
1352 | kh(nzt+1,jjf,iif) = eminus * ptprs(nztop,jjf,iif) & |
---|
1353 | + edot * ptprs(nztop+1,jjf,iif) & |
---|
1354 | + eplus * ptprs(nztop+2,jjf,iif) |
---|
1355 | |
---|
1356 | END DO |
---|
1357 | END DO |
---|
1358 | |
---|
1359 | |
---|
1360 | DEALLOCATE( ptprf, ptprs ) |
---|
1361 | |
---|
1362 | END SUBROUTINE interpolate_to_fine_kh |
---|
1363 | |
---|
1364 | SUBROUTINE interpolate_to_fine_km |
---|
1365 | |
---|
1366 | |
---|
1367 | USE arrays_3d |
---|
1368 | USE control_parameters |
---|
1369 | USE grid_variables |
---|
1370 | USE indices |
---|
1371 | USE pegrid |
---|
1372 | |
---|
1373 | |
---|
1374 | IMPLICIT NONE |
---|
1375 | |
---|
1376 | INTEGER(iwp) :: i |
---|
1377 | INTEGER(iwp) :: j |
---|
1378 | INTEGER(iwp) :: k |
---|
1379 | INTEGER(iwp) :: iif |
---|
1380 | INTEGER(iwp) :: jjf |
---|
1381 | INTEGER(iwp) :: kkf |
---|
1382 | INTEGER(iwp) :: nzbottom |
---|
1383 | INTEGER(iwp) :: nztop |
---|
1384 | INTEGER(iwp) :: bottomx |
---|
1385 | INTEGER(iwp) :: bottomy |
---|
1386 | INTEGER(iwp) :: bottomz |
---|
1387 | INTEGER(iwp) :: topx |
---|
1388 | INTEGER(iwp) :: topy |
---|
1389 | INTEGER(iwp) :: topz |
---|
1390 | REAL(wp) :: eps |
---|
1391 | REAL(wp) :: alpha |
---|
1392 | REAL(wp) :: eminus |
---|
1393 | REAL(wp) :: edot |
---|
1394 | REAL(wp) :: eplus |
---|
1395 | REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: ptprs |
---|
1396 | REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: ptprf |
---|
1397 | |
---|
1398 | |
---|
1399 | nzbottom = bdims_rem (3,1) |
---|
1400 | nztop = bdims_rem (3,2) |
---|
1401 | ! nztop = blk_dim_rem (3,2)+1 |
---|
1402 | |
---|
1403 | |
---|
1404 | ALLOCATE( ptprf(nzbottom:nztop+2,bdims_rem(2,1)-1:bdims_rem(2,2)+1,nxl:nxr) ) |
---|
1405 | ALLOCATE( ptprs(nzbottom:nztop+2,nys:nyn,nxl:nxr) ) |
---|
1406 | |
---|
1407 | |
---|
1408 | ! |
---|
1409 | !-- Initialisation of scalar variables |
---|
1410 | |
---|
1411 | ! |
---|
1412 | !-- Interpolation in x-direction (quadratic, Clark and Farley) |
---|
1413 | |
---|
1414 | DO k = nzbottom, nztop+2 |
---|
1415 | DO j = bdims_rem(2,1)-1, bdims_rem(2,2)+1 |
---|
1416 | DO i = bdims_rem(1,1), bdims_rem(1,2) |
---|
1417 | |
---|
1418 | bottomx = (nxf+1)/(nxc+1) * i |
---|
1419 | topx = (nxf+1)/(nxc+1) * (i+1) - 1 |
---|
1420 | |
---|
1421 | DO iif = bottomx, topx |
---|
1422 | |
---|
1423 | eps = ( iif * dxf + 0.5 * dxf - i * dxc - 0.5 * dxc ) / dxc |
---|
1424 | alpha = ( ( dxf / dxc )**2.0 - 1.0 ) / 24.0 |
---|
1425 | eminus = eps * ( eps - 1.0 ) / 2.0 + alpha |
---|
1426 | edot = ( 1.0 - eps**2.0 ) - 2.0 * alpha |
---|
1427 | eplus = eps * ( eps + 1.0 ) / 2.0 + alpha |
---|
1428 | |
---|
1429 | ptprf(k,j,iif) = eminus * work3d(k,j,i-1) & |
---|
1430 | + edot * work3d(k,j,i) & |
---|
1431 | + eplus * work3d(k,j,i+1) |
---|
1432 | END DO |
---|
1433 | |
---|
1434 | END DO |
---|
1435 | END DO |
---|
1436 | END DO |
---|
1437 | |
---|
1438 | ! |
---|
1439 | !-- Interpolation in y-direction (quadratic, Clark and Farley) |
---|
1440 | |
---|
1441 | DO k = nzbottom, nztop+2 |
---|
1442 | DO j = bdims_rem(2,1), bdims_rem(2,2) |
---|
1443 | |
---|
1444 | bottomy = (nyf+1)/(nyc+1) * j |
---|
1445 | topy = (nyf+1)/(nyc+1) * (j+1) - 1 |
---|
1446 | |
---|
1447 | DO iif = nxl, nxr |
---|
1448 | DO jjf = bottomy, topy |
---|
1449 | |
---|
1450 | eps = ( jjf * dyf + 0.5 * dyf - j * dyc - 0.5 * dyc ) / dyc |
---|
1451 | alpha = ( ( dyf / dyc )**2.0 - 1.0 ) / 24.0 |
---|
1452 | eminus = eps * ( eps - 1.0 ) / 2.0 + alpha |
---|
1453 | edot = ( 1.0 - eps**2.0 ) - 2.0 * alpha |
---|
1454 | eplus = eps * ( eps + 1.0 ) / 2.0 + alpha |
---|
1455 | |
---|
1456 | ptprs(k,jjf,iif) = eminus * ptprf(k,j-1,iif) & |
---|
1457 | + edot * ptprf(k,j,iif) & |
---|
1458 | + eplus * ptprf(k,j+1,iif) |
---|
1459 | |
---|
1460 | END DO |
---|
1461 | END DO |
---|
1462 | |
---|
1463 | END DO |
---|
1464 | END DO |
---|
1465 | |
---|
1466 | ! |
---|
1467 | !-- Interpolation in z-direction (quadratic, Clark and Farley) |
---|
1468 | |
---|
1469 | DO k = nzbottom+1, nztop |
---|
1470 | |
---|
1471 | bottomz = (dzc/dzf) * (k-1) + 1 |
---|
1472 | topz = (dzc/dzf) * k |
---|
1473 | |
---|
1474 | DO jjf = nys, nyn |
---|
1475 | DO iif = nxl, nxr |
---|
1476 | DO kkf = bottomz, topz |
---|
1477 | |
---|
1478 | eps = ( zuf(kkf) - zuc(k) ) / dzc |
---|
1479 | alpha = ( ( dzf / dzc )**2.0 - 1.0 ) / 24.0 |
---|
1480 | eminus = eps * ( eps - 1.0 ) / 2.0 + alpha |
---|
1481 | edot = ( 1.0 - eps**2.0 ) - 2.0 * alpha |
---|
1482 | eplus = eps * ( eps + 1.0 ) / 2.0 + alpha |
---|
1483 | |
---|
1484 | km(kkf,jjf,iif) = eminus * ptprs(k-1,jjf,iif) & |
---|
1485 | + edot * ptprs(k,jjf,iif) & |
---|
1486 | + eplus * ptprs(k+1,jjf,iif) |
---|
1487 | |
---|
1488 | END DO |
---|
1489 | END DO |
---|
1490 | END DO |
---|
1491 | |
---|
1492 | END DO |
---|
1493 | |
---|
1494 | DO jjf = nys, nyn |
---|
1495 | DO iif = nxl, nxr |
---|
1496 | |
---|
1497 | eps = ( zuf(nzt+1) - zuc(nztop+1) ) / dzc |
---|
1498 | alpha = ( ( dzf / dzc )**2.0 - 1.0 ) / 24.0 |
---|
1499 | eminus = eps * ( eps - 1.0 ) / 2.0 + alpha |
---|
1500 | edot = ( 1.0 - eps**2.0 ) - 2.0 * alpha |
---|
1501 | eplus = eps * ( eps + 1.0 ) / 2.0 + alpha |
---|
1502 | |
---|
1503 | km(nzt+1,jjf,iif) = eminus * ptprs(nztop,jjf,iif) & |
---|
1504 | + edot * ptprs(nztop+1,jjf,iif) & |
---|
1505 | + eplus * ptprs(nztop+2,jjf,iif) |
---|
1506 | |
---|
1507 | END DO |
---|
1508 | END DO |
---|
1509 | |
---|
1510 | |
---|
1511 | DEALLOCATE( ptprf, ptprs ) |
---|
1512 | |
---|
1513 | END SUBROUTINE interpolate_to_fine_km |
---|
1514 | |
---|
1515 | |
---|
1516 | |
---|
1517 | |
---|
1518 | ! SUBROUTINE interpolate_to_fine_flux |
---|
1519 | ! |
---|
1520 | ! |
---|
1521 | ! USE arrays_3d |
---|
1522 | ! USE control_parameters |
---|
1523 | ! USE grid_variables |
---|
1524 | ! USE indices |
---|
1525 | ! USE pegrid |
---|
1526 | ! |
---|
1527 | ! |
---|
1528 | ! IMPLICIT NONE |
---|
1529 | ! |
---|
1530 | ! INTEGER(iwp) :: i |
---|
1531 | ! INTEGER(iwp) :: j |
---|
1532 | ! INTEGER(iwp) :: iif |
---|
1533 | ! INTEGER(iwp) :: jjf |
---|
1534 | ! INTEGER(iwp) :: bottomx |
---|
1535 | ! INTEGER(iwp) :: bottomy |
---|
1536 | ! INTEGER(iwp) :: topx |
---|
1537 | ! INTEGER(iwp) :: topy |
---|
1538 | ! REAL(wp) :: eps |
---|
1539 | ! REAL(wp) :: alpha |
---|
1540 | ! REAL(wp) :: eminus |
---|
1541 | ! REAL(wp) :: edot |
---|
1542 | ! REAL(wp) :: eplus |
---|
1543 | ! REAL(wp), DIMENSION(:,:), ALLOCATABLE :: uswspr |
---|
1544 | ! REAL(wp), DIMENSION(:,:), ALLOCATABLE :: vswspr |
---|
1545 | ! REAL(wp), DIMENSION(:,:), ALLOCATABLE :: tspr |
---|
1546 | ! REAL(wp), DIMENSION(:,:), ALLOCATABLE :: uspr |
---|
1547 | ! |
---|
1548 | ! ALLOCATE( uswspr(bdims_rem(2,1)-1:bdims_rem(2,2)+1,nxl:nxr) ) |
---|
1549 | ! ALLOCATE( vswspr(bdims_rem(2,1)-1:bdims_rem(2,2)+1,nxl:nxr) ) |
---|
1550 | ! ALLOCATE( tspr (bdims_rem(2,1)-1:bdims_rem(2,2)+1,nxl:nxr) ) |
---|
1551 | ! ALLOCATE( uspr (bdims_rem(2,1)-1:bdims_rem(2,2)+1,nxl:nxr) ) |
---|
1552 | ! |
---|
1553 | ! ! |
---|
1554 | ! !-- Initialisation of scalar variables (2D) |
---|
1555 | ! |
---|
1556 | ! ! |
---|
1557 | ! !-- Interpolation in x-direction (quadratic, Clark and Farley) |
---|
1558 | ! |
---|
1559 | ! DO j = bdims_rem(2,1)-1, bdims_rem(2,2)+1 |
---|
1560 | ! DO i = bdims_rem(1,1), bdims_rem(1,2) |
---|
1561 | ! |
---|
1562 | ! bottomx = (nxf+1)/(nxc+1) * i |
---|
1563 | ! topx = (nxf+1)/(nxc+1) * (i+1) - 1 |
---|
1564 | ! |
---|
1565 | ! DO iif = bottomx, topx |
---|
1566 | ! |
---|
1567 | ! eps = ( iif * dxf + 0.5 * dxf - i * dxc - 0.5 * dxc ) / dxc |
---|
1568 | ! alpha = ( ( dxf / dxc )**2.0 - 1.0 ) / 24.0 |
---|
1569 | ! eminus = eps * ( eps - 1.0 ) / 2.0 + alpha |
---|
1570 | ! edot = ( 1.0 - eps**2.0 ) - 2.0 * alpha |
---|
1571 | ! eplus = eps * ( eps + 1.0 ) / 2.0 + alpha |
---|
1572 | ! |
---|
1573 | ! uswspr(j,iif) = eminus * work2dusws(j,i-1) & |
---|
1574 | ! + edot * work2dusws(j,i) & |
---|
1575 | ! + eplus * work2dusws(j,i+1) |
---|
1576 | ! |
---|
1577 | ! vswspr(j,iif) = eminus * work2dvsws(j,i-1) & |
---|
1578 | ! + edot * work2dvsws(j,i) & |
---|
1579 | ! + eplus * work2dvsws(j,i+1) |
---|
1580 | ! |
---|
1581 | ! tspr(j,iif) = eminus * work2dts(j,i-1) & |
---|
1582 | ! + edot * work2dts(j,i) & |
---|
1583 | ! + eplus * work2dts(j,i+1) |
---|
1584 | ! |
---|
1585 | ! uspr(j,iif) = eminus * work2dus(j,i-1) & |
---|
1586 | ! + edot * work2dus(j,i) & |
---|
1587 | ! + eplus * work2dus(j,i+1) |
---|
1588 | ! |
---|
1589 | ! END DO |
---|
1590 | ! |
---|
1591 | ! END DO |
---|
1592 | ! END DO |
---|
1593 | ! |
---|
1594 | ! ! |
---|
1595 | ! !-- Interpolation in y-direction (quadratic, Clark and Farley) |
---|
1596 | ! |
---|
1597 | ! DO j = bdims_rem(2,1), bdims_rem(2,2) |
---|
1598 | ! |
---|
1599 | ! bottomy = (nyf+1)/(nyc+1) * j |
---|
1600 | ! topy = (nyf+1)/(nyc+1) * (j+1) - 1 |
---|
1601 | ! |
---|
1602 | ! DO iif = nxl, nxr |
---|
1603 | ! DO jjf = bottomy, topy |
---|
1604 | ! |
---|
1605 | ! eps = ( jjf * dyf + 0.5 * dyf - j * dyc - 0.5 * dyc ) / dyc |
---|
1606 | ! alpha = ( ( dyf / dyc )**2.0 - 1.0 ) / 24.0 |
---|
1607 | ! eminus = eps * ( eps - 1.0 ) / 2.0 + alpha |
---|
1608 | ! edot = ( 1.0 - eps**2.0 ) - 2.0 * alpha |
---|
1609 | ! eplus = eps * ( eps + 1.0 ) / 2.0 + alpha |
---|
1610 | ! |
---|
1611 | !! |
---|
1612 | !!-- TODO |
---|
1613 | !-- variables are not compatible with the new surface layer module |
---|
1614 | ! |
---|
1615 | ! surf_def_h(0)%usws(jjf,iif) = eminus * uswspr(j-1,if) & |
---|
1616 | ! + edot * uswspr(j,iif) & |
---|
1617 | ! + eplus * uswspr(j+1,iif) |
---|
1618 | ! |
---|
1619 | ! surf_def_h(0)%vsws(jjf,iif) = eminus * vswspr(j-1,if) & |
---|
1620 | ! + edot * vswspr(j,iif) & |
---|
1621 | ! + eplus * vswspr(j+1,iif) |
---|
1622 | ! |
---|
1623 | ! ts(jjf,iif) = eminus * tspr(j-1,if) & |
---|
1624 | ! + edot * tspr(j,iif) & |
---|
1625 | ! + eplus * tspr(j+1,iif) |
---|
1626 | ! |
---|
1627 | ! us(jjf,iif) = eminus * uspr(j-1,if) & |
---|
1628 | ! + edot * uspr(j,iif) & |
---|
1629 | ! + eplus * uspr(j+1,iif) |
---|
1630 | ! |
---|
1631 | ! END DO |
---|
1632 | ! END DO |
---|
1633 | ! |
---|
1634 | ! END DO |
---|
1635 | ! |
---|
1636 | ! |
---|
1637 | ! DEALLOCATE( uswspr, vswspr ) |
---|
1638 | ! DEALLOCATE( tspr, uspr ) |
---|
1639 | ! |
---|
1640 | ! |
---|
1641 | ! END SUBROUTINE interpolate_to_fine_flux |
---|
1642 | |
---|
1643 | |
---|
1644 | #endif |
---|
1645 | END SUBROUTINE vnest_init_fine |
---|
1646 | |
---|
1647 | SUBROUTINE vnest_boundary_conds |
---|
1648 | #if defined( __parallel ) |
---|
1649 | !------------------------------------------------------------------------------! |
---|
1650 | ! Description: |
---|
1651 | ! ------------ |
---|
1652 | ! Boundary conditions for the prognostic quantities. |
---|
1653 | ! One additional bottom boundary condition is applied for the TKE (=(u*)**2) |
---|
1654 | ! in prandtl_fluxes. The cyclic lateral boundary conditions are implicitly |
---|
1655 | ! handled in routine exchange_horiz. Pressure boundary conditions are |
---|
1656 | ! explicitly set in routines pres, poisfft, poismg and sor. |
---|
1657 | !------------------------------------------------------------------------------! |
---|
1658 | |
---|
1659 | USE arrays_3d |
---|
1660 | USE control_parameters |
---|
1661 | USE grid_variables |
---|
1662 | USE indices |
---|
1663 | USE pegrid |
---|
1664 | |
---|
1665 | |
---|
1666 | IMPLICIT NONE |
---|
1667 | |
---|
1668 | INTEGER(iwp) :: i |
---|
1669 | INTEGER(iwp) :: j |
---|
1670 | INTEGER(iwp) :: iif |
---|
1671 | INTEGER(iwp) :: jjf |
---|
1672 | |
---|
1673 | |
---|
1674 | ! |
---|
1675 | !-- vnest: top boundary conditions |
---|
1676 | |
---|
1677 | IF ( coupling_mode == 'vnested_crse' ) THEN |
---|
1678 | !-- Send data to fine grid for TOP BC |
---|
1679 | |
---|
1680 | offset(1) = ( pdims_partner(1) / pdims(1) ) * pcoord(1) |
---|
1681 | offset(2) = ( pdims_partner(2) / pdims(2) ) * pcoord(2) |
---|
1682 | |
---|
1683 | do j = 0, ( pdims_partner(2) / pdims(2) ) - 1 |
---|
1684 | do i = 0, ( pdims_partner(1) / pdims(1) ) - 1 |
---|
1685 | map_coord(1) = i+offset(1) |
---|
1686 | map_coord(2) = j+offset(2) |
---|
1687 | |
---|
1688 | target_idex = f_rnk_lst(map_coord(1),map_coord(2)) + numprocs |
---|
