[2365] | 1 | !> @file vertical_nesting_mod.f90 |
---|
| 2 | !------------------------------------------------------------------------------! |
---|
[2696] | 3 | ! This file is part of the PALM model system. |
---|
[2365] | 4 | ! |
---|
| 5 | ! PALM is free software: you can redistribute it and/or modify it under the |
---|
| 6 | ! terms of the GNU General Public License as published by the Free Software |
---|
| 7 | ! Foundation, either version 3 of the License, or (at your option) any later |
---|
| 8 | ! version. |
---|
| 9 | ! |
---|
| 10 | ! PALM is distributed in the hope that it will be useful, but WITHOUT ANY |
---|
| 11 | ! WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR |
---|
| 12 | ! A PARTICULAR PURPOSE. See the GNU General Public License for more details. |
---|
| 13 | ! |
---|
| 14 | ! You should have received a copy of the GNU General Public License along with |
---|
| 15 | ! PALM. If not, see <http://www.gnu.org/licenses/>. |
---|
| 16 | ! |
---|
[3655] | 17 | ! Copyright 1997-2019 Leibniz Universitaet Hannover |
---|
[2718] | 18 | ! Copyright 2017-2018 Karlsruhe Institute of Technology |
---|
[2365] | 19 | !------------------------------------------------------------------------------! |
---|
| 20 | ! |
---|
| 21 | ! Current revisions: |
---|
| 22 | ! ----------------- |
---|
| 23 | ! |
---|
[3049] | 24 | ! |
---|
[2365] | 25 | ! Former revisions: |
---|
| 26 | ! ----------------- |
---|
| 27 | ! $Id: vertical_nesting_mod.f90 4182 2019-08-22 15:20:23Z suehring $ |
---|
[4182] | 28 | ! Corrected "Former revisions" section |
---|
| 29 | ! |
---|
| 30 | ! 4102 2019-07-17 16:00:03Z suehring |
---|
[4102] | 31 | ! - Slightly revise setting of boundary conditions at horizontal walls, use |
---|
| 32 | ! data-structure offset index instead of pre-calculate it for each facing |
---|
| 33 | ! |
---|
| 34 | ! 4101 2019-07-17 15:14:26Z gronemeier |
---|
[4101] | 35 | ! remove old_dt |
---|
| 36 | ! |
---|
| 37 | ! 3802 2019-03-17 13:33:42Z raasch |
---|
[3802] | 38 | ! unused subroutines commented out |
---|
| 39 | ! |
---|
| 40 | ! 3655 2019-01-07 16:51:22Z knoop |
---|
[3241] | 41 | ! unused variables removed |
---|
| 42 | ! |
---|
[4182] | 43 | ! 2365 2017-08-21 14:59:59Z kanani |
---|
| 44 | ! Initial revision (SadiqHuq) |
---|
[3232] | 45 | ! |
---|
[4182] | 46 | ! |
---|
[2365] | 47 | ! Description: |
---|
| 48 | ! ------------ |
---|
[2374] | 49 | !> Module for vertical nesting. |
---|
| 50 | !> |
---|
| 51 | !> Definition of parameters and variables for vertical nesting |
---|
[2712] | 52 | !> The horizontal extent of the parent (Coarse Grid) and the child (Fine Grid) |
---|
| 53 | !> have to be identical. The vertical extent of the FG should be smaller than CG. |
---|
| 54 | !> Only integer nesting ratio supported. Odd nesting ratio preferred |
---|
| 55 | !> The code follows MPI-1 standards. The available processors are split into |
---|
| 56 | !> two groups using MPI_COMM_SPLIT. Exchange of data from CG to FG is called |
---|
| 57 | !> interpolation. FG initialization by interpolation is done once at the start. |
---|
| 58 | !> FG boundary conditions are set by interpolated at every timestep. |
---|
| 59 | !> Exchange of data from CG to FG is called anterpolation, the two-way interaction |
---|
| 60 | !> occurs at every timestep. |
---|
| 61 | !> vnest_start_time set in PARIN allows delayed start of the coupling |
---|
| 62 | !> after spin-up of the CG |
---|
[2374] | 63 | !> |
---|
[3065] | 64 | !> @todo Replace dz(1) appropriatly to account for grid stretching |
---|
[2374] | 65 | !> @todo Ensure that code can be compiled for serial and parallel mode. Please |
---|
| 66 | !> check the placement of the directive "__parallel". |
---|
| 67 | !> @todo Add descriptions for all declared variables/parameters, one declaration |
---|
| 68 | !> statement per variable |
---|
| 69 | !> @todo Add a descriptive header above each subroutine (see land_surface_model) |
---|
| 70 | !> @todo FORTRAN language statements must not be used as names for variables |
---|
| 71 | !> (e.g. if). Please rename it. |
---|