1689 | |
---|
1690 | bdims (1,1) = c2f_dims_cg (0,map_coord(1),map_coord(2)) |
---|
1691 | bdims (1,2) = c2f_dims_cg (1,map_coord(1),map_coord(2)) |
---|
1692 | bdims (2,1) = c2f_dims_cg (2,map_coord(1),map_coord(2)) |
---|
1693 | bdims (2,2) = c2f_dims_cg (3,map_coord(1),map_coord(2)) |
---|
1694 | bdims (3,1) = c2f_dims_cg (4,map_coord(1),map_coord(2)) |
---|
1695 | bdims (3,2) = c2f_dims_cg (5,map_coord(1),map_coord(2)) |
---|
1696 | |
---|
1697 | n_cell_c = ( (bdims(1,2)-bdims(1,1)) + 3 ) * & |
---|
1698 | ( (bdims(2,2)-bdims(2,1)) + 3 ) * & |
---|
1699 | ( (bdims(3,2)-bdims(3,1)) + 1 ) |
---|
1700 | |
---|
1701 | CALL MPI_SEND(u (bdims(3,1), bdims(2,1)-1, bdims(1,1)-1), & |
---|
1702 | 1, TYPE_VNEST_BC, target_idex, & |
---|
1703 | 201, comm_inter, ierr) |
---|
1704 | |
---|
1705 | CALL MPI_SEND(v(bdims(3,1), bdims(2,1)-1, bdims(1,1)-1),& |
---|
1706 | 1, TYPE_VNEST_BC, target_idex, & |
---|
1707 | 202, comm_inter, ierr) |
---|
1708 | |
---|
1709 | CALL MPI_SEND(w(bdims(3,1), bdims(2,1)-1, bdims(1,1)-1),& |
---|
1710 | 1, TYPE_VNEST_BC, target_idex, & |
---|
1711 | 203, comm_inter, ierr) |
---|
1712 | |
---|
1713 | CALL MPI_SEND(pt(bdims(3,1), bdims(2,1)-1, bdims(1,1)-1),& |
---|
1714 | 1, TYPE_VNEST_BC, target_idex, & |
---|
1715 | 205, comm_inter, ierr) |
---|
1716 | |
---|
1717 | IF ( humidity ) THEN |
---|
1718 | CALL MPI_SEND(q(bdims(3,1), bdims(2,1)-1, bdims(1,1)-1),& |
---|
1719 | 1, TYPE_VNEST_BC, target_idex, & |
---|
1720 | 209, comm_inter, ierr) |
---|
1721 | ENDIF |
---|
1722 | |
---|
1723 | end do |
---|
1724 | end do |
---|
1725 | |
---|
1726 | ELSEIF ( coupling_mode == 'vnested_fine' ) THEN |
---|
1727 | !-- Receive data from coarse grid for TOP BC |
---|
1728 | |
---|
1729 | offset(1) = pcoord(1) / ( pdims(1)/pdims_partner(1) ) |
---|
1730 | offset(2) = pcoord(2) / ( pdims(2)/pdims_partner(2) ) |
---|
1731 | map_coord(1) = offset(1) |
---|
1732 | map_coord(2) = offset(2) |
---|
1733 | target_idex = c_rnk_lst(map_coord(1),map_coord(2)) |
---|
1734 | |
---|
1735 | bdims_rem (1,1) = c2f_dims_fg(0) |
---|
1736 | bdims_rem (1,2) = c2f_dims_fg(1) |
---|
1737 | bdims_rem (2,1) = c2f_dims_fg(2) |
---|
1738 | bdims_rem (2,2) = c2f_dims_fg(3) |
---|
1739 | bdims_rem (3,1) = c2f_dims_fg(4) |
---|
1740 | bdims_rem (3,2) = c2f_dims_fg(5) |
---|
1741 | |
---|
1742 | n_cell_c = & |
---|
1743 | ( (bdims_rem(1,2)-bdims_rem(1,1)) + 3 ) * & |
---|
1744 | ( (bdims_rem(2,2)-bdims_rem(2,1)) + 3 ) * & |
---|
1745 | ( (bdims_rem(3,2)-bdims_rem(3,1)) + 1 ) |
---|
1746 | |
---|
1747 | ALLOCATE( work3d ( & |
---|
1748 | bdims_rem(3,1) :bdims_rem(3,2) , & |
---|
1749 | bdims_rem(2,1)-1:bdims_rem(2,2)+1, & |
---|
1750 | bdims_rem(1,1)-1:bdims_rem(1,2)+1)) |
---|
1751 | |
---|
1752 | |
---|
1753 | CALL MPI_RECV( work3d ,n_cell_c, MPI_REAL, target_idex, 201, & |
---|
1754 | comm_inter,status, ierr ) |
---|
1755 | interpol3d => u |
---|
1756 | call vnest_set_topbc_u |
---|
1757 | |
---|
1758 | CALL MPI_RECV( work3d ,n_cell_c, MPI_REAL, target_idex, 202, & |
---|
1759 | comm_inter,status, ierr ) |
---|
1760 | interpol3d => v |
---|
1761 | call vnest_set_topbc_v |
---|
1762 | |
---|
1763 | CALL MPI_RECV( work3d ,n_cell_c, MPI_REAL, target_idex, 203, & |
---|
1764 | comm_inter,status, ierr ) |
---|
1765 | interpol3d => w |
---|
1766 | call vnest_set_topbc_w |
---|
1767 | |
---|
1768 | CALL MPI_RECV( work3d,n_cell_c, MPI_REAL, target_idex, 205, & |
---|
1769 | comm_inter,status, ierr ) |
---|
1770 | interpol3d => pt |
---|
1771 | call vnest_set_topbc_s |
---|
1772 | |
---|
1773 | IF ( humidity ) THEN |
---|
1774 | CALL MPI_RECV( work3d,n_cell_c, MPI_REAL, target_idex, 209, & |
---|
1775 | comm_inter,status, ierr ) |
---|
1776 | interpol3d => q |
---|
1777 | call vnest_set_topbc_s |
---|
1778 | |
---|
1779 | CALL exchange_horiz_2d(q (nzt+1,:,:) ) |
---|
1780 | ENDIF |
---|
1781 | |
---|
1782 | !-- TKE Neumann BC for FG top |
---|
1783 | DO jjf = nys, nyn |
---|
1784 | DO iif = nxl, nxr |
---|
1785 | e(nzt+1,jjf,iif) = e(nzt,jjf,iif) |
---|
1786 | END DO |
---|
1787 | END DO |
---|
1788 | |
---|
1789 | ! |
---|
1790 | !-- w level nzt+1 does not impact results. Only to avoid jumps while |
---|
1791 | !-- plotting profiles |
---|
1792 | w(nzt+1,:,:) = w(nzt,:,:) |
---|
1793 | |
---|
1794 | CALL exchange_horiz_2d(u (nzt+1,:,:) ) |
---|
1795 | CALL exchange_horiz_2d(v (nzt+1,:,:) ) |
---|
1796 | CALL exchange_horiz_2d(pt(nzt+1,:,:) ) |
---|
1797 | CALL exchange_horiz_2d(e (nzt+1,:,:) ) |
---|
1798 | CALL exchange_horiz_2d(w (nzt+1,:,:) ) |
---|
1799 | CALL exchange_horiz_2d(w (nzt ,:,:) ) |
---|
1800 | |
---|
1801 | NULLIFY ( interpol3d ) |
---|
1802 | DEALLOCATE ( work3d ) |
---|
1803 | |
---|
1804 | ENDIF |
---|
1805 | |
---|
1806 | |
---|
1807 | CONTAINS |
---|
1808 | |
---|
1809 | SUBROUTINE vnest_set_topbc_w |
---|
1810 | |
---|
1811 | |
---|
1812 | USE arrays_3d |
---|
1813 | USE control_parameters |
---|
1814 | USE grid_variables |
---|
1815 | USE indices |
---|
1816 | USE pegrid |
---|
1817 | |
---|
1818 | |
---|
1819 | IMPLICIT NONE |
---|
1820 | |
---|
1821 | INTEGER(iwp) :: i |
---|
1822 | INTEGER(iwp) :: j |
---|
1823 | INTEGER(iwp) :: iif |
---|
1824 | INTEGER(iwp) :: jjf |
---|
1825 | INTEGER(iwp) :: bottomx |
---|
1826 | INTEGER(iwp) :: bottomy |
---|
1827 | INTEGER(iwp) :: topx |
---|
1828 | INTEGER(iwp) :: topy |
---|
1829 | REAL(wp) :: eps |
---|
1830 | REAL(wp) :: alpha |
---|
1831 | REAL(wp) :: eminus |
---|
1832 | REAL(wp) :: edot |
---|
1833 | REAL(wp) :: eplus |
---|
1834 | REAL(wp), DIMENSION(:,:), ALLOCATABLE :: wprf |
---|
1835 | |
---|
1836 | |
---|
1837 | ALLOCATE( wprf(bdims_rem(2,1)-1:bdims_rem(2,2)+1,nxl:nxr) ) |
---|
1838 | |
---|
1839 | ! |
---|
1840 | !-- Determination of a boundary condition for the vertical velocity component w: |
---|
1841 | !-- In this case only interpolation in x- and y- direction is necessary, as the |
---|
1842 | !-- boundary w-node of the fine grid coincides with a w-node in the coarse grid. |
---|
1843 | !-- For both interpolations the scheme of Clark and Farley is used. |
---|
1844 | |
---|
1845 | ! |
---|
1846 | !-- Interpolation in x-direction |
---|
1847 | |
---|
1848 | DO j = bdims_rem(2,1)-1, bdims_rem(2,2)+1 |
---|
1849 | |
---|
1850 | DO i = bdims_rem(1,1), bdims_rem(1,2) |
---|
1851 | |
---|
1852 | bottomx = (nxf+1)/(nxc+1) * i |
---|
1853 | topx = (nxf+1)/(nxc+1) * (i+1) - 1 |
---|
1854 | |
---|
1855 | DO iif = bottomx, topx |
---|
1856 | |
---|
1857 | eps = (iif * dxf + 0.5 * dxf - i * dxc - 0.5 * dxc) / dxc |
---|
1858 | alpha = ( (dxf/dxc)**2.0 - 1.0) / 24.0 |
---|
1859 | eminus = eps * ( eps - 1.0 ) / 2.0 + alpha |
---|
1860 | edot = ( 1.0 - eps**2.0 ) - 2.0 * alpha |
---|
1861 | eplus = eps * ( eps + 1.0 ) / 2.0 + alpha |
---|
1862 | wprf(j,iif) = eminus * work3d(bdims_rem(3,1),j,i-1) & |
---|
1863 | + edot * work3d(bdims_rem(3,1),j,i) & |
---|
1864 | + eplus * work3d(bdims_rem(3,1),j,i+1) |
---|
1865 | |
---|
1866 | END DO |
---|
1867 | |
---|
1868 | END DO |
---|
1869 | |
---|
1870 | END DO |
---|
1871 | |
---|
1872 | ! |
---|
1873 | !-- Interpolation in y-direction |
---|
1874 | |
---|
1875 | DO j = bdims_rem(2,1), bdims_rem(2,2) |
---|
1876 | |
---|
1877 | bottomy = (nyf+1)/(nyc+1) * j |
---|
1878 | topy = (nyf+1)/(nyc+1) * (j+1) - 1 |
---|
1879 | |
---|
1880 | DO iif = nxl, nxr |
---|
1881 | |
---|
1882 | DO jjf = bottomy, topy |
---|
1883 | |
---|
1884 | eps = (jjf * dyf + 0.5 * dyf - j * dyc - 0.5 * dyc) / dyc |
---|
1885 | |
---|
1886 | alpha = ( (dyf/dyc)**2.0 - 1.0) / 24.0 |
---|
1887 | |
---|
1888 | eminus = eps * ( eps - 1.0 ) / 2.0 + alpha |
---|
1889 | |
---|
1890 | edot = ( 1.0 - eps**2.0 ) - 2.0 * alpha |
---|
1891 | |
---|
1892 | eplus = eps * ( eps + 1.0 ) / 2.0 + alpha |
---|
1893 | |
---|
1894 | w(nzt,jjf,iif) = eminus * wprf(j-1,iif) & |
---|
1895 | + edot * wprf(j,iif) & |
---|
1896 | + eplus * wprf(j+1,iif) |
---|
1897 | |
---|
1898 | END DO |
---|
1899 | |
---|
1900 | END DO |
---|
1901 | |
---|
1902 | END DO |
---|
1903 | |
---|
1904 | DEALLOCATE( wprf ) |
---|
1905 | |
---|
1906 | END SUBROUTINE vnest_set_topbc_w |
---|
1907 | |
---|
1908 | |
---|
1909 | SUBROUTINE vnest_set_topbc_u |
---|
1910 | |
---|
1911 | |
---|
1912 | USE arrays_3d |
---|
1913 | USE control_parameters |
---|
1914 | USE grid_variables |
---|
1915 | USE indices |
---|
1916 | USE pegrid |
---|
1917 | |
---|
1918 | |
---|
1919 | IMPLICIT NONE |
---|
1920 | |
---|
1921 | INTEGER(iwp) :: i |
---|
1922 | INTEGER(iwp) :: j |
---|
1923 | INTEGER(iwp) :: k |
---|
1924 | INTEGER(iwp) :: iif |
---|
1925 | INTEGER(iwp) :: jjf |
---|
1926 | INTEGER(iwp) :: bottomx |
---|
1927 | INTEGER(iwp) :: bottomy |
---|
1928 | INTEGER(iwp) :: topx |
---|
1929 | INTEGER(iwp) :: topy |
---|
1930 | REAL(wp) :: eps |
---|
1931 | REAL(wp) :: alpha |
---|
1932 | REAL(wp) :: eminus |
---|
1933 | REAL(wp) :: edot |
---|
1934 | REAL(wp) :: eplus |
---|
1935 | REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: uprf |
---|
1936 | REAL(wp), DIMENSION(:,:), ALLOCATABLE :: uprs |
---|
1937 | |
---|
1938 | ALLOCATE( uprf(bdims_rem(3,1):bdims_rem(3,2),nys:nyn,bdims_rem(1,1)-1:bdims_rem(1,2)+1) ) |
---|
1939 | ALLOCATE( uprs(nys:nyn,bdims_rem(1,1)-1:bdims_rem(1,2)+1) ) |
---|
1940 | |
---|
1941 | |
---|
1942 | ! |
---|
1943 | !-- Interpolation in y-direction |
---|
1944 | |
---|
1945 | DO k = bdims_rem(3,1), bdims_rem(3,2) |
---|
1946 | DO j = bdims_rem(2,1), bdims_rem(2,2) |
---|
1947 | |
---|
1948 | bottomy = (nyf+1)/(nyc+1) * j |
---|
1949 | topy = (nyf+1)/(nyc+1) * (j+1) - 1 |
---|
1950 | |
---|
1951 | DO i = bdims_rem(1,1)-1, bdims_rem(1,2)+1 |
---|
1952 | DO jjf = bottomy, topy |
---|
1953 | |
---|
1954 | eps = (jjf * dyf + 0.5 * dyf - j * dyc - 0.5 * dyc) / dyc |
---|
1955 | alpha = ( (dyf/dyc)**2.0 - 1.0) / 24.0 |
---|
1956 | eminus = eps * ( eps - 1.0 ) / 2.0 + alpha |
---|
1957 | edot = ( 1.0 - eps**2.0 ) - 2.0 * alpha |
---|
1958 | eplus = eps * ( eps + 1.0 ) / 2.0 + alpha |
---|
1959 | |
---|
1960 | uprf(k,jjf,i) = eminus * work3d(k,j-1,i) & |
---|
1961 | + edot * work3d(k,j,i) & |
---|
1962 | + eplus * work3d(k,j+1,i) |
---|
1963 | END DO |
---|
1964 | END DO |
---|
1965 | |
---|
1966 | END DO |
---|
1967 | END DO |
---|
1968 | |
---|
1969 | ! |
---|
1970 | !-- Interpolation in z-direction |
---|
1971 | |
---|
1972 | DO jjf = nys, nyn |
---|
1973 | DO i = bdims_rem(1,1)-1, bdims_rem(1,2)+1 |
---|
1974 | eps = ( zuf(nzt+1) - zuc(bdims_rem(3,1)+1) ) / dzc |
---|
1975 | alpha = ( (dzf/dzc)**2.0 - 1.0) / 24.0 |
---|
1976 | eminus = eps * ( eps - 1.0 ) / 2.0 + alpha |
---|
1977 | edot = ( 1.0 - eps**2.0 ) - 2.0 * alpha |
---|
1978 | eplus = eps * ( eps + 1.0 ) / 2.0 + alpha |
---|
1979 | uprs(jjf,i) = eminus * uprf(bdims_rem(3,1),jjf,i) & |
---|
1980 | + edot * uprf(bdims_rem(3,1)+1,jjf,i) & |
---|
1981 | + eplus * uprf(bdims_rem(3,1)+2,jjf,i) |
---|
1982 | END DO |
---|
1983 | END DO |
---|
1984 | |
---|
1985 | ! |
---|
1986 | !-- Interpolation in x-direction |
---|
1987 | |
---|
1988 | DO jjf = nys, nyn |
---|
1989 | DO i = bdims_rem(1,1), bdims_rem(1,2) |
---|
1990 | |
---|
1991 | bottomx = (nxf+1)/(nxc+1) * i |
---|
1992 | topx = (nxf+1)/(nxc+1) * (i+1) - 1 |
---|
1993 | |
---|
1994 | DO iif = bottomx, topx |
---|
1995 | u(nzt+1,jjf,iif) = uprs(jjf,i) + ( iif * dxf - i * dxc ) * ( uprs(jjf,i+1) - uprs(jjf,i) ) / dxc |
---|
1996 | END DO |
---|
1997 | |
---|
1998 | END DO |
---|
1999 | END DO |
---|
2000 | |
---|
2001 | |
---|
2002 | |
---|
2003 | DEALLOCATE ( uprf, uprs ) |
---|
2004 | |
---|
2005 | END SUBROUTINE vnest_set_topbc_u |
---|
2006 | |
---|
2007 | |
---|
2008 | SUBROUTINE vnest_set_topbc_v |
---|
2009 | |
---|
2010 | |
---|
2011 | USE arrays_3d |
---|
2012 | USE control_parameters |
---|
2013 | USE grid_variables |
---|
2014 | USE indices |
---|
2015 | USE pegrid |
---|
2016 | |
---|
2017 | |
---|
2018 | IMPLICIT NONE |
---|
2019 | |
---|
2020 | INTEGER(iwp) :: i |
---|
2021 | INTEGER(iwp) :: j |
---|
2022 | INTEGER(iwp) :: k |
---|
2023 | INTEGER(iwp) :: iif |
---|
2024 | INTEGER(iwp) :: jjf |
---|
2025 | INTEGER(iwp) :: bottomx |
---|
2026 | INTEGER(iwp) :: bottomy |
---|
2027 | INTEGER(iwp) :: topx |
---|
2028 | INTEGER(iwp) :: topy |
---|
2029 | REAL(wp) :: eps |
---|
2030 | REAL(wp) :: alpha |
---|
2031 | REAL(wp) :: eminus |
---|
2032 | REAL(wp) :: edot |
---|
2033 | REAL(wp) :: eplus |
---|
2034 | REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: vprf |
---|
2035 | REAL(wp), DIMENSION(:,:), ALLOCATABLE :: vprs |
---|
2036 | |
---|
2037 | |
---|
2038 | |
---|
2039 | ALLOCATE( vprf(bdims_rem(3,1):bdims_rem(3,2),bdims_rem(2,1)-1:bdims_rem(2,2)+1,nxl:nxr) ) |
---|
2040 | ALLOCATE( vprs(bdims_rem(2,1)-1:bdims_rem(2,2)+1,nxl:nxr) ) |
---|
2041 | ! |
---|
2042 | !-- Determination of a boundary condition for the horizontal velocity component v: |
---|
2043 | !-- Interpolation in x- and z-direction is carried out by using the scheme, |
---|
2044 | !-- which was derived by Clark and Farley (1984). In y-direction a |
---|
2045 | !-- linear interpolation is carried out. |
---|
2046 | |
---|
2047 | ! |
---|
2048 | !-- Interpolation in x-direction |
---|
2049 | |
---|
2050 | DO k = bdims_rem(3,1), bdims_rem(3,2) |
---|
2051 | DO j = bdims_rem(2,1)-1, bdims_rem(2,2)+1 |
---|
2052 | DO i = bdims_rem(1,1), bdims_rem(1,2) |
---|
2053 | |
---|
2054 | bottomx = (nxf+1)/(nxc+1) * i |
---|
2055 | topx = (nxf+1)/(nxc+1) * (i+1) - 1 |
---|
2056 | |
---|
2057 | DO iif = bottomx, topx |
---|
2058 | |
---|
2059 | eps = (iif * dxf + 0.5 * dxf - i * dxc - 0.5 * dxc) / dxc |
---|
2060 | alpha = ( (dxf/dxc)**2.0 - 1.0) / 24.0 |
---|
2061 | eminus = eps * ( eps - 1.0 ) / 2.0 + alpha |
---|
2062 | edot = ( 1.0 - eps**2.0 ) - 2.0 * alpha |
---|
2063 | eplus = eps * ( eps + 1.0 ) / 2.0 + alpha |
---|
2064 | vprf(k,j,iif) = eminus * work3d(k,j,i-1) & |
---|
2065 | + edot * work3d(k,j,i) & |
---|
2066 | + eplus * work3d(k,j,i+1) |
---|
2067 | END DO |
---|
2068 | |
---|
2069 | END DO |
---|
2070 | END DO |
---|
2071 | END DO |
---|
2072 | |
---|
2073 | ! |
---|
2074 | !-- Interpolation in z-direction |
---|
2075 | |
---|
2076 | DO j = bdims_rem(2,1)-1, bdims_rem(2,2)+1 |
---|
2077 | DO iif = nxl, nxr |
---|
2078 | |
---|
2079 | eps = ( zuf(nzt+1) - zuc(bdims_rem(3,1)+1) ) / dzc |
---|
2080 | alpha = ( (dzf/dzc)**2.0 - 1.0) / 24.0 |
---|
2081 | eminus = eps * ( eps - 1.0 ) / 2.0 + alpha |
---|
2082 | edot = ( 1.0 - eps**2.0 ) - 2.0 * alpha |
---|
2083 | eplus = eps * ( eps + 1.0 ) / 2.0 + alpha |
---|
2084 | vprs(j,iif) = eminus * vprf(bdims_rem(3,1),j,iif) & |
---|
2085 | + edot * vprf(bdims_rem(3,1)+1,j,iif) & |
---|
2086 | + eplus * vprf(bdims_rem(3,1)+2,j,iif) |
---|
2087 | |
---|
2088 | END DO |
---|
2089 | END DO |
---|
2090 | |
---|
2091 | ! |
---|
2092 | !-- Interpolation in y-direction |
---|
2093 | |
---|
2094 | DO j = bdims_rem(2,1), bdims_rem(2,2) |
---|
2095 | DO iif = nxl, nxr |
---|
2096 | |
---|
2097 | bottomy = (nyf+1)/(nyc+1) * j |
---|
2098 | topy = (nyf+1)/(nyc+1) * (j+1) - 1 |
---|
2099 | |
---|
2100 | DO jjf = bottomy, topy |
---|
2101 | |
---|
2102 | v(nzt+1,jjf,iif) = vprs(j,iif) + ( jjf * dyf - j * dyc ) * ( vprs(j+1,iif) - vprs(j,iif) ) / dyc |
---|
2103 | |
---|
2104 | END DO |
---|
2105 | END DO |
---|
2106 | END DO |
---|
2107 | |
---|
2108 | |
---|
2109 | DEALLOCATE ( vprf, vprs) |
---|
2110 | |
---|
2111 | |
---|
2112 | |
---|
2113 | END SUBROUTINE vnest_set_topbc_v |
---|
2114 | |
---|
2115 | |
---|
2116 | SUBROUTINE vnest_set_topbc_s |
---|
2117 | |
---|
2118 | |
---|
2119 | USE arrays_3d |
---|
2120 | USE control_parameters |
---|
2121 | USE grid_variables |
---|
2122 | USE indices |
---|
2123 | USE pegrid |
---|
2124 | |
---|
2125 | |
---|
2126 | IMPLICIT NONE |
---|
2127 | |
---|
2128 | INTEGER(iwp) :: i |
---|
2129 | INTEGER(iwp) :: j |
---|
2130 | INTEGER(iwp) :: k |
---|
2131 | INTEGER(iwp) :: iif |
---|
2132 | INTEGER(iwp) :: jjf |
---|
2133 | INTEGER(iwp) :: bottomx |
---|
2134 | INTEGER(iwp) :: bottomy |
---|
2135 | INTEGER(iwp) :: topx |
---|
2136 | INTEGER(iwp) :: topy |
---|
2137 | REAL(wp) :: eps |
---|
2138 | REAL(wp) :: alpha |
---|
2139 | REAL(wp) :: eminus |
---|
2140 | REAL(wp) :: edot |
---|
2141 | REAL(wp) :: eplus |
---|
2142 | REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: ptprf |
---|
2143 | REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: ptprs |
---|
2144 | |
---|
2145 | |
---|
2146 | |
---|
2147 | ALLOCATE( ptprf(bdims_rem(3,1):bdims_rem(3,2),bdims_rem(2,1)-1:bdims_rem(2,2)+1,nxl:nxr) ) |
---|
2148 | ALLOCATE( ptprs(bdims_rem(3,1):bdims_rem(3,2),nys:nyn,nxl:nxr) ) |
---|
2149 | |
---|
2150 | ! |
---|
2151 | !-- Determination of a boundary condition for the potential temperature pt: |
---|
2152 | !-- The scheme derived by Clark and Farley can be used in all three dimensions. |
---|
2153 | |
---|
2154 | ! |
---|
2155 | !-- Interpolation in x-direction |
---|
2156 | |
---|
2157 | DO k = bdims_rem(3,1), bdims_rem(3,2) |
---|
2158 | |
---|
2159 | DO j = bdims_rem(2,1)-1, bdims_rem(2,2)+1 |
---|
2160 | |
---|
2161 | DO i = bdims_rem(1,1), bdims_rem(1,2) |
---|
2162 | |
---|
2163 | bottomx = (nxf+1)/(nxc+1) * i |
---|
2164 | topx = (nxf+1)/(nxc+1) *(i+1) - 1 |
---|
2165 | |
---|
2166 | DO iif = bottomx, topx |
---|
2167 | |
---|
2168 | eps = (iif * dxf + 0.5 * dxf - i * dxc - 0.5 * dxc) / dxc |
---|
2169 | |
---|
2170 | alpha = ( (dxf/dxc)**2.0 - 1.0) / 24.0 |
---|
2171 | |
---|
2172 | eminus = eps * (eps - 1.0 ) / 2.0 + alpha |
---|
2173 | |
---|
2174 | edot = ( 1.0 - eps**2.0 ) - 2.0 * alpha |
---|
2175 | |
---|
2176 | eplus = eps * ( eps + 1.0 ) / 2.0 + alpha |
---|
2177 | |
---|
2178 | ptprf(k,j,iif) = eminus * work3d(k,j,i-1) & |
---|
2179 | + edot * work3d(k,j,i) & |
---|
2180 | + eplus * work3d(k,j,i+1) |
---|
2181 | END DO |
---|
2182 | |
---|
2183 | END DO |
---|
2184 | |
---|
2185 | END DO |
---|
2186 | |
---|
2187 | END DO |
---|
2188 | |
---|
2189 | ! |
---|
2190 | !-- Interpolation in y-direction |
---|
2191 | |
---|
2192 | DO k = bdims_rem(3,1), bdims_rem(3,2) |
---|
2193 | |
---|
2194 | DO j = bdims_rem(2,1), bdims_rem(2,2) |
---|
2195 | |
---|
2196 | bottomy = (nyf+1)/(nyc+1) * j |
---|
2197 | topy = (nyf+1)/(nyc+1) * (j+1) - 1 |
---|
2198 | |
---|
2199 | DO iif = nxl, nxr |
---|
2200 | |
---|
2201 | DO jjf = bottomy, topy |
---|
2202 | |
---|
2203 | eps = (jjf * dyf + 0.5 * dyf - j * dyc - 0.5 * dyc) / dyc |
---|
2204 | |
---|
2205 | alpha = ( (dyf/dyc)**2.0 - 1.0) / 24.0 |
---|
2206 | |
---|
2207 | eminus = eps * (eps - 1.0) / 2.0 + alpha |
---|
2208 | |
---|
2209 | edot = ( 1.0 - eps**2.0 ) - 2.0 * alpha |
---|
2210 | |
---|
2211 | eplus = eps * ( eps + 1.0 ) / 2.0 + alpha |
---|
2212 | |
---|
2213 | ptprs(k,jjf,iif) = eminus * ptprf(k,j-1,iif) & |
---|
2214 | + edot * ptprf(k,j,iif) & |
---|
2215 | + eplus * ptprf(k,j+1,iif) |
---|
2216 | END DO |
---|
2217 | |
---|
2218 | END DO |
---|
2219 | |
---|
2220 | END DO |
---|
2221 | |
---|
2222 | END DO |
---|
2223 | |
---|
2224 | ! |
---|
2225 | !-- Interpolation in z-direction |
---|
2226 | |
---|
2227 | DO jjf = nys, nyn |
---|
2228 | DO iif = nxl, nxr |
---|
2229 | |
---|
2230 | eps = ( zuf(nzt+1) - zuc(bdims_rem(3,1)+1) ) / dzc |
---|
2231 | |
---|
2232 | alpha = ( (dzf/dzc)**2.0 - 1.0) / 24.0 |
---|
2233 | |
---|
2234 | eminus = eps * ( eps - 1.0 ) / 2.0 + alpha |
---|
2235 | |
---|
2236 | edot = ( 1.0 - eps**2.0 ) - 2.0 * alpha |
---|
2237 | |
---|
2238 | eplus = eps * ( eps + 1.0 ) / 2.0 + alpha |
---|
2239 | |
---|
2240 | interpol3d (nzt+1,jjf,iif) = eminus * ptprs(bdims_rem(3,1),jjf,iif) & |
---|
2241 | + edot * ptprs(bdims_rem(3,1)+1,jjf,iif) & |
---|
2242 | + eplus * ptprs(bdims_rem(3,1)+2,jjf,iif) |
---|
2243 | |
---|
2244 | END DO |
---|
2245 | END DO |
---|
2246 | |
---|
2247 | DEALLOCATE ( ptprf, ptprs ) |
---|
2248 | |
---|
2249 | |
---|
2250 | |
---|
2251 | END SUBROUTINE vnest_set_topbc_s |
---|
2252 | #endif |
---|
2253 | END SUBROUTINE vnest_boundary_conds |
---|
2254 | |
---|
2255 | |
---|
2256 | SUBROUTINE vnest_boundary_conds_khkm |
---|
2257 | #if defined( __parallel ) |
---|
2258 | |
---|
2259 | !--------------------------------------------------------------------------------! |
---|
2260 | ! Description: |
---|
2261 | ! ------------ |
---|
2262 | ! Boundary conditions for the prognostic quantities. |
---|
2263 | ! One additional bottom boundary condition is applied for the TKE (=(u*)**2) |
---|
2264 | ! in prandtl_fluxes. The cyclic lateral boundary conditions are implicitly |
---|
2265 | ! handled in routine exchange_horiz. Pressure boundary conditions are |
---|
2266 | ! explicitly set in routines pres, poisfft, poismg and sor. |
---|
2267 | !------------------------------------------------------------------------------! |
---|
2268 | |
---|
2269 | USE arrays_3d |
---|
2270 | USE control_parameters |
---|
2271 | USE grid_variables |
---|
2272 | USE indices |
---|
2273 | USE pegrid |
---|
2274 | |
---|
2275 | |
---|
2276 | IMPLICIT NONE |
---|
2277 | |
---|
2278 | INTEGER(iwp) :: i |
---|
2279 | INTEGER(iwp) :: j |
---|
2280 | INTEGER(iwp) :: iif |
---|
2281 | INTEGER(iwp) :: jjf |
---|
2282 | |
---|
2283 | |
---|
2284 | IF ( coupling_mode == 'vnested_crse' ) THEN |
---|
2285 | ! Send data to fine grid for TOP BC |
---|
2286 | |
---|
2287 | offset(1) = ( pdims_partner(1) / pdims(1) ) * pcoord(1) |
---|
2288 | offset(2) = ( pdims_partner(2) / pdims(2) ) * pcoord(2) |
---|
2289 | |
---|
2290 | do j = 0, ( pdims_partner(2) / pdims(2) ) - 1 |
---|
2291 | do i = 0, ( pdims_partner(1) / pdims(1) ) - 1 |
---|
2292 | map_coord(1) = i+offset(1) |
---|
2293 | map_coord(2) = j+offset(2) |
---|
2294 | |
---|
2295 | target_idex = f_rnk_lst(map_coord(1),map_coord(2)) + numprocs |
---|
2296 | |
---|
2297 | CALL MPI_RECV( bdims_rem, 6, MPI_INTEGER, target_idex, 10, & |
---|
2298 | comm_inter,status, ierr ) |
---|
2299 | |
---|
2300 | bdims (1,1) = bdims_rem (1,1) / cfratio(1) |
---|
2301 | bdims (1,2) = bdims_rem (1,2) / cfratio(1) |
---|
2302 | bdims (2,1) = bdims_rem (2,1) / cfratio(2) |
---|
2303 | bdims (2,2) = bdims_rem (2,2) / cfratio(2) |
---|
2304 | bdims (3,1) = bdims_rem (3,2) / cfratio(3) |
---|
2305 | bdims (3,2) = bdims (3,1) + 2 |
---|
2306 | |
---|
2307 | CALL MPI_SEND( bdims, 6, MPI_INTEGER, target_idex, 9, & |
---|
2308 | comm_inter, ierr ) |
---|
2309 | |
---|
2310 | |
---|
2311 | n_cell_c = ( (bdims(1,2)-bdims(1,1)) + 3 ) * & |
---|
2312 | ( (bdims(2,2)-bdims(2,1)) + 3 ) * & |
---|
2313 | ( (bdims(3,2)-bdims(3,1)) + 1 ) |
---|
2314 | |
---|
2315 | CALL MPI_SEND(kh(bdims(3,1) :bdims(3,2) , & |
---|
2316 | bdims(2,1)-1:bdims(2,2)+1, & |
---|
2317 | bdims(1,1)-1:bdims(1,2)+1),& |
---|
2318 | n_cell_c, MPI_REAL, target_idex, & |
---|
2319 | 207, comm_inter, ierr) |
---|
2320 | |
---|
2321 | CALL MPI_SEND(km(bdims(3,1) :bdims(3,2) , & |
---|
2322 | bdims(2,1)-1:bdims(2,2)+1, & |
---|
2323 | bdims(1,1)-1:bdims(1,2)+1),& |
---|
2324 | n_cell_c, MPI_REAL, target_idex, & |
---|
2325 | 208, comm_inter, ierr) |
---|
2326 | |
---|
2327 | |
---|
2328 | |
---|
2329 | end do |
---|
2330 | end do |
---|
2331 | |
---|
2332 | ELSEIF ( coupling_mode == 'vnested_fine' ) THEN |
---|
2333 | ! Receive data from coarse grid for TOP BC |
---|
2334 | |
---|
2335 | offset(1) = pcoord(1) / ( pdims(1)/pdims_partner(1) ) |
---|
2336 | offset(2) = pcoord(2) / ( pdims(2)/pdims_partner(2) ) |
---|
2337 | map_coord(1) = offset(1) |
---|
2338 | map_coord(2) = offset(2) |
---|
2339 | target_idex = c_rnk_lst(map_coord(1),map_coord(2)) |
---|
2340 | |
---|
2341 | bdims (1,1) = nxl |
---|
2342 | bdims (1,2) = nxr |
---|
2343 | bdims (2,1) = nys |
---|
2344 | bdims (2,2) = nyn |
---|
2345 | bdims (3,1) = nzb |
---|
2346 | bdims (3,2) = nzt |
---|
2347 | |
---|
2348 | CALL MPI_SEND( bdims, 6, MPI_INTEGER, target_idex, 10, & |
---|
2349 | comm_inter, ierr ) |
---|
2350 | |
---|
2351 | CALL MPI_RECV( bdims_rem, 6, MPI_INTEGER, target_idex, 9, & |
---|
2352 | comm_inter,status, ierr ) |
---|
2353 | |
---|
2354 | n_cell_c = ( (bdims_rem(1,2)-bdims_rem(1,1)) + 3 ) * & |
---|
2355 | ( (bdims_rem(2,2)-bdims_rem(2,1)) + 3 ) * & |
---|
2356 | ( (bdims_rem(3,2)-bdims_rem(3,1)) + 1 ) |
---|
2357 | |
---|
2358 | ALLOCATE( work3d ( bdims_rem(3,1) :bdims_rem(3,2) , & |
---|
2359 | bdims_rem(2,1)-1:bdims_rem(2,2)+1, & |
---|
2360 | bdims_rem(1,1)-1:bdims_rem(1,2)+1)) |
---|
2361 | |
---|
2362 | |
---|
2363 | CALL MPI_RECV( work3d,n_cell_c, MPI_REAL, target_idex, 207, & |
---|
2364 | comm_inter,status, ierr ) |
---|
2365 | |
---|
2366 | ! Neumann BC for FG kh |
---|
2367 | DO jjf = nys, nyn |
---|
2368 | DO iif = nxl, nxr |
---|
2369 | kh(nzt+1,jjf,iif) = kh(nzt,jjf,iif) |
---|
2370 | END DO |
---|
2371 | END DO |
---|
2372 | |
---|
2373 | CALL MPI_RECV( work3d,n_cell_c, MPI_REAL, target_idex, 208, & |
---|
2374 | comm_inter,status, ierr ) |
---|
2375 | |
---|
2376 | ! Neumann BC for FG kh |
---|
2377 | DO jjf = nys, nyn |
---|
2378 | DO iif = nxl, nxr |
---|
2379 | km(nzt+1,jjf,iif) = km(nzt,jjf,iif) |
---|
2380 | END DO |
---|
2381 | END DO |
---|
2382 | |
---|
2383 | |
---|
2384 | ! |
---|
2385 | !-- The following evaluation can only be performed, if the fine grid is situated below the inversion |
---|
2386 | !! DO jjf = nys-1, nyn+1 |
---|
2387 | !! DO iif = nxl-1, nxr+1 |
---|
2388 | !! |
---|
2389 | !! km(nzt+1,jjf,iif) = 0.1 * l_grid(nzt+1) * SQRT( e(nzt+1,jjf,iif) ) |
---|
2390 | !! kh(nzt+1,jjf,iif) = 3.0 * km(nzt+1,jjf,iif) |
---|
2391 | !! |
---|
2392 | !! END DO |
---|
2393 | !! END DO |
---|
2394 | |
---|
2395 | CALL exchange_horiz_2d(km(nzt+1,:,:) ) |
---|
2396 | CALL exchange_horiz_2d(kh(nzt+1,:,:) ) |
---|
2397 | |
---|
2398 | DEALLOCATE ( work3d ) |
---|
2399 | |
---|
2400 | ENDIF |
---|
2401 | |
---|
2402 | |
---|
2403 | ! CONTAINS |
---|
2404 | ! |
---|
2405 | ! SUBROUTINE vnest_set_topbc_kh |
---|
2406 | ! |
---|
2407 | ! |
---|
2408 | ! USE arrays_3d |
---|
2409 | ! USE control_parameters |
---|
2410 | ! USE grid_variables |
---|
2411 | ! USE indices |
---|
2412 | ! USE pegrid |
---|
2413 | ! |
---|
2414 | ! |
---|
2415 | ! IMPLICIT NONE |
---|
2416 | ! |
---|
2417 | ! INTEGER(iwp) :: i |
---|
2418 | ! INTEGER(iwp) :: j |
---|
2419 | ! INTEGER(iwp) :: k |
---|
2420 | ! INTEGER(iwp) :: iif |
---|
2421 | ! INTEGER(iwp) :: jjf |
---|
2422 | ! INTEGER(iwp) :: bottomx |
---|
2423 | ! INTEGER(iwp) :: bottomy |
---|
2424 | ! INTEGER(iwp) :: topx |
---|
2425 | ! INTEGER(iwp) :: topy |
---|
2426 | ! REAL(wp) :: eps |
---|
2427 | ! REAL(wp) :: alpha |
---|
2428 | ! REAL(wp) :: eminus |
---|
2429 | ! REAL(wp) :: edot |
---|
2430 | ! REAL(wp) :: eplus |
---|
2431 | ! REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: ptprf |
---|
2432 | ! REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: ptprs |
---|
2433 | ! |
---|
2434 | ! |
---|
2435 | ! |
---|
2436 | ! ALLOCATE( ptprf(bdims_rem(3,1):bdims_rem(3,2),bdims_rem(2,1)-1:bdims_rem(2,2)+1,nxl:nxr) ) |
---|
2437 | ! ALLOCATE( ptprs(bdims_rem(3,1):bdims_rem(3,2),nys:nyn,nxl:nxr) ) |
---|
2438 | ! |
---|
2439 | ! ! |
---|
2440 | ! !-- Determination of a boundary condition for the potential temperature pt: |
---|
2441 | ! !-- The scheme derived by Clark and Farley can be used in all three dimensions. |
---|
2442 | ! |
---|
2443 | ! ! |
---|
2444 | ! !-- Interpolation in x-direction |
---|
2445 | ! |
---|
2446 | ! DO k = bdims_rem(3,1), bdims_rem(3,2) |
---|
2447 | ! |
---|
2448 | ! DO j = bdims_rem(2,1)-1, bdims_rem(2,2)+1 |
---|
2449 | ! |
---|
2450 | ! DO i = bdims_rem(1,1), bdims_rem(1,2) |
---|
2451 | ! |
---|
2452 | ! bottomx = (nxf+1)/(nxc+1) * i |
---|
2453 | ! topx = (nxf+1)/(nxc+1) *(i+1) - 1 |
---|
2454 | ! |
---|
2455 | ! DO iif = bottomx, topx |
---|
2456 | ! |
---|
2457 | ! eps = (iif * dxf + 0.5 * dxf - i * dxc - 0.5 * dxc) / dxc |
---|
2458 | ! |
---|
2459 | ! alpha = ( (dxf/dxc)**2.0 - 1.0) / 24.0 |
---|
2460 | ! |
---|
2461 | ! eminus = eps * (eps - 1.0 ) / 2.0 + alpha |
---|
2462 | ! |
---|
2463 | ! edot = ( 1.0 - eps**2.0 ) - 2.0 * alpha |
---|
2464 | ! |
---|
2465 | ! eplus = eps * ( eps + 1.0 ) / 2.0 + alpha |
---|
2466 | ! |
---|
2467 | ! ptprf(k,j,iif) = eminus * work3d(k,j,i-1) & |
---|
2468 | ! + edot * work3d(k,j,i) & |
---|
2469 | ! + eplus * work3d(k,j,i+1) |
---|
2470 | ! END DO |
---|
2471 | ! |
---|
2472 | ! END DO |
---|
2473 | ! |
---|
2474 | ! END DO |
---|
2475 | ! |
---|
2476 | ! END DO |
---|
2477 | ! |
---|
2478 | ! ! |
---|
2479 | ! !-- Interpolation in y-direction |
---|
2480 | ! |
---|
2481 | ! DO k = bdims_rem(3,1), bdims_rem(3,2) |
---|
2482 | ! |
---|
2483 | ! DO j = bdims_rem(2,1), bdims_rem(2,2) |
---|
2484 | ! |
---|
2485 | ! bottomy = (nyf+1)/(nyc+1) * j |
---|
2486 | ! topy = (nyf+1)/(nyc+1) * (j+1) - 1 |
---|
2487 | ! |
---|
2488 | ! DO iif = nxl, nxr |
---|
2489 | ! |
---|
2490 | ! DO jjf = bottomy, topy |
---|
2491 | ! |
---|
2492 | ! eps = (jjf * dyf + 0.5 * dyf - j * dyc - 0.5 * dyc) / dyc |
---|
2493 | ! |
---|
2494 | ! alpha = ( (dyf/dyc)**2.0 - 1.0) / 24.0 |
---|
2495 | ! |
---|
2496 | ! eminus = eps * (eps - 1.0) / 2.0 + alpha |
---|
2497 | ! |
---|
2498 | ! edot = ( 1.0 - eps**2.0 ) - 2.0 * alpha |
---|
2499 | ! |
---|
2500 | ! eplus = eps * ( eps + 1.0 ) / 2.0 + alpha |
---|
2501 | ! |
---|
2502 | ! ptprs(k,jjf,iif) = eminus * ptprf(k,j-1,iif) & |
---|
2503 | ! + edot * ptprf(k,j,iif) & |
---|
2504 | ! + eplus * ptprf(k,j+1,iif) |
---|
2505 | ! END DO |
---|
2506 | ! |
---|
2507 | ! END DO |
---|
2508 | ! |
---|
2509 | ! END DO |
---|
2510 | ! |
---|
2511 | ! END DO |
---|
2512 | ! |
---|
2513 | ! ! |
---|
2514 | ! !-- Interpolation in z-direction |
---|
2515 | ! |
---|
2516 | ! DO jjf = nys, nyn |
---|
2517 | ! DO iif = nxl, nxr |
---|
2518 | ! |
---|
2519 | ! eps = ( zuf(nzt+1) - zuc(bdims_rem(3,1)+1) ) / dzc |
---|
2520 | ! |
---|
2521 | ! alpha = ( (dzf/dzc)**2.0 - 1.0) / 24.0 |
---|
2522 | ! |
---|
2523 | ! eminus = eps * ( eps - 1.0 ) / 2.0 + alpha |
---|
2524 | ! |
---|
2525 | ! edot = ( 1.0 - eps**2.0 ) - 2.0 * alpha |
---|
2526 | ! |
---|
2527 | ! eplus = eps * ( eps + 1.0 ) / 2.0 + alpha |
---|
2528 | ! |
---|
2529 | ! kh (nzt+1,jjf,iif) = eminus * ptprs(bdims_rem(3,1),jjf,iif) & |
---|
2530 | ! + edot * ptprs(bdims_rem(3,1)+1,jjf,iif) & |
---|
2531 | ! + eplus * ptprs(bdims_rem(3,1)+2,jjf,iif) |
---|
2532 | ! |
---|
2533 | ! END DO |
---|
2534 | ! END DO |
---|
2535 | ! |
---|
2536 | ! DEALLOCATE ( ptprf, ptprs ) |
---|
2537 | ! |
---|
2538 | ! |
---|
2539 | ! |
---|
2540 | ! END SUBROUTINE vnest_set_topbc_kh |
---|
2541 | |
---|
2542 | ! SUBROUTINE vnest_set_topbc_km |
---|
2543 | ! |
---|
2544 | ! |
---|
2545 | ! USE arrays_3d |
---|
2546 | ! USE control_parameters |
---|
2547 | ! USE grid_variables |
---|
2548 | ! USE indices |
---|
2549 | ! USE pegrid |
---|
2550 | ! |
---|
2551 | ! |
---|
2552 | ! IMPLICIT NONE |
---|
2553 | ! |
---|
2554 | ! INTEGER(iwp) :: i |
---|
2555 | ! INTEGER(iwp) :: j |
---|
2556 | ! INTEGER(iwp) :: k |
---|
2557 | ! INTEGER(iwp) :: iif |
---|
2558 | ! INTEGER(iwp) :: jjf |
---|
2559 | ! INTEGER(iwp) :: bottomx |
---|
2560 | ! INTEGER(iwp) :: bottomy |
---|
2561 | ! INTEGER(iwp) :: topx |
---|
2562 | ! INTEGER(iwp) :: topy |
---|
2563 | ! REAL(wp) :: eps |
---|
2564 | ! REAL(wp) :: alpha |
---|
2565 | ! REAL(wp) :: eminus |
---|
2566 | ! REAL(wp) :: edot |
---|
2567 | ! REAL(wp) :: eplus |
---|
2568 | ! REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: ptprf |
---|
2569 | ! REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: ptprs |
---|
2570 | ! |
---|
2571 | ! |
---|
2572 | ! |
---|
2573 | ! ALLOCATE( ptprf(bdims_rem(3,1):bdims_rem(3,2),bdims_rem(2,1)-1:bdims_rem(2,2)+1,nxl:nxr) ) |
---|
2574 | ! ALLOCATE( ptprs(bdims_rem(3,1):bdims_rem(3,2),nys:nyn,nxl:nxr) ) |
---|
2575 | ! |
---|
2576 | ! ! |
---|
2577 | ! !-- Determination of a boundary condition for the potential temperature pt: |
---|
2578 | ! !-- The scheme derived by Clark and Farley can be used in all three dimensions. |
---|
2579 | ! |
---|
2580 | ! ! |
---|
2581 | ! !-- Interpolation in x-direction |
---|
2582 | ! |
---|
2583 | ! DO k = bdims_rem(3,1), bdims_rem(3,2) |
---|
2584 | ! |
---|
2585 | ! DO j = bdims_rem(2,1)-1, bdims_rem(2,2)+1 |
---|
2586 | ! |
---|
2587 | ! DO i = bdims_rem(1,1), bdims_rem(1,2) |
---|
2588 | ! |
---|
2589 | ! bottomx = (nxf+1)/(nxc+1) * i |
---|
2590 | ! topx = (nxf+1)/(nxc+1) *(i+1) - 1 |
---|
2591 | ! |
---|
2592 | ! DO iif = bottomx, topx |
---|
2593 | ! |
---|
2594 | ! eps = (iif * dxf + 0.5 * dxf - i * dxc - 0.5 * dxc) / dxc |
---|
2595 | ! |
---|
2596 | ! alpha = ( (dxf/dxc)**2.0 - 1.0) / 24.0 |
---|
2597 | ! |
---|
2598 | ! eminus = eps * (eps - 1.0 ) / 2.0 + alpha |
---|
2599 | ! |
---|
2600 | ! edot = ( 1.0 - eps**2.0 ) - 2.0 * alpha |
---|
2601 | ! |
---|
2602 | ! eplus = eps * ( eps + 1.0 ) / 2.0 + alpha |
---|
2603 | ! |
---|
2604 | ! ptprf(k,j,iif) = eminus * work3d(k,j,i-1) & |
---|
2605 | ! + edot * work3d(k,j,i) & |
---|
2606 | ! + eplus * work3d(k,j,i+1) |
---|
2607 | ! END DO |
---|
2608 | ! |
---|
2609 | ! END DO |
---|
2610 | ! |
---|
2611 | ! END DO |
---|
2612 | ! |
---|
2613 | ! END DO |
---|
2614 | ! |
---|
2615 | ! ! |
---|
2616 | ! !-- Interpolation in y-direction |
---|
2617 | ! |
---|
2618 | ! DO k = bdims_rem(3,1), bdims_rem(3,2) |
---|
2619 | ! |
---|
2620 | ! DO j = bdims_rem(2,1), bdims_rem(2,2) |
---|
2621 | ! |
---|
2622 | ! bottomy = (nyf+1)/(nyc+1) * j |
---|
2623 | ! topy = (nyf+1)/(nyc+1) * (j+1) - 1 |
---|
2624 | ! |
---|
2625 | ! DO iif = nxl, nxr |
---|
2626 | ! |
---|
2627 | ! DO jjf = bottomy, topy |
---|
2628 | ! |
---|
2629 | ! eps = (jjf * dyf + 0.5 * dyf - j * dyc - 0.5 * dyc) / dyc |
---|
2630 | ! |
---|
2631 | ! alpha = ( (dyf/dyc)**2.0 - 1.0) / 24.0 |
---|
2632 | ! |
---|
2633 | ! eminus = eps * (eps - 1.0) / 2.0 + alpha |
---|
2634 | ! |
---|
2635 | ! edot = ( 1.0 - eps**2.0 ) - 2.0 * alpha |
---|
2636 | ! |
---|
2637 | ! eplus = eps * ( eps + 1.0 ) / 2.0 + alpha |
---|
2638 | ! |
---|
2639 | ! ptprs(k,jjf,iif) = eminus * ptprf(k,j-1,iif) & |
---|
2640 | ! + edot * ptprf(k,j,iif) & |
---|
2641 | ! + eplus * ptprf(k,j+1,iif) |
---|
2642 | ! END DO |
---|
2643 | ! |
---|
2644 | ! END DO |
---|
2645 | ! |
---|
2646 | ! END DO |
---|
2647 | ! |
---|
2648 | ! END DO |
---|
2649 | ! |
---|
2650 | ! ! |
---|
2651 | ! !-- Interpolation in z-direction |
---|
2652 | ! |
---|
2653 | ! DO jjf = nys, nyn |
---|
2654 | ! DO iif = nxl, nxr |
---|
2655 | ! |
---|
2656 | ! eps = ( zuf(nzt+1) - zuc(bdims_rem(3,1)+1) ) / dzc |
---|
2657 | ! |
---|
2658 | ! alpha = ( (dzf/dzc)**2.0 - 1.0) / 24.0 |
---|
2659 | ! |
---|
2660 | ! eminus = eps * ( eps - 1.0 ) / 2.0 + alpha |
---|
2661 | ! |
---|
2662 | ! edot = ( 1.0 - eps**2.0 ) - 2.0 * alpha |
---|
2663 | ! |
---|
2664 | ! eplus = eps * ( eps + 1.0 ) / 2.0 + alpha |
---|
2665 | ! |
---|
2666 | ! km (nzt+1,jjf,iif) = eminus * ptprs(bdims_rem(3,1),jjf,iif) & |
---|
2667 | ! + edot * ptprs(bdims_rem(3,1)+1,jjf,iif) & |
---|
2668 | ! + eplus * ptprs(bdims_rem(3,1)+2,jjf,iif) |
---|
2669 | ! |
---|
2670 | ! END DO |
---|
2671 | ! END DO |
---|
2672 | ! |
---|
2673 | ! DEALLOCATE ( ptprf, ptprs ) |
---|
2674 | ! |
---|
2675 | ! |
---|
2676 | ! |
---|
2677 | ! END SUBROUTINE vnest_set_topbc_km |
---|
2678 | |
---|
2679 | |
---|
2680 | #endif |
---|
2681 | END SUBROUTINE vnest_boundary_conds_khkm |
---|
2682 | |
---|
2683 | |
---|
2684 | |
---|
2685 | SUBROUTINE vnest_anterpolate |
---|
2686 | |
---|
2687 | #if defined( __parallel ) |
---|
2688 | |
---|
2689 | !--------------------------------------------------------------------------------! |
---|
2690 | ! Description: |
---|
2691 | ! ------------ |
---|
2692 | ! Anterpolate data from fine grid to coarse grid. |
---|
2693 | !------------------------------------------------------------------------------! |
---|
2694 | |
---|
2695 | USE arrays_3d |
---|
2696 | USE control_parameters |
---|
2697 | USE grid_variables |
---|
2698 | USE indices |
---|
2699 | USE interfaces |
---|
2700 | USE pegrid |
---|
2701 | USE surface_mod, & |
---|
2702 | ONLY : bc_h |
---|
2703 | |
---|
2704 | |
---|
2705 | IMPLICIT NONE |
---|
2706 | |
---|
2707 | REAL(wp) :: time_since_reference_point_rem |
---|
2708 | INTEGER(iwp) :: i |
---|
2709 | INTEGER(iwp) :: j |
---|
2710 | INTEGER(iwp) :: k |
---|
2711 | INTEGER(iwp) :: kb !< variable to set respective boundary value, depends on facing. |
---|
2712 | INTEGER(iwp) :: l !< running index boundary type, for up- and downward-facing walls |
---|
2713 | INTEGER(iwp) :: m !< running index surface elements |
---|
2714 | |
---|
2715 | |
---|
2716 | |
---|
2717 | ! |
---|
2718 | !-- In case of model termination initiated by the remote model |
---|
2719 | !-- (terminate_coupled_remote > 0), initiate termination of the local model. |
---|
2720 | !-- The rest of the coupler must then be skipped because it would cause an MPI |
---|
2721 | !-- intercomminucation hang. |
---|
2722 | !-- If necessary, the coupler will be called at the beginning of the next |
---|
2723 | !-- restart run. |
---|
2724 | |
---|
2725 | IF ( myid == 0) THEN |
---|
2726 | CALL MPI_SENDRECV( terminate_coupled, 1, MPI_INTEGER, & |
---|
2727 | target_id, 0, & |
---|
2728 | terminate_coupled_remote, 1, MPI_INTEGER, & |
---|
2729 | target_id, 0, & |
---|
2730 | comm_inter, status, ierr ) |
---|
2731 | ENDIF |
---|
2732 | CALL MPI_BCAST( terminate_coupled_remote, 1, MPI_INTEGER, 0, comm2d, & |
---|
2733 | ierr ) |
---|
2734 | |
---|
2735 | IF ( terminate_coupled_remote > 0 ) THEN |
---|
2736 | WRITE( message_string, * ) 'remote model "', & |
---|
2737 | TRIM( coupling_mode_remote ), & |
---|
2738 | '" terminated', & |
---|
2739 | '&with terminate_coupled_remote = ', & |
---|
2740 | terminate_coupled_remote, & |
---|
2741 | '&local model "', TRIM( coupling_mode ), & |
---|
2742 | '" has', & |
---|
2743 | '&terminate_coupled = ', & |
---|
2744 | terminate_coupled |
---|
2745 | CALL message( 'vnest_anterpolate', 'PA0310', 1, 2, 0, 6, 0 ) |
---|
2746 | RETURN |
---|
2747 | ENDIF |
---|
2748 | |
---|
2749 | |
---|
2750 | ! |
---|
2751 | !-- Exchange the current simulated time between the models |
---|
2752 | |
---|
2753 | IF ( myid == 0 ) THEN |
---|
2754 | |
---|
2755 | CALL MPI_SEND( time_since_reference_point, 1, MPI_REAL, target_id, & |
---|
2756 | 11, comm_inter, ierr ) |
---|
2757 | CALL MPI_RECV( time_since_reference_point_rem, 1, MPI_REAL, & |
---|
2758 | target_id, 11, comm_inter, status, ierr ) |
---|
2759 | |
---|
2760 | ENDIF |
---|
2761 | |
---|
2762 | CALL MPI_BCAST( time_since_reference_point_rem, 1, MPI_REAL, 0, comm2d, & |
---|
2763 | ierr ) |
---|
2764 | |
---|
2765 | IF ( coupling_mode == 'vnested_crse' ) THEN |
---|
2766 | ! Receive data from fine grid for anterpolation |
---|
2767 | |
---|
2768 | offset(1) = ( pdims_partner(1) / pdims(1) ) * pcoord(1) |
---|
2769 | offset(2) = ( pdims_partner(2) / pdims(2) ) * pcoord(2) |
---|
2770 | |
---|
2771 | do j = 0, ( pdims_partner(2) / pdims(2) ) - 1 |
---|
2772 | do i = 0, ( pdims_partner(1) / pdims(1) ) - 1 |
---|
2773 | map_coord(1) = i+offset(1) |
---|
2774 | map_coord(2) = j+offset(2) |
---|
2775 | |
---|
2776 | target_idex = f_rnk_lst(map_coord(1),map_coord(2)) + numprocs |
---|
2777 | |
---|
2778 | CALL MPI_RECV( bdims_rem, 6, MPI_INTEGER, target_idex, 10, & |
---|
2779 | comm_inter,status, ierr ) |
---|
2780 | |
---|
2781 | bdims (1,1) = bdims_rem (1,1) / cfratio(1) |
---|
2782 | bdims (1,2) = bdims_rem (1,2) / cfratio(1) |
---|
2783 | bdims (2,1) = bdims_rem (2,1) / cfratio(2) |
---|
2784 | bdims (2,2) = bdims_rem (2,2) / cfratio(2) |
---|
2785 | bdims (3,1) = bdims_rem (3,1) |
---|
2786 | bdims (3,2) = bdims_rem (3,2) / cfratio(3) |
---|
2787 | |
---|
2788 | CALL MPI_SEND( bdims, 6, MPI_INTEGER, target_idex, 9, & |
---|
2789 | comm_inter, ierr ) |
---|
2790 | |
---|
2791 | n_cell_c = & |
---|
2792 | (bdims(1,2)-bdims(1,1)+1) * & |
---|
2793 | (bdims(2,2)-bdims(2,1)+1) * & |
---|
2794 | (bdims(3,2)-bdims(3,1)+0) |
---|
2795 | |
---|
2796 | CALL MPI_RECV( u( & |
---|
2797 | bdims(3,1)+1:bdims(3,2), & |
---|
2798 | bdims(2,1) :bdims(2,2), & |
---|
2799 | bdims(1,1) :bdims(1,2)),& |
---|
2800 | n_cell_c, MPI_REAL, target_idex, 101, & |
---|
2801 | comm_inter,status, ierr ) |
---|
2802 | |
---|
2803 | CALL MPI_RECV( v( & |
---|
2804 | bdims(3,1)+1:bdims(3,2), & |
---|
2805 | bdims(2,1) :bdims(2,2), & |
---|
2806 | bdims(1,1) :bdims(1,2)),& |
---|
2807 | n_cell_c, MPI_REAL, target_idex, 102, & |
---|
2808 | comm_inter,status, ierr ) |
---|
2809 | |
---|
2810 | CALL MPI_RECV(pt( & |
---|
2811 | bdims(3,1)+1:bdims(3,2), & |
---|
2812 | bdims(2,1) :bdims(2,2), & |
---|
2813 | bdims(1,1) :bdims(1,2)),& |
---|
2814 | n_cell_c, MPI_REAL, target_idex, 105, & |
---|
2815 | comm_inter,status, ierr ) |
---|
2816 | |
---|
2817 | IF ( humidity ) THEN |
---|
2818 | CALL MPI_RECV(q( & |
---|
2819 | bdims(3,1)+1:bdims(3,2), & |
---|
2820 | bdims(2,1) :bdims(2,2), & |
---|
2821 | bdims(1,1) :bdims(1,2)),& |
---|
2822 | n_cell_c, MPI_REAL, target_idex, 106, & |
---|
2823 | comm_inter,status, ierr ) |
---|
2824 | ENDIF |
---|
2825 | |
---|
2826 | CALL MPI_RECV( w( & |
---|
2827 | bdims(3,1) :bdims(3,2)-1, & |
---|
2828 | bdims(2,1) :bdims(2,2), & |
---|
2829 | bdims(1,1) :bdims(1,2)), & |
---|
2830 | n_cell_c, MPI_REAL, target_idex, 103, & |
---|
2831 | comm_inter,status, ierr ) |
---|
2832 | |
---|
2833 | end do |
---|
2834 | end do |
---|
2835 | |
---|
2836 | |
---|
2837 | |
---|
2838 | ! |
---|
2839 | !-- Boundary conditions for the velocity components u and v |
---|
2840 | |
---|
2841 | |
---|
2842 | IF ( ibc_uv_b == 0 ) THEN |
---|
2843 | u(nzb,:,:) = 0.0_wp |
---|
2844 | v(nzb,:,:) = 0.0_wp |
---|
2845 | ELSE |
---|
2846 | u(nzb,:,:) = u(nzb+1,:,:) |
---|
2847 | v(nzb,:,:) = v(nzb+1,:,:) |
---|
2848 | END IF |
---|
2849 | ! |
---|
2850 | !-- Boundary conditions for the velocity components w |
---|
2851 | |
---|
2852 | w(nzb,:,:) = 0.0_wp |
---|
2853 | |
---|
2854 | ! |
---|
2855 | !-- Temperature at bottom boundary. |
---|
2856 | !-- Neumann, zero-gradient |
---|
2857 | IF ( ibc_pt_b == 1 ) THEN |
---|
2858 | DO l = 0, 1 |
---|
2859 | ! |
---|
2860 | !-- Set kb, for upward-facing surfaces value at topography top (k-1) is set, |
---|
2861 | !-- for downward-facing surfaces at topography bottom (k+1). |
---|
2862 | kb = MERGE( -1, 1, l == 0 ) |
---|
2863 | DO m = 1, bc_h(l)%ns |
---|
2864 | i = bc_h(l)%i(m) |
---|
2865 | j = bc_h(l)%j(m) |
---|
2866 | k = bc_h(l)%k(m) |
---|
2867 | pt(k+kb,j,i) = pt(k,j,i) |
---|
2868 | ENDDO |
---|
2869 | ENDDO |
---|
2870 | ENDIF |
---|
2871 | |
---|
2872 | |
---|
2873 | CALL exchange_horiz( u, nbgp ) |
---|
2874 | CALL exchange_horiz( v, nbgp ) |
---|
2875 | CALL exchange_horiz( w, nbgp ) |
---|
2876 | CALL exchange_horiz( pt, nbgp ) |
---|
2877 | |
---|
2878 | |
---|
2879 | ELSEIF ( coupling_mode == 'vnested_fine' ) THEN |
---|
2880 | ! Send data to coarse grid for anterpolation |
---|
2881 | |
---|
2882 | offset(1) = pcoord(1) / ( pdims(1)/pdims_partner(1) ) |
---|
2883 | offset(2) = pcoord(2) / ( pdims(2)/pdims_partner(2) ) |
---|
2884 | map_coord(1) = offset(1) |
---|
2885 | map_coord(2) = offset(2) |
---|
2886 | target_idex = c_rnk_lst(map_coord(1),map_coord(2)) |
---|
2887 | |
---|
2888 | !-- Limit anterpolation level to nzt - z nesting ratio (a pseudo-buffer layer) |
---|
2889 | bdims (1,1) = nxl |
---|
2890 | bdims (1,2) = nxr |
---|
2891 | bdims (2,1) = nys |
---|
2892 | bdims (2,2) = nyn |
---|
2893 | bdims (3,1) = nzb |
---|
2894 | bdims (3,2) = nzt-cfratio(3) |
---|
2895 | |
---|
2896 | CALL MPI_SEND( bdims, 6, MPI_INTEGER, target_idex, 10, & |
---|
2897 | comm_inter, ierr ) |
---|
2898 | |
---|
2899 | CALL MPI_RECV( bdims_rem, 6, MPI_INTEGER, target_idex, 9, & |
---|
2900 | comm_inter,status, ierr ) |
---|
2901 | |
---|
2902 | |
---|
2903 | ALLOCATE( work3d ( & |
---|
2904 | bdims_rem(3,1)+1:bdims_rem(3,2), & |
---|
2905 | bdims_rem(2,1) :bdims_rem(2,2), & |
---|
2906 | bdims_rem(1,1) :bdims_rem(1,2))) |
---|
2907 | |
---|
2908 | |
---|
2909 | anterpol3d => u |
---|
2910 | |
---|
2911 | CALL anterpolate_to_crse_u |
---|
2912 | CALL MPI_SEND( work3d, 1, TYPE_VNEST_ANTER, target_idex, & |
---|
2913 | 101, comm_inter, ierr) |
---|
2914 | |
---|
2915 | anterpol3d => v |
---|
2916 | |
---|
2917 | CALL anterpolate_to_crse_v |
---|
2918 | CALL MPI_SEND( work3d, 1, TYPE_VNEST_ANTER, target_idex, & |
---|
2919 | 102, comm_inter, ierr) |
---|
2920 | |
---|
2921 | anterpol3d => pt |
---|
2922 | |
---|
2923 | CALL anterpolate_to_crse_s |
---|
2924 | CALL MPI_SEND( work3d, 1, TYPE_VNEST_ANTER, target_idex, & |
---|
2925 | 105, comm_inter, ierr) |
---|
2926 | |
---|
2927 | |
---|
2928 | IF ( humidity ) THEN |
---|
2929 | |
---|
2930 | anterpol3d => q |
---|
2931 | |
---|
2932 | CALL anterpolate_to_crse_s |
---|
2933 | CALL MPI_SEND( work3d, 1, TYPE_VNEST_ANTER, target_idex, & |
---|
2934 | 106, comm_inter, ierr) |
---|
2935 | ENDIF |
---|
2936 | |
---|
2937 | |
---|
2938 | DEALLOCATE( work3d ) |
---|
2939 | ALLOCATE( work3d ( bdims_rem(3,1) :bdims_rem(3,2)-1, & |
---|
2940 | bdims_rem(2,1) :bdims_rem(2,2), & |
---|
2941 | bdims_rem(1,1) :bdims_rem(1,2))) |
---|
2942 | anterpol3d => w |
---|
2943 | CALL anterpolate_to_crse_w |
---|
2944 | CALL MPI_SEND( work3d, 1, TYPE_VNEST_ANTER, target_idex, & |
---|
2945 | 103, comm_inter, ierr) |
---|
2946 | |
---|
2947 | NULLIFY ( anterpol3d ) |
---|
2948 | DEALLOCATE( work3d ) |
---|
2949 | |
---|
2950 | ENDIF |
---|
2951 | |
---|
2952 | |
---|
2953 | |
---|
2954 | CONTAINS |
---|
2955 | SUBROUTINE anterpolate_to_crse_u |
---|
2956 | |
---|
2957 | |
---|
2958 | USE arrays_3d |
---|
2959 | USE control_parameters |
---|
2960 | USE grid_variables |
---|
2961 | USE indices |
---|
2962 | USE pegrid |
---|
2963 | |
---|
2964 | |
---|
2965 | IMPLICIT NONE |
---|
2966 | |
---|
2967 | INTEGER(iwp) :: i |
---|
2968 | INTEGER(iwp) :: j |
---|
2969 | INTEGER(iwp) :: k |
---|
2970 | INTEGER(iwp) :: iif |
---|
2971 | INTEGER(iwp) :: jjf |
---|
2972 | INTEGER(iwp) :: kkf |
---|
2973 | INTEGER(iwp) :: bottomy |
---|
2974 | INTEGER(iwp) :: bottomz |
---|
2975 | INTEGER(iwp) :: topy |
---|
2976 | INTEGER(iwp) :: topz |
---|
2977 | REAL(wp) :: aweight |
---|
2978 | |
---|
2979 | ! |
---|
2980 | !-- Anterpolation of the velocity components u |
---|
2981 | !-- only values in yz-planes that coincide in the fine and |
---|
2982 | !-- the coarse grid are considered |
---|
2983 | |
---|
2984 | DO k = bdims_rem(3,1)+1, bdims_rem(3,2) |
---|
2985 | |
---|
2986 | bottomz = (dzc/dzf) * (k-1) + 1 |
---|
2987 | topz = (dzc/dzf) * k |
---|
2988 | |
---|
2989 | DO j = bdims_rem(2,1),bdims_rem(2,2) |
---|
2990 | |
---|
2991 | bottomy = (nyf+1) / (nyc+1) * j |
---|
2992 | topy = (nyf+1) / (nyc+1) * (j+1) - 1 |
---|
2993 | |
---|
2994 | DO i = bdims_rem(1,1),bdims_rem(1,2) |
---|
2995 | |
---|
2996 | iif = (nxf+1) / (nxc+1) * i |
---|
2997 | |
---|
2998 | aweight = 0.0 |
---|
2999 | |
---|
3000 | DO kkf = bottomz, topz |
---|
3001 | DO jjf = bottomy, topy |
---|
3002 | |
---|
3003 | aweight = aweight + anterpol3d(kkf,jjf,iif) * & |
---|
3004 | (dzf/dzc) * (dyf/dyc) |
---|
3005 | |
---|
3006 | END DO |
---|
3007 | END DO |
---|
3008 | |
---|
3009 | work3d(k,j,i) = aweight |
---|
3010 | |
---|
3011 | END DO |
---|
3012 | |
---|
3013 | END DO |
---|
3014 | |
---|
3015 | END DO |
---|
3016 | |
---|
3017 | |
---|
3018 | |
---|
3019 | END SUBROUTINE anterpolate_to_crse_u |
---|
3020 | |
---|
3021 | |
---|
3022 | SUBROUTINE anterpolate_to_crse_v |
---|
3023 | |
---|
3024 | |
---|
3025 | USE arrays_3d |
---|
3026 | USE control_parameters |
---|
3027 | USE grid_variables |
---|
3028 | USE indices |
---|
3029 | USE pegrid |
---|
3030 | |
---|
3031 | |
---|
3032 | IMPLICIT NONE |
---|
3033 | |
---|
3034 | INTEGER(iwp) :: i |
---|
3035 | INTEGER(iwp) :: j |
---|
3036 | INTEGER(iwp) :: k |
---|
3037 | INTEGER(iwp) :: iif |
---|
3038 | INTEGER(iwp) :: jjf |
---|
3039 | INTEGER(iwp) :: kkf |
---|
3040 | INTEGER(iwp) :: bottomx |
---|
3041 | INTEGER(iwp) :: bottomz |
---|
3042 | INTEGER(iwp) :: topx |
---|
3043 | INTEGER(iwp) :: topz |
---|
3044 | REAL(wp) :: aweight |
---|
3045 | |
---|
3046 | ! |
---|
3047 | !-- Anterpolation of the velocity components v |
---|
3048 | !-- only values in xz-planes that coincide in the fine and |
---|
3049 | !-- the coarse grid are considered |
---|
3050 | |
---|
3051 | DO k = bdims_rem(3,1)+1, bdims_rem(3,2) |
---|
3052 | |
---|
3053 | bottomz = (dzc/dzf) * (k-1) + 1 |
---|
3054 | topz = (dzc/dzf) * k |
---|
3055 | |
---|
3056 | DO j = bdims_rem(2,1), bdims_rem(2,2) |
---|
3057 | |
---|
3058 | jjf = (nyf+1) / (nyc+1) * j |
---|
3059 | |
---|
3060 | DO i = bdims_rem(1,1), bdims_rem(1,2) |
---|
3061 | |
---|
3062 | bottomx = (nxf+1) / (nxc+1) * i |
---|
3063 | topx = (nxf+1) / (nxc+1) * (i+1) - 1 |
---|
3064 | |
---|
3065 | aweight = 0.0 |
---|
3066 | |
---|
3067 | DO kkf = bottomz, topz |
---|
3068 | DO iif = bottomx, topx |
---|
3069 | |
---|
3070 | aweight = aweight + anterpol3d(kkf,jjf,iif) * & |
---|
3071 | (dzf/dzc) * (dxf/dxc) |
---|
3072 | |
---|
3073 | |
---|
3074 | END DO |
---|
3075 | END DO |
---|
3076 | |
---|
3077 | work3d(k,j,i) = aweight |
---|
3078 | |
---|
3079 | END DO |
---|
3080 | END DO |
---|
3081 | END DO |
---|
3082 | |
---|
3083 | |
---|
3084 | |
---|
3085 | END SUBROUTINE anterpolate_to_crse_v |
---|
3086 | |
---|
3087 | |
---|
3088 | SUBROUTINE anterpolate_to_crse_w |
---|
3089 | |
---|
3090 | |
---|
3091 | USE arrays_3d |
---|
3092 | USE control_parameters |
---|
3093 | USE grid_variables |
---|
3094 | USE indices |
---|
3095 | USE pegrid |
---|
3096 | |
---|
3097 | |
---|
3098 | IMPLICIT NONE |
---|
3099 | |
---|
3100 | INTEGER(iwp) :: i |
---|
3101 | INTEGER(iwp) :: j |
---|
3102 | INTEGER(iwp) :: k |
---|
3103 | INTEGER(iwp) :: iif |
---|
3104 | INTEGER(iwp) :: jjf |
---|
3105 | INTEGER(iwp) :: kkf |
---|
3106 | INTEGER(iwp) :: bottomx |
---|
3107 | INTEGER(iwp) :: bottomy |
---|
3108 | INTEGER(iwp) :: topx |
---|
3109 | INTEGER(iwp) :: topy |
---|
3110 | REAL(wp) :: aweight |
---|
3111 | |
---|
3112 | ! |
---|
3113 | !-- Anterpolation of the velocity components w |
---|
3114 | !-- only values in xy-planes that coincide in the fine and |
---|
3115 | !-- the coarse grid are considered |
---|
3116 | |
---|
3117 | DO k = bdims_rem(3,1), bdims_rem(3,2)-1 |
---|
3118 | |
---|
3119 | kkf = cfratio(3) * k |
---|
3120 | |
---|
3121 | DO j = bdims_rem(2,1), bdims_rem(2,2) |
---|
3122 | |
---|
3123 | bottomy = (nyf+1) / (nyc+1) * j |
---|
3124 | topy = (nyf+1) / (nyc+1) * (j+1) - 1 |
---|
3125 | |
---|
3126 | DO i = bdims_rem(1,1), bdims_rem(1,2) |
---|
3127 | |
---|
3128 | bottomx = (nxf+1) / (nxc+1) * i |
---|
3129 | topx = (nxf+1) / (nxc+1) * (i+1) - 1 |
---|
3130 | |
---|
3131 | aweight = 0.0 |
---|
3132 | |
---|
3133 | DO jjf = bottomy, topy |
---|
3134 | DO iif = bottomx, topx |
---|
3135 | |
---|
3136 | aweight = aweight + anterpol3d (kkf,jjf,iif) * & |
---|
3137 | (dxf/dxc) * (dyf/dyc) |
---|
3138 | |
---|
3139 | END DO |
---|
3140 | END DO |
---|
3141 | |
---|
3142 | work3d(k,j,i) = aweight |
---|
3143 | |
---|
3144 | END DO |
---|
3145 | |
---|
3146 | END DO |
---|
3147 | |
---|
3148 | END DO |
---|
3149 | |
---|
3150 | |
---|
3151 | END SUBROUTINE anterpolate_to_crse_w |
---|
3152 | |
---|
3153 | |
---|
3154 | SUBROUTINE anterpolate_to_crse_s |
---|
3155 | |
---|
3156 | |
---|
3157 | USE arrays_3d |
---|
3158 | USE control_parameters |
---|
3159 | USE grid_variables |
---|
3160 | USE indices |
---|
3161 | USE pegrid |
---|
3162 | |
---|
3163 | |
---|
3164 | IMPLICIT NONE |
---|
3165 | |
---|
3166 | INTEGER(iwp) :: i |
---|
3167 | INTEGER(iwp) :: j |
---|
3168 | INTEGER(iwp) :: k |
---|
3169 | INTEGER(iwp) :: iif |
---|
3170 | INTEGER(iwp) :: jjf |
---|
3171 | INTEGER(iwp) :: kkf |
---|
3172 | INTEGER(iwp) :: bottomx |
---|
3173 | INTEGER(iwp) :: bottomy |
---|
3174 | INTEGER(iwp) :: bottomz |
---|
3175 | INTEGER(iwp) :: topx |
---|
3176 | INTEGER(iwp) :: topy |
---|
3177 | INTEGER(iwp) :: topz |
---|
3178 | REAL(wp) :: aweight |
---|
3179 | |
---|
3180 | ! |
---|
3181 | !-- Anterpolation of the potential temperature pt |
---|
3182 | !-- all fine grid values are considered |
---|
3183 | |
---|
3184 | DO k = bdims_rem(3,1)+1, bdims_rem(3,2) |
---|
3185 | |
---|
3186 | bottomz = (dzc/dzf) * (k-1) + 1 |
---|
3187 | topz = (dzc/dzf) * k |
---|
3188 | |
---|
3189 | DO j = bdims_rem(2,1), bdims_rem(2,2) |
---|
3190 | |
---|
3191 | bottomy = (nyf+1) / (nyc+1) * j |
---|
3192 | topy = (nyf+1) / (nyc+1) * (j+1) - 1 |
---|
3193 | |
---|
3194 | DO i = bdims_rem(1,1), bdims_rem(1,2) |
---|
3195 | |
---|
3196 | bottomx = (nxf+1) / (nxc+1) * i |
---|
3197 | topx = (nxf+1) / (nxc+1) * (i+1) - 1 |
---|
3198 | |
---|
3199 | aweight = 0.0 |
---|
3200 | |
---|
3201 | DO kkf = bottomz, topz |
---|
3202 | DO jjf = bottomy, topy |
---|
3203 | DO iif = bottomx, topx |
---|
3204 | |
---|
3205 | aweight = aweight + anterpol3d(kkf,jjf,iif) * & |
---|
3206 | (dzf/dzc) * (dyf/dyc) * (dxf/dxc) |
---|
3207 | |
---|
3208 | END DO |
---|
3209 | END DO |
---|
3210 | END DO |
---|
3211 | |
---|
3212 | work3d(k,j,i) = aweight |
---|
3213 | |
---|
3214 | END DO |
---|
3215 | |
---|
3216 | END DO |
---|
3217 | |
---|
3218 | END DO |
---|
3219 | |
---|
3220 | |
---|
3221 | END SUBROUTINE anterpolate_to_crse_s |
---|
3222 | #endif |
---|
3223 | END SUBROUTINE vnest_anterpolate |
---|
3224 | |
---|
3225 | |
---|
3226 | |
---|
3227 | SUBROUTINE vnest_anterpolate_e |
---|
3228 | #if defined( __parallel ) |
---|
3229 | |
---|
3230 | !--------------------------------------------------------------------------------! |
---|
3231 | ! Description: |
---|
3232 | ! ------------ |
---|
3233 | ! Anterpolate TKE from fine grid to coarse grid. |
---|
3234 | !------------------------------------------------------------------------------! |
---|
3235 | |
---|
3236 | USE arrays_3d |
---|
3237 | USE control_parameters |
---|
3238 | USE grid_variables |
---|
3239 | USE indices |
---|
3240 | USE interfaces |
---|
3241 | USE pegrid |
---|
3242 | |
---|
3243 | |
---|
3244 | IMPLICIT NONE |
---|
3245 | |
---|
3246 | REAL(wp) :: time_since_reference_point_rem |
---|
3247 | INTEGER(iwp) :: i |
---|
3248 | INTEGER(iwp) :: j |
---|
3249 | |
---|
3250 | ! |
---|
3251 | !-- In case of model termination initiated by the remote model |
---|
3252 | !-- (terminate_coupled_remote > 0), initiate termination of the local model. |
---|
3253 | !-- The rest of the coupler must then be skipped because it would cause an MPI |
---|
3254 | !-- intercomminucation hang. |
---|
3255 | !-- If necessary, the coupler will be called at the beginning of the next |
---|
3256 | !-- restart run. |
---|
3257 | |
---|
3258 | IF ( myid == 0) THEN |
---|
3259 | CALL MPI_SENDRECV( terminate_coupled, 1, MPI_INTEGER, & |
---|
3260 | target_id, 0, & |
---|
3261 | terminate_coupled_remote, 1, MPI_INTEGER, & |
---|
3262 | target_id, 0, & |
---|
3263 | comm_inter, status, ierr ) |
---|
3264 | ENDIF |
---|
3265 | CALL MPI_BCAST( terminate_coupled_remote, 1, MPI_INTEGER, 0, comm2d, & |
---|
3266 | ierr ) |
---|
3267 | |
---|
3268 | IF ( terminate_coupled_remote > 0 ) THEN |
---|
3269 | WRITE( message_string, * ) 'remote model "', & |
---|
3270 | TRIM( coupling_mode_remote ), & |
---|
3271 | '" terminated', & |
---|
3272 | '&with terminate_coupled_remote = ', & |
---|
3273 | terminate_coupled_remote, & |
---|
3274 | '&local model "', TRIM( coupling_mode ), & |
---|
3275 | '" has', & |
---|
3276 | '&terminate_coupled = ', & |
---|
3277 | terminate_coupled |
---|
3278 | CALL message( 'vnest_anterpolate_e', 'PA0310', 1, 2, 0, 6, 0 ) |
---|
3279 | RETURN |
---|
3280 | ENDIF |
---|
3281 | |
---|
3282 | |
---|
3283 | ! |
---|
3284 | !-- Exchange the current simulated time between the models |
---|
3285 | IF ( myid == 0 ) THEN |
---|
3286 | |
---|
3287 | CALL MPI_SEND( time_since_reference_point, 1, MPI_REAL, target_id, & |
---|
3288 | 11, comm_inter, ierr ) |
---|
3289 | CALL MPI_RECV( time_since_reference_point_rem, 1, MPI_REAL, & |
---|
3290 | target_id, 11, comm_inter, status, ierr ) |
---|
3291 | |
---|
3292 | ENDIF |
---|
3293 | |
---|
3294 | CALL MPI_BCAST( time_since_reference_point_rem, 1, MPI_REAL, 0, comm2d, & |
---|
3295 | ierr ) |
---|
3296 | |
---|
3297 | IF ( coupling_mode == 'vnested_crse' ) THEN |
---|
3298 | ! Receive data from fine grid for anterpolation |
---|
3299 | |
---|
3300 | offset(1) = ( pdims_partner(1) / pdims(1) ) * pcoord(1) |
---|
3301 | offset(2) = ( pdims_partner(2) / pdims(2) ) * pcoord(2) |
---|
3302 | |
---|
3303 | do j = 0, ( pdims_partner(2) / pdims(2) ) - 1 |
---|
3304 | do i = 0, ( pdims_partner(1) / pdims(1) ) - 1 |
---|
3305 | map_coord(1) = i+offset(1) |
---|
3306 | map_coord(2) = j+offset(2) |
---|
3307 | |
---|
3308 | target_idex = f_rnk_lst(map_coord(1),map_coord(2)) + numprocs |
---|
3309 | |
---|
3310 | bdims (1,1) = f2c_dims_cg (0,map_coord(1),map_coord(2)) |
---|
3311 | bdims (1,2) = f2c_dims_cg (1,map_coord(1),map_coord(2)) |
---|
3312 | bdims (2,1) = f2c_dims_cg (2,map_coord(1),map_coord(2)) |
---|
3313 | bdims (2,2) = f2c_dims_cg (3,map_coord(1),map_coord(2)) |
---|
3314 | bdims (3,1) = f2c_dims_cg (4,map_coord(1),map_coord(2)) |
---|
3315 | bdims (3,2) = f2c_dims_cg (5,map_coord(1),map_coord(2)) |
---|
3316 | |
---|
3317 | |
---|
3318 | n_cell_c = (bdims(1,2)-bdims(1,1)+1) * & |
---|
3319 | (bdims(2,2)-bdims(2,1)+1) * & |
---|
3320 | (bdims(3,2)-bdims(3,1)+0) |
---|
3321 | |
---|
3322 | |
---|
3323 | CALL MPI_RECV( e( bdims(3,1)+1:bdims(3,2), & |
---|
3324 | bdims(2,1) :bdims(2,2), & |
---|
3325 | bdims(1,1) :bdims(1,2)),& |
---|
3326 | n_cell_c, MPI_REAL, target_idex, 104, & |
---|
3327 | comm_inter,status, ierr ) |
---|
3328 | end do |
---|
3329 | end do |
---|
3330 | |
---|
3331 | |
---|
3332 | ! |
---|
3333 | !-- Boundary conditions |
---|
3334 | |
---|
3335 | IF ( .NOT. constant_diffusion ) THEN |
---|
3336 | e(nzb,:,:) = e(nzb+1,:,:) |
---|
3337 | END IF |
---|
3338 | |
---|
3339 | IF ( .NOT. constant_diffusion ) CALL exchange_horiz( e, nbgp ) |
---|
3340 | |
---|
3341 | ELSEIF ( coupling_mode == 'vnested_fine' ) THEN |
---|
3342 | ! Send data to coarse grid for anterpolation |
---|
3343 | |
---|
3344 | offset(1) = pcoord(1) / ( pdims(1)/pdims_partner(1) ) |
---|
3345 | offset(2) = pcoord(2) / ( pdims(2)/pdims_partner(2) ) |
---|
3346 | map_coord(1) = offset(1) |
---|
3347 | map_coord(2) = offset(2) |
---|
3348 | target_idex = c_rnk_lst(map_coord(1),map_coord(2)) |
---|
3349 | |
---|
3350 | bdims_rem (1,1) = f2c_dims_fg (0) |
---|
3351 | bdims_rem (1,2) = f2c_dims_fg (1) |
---|
3352 | bdims_rem (2,1) = f2c_dims_fg (2) |
---|
3353 | bdims_rem (2,2) = f2c_dims_fg (3) |
---|
3354 | bdims_rem (3,1) = f2c_dims_fg (4) |
---|
3355 | bdims_rem (3,2) = f2c_dims_fg (5) |
---|
3356 | |
---|
3357 | ALLOCATE( work3d ( & |
---|
3358 | bdims_rem(3,1)+1:bdims_rem(3,2), & |
---|
3359 | bdims_rem(2,1) :bdims_rem(2,2), & |
---|
3360 | bdims_rem(1,1) :bdims_rem(1,2))) |
---|
3361 | |
---|
3362 | anterpol3d => e |
---|
3363 | |
---|
3364 | CALL anterpolate_to_crse_e |
---|
3365 | |
---|
3366 | CALL MPI_SEND( work3d, 1, TYPE_VNEST_ANTER, target_idex, & |
---|
3367 | 104, comm_inter, ierr) |
---|
3368 | |
---|
3369 | NULLIFY ( anterpol3d ) |
---|
3370 | DEALLOCATE( work3d ) |
---|
3371 | ENDIF |
---|
3372 | |
---|
3373 | |
---|
3374 | CONTAINS |
---|
3375 | |
---|
3376 | |
---|
3377 | |
---|
3378 | |
---|
3379 | |
---|
3380 | SUBROUTINE anterpolate_to_crse_e |
---|
3381 | |
---|
3382 | |
---|
3383 | USE arrays_3d |
---|
3384 | USE control_parameters |
---|
3385 | USE grid_variables |
---|
3386 | USE indices |
---|
3387 | USE pegrid |
---|
3388 | |
---|
3389 | |
---|
3390 | IMPLICIT NONE |
---|
3391 | |
---|
3392 | INTEGER(iwp) :: i |
---|
3393 | INTEGER(iwp) :: j |
---|
3394 | INTEGER(iwp) :: k |
---|
3395 | INTEGER(iwp) :: iif |
---|
3396 | INTEGER(iwp) :: jjf |
---|
3397 | INTEGER(iwp) :: kkf |
---|
3398 | INTEGER(iwp) :: bottomx |
---|
3399 | INTEGER(iwp) :: bottomy |
---|
3400 | INTEGER(iwp) :: bottomz |
---|
3401 | INTEGER(iwp) :: topx |
---|
3402 | INTEGER(iwp) :: topy |
---|
3403 | INTEGER(iwp) :: topz |
---|
3404 | REAL(wp) :: aweight_a |
---|
3405 | REAL(wp) :: aweight_b |
---|
3406 | REAL(wp) :: aweight_c |
---|
3407 | REAL(wp) :: aweight_d |
---|
3408 | REAL(wp) :: aweight_e |
---|
3409 | REAL(wp) :: energ |
---|
3410 | |
---|
3411 | DO k = bdims_rem(3,1)+1, bdims_rem(3,2) |
---|
3412 | |
---|
3413 | bottomz = (dzc/dzf) * (k-1) + 1 |
---|
3414 | topz = (dzc/dzf) * k |
---|
3415 | |
---|
3416 | DO j = bdims_rem(2,1), bdims_rem(2,2) |
---|
3417 | |
---|
3418 | bottomy = (nyf+1) / (nyc+1) * j |
---|
3419 | topy = (nyf+1) / (nyc+1) * (j+1) - 1 |
---|
3420 | |
---|
3421 | DO i = bdims_rem(1,1), bdims_rem(1,2) |
---|
3422 | |
---|
3423 | bottomx = (nxf+1) / (nxc+1) * i |
---|
3424 | topx = (nxf+1) / (nxc+1) * (i+1) - 1 |
---|
3425 | |
---|
3426 | aweight_a = 0.0 |
---|
3427 | aweight_b = 0.0 |
---|
3428 | aweight_c = 0.0 |
---|
3429 | aweight_d = 0.0 |
---|
3430 | aweight_e = 0.0 |
---|
3431 | |
---|
3432 | DO kkf = bottomz, topz |
---|
3433 | DO jjf = bottomy, topy |
---|
3434 | DO iif = bottomx, topx |
---|
3435 | |
---|
3436 | aweight_a = aweight_a + anterpol3d(kkf,jjf,iif) * & |
---|
3437 | (dzf/dzc) * (dyf/dyc) * (dxf/dxc) |
---|
3438 | |
---|
3439 | |
---|
3440 | energ = ( 0.5 * ( u(kkf,jjf,iif) + u(kkf,jjf,iif+1) ) )**2.0 + & |
---|
3441 | ( 0.5 * ( v(kkf,jjf,iif) + v(kkf,jjf+1,iif) ) )**2.0 + & |
---|
3442 | ( 0.5 * ( w(kkf-1,jjf,iif) + w(kkf,jjf,iif) ) )**2.0 |
---|
3443 | |
---|
3444 | aweight_b = aweight_b + energ * & |
---|
3445 | (dzf/dzc) * (dyf/dyc) * (dxf/dxc) |
---|
3446 | |
---|
3447 | aweight_c = aweight_c + 0.5 * ( u(kkf,jjf,iif) + u(kkf,jjf,iif+1) ) * & |
---|
3448 | (dzf/dzc) * (dyf/dyc) * (dxf/dxc) |
---|
3449 | |
---|
3450 | aweight_d = aweight_d + 0.5 * ( v(kkf,jjf,iif) + v(kkf,jjf+1,iif) ) * & |
---|
3451 | (dzf/dzc) * (dyf/dyc) * (dxf/dxc) |
---|
3452 | |
---|
3453 | aweight_e = aweight_e + 0.5 * ( w(kkf-1,jjf,iif) + w(kkf,jjf,iif) ) * & |
---|
3454 | (dzf/dzc) * (dyf/dyc) * (dxf/dxc) |
---|
3455 | |
---|
3456 | |
---|
3457 | END DO |
---|
3458 | END DO |
---|
3459 | END DO |
---|
3460 | |
---|
3461 | work3d(k,j,i) = aweight_a + 0.5 * ( aweight_b - & |
---|
3462 | aweight_c**2.0 - & |
---|
3463 | aweight_d**2.0 - & |
---|
3464 | aweight_e**2.0 ) |
---|
3465 | |
---|
3466 | END DO |
---|
3467 | |
---|
3468 | END DO |
---|
3469 | |
---|
3470 | END DO |
---|
3471 | |
---|
3472 | |
---|
3473 | |
---|
3474 | END SUBROUTINE anterpolate_to_crse_e |
---|
3475 | #endif |
---|
3476 | END SUBROUTINE vnest_anterpolate_e |
---|
3477 | |
---|
3478 | SUBROUTINE vnest_init_pegrid_rank |
---|
3479 | #if defined( __parallel ) |
---|
3480 | ! Domain decomposition and exchange of grid variables between coarse and fine |
---|
3481 | ! Given processor coordinates as index f_rnk_lst(pcoord(1), pcoord(2)) |
---|
3482 | ! returns the rank. A single coarse block will have to send data to multiple |
---|
3483 | ! fine blocks. In the coarse grid the pcoords of the remote block is first found and then using |
---|
3484 | ! f_rnk_lst the target_idex is identified. |
---|
3485 | ! blk_dim stores the index limits of a given block. blk_dim_remote is received |
---|
3486 | ! from the asscoiated nest partner. |
---|
3487 | ! cf_ratio(1:3) is the ratio between fine and coarse grid: nxc/nxf, nyc/nyf and |
---|
3488 | ! ceiling(dxc/dxf) |
---|
3489 | |
---|
3490 | |
---|
3491 | USE control_parameters, & |
---|
3492 | ONLY: coupling_mode |
---|
3493 | |
---|
3494 | USE kinds |
---|
3495 | |
---|
3496 | USE pegrid |
---|
3497 | |
---|
3498 | |
---|
3499 | IMPLICIT NONE |
---|
3500 | |
---|
3501 | INTEGER(iwp) :: dest_rnk |
---|
3502 | INTEGER(iwp) :: i !< |
---|
3503 | |
---|
3504 | IF (myid == 0) THEN |
---|
3505 | IF ( coupling_mode == 'vnested_crse') THEN |
---|
3506 | CALL MPI_SEND( pdims, 2, MPI_INTEGER, numprocs, 33, comm_inter, & |
---|
3507 | ierr ) |
---|
3508 | CALL MPI_RECV( pdims_partner, 2, MPI_INTEGER, numprocs, 66, & |
---|
3509 | comm_inter, status, ierr ) |
---|
3510 | ELSEIF ( coupling_mode == 'vnested_fine') THEN |
---|
3511 | CALL MPI_RECV( pdims_partner, 2, MPI_INTEGER, 0, 33, & |
---|
3512 | comm_inter, status, ierr ) |
---|
3513 | CALL MPI_SEND( pdims, 2, MPI_INTEGER, 0, 66, comm_inter, & |
---|
3514 | ierr ) |
---|
3515 | ENDIF |
---|
3516 | ENDIF |
---|
3517 | |
---|
3518 | |
---|
3519 | IF ( coupling_mode == 'vnested_crse') THEN |
---|
3520 | CALL MPI_BCAST( pdims_partner, 2, MPI_INTEGER, 0, comm2d, ierr ) |
---|
3521 | ALLOCATE( c_rnk_lst( 0:(pdims(1)-1) ,0:(pdims(2)-1) ) ) |
---|
3522 | ALLOCATE( f_rnk_lst( 0:(pdims_partner(1)-1) ,0:(pdims_partner(2)-1) ) ) |
---|
3523 | do i=0,numprocs-1 |
---|
3524 | CALL MPI_CART_COORDS( comm2d, i, ndim, pcoord, ierr ) |
---|
3525 | call MPI_Cart_rank(comm2d, pcoord, dest_rnk, ierr) |
---|
3526 | c_rnk_lst(pcoord(1),pcoord(2)) = dest_rnk |
---|
3527 | end do |
---|
3528 | ELSEIF ( coupling_mode == 'vnested_fine') THEN |
---|
3529 | CALL MPI_BCAST( pdims_partner, 2, MPI_INTEGER, 0, comm2d, ierr ) |
---|
3530 | ALLOCATE( c_rnk_lst( 0:(pdims_partner(1)-1) ,0:(pdims_partner(2)-1) ) ) |
---|
3531 | ALLOCATE( f_rnk_lst( 0:(pdims(1)-1) ,0:(pdims(2)-1) ) ) |
---|
3532 | |
---|
3533 | do i=0,numprocs-1 |
---|
3534 | CALL MPI_CART_COORDS( comm2d, i, ndim, pcoord, ierr ) |
---|
3535 | call MPI_Cart_rank(comm2d, pcoord, dest_rnk, ierr) |
---|
3536 | f_rnk_lst(pcoord(1),pcoord(2)) = dest_rnk |
---|
3537 | enddo |
---|
3538 | ENDIF |
---|
3539 | |
---|
3540 | |
---|
3541 | IF ( coupling_mode == 'vnested_crse') THEN |
---|
3542 | if (myid == 0) then |
---|
3543 | CALL MPI_SEND( c_rnk_lst, pdims(1)*pdims(2), MPI_INTEGER, numprocs, 0, comm_inter, ierr ) |
---|
3544 | CALL MPI_RECV( f_rnk_lst, pdims_partner(1)*pdims_partner(2), MPI_INTEGER, numprocs, 4, comm_inter,status, ierr ) |
---|
3545 | end if |
---|
3546 | CALL MPI_BCAST( f_rnk_lst, pdims_partner(1)*pdims_partner(2), MPI_INTEGER, 0, comm2d, ierr ) |
---|
3547 | ELSEIF ( coupling_mode == 'vnested_fine') THEN |
---|
3548 | if (myid == 0) then |
---|
3549 | CALL MPI_RECV( c_rnk_lst, pdims_partner(1)*pdims_partner(2), MPI_INTEGER, 0, 0, comm_inter,status, ierr ) |
---|
3550 | CALL MPI_SEND( f_rnk_lst, pdims(1)*pdims(2), MPI_INTEGER, 0, 4, comm_inter, ierr ) |
---|
3551 | end if |
---|
3552 | CALL MPI_BCAST( c_rnk_lst, pdims_partner(1)*pdims_partner(2), MPI_INTEGER, 0, comm2d, ierr ) |
---|
3553 | ENDIF |
---|
3554 | |
---|
3555 | !-- Reason for MPI error unknown; solved if three lines duplicated |
---|
3556 | CALL MPI_CART_COORDS( comm2d, myid, ndim, pcoord, ierr ) |
---|
3557 | CALL MPI_CART_SHIFT( comm2d, 0, 1, pleft, pright, ierr ) |
---|
3558 | CALL MPI_CART_SHIFT( comm2d, 1, 1, psouth, pnorth, ierr ) |
---|
3559 | |
---|
3560 | |
---|
3561 | #endif |
---|
3562 | |
---|
3563 | END SUBROUTINE vnest_init_pegrid_rank |
---|
3564 | |
---|
3565 | |
---|
3566 | SUBROUTINE vnest_init_pegrid_domain |
---|
3567 | #if defined( __parallel ) |
---|
3568 | |
---|
3569 | USE control_parameters, & |
---|
3570 | ONLY: coupling_mode, coupling_topology, dz, & |
---|
3571 | dz_stretch_level_start, message_string |
---|
3572 | |
---|
3573 | USE grid_variables, & |
---|
3574 | ONLY: dx, dy |
---|
3575 | |
---|
3576 | USE indices, & |
---|
3577 | ONLY: nbgp, nx, ny, nz, nxl, nxr, nys, nyn, nzb, nzt |
---|
3578 | |
---|
3579 | USE kinds |
---|
3580 | |
---|
3581 | USE pegrid |
---|
3582 | |
---|
3583 | IMPLICIT NONE |
---|
3584 | |
---|
3585 | INTEGER(iwp) :: i !< |
---|
3586 | INTEGER(iwp) :: j !< |
---|
3587 | INTEGER(iwp) :: tempx |
---|
3588 | INTEGER(iwp) :: tempy |
---|
3589 | INTEGER(iwp) :: TYPE_INT_YZ |
---|
3590 | INTEGER(iwp) :: SIZEOFREAL |
---|
3591 | INTEGER(iwp) :: MTV_X |
---|
3592 | INTEGER(iwp) :: MTV_Y |
---|
3593 | INTEGER(iwp) :: MTV_Z |
---|
3594 | INTEGER(iwp) :: MTV_RX |
---|
3595 | INTEGER(iwp) :: MTV_RY |
---|
3596 | INTEGER(iwp) :: MTV_RZ |
---|
3597 | |
---|
3598 | ! |
---|
3599 | !-- Pass the number of grid points of the coarse model to |
---|
3600 | !-- the nested model and vice versa |
---|
3601 | IF ( coupling_mode == 'vnested_crse' ) THEN |
---|
3602 | |
---|
3603 | nxc = nx |
---|
3604 | nyc = ny |
---|
3605 | nzc = nz |
---|
3606 | dxc = dx |
---|
3607 | dyc = dy |
---|
3608 | dzc = dz(1) |
---|
3609 | cg_nprocs = numprocs |
---|
3610 | |
---|
3611 | IF ( myid == 0 ) THEN |
---|
3612 | |
---|
3613 | CALL MPI_SEND( nxc, 1, MPI_INTEGER , numprocs, 1, comm_inter, & |
---|
3614 | ierr ) |
---|
3615 | CALL MPI_SEND( nyc, 1, MPI_INTEGER , numprocs, 2, comm_inter, & |
---|
3616 | ierr ) |
---|
3617 | CALL MPI_SEND( nzc, 1, MPI_INTEGER , numprocs, 3, comm_inter, & |
---|
3618 | ierr ) |
---|
3619 | CALL MPI_SEND( dxc, 1, MPI_REAL , numprocs, 4, comm_inter, & |
---|
3620 | ierr ) |
---|
3621 | CALL MPI_SEND( dyc, 1, MPI_REAL , numprocs, 5, comm_inter, & |
---|
3622 | ierr ) |
---|
3623 | CALL MPI_SEND( dzc, 1, MPI_REAL , numprocs, 6, comm_inter, & |
---|
3624 | ierr ) |
---|
3625 | CALL MPI_SEND( pdims, 2, MPI_INTEGER, numprocs, 7, comm_inter, & |
---|
3626 | ierr ) |
---|
3627 | CALL MPI_SEND( cg_nprocs, 1, MPI_INTEGER, numprocs, 8, comm_inter, & |
---|
3628 | ierr ) |
---|
3629 | CALL MPI_RECV( nxf, 1, MPI_INTEGER, numprocs, 21, comm_inter, & |
---|
3630 | status, ierr ) |
---|
3631 | CALL MPI_RECV( nyf, 1, MPI_INTEGER, numprocs, 22, comm_inter, & |
---|
3632 | status, ierr ) |
---|
3633 | CALL MPI_RECV( nzf, 1, MPI_INTEGER, numprocs, 23, comm_inter, & |
---|
3634 | status, ierr ) |
---|
3635 | CALL MPI_RECV( dxf, 1, MPI_REAL, numprocs, 24, comm_inter, & |
---|
3636 | status, ierr ) |
---|
3637 | CALL MPI_RECV( dyf, 1, MPI_REAL, numprocs, 25, comm_inter, & |
---|
3638 | status, ierr ) |
---|
3639 | CALL MPI_RECV( dzf, 1, MPI_REAL, numprocs, 26, comm_inter, & |
---|
3640 | status, ierr ) |
---|
3641 | CALL MPI_RECV( pdims_partner, 2, MPI_INTEGER, & |
---|
3642 | numprocs, 27, comm_inter, status, ierr ) |
---|
3643 | CALL MPI_RECV( fg_nprocs, 1, MPI_INTEGER, & |
---|
3644 | numprocs, 28, comm_inter, status, ierr ) |
---|
3645 | ENDIF |
---|
3646 | |
---|
3647 | CALL MPI_BCAST( nxf, 1, MPI_INTEGER, 0, comm2d, ierr ) |
---|
3648 | CALL MPI_BCAST( nyf, 1, MPI_INTEGER, 0, comm2d, ierr ) |
---|
3649 | CALL MPI_BCAST( nzf, 1, MPI_INTEGER, 0, comm2d, ierr ) |
---|
3650 | CALL MPI_BCAST( dxf, 1, MPI_REAL, 0, comm2d, ierr ) |
---|
3651 | CALL MPI_BCAST( dyf, 1, MPI_REAL, 0, comm2d, ierr ) |
---|
3652 | CALL MPI_BCAST( dzf, 1, MPI_REAL, 0, comm2d, ierr ) |
---|
3653 | CALL MPI_BCAST( pdims_partner, 2, MPI_INTEGER, 0, comm2d, ierr ) |
---|
3654 | CALL MPI_BCAST( fg_nprocs, 1, MPI_INTEGER, 0, comm2d, ierr ) |
---|
3655 | |
---|
3656 | ! |
---|
3657 | !-- Check if stretching is used within the nested domain. ABS(...) is |
---|
3658 | !-- necessary because of the default value of -9999999.9_wp (negative) |
---|
3659 | IF ( ABS( dz_stretch_level_start(1) ) <= (nzf+1)*dzf ) THEN |
---|
3660 | message_string = 'Stretching in the parent domain is '// & |
---|
3661 | 'only allowed above the nested domain' |
---|
3662 | CALL message( 'vnest_init_pegrid_domain', 'PA0497', 1, 2, 0, 6, 0 ) |
---|
3663 | ENDIF |
---|
3664 | |
---|
3665 | ELSEIF ( coupling_mode == 'vnested_fine' ) THEN |
---|
3666 | |
---|
3667 | nxf = nx |
---|
3668 | nyf = ny |
---|
3669 | nzf = nz |
---|
3670 | dxf = dx |
---|
3671 | dyf = dy |
---|
3672 | dzf = dz(1) |
---|
3673 | fg_nprocs = numprocs |
---|
3674 | |
---|
3675 | IF ( myid == 0 ) THEN |
---|
3676 | |
---|
3677 | CALL MPI_RECV( nxc, 1, MPI_INTEGER, 0, 1, comm_inter, status, & |
---|
3678 | ierr ) |
---|
3679 | CALL MPI_RECV( nyc, 1, MPI_INTEGER, 0, 2, comm_inter, status, & |
---|
3680 | ierr ) |
---|
3681 | CALL MPI_RECV( nzc, 1, MPI_INTEGER, 0, 3, comm_inter, status, & |
---|
3682 | ierr ) |
---|
3683 | CALL MPI_RECV( dxc, 1, MPI_REAL, 0, 4, comm_inter, status, & |
---|
3684 | ierr ) |
---|
3685 | CALL MPI_RECV( dyc, 1, MPI_REAL, 0, 5, comm_inter, status, & |
---|
3686 | ierr ) |
---|
3687 | CALL MPI_RECV( dzc, 1, MPI_REAL, 0, 6, comm_inter, status, & |
---|
3688 | ierr ) |
---|
3689 | CALL MPI_RECV( pdims_partner, 2, MPI_INTEGER, 0, 7, comm_inter, & |
---|
3690 | status, ierr ) |
---|
3691 | CALL MPI_RECV( cg_nprocs, 1, MPI_INTEGER, 0, 8, comm_inter, & |
---|
3692 | status, ierr ) |
---|
3693 | CALL MPI_SEND( nxf, 1, MPI_INTEGER, 0, 21, comm_inter, ierr ) |
---|
3694 | CALL MPI_SEND( nyf, 1, MPI_INTEGER, 0, 22, comm_inter, ierr ) |
---|
3695 | CALL MPI_SEND( nzf, 1, MPI_INTEGER, 0, 23, comm_inter, ierr ) |
---|
3696 | CALL MPI_SEND( dxf, 1, MPI_REAL, 0, 24, comm_inter, ierr ) |
---|
3697 | CALL MPI_SEND( dyf, 1, MPI_REAL, 0, 25, comm_inter, ierr ) |
---|
3698 | CALL MPI_SEND( dzf, 1, MPI_REAL, 0, 26, comm_inter, ierr ) |
---|
3699 | CALL MPI_SEND( pdims,2,MPI_INTEGER, 0, 27, comm_inter, ierr ) |
---|
3700 | CALL MPI_SEND( fg_nprocs,1,MPI_INTEGER, 0, 28, comm_inter, ierr ) |
---|
3701 | ENDIF |
---|
3702 | |
---|
3703 | CALL MPI_BCAST( nxc, 1, MPI_INTEGER, 0, comm2d, ierr) |
---|
3704 | CALL MPI_BCAST( nyc, 1, MPI_INTEGER, 0, comm2d, ierr) |
---|
3705 | CALL MPI_BCAST( nzc, 1, MPI_INTEGER, 0, comm2d, ierr) |
---|
3706 | CALL MPI_BCAST( dxc, 1, MPI_REAL, 0, comm2d, ierr) |
---|
3707 | CALL MPI_BCAST( dyc, 1, MPI_REAL, 0, comm2d, ierr) |
---|
3708 | CALL MPI_BCAST( dzc, 1, MPI_REAL, 0, comm2d, ierr) |
---|
3709 | CALL MPI_BCAST( pdims_partner, 2, MPI_INTEGER, 0, comm2d, ierr) |
---|
3710 | CALL MPI_BCAST( cg_nprocs, 1, MPI_INTEGER, 0, comm2d, ierr) |
---|
3711 | |
---|
3712 | ENDIF |
---|
3713 | |
---|
3714 | ngp_c = ( nxc+1 + 2 * nbgp ) * ( nyc+1 + 2 * nbgp ) |
---|
3715 | ngp_f = ( nxf+1 + 2 * nbgp ) * ( nyf+1 + 2 * nbgp ) |
---|
3716 | |
---|
3717 | IF ( coupling_mode(1:8) == 'vnested_') coupling_topology = 1 |
---|
3718 | |
---|
3719 | |
---|
3720 | !-- Nesting Ratio: For each coarse grid cell how many fine grid cells exist |
---|
3721 | cfratio(1) = INT ( (nxf+1) / (nxc+1) ) |
---|
3722 | cfratio(2) = INT ( (nyf+1) / (nyc+1) ) |
---|
3723 | cfratio(3) = CEILING ( dzc / dzf ) |
---|
3724 | |
---|
3725 | !-- target_id is used only for exhange of information like simulated_time |
---|
3726 | !-- which are then MPI_BCAST to other processors in the group |
---|
3727 | IF ( myid == 0 ) THEN |
---|
3728 | |
---|
3729 | IF ( TRIM( coupling_mode ) == 'vnested_crse' ) THEN |
---|
3730 | target_id = numprocs |
---|
3731 | ELSE IF ( TRIM( coupling_mode ) == 'vnested_fine' ) THEN |
---|
3732 | target_id = 0 |
---|
3733 | ENDIF |
---|
3734 | |
---|
3735 | ENDIF |
---|
3736 | |
---|
3737 | !-- Store partner grid dimenstions and create MPI derived types |
---|
3738 | |
---|
3739 | IF ( coupling_mode == 'vnested_crse' ) THEN |
---|
3740 | |
---|
3741 | offset(1) = ( pdims_partner(1) / pdims(1) ) * pcoord(1) |
---|
3742 | offset(2) = ( pdims_partner(2) / pdims(2) ) * pcoord(2) |
---|
3743 | |
---|
3744 | tempx = ( pdims_partner(1) / pdims(1) ) - 1 |
---|
3745 | tempy = ( pdims_partner(2) / pdims(2) ) - 1 |
---|
3746 | ALLOCATE( c2f_dims_cg (0:5,offset(1):tempx+offset(1),offset(2):tempy+offset(2) ) ) |
---|
3747 | ALLOCATE( f2c_dims_cg (0:5,offset(1):tempx+offset(1),offset(2):tempy+offset(2) ) ) |
---|
3748 | |
---|
3749 | do j = 0, ( pdims_partner(2) / pdims(2) ) - 1 |
---|
3750 | do i = 0, ( pdims_partner(1) / pdims(1) ) - 1 |
---|
3751 | map_coord(1) = i+offset(1) |
---|
3752 | map_coord(2) = j+offset(2) |
---|
3753 | |
---|
3754 | target_idex = f_rnk_lst(map_coord(1),map_coord(2)) + numprocs |
---|
3755 | |
---|
3756 | CALL MPI_RECV( bdims_rem, 6, MPI_INTEGER, target_idex, 10, & |
---|
3757 | comm_inter,status, ierr ) |
---|
3758 | |
---|
3759 | !-- Store the CG dimensions that correspond to the FG partner; needed for FG top BC |
---|
3760 | !-- One CG can have multiple FG partners. The 3D array is mapped by partner proc co-ord |
---|
3761 | c2f_dims_cg (0,map_coord(1),map_coord(2)) = bdims_rem (1,1) / cfratio(1) |
---|
3762 | c2f_dims_cg (1,map_coord(1),map_coord(2)) = bdims_rem (1,2) / cfratio(1) |
---|
3763 | c2f_dims_cg (2,map_coord(1),map_coord(2)) = bdims_rem (2,1) / cfratio(2) |
---|
3764 | c2f_dims_cg (3,map_coord(1),map_coord(2)) = bdims_rem (2,2) / cfratio(2) |
---|
3765 | c2f_dims_cg (4,map_coord(1),map_coord(2)) = bdims_rem (3,2) / cfratio(3) |
---|
3766 | c2f_dims_cg (5,map_coord(1),map_coord(2)) =(bdims_rem (3,2) / cfratio(3)) + 2 |
---|
3767 | |
---|
3768 | !-- Store the CG dimensions that correspond to the FG partner; needed for anterpolation |
---|
3769 | f2c_dims_cg (0,map_coord(1),map_coord(2)) = bdims_rem (1,1) / cfratio(1) |
---|
3770 | f2c_dims_cg (1,map_coord(1),map_coord(2)) = bdims_rem (1,2) / cfratio(1) |
---|
3771 | f2c_dims_cg (2,map_coord(1),map_coord(2)) = bdims_rem (2,1) / cfratio(2) |
---|
3772 | f2c_dims_cg (3,map_coord(1),map_coord(2)) = bdims_rem (2,2) / cfratio(2) |
---|
3773 | f2c_dims_cg (4,map_coord(1),map_coord(2)) = bdims_rem (3,1) |
---|
3774 | f2c_dims_cg (5,map_coord(1),map_coord(2)) =(bdims_rem (3,2)-cfratio(3))/ cfratio(3) |
---|
3775 | |
---|
3776 | CALL MPI_SEND( c2f_dims_cg (:,map_coord(1),map_coord(2)), 6, & |
---|
3777 | MPI_INTEGER, target_idex, 100, comm_inter, ierr ) |
---|
3778 | |
---|
3779 | CALL MPI_SEND( f2c_dims_cg (:,map_coord(1),map_coord(2)), 6, & |
---|
3780 | MPI_INTEGER, target_idex, 101, comm_inter, ierr ) |
---|
3781 | |
---|
3782 | end do |
---|
3783 | end do |
---|
3784 | |
---|
3785 | !-- A derived data type to pack 3 Z-levels of CG to set FG top BC |
---|
3786 | MTV_X = ( nxr - nxl + 1 ) + 2*nbgp |
---|
3787 | MTV_Y = ( nyn - nys + 1 ) + 2*nbgp |
---|
3788 | MTV_Z = nzt+1 - nzb +1 |
---|
3789 | |
---|
3790 | MTV_RX = ( c2f_dims_cg (1,offset(1),offset(2)) - c2f_dims_cg (0,offset(1),offset(2)) ) +1+2 |
---|
3791 | MTV_RY = ( c2f_dims_cg (3,offset(1),offset(2)) - c2f_dims_cg (2,offset(1),offset(2)) ) +1+2 |
---|
3792 | MTV_RZ = ( c2f_dims_cg (5,offset(1),offset(2)) - c2f_dims_cg (4,offset(1),offset(2)) ) +1 |
---|
3793 | |
---|
3794 | CALL MPI_TYPE_EXTENT(MPI_REAL, SIZEOFREAL, IERR) |
---|
3795 | |
---|
3796 | CALL MPI_TYPE_VECTOR ( MTV_RY, MTV_RZ, MTV_Z, MPI_REAL, TYPE_INT_YZ, IERR) |
---|
3797 | CALL MPI_TYPE_HVECTOR( MTV_RX, 1, MTV_Z*MTV_Y*SIZEOFREAL, & |
---|
3798 | TYPE_INT_YZ, TYPE_VNEST_BC, IERR) |
---|
3799 | CALL MPI_TYPE_FREE(TYPE_INT_YZ, IERR) |
---|
3800 | CALL MPI_TYPE_COMMIT(TYPE_VNEST_BC, IERR) |
---|
3801 | |
---|
3802 | |
---|
3803 | ELSEIF ( coupling_mode == 'vnested_fine' ) THEN |
---|
3804 | |
---|
3805 | ALLOCATE( c2f_dims_fg (0:5) ) |
---|
3806 | ALLOCATE( f2c_dims_fg (0:5) ) |
---|
3807 | |
---|
3808 | offset(1) = pcoord(1) / ( pdims(1)/pdims_partner(1) ) |
---|
3809 | offset(2) = pcoord(2) / ( pdims(2)/pdims_partner(2) ) |
---|
3810 | map_coord(1) = offset(1) |
---|
3811 | map_coord(2) = offset(2) |
---|
3812 | target_idex = c_rnk_lst(map_coord(1),map_coord(2)) |
---|
3813 | |
---|
3814 | bdims (1,1) = nxl |
---|
3815 | bdims (1,2) = nxr |
---|
3816 | bdims (2,1) = nys |
---|
3817 | bdims (2,2) = nyn |
---|
3818 | bdims (3,1) = nzb |
---|
3819 | bdims (3,2) = nzt |
---|
3820 | |
---|
3821 | CALL MPI_SEND( bdims, 6, MPI_INTEGER, target_idex, 10, & |
---|
3822 | comm_inter, ierr ) |
---|
3823 | |
---|
3824 | !-- Store the CG dimensions that correspond to the FG partner; needed for FG top BC |
---|
3825 | !-- One FG can have only one CG partner |
---|
3826 | CALL MPI_RECV( c2f_dims_fg, 6, MPI_INTEGER, target_idex, 100, & |
---|
3827 | comm_inter,status, ierr ) |
---|
3828 | |
---|
3829 | CALL MPI_RECV( f2c_dims_fg, 6, MPI_INTEGER, target_idex, 101, & |
---|
3830 | comm_inter,status, ierr ) |
---|
3831 | |
---|
3832 | !-- Store the CG dimensions that correspond to the FG partner; needed for anterpolation |
---|
3833 | |
---|
3834 | n_cell_c = (f2c_dims_fg(1)-f2c_dims_fg(0)+1) * & |
---|
3835 | (f2c_dims_fg(3)-f2c_dims_fg(2)+1) * & |
---|
3836 | (f2c_dims_fg(5)-f2c_dims_fg(4)+0) |
---|
3837 | |
---|
3838 | CALL MPI_TYPE_CONTIGUOUS(n_cell_c, MPI_REAL, TYPE_VNEST_ANTER, IERR) |
---|
3839 | CALL MPI_TYPE_COMMIT(TYPE_VNEST_ANTER, ierr) |
---|
3840 | |
---|
3841 | ENDIF |
---|
3842 | #endif |
---|
3843 | END SUBROUTINE vnest_init_pegrid_domain |
---|
3844 | |
---|
3845 | |
---|
3846 | SUBROUTINE vnest_init_grid |
---|
3847 | |
---|
3848 | #if defined( __parallel ) |
---|
3849 | USE arrays_3d, & |
---|
3850 | ONLY: zu, zw |
---|
3851 | |
---|
3852 | USE control_parameters, & |
---|
3853 | ONLY: coupling_mode, message_string, number_stretch_level_start |
---|
3854 | |
---|
3855 | USE indices, & |
---|
3856 | ONLY: nzt |
---|
3857 | |
---|
3858 | USE kinds |
---|
3859 | |
---|
3860 | USE pegrid |
---|
3861 | |
---|
3862 | IMPLICIT NONE |
---|
3863 | |
---|
3864 | ! |
---|
3865 | !-- Allocate and Exchange zuc and zuf, zwc and zwf |
---|
3866 | IF ( coupling_mode(1:8) == 'vnested_' ) THEN |
---|
3867 | |
---|
3868 | ALLOCATE( zuc(0:nzc+1), zuf(0:nzf+1) ) |
---|
3869 | ALLOCATE( zwc(0:nzc+1), zwf(0:nzf+1) ) |
---|
3870 | |
---|
3871 | IF ( coupling_mode == 'vnested_crse' ) THEN |
---|
3872 | |
---|
3873 | zuc = zu |
---|
3874 | zwc = zw |
---|
3875 | |
---|
3876 | IF ( myid == 0 ) THEN |
---|
3877 | |
---|
3878 | CALL MPI_SEND( zuc, nzt+2, MPI_REAL, numprocs, 41, comm_inter, & |
---|
3879 | ierr ) |
---|
3880 | CALL MPI_RECV( zuf, nzf+2, MPI_REAL, numprocs, 42, comm_inter, & |
---|
3881 | status, ierr ) |
---|
3882 | |
---|
3883 | CALL MPI_SEND( zwc, nzt+2, MPI_REAL, numprocs, 43, comm_inter, & |
---|
3884 | ierr ) |
---|
3885 | CALL MPI_RECV( zwf, nzf+2, MPI_REAL, numprocs, 44, comm_inter, & |
---|
3886 | status, ierr ) |
---|
3887 | |
---|
3888 | ENDIF |
---|
3889 | |
---|
3890 | CALL MPI_BCAST( zuf,nzf+2,MPI_REAL, 0, comm2d, ierr ) |
---|
3891 | CALL MPI_BCAST( zwf,nzf+2,MPI_REAL, 0, comm2d, ierr ) |
---|
3892 | |
---|
3893 | ELSEIF ( coupling_mode == 'vnested_fine' ) THEN |
---|
3894 | |
---|
3895 | ! |
---|
3896 | !-- Check if stretching is used within the nested domain |
---|
3897 | IF ( number_stretch_level_start > 0 ) THEN |
---|
3898 | message_string = 'Stretching in the nested domain is not '//& |
---|
3899 | 'allowed' |
---|
3900 | CALL message( 'vnest_init_grid', 'PA0498', 1, 2, 0, 6, 0 ) |
---|
3901 | ENDIF |
---|
3902 | |
---|
3903 | zuf = zu |
---|
3904 | zwf = zw |
---|
3905 | |
---|
3906 | IF ( myid == 0 ) THEN |
---|
3907 | |
---|
3908 | CALL MPI_RECV( zuc,nzc+2, MPI_REAL, 0, 41, comm_inter, status, & |
---|
3909 | ierr ) |
---|
3910 | CALL MPI_SEND( zuf,nzt+2, MPI_REAL, 0, 42, comm_inter, ierr ) |
---|
3911 | |
---|
3912 | CALL MPI_RECV( zwc,nzc+2, MPI_REAL, 0, 43, comm_inter, status, & |
---|
3913 | ierr ) |
---|
3914 | CALL MPI_SEND( zwf,nzt+2, MPI_REAL, 0, 44, comm_inter, ierr ) |
---|
3915 | ENDIF |
---|
3916 | |
---|
3917 | CALL MPI_BCAST( zuc,nzc+2,MPI_REAL, 0, comm2d, ierr ) |
---|
3918 | CALL MPI_BCAST( zwc,nzc+2,MPI_REAL, 0, comm2d, ierr ) |
---|
3919 | |
---|
3920 | ENDIF |
---|
3921 | ENDIF |
---|
3922 | |
---|
3923 | #endif |
---|
3924 | END SUBROUTINE vnest_init_grid |
---|
3925 | |
---|
3926 | |
---|
3927 | SUBROUTINE vnest_check_parameters |
---|
3928 | #if defined( __parallel ) |
---|
3929 | |
---|
3930 | USE pegrid, & |
---|
3931 | ONLY: myid |
---|
3932 | |
---|
3933 | IMPLICIT NONE |
---|
3934 | |
---|
3935 | IF (myid==0) PRINT*, '*** vnest: check parameters not implemented yet ***' |
---|
3936 | |
---|
3937 | #endif |
---|
3938 | END SUBROUTINE vnest_check_parameters |
---|
3939 | |
---|
3940 | |
---|
3941 | SUBROUTINE vnest_timestep_sync |
---|
3942 | |
---|
3943 | #if defined( __parallel ) |
---|
3944 | USE control_parameters, & |
---|
3945 | ONLY: coupling_mode, dt_3d, old_dt |
---|
3946 | |
---|
3947 | USE interfaces |
---|
3948 | |
---|
3949 | USE kinds |
---|
3950 | |
---|
3951 | USE pegrid |
---|
3952 | |
---|
3953 | IMPLICIT NONE |
---|
3954 | |
---|
3955 | IF ( coupling_mode == 'vnested_crse') THEN |
---|
3956 | dtc = dt_3d |
---|
3957 | if (myid == 0) then |
---|
3958 | CALL MPI_SEND( dt_3d, 1, MPI_REAL, target_id, & |
---|
3959 | 31, comm_inter, ierr ) |
---|
3960 | CALL MPI_RECV( dtf, 1, MPI_REAL, & |
---|
3961 | target_id, 32, comm_inter, status, ierr ) |
---|
3962 | |
---|
3963 | endif |
---|
3964 | CALL MPI_BCAST( dtf, 1, MPI_REAL, 0, comm2d, ierr ) |
---|
3965 | ELSE |
---|
3966 | dtf = dt_3d |
---|
3967 | if (myid == 0) then |
---|
3968 | CALL MPI_RECV( dtc, 1, MPI_REAL, & |
---|
3969 | target_id, 31, comm_inter, status, ierr ) |
---|
3970 | CALL MPI_SEND( dt_3d, 1, MPI_REAL, target_id, & |
---|
3971 | 32, comm_inter, ierr ) |
---|
3972 | |
---|
3973 | endif |
---|
3974 | CALL MPI_BCAST( dtc, 1, MPI_REAL, 0, comm2d, ierr ) |
---|
3975 | |
---|
3976 | ENDIF |
---|
3977 | !-- Identical timestep for coarse and fine grids |
---|
3978 | dt_3d = MIN( dtc, dtf ) |
---|
3979 | !> @fixme setting old_dt might be obsolete at this point |
---|
3980 | !> Due to changes in timestep routine, setting of old_dt might be |
---|
3981 | !> not necessary any more at this point. However, could not be |
---|
3982 | !> tested so far. |
---|
3983 | !> 2018-05-18, gronemeier |
---|
3984 | old_dt = dt_3d |
---|
3985 | #endif |
---|
3986 | END SUBROUTINE vnest_timestep_sync |
---|
3987 | |
---|
3988 | SUBROUTINE vnest_deallocate |
---|
3989 | #if defined( __parallel ) |
---|
3990 | USE control_parameters, & |
---|
3991 | ONLY: coupling_mode |
---|
3992 | |
---|
3993 | IMPLICIT NONE |
---|
3994 | |
---|
3995 | IF ( ALLOCATED(c_rnk_lst) ) DEALLOCATE (c_rnk_lst) |
---|
3996 | IF ( ALLOCATED(f_rnk_lst) ) DEALLOCATE (f_rnk_lst) |
---|
3997 | |
---|
3998 | IF ( coupling_mode == 'vnested_crse') THEN |
---|
3999 | IF ( ALLOCATED (c2f_dims_cg) ) DEALLOCATE (c2f_dims_cg) |
---|
4000 | IF ( ALLOCATED (f2c_dims_cg) ) DEALLOCATE (f2c_dims_cg) |
---|
4001 | ELSEIF( coupling_mode == 'vnested_fine' ) THEN |
---|
4002 | IF ( ALLOCATED (c2f_dims_fg) ) DEALLOCATE (c2f_dims_fg) |
---|
4003 | IF ( ALLOCATED (f2c_dims_fg) ) DEALLOCATE (f2c_dims_fg) |
---|
4004 | ENDIF |
---|
4005 | #endif |
---|
4006 | END SUBROUTINE vnest_deallocate |
---|
4007 | |
---|
4008 | END MODULE vertical_nesting_mod |
---|