| 72 | !> @todo Revise code according to PALM Coding Standard |
---|
[2365] | 73 | !------------------------------------------------------------------------------! |
---|
| 74 | MODULE vertical_nesting_mod |
---|
| 75 | |
---|
| 76 | USE kinds |
---|
| 77 | |
---|
| 78 | IMPLICIT NONE |
---|
| 79 | |
---|
[3232] | 80 | LOGICAL :: vnested = .FALSE. !> set to true if palmrun |
---|
| 81 | !> provides specific information via stdin |
---|
[2712] | 82 | LOGICAL :: vnest_init = .FALSE. !> set to true when FG is initialized |
---|
| 83 | REAL(wp) :: vnest_start_time = 9999999.9 !> simulated time when FG should be |
---|
| 84 | !> initialized. Should be |
---|
| 85 | !> identical in PARIN & PARIN_N |
---|
[2365] | 86 | |
---|
| 87 | |
---|
| 88 | |
---|
[2712] | 89 | INTEGER(iwp),DIMENSION(3,2) :: bdims = 0 !> sub-domain grid topology of current PE |
---|
| 90 | INTEGER(iwp),DIMENSION(3,2) :: bdims_rem = 0 !> sub-domain grid topology of partner PE |
---|
[3232] | 91 | INTEGER(iwp) :: cg_nprocs !> no. of PE in CG. Set by palmrun -Y |
---|
| 92 | INTEGER(iwp) :: fg_nprocs !> no. of PE in FG. Set by palmrun -Y |
---|
[2712] | 93 | INTEGER(iwp) :: TYPE_VNEST_BC !> derived contiguous data type for interpolation |
---|
| 94 | INTEGER(iwp) :: TYPE_VNEST_ANTER !> derived contiguous data type for anterpolation |
---|
| 95 | INTEGER(iwp),DIMENSION(:,:,:),ALLOCATABLE :: c2f_dims_cg !> One CG PE sends data to multiple FG PEs |
---|
| 96 | !> list of grid-topology of partners |
---|
| 97 | INTEGER(iwp),DIMENSION(:,:,:),ALLOCATABLE :: f2c_dims_cg !> One CG PE receives data from multiple FG PEs |
---|
| 98 | !> list of grid-topology of partners |
---|
| 99 | INTEGER(iwp),DIMENSION(:),ALLOCATABLE :: c2f_dims_fg !> One FG PE sends data to multiple CG PE |
---|
| 100 | !> list of grid-topology of partner |
---|
| 101 | INTEGER(iwp),DIMENSION(:),ALLOCATABLE :: f2c_dims_fg !> One FG PE sends data to only one CG PE |
---|
| 102 | !> list of grid-topology of partner |
---|
[2365] | 103 | |
---|
[2712] | 104 | INTEGER(iwp),DIMENSION(:,:),ALLOCATABLE :: f_rnk_lst !> list storing rank of FG PE denoted by pdims |
---|
| 105 | INTEGER(iwp),DIMENSION(:,:),ALLOCATABLE :: c_rnk_lst !> list storing rank of CG PE denoted by pdims |
---|
| 106 | INTEGER(iwp),DIMENSION(3) :: cfratio !> Nesting ratio in x,y and z-directions |
---|
[2365] | 107 | |
---|
[2712] | 108 | INTEGER(iwp) :: nxc !> no. of CG grid points in x-direction |
---|
| 109 | INTEGER(iwp) :: nxf !> no. of FG grid points in x-direction |
---|
| 110 | INTEGER(iwp) :: nyc !> no. of CG grid points in y-direction |
---|
| 111 | INTEGER(iwp) :: nyf !> no. of FG grid points in y-direction |
---|
| 112 | INTEGER(iwp) :: nzc !> no. of CG grid points in z-direction |
---|
| 113 | INTEGER(iwp) :: nzf !> no. of FG grid points in z-direction |
---|
| 114 | INTEGER(iwp) :: ngp_c !> no. of CG grid points in one vertical level |
---|
| 115 | INTEGER(iwp) :: ngp_f !> no. of FG grid points in one vertical level |
---|
[2365] | 116 | |
---|
[2712] | 117 | INTEGER(iwp) :: n_cell_c !> total no. of CG grid points in a PE |
---|
| 118 | INTEGER(iwp),DIMENSION(2) :: pdims_partner !> processor topology of partner PE |
---|
| 119 | INTEGER(iwp) :: target_idex !> temporary variable |
---|
| 120 | INTEGER(iwp),DIMENSION(2) :: offset !> temporary variable |
---|
| 121 | INTEGER(iwp),DIMENSION(2) :: map_coord !> temporary variable |
---|
[2365] | 122 | |
---|
[2712] | 123 | REAL(wp) :: dxc !> CG grid pacing in x-direction |
---|
| 124 | REAL(wp) :: dyc !> FG grid pacing in x-direction |
---|
| 125 | REAL(wp) :: dxf !> CG grid pacing in y-direction |
---|
| 126 | REAL(wp) :: dyf !> FG grid pacing in y-direction |
---|
| 127 | REAL(wp) :: dzc !> CG grid pacing in z-direction |
---|
| 128 | REAL(wp) :: dzf !> FG grid pacing in z-direction |
---|
| 129 | REAL(wp) :: dtc !> dt calculated for CG |
---|
| 130 | REAL(wp) :: dtf !> dt calculated for FG |
---|
[2365] | 131 | |
---|
[2712] | 132 | REAL(wp), DIMENSION(:), ALLOCATABLE :: zuc !> CG vertical u-levels |
---|
| 133 | REAL(wp), DIMENSION(:), ALLOCATABLE :: zuf !> FG vertical u-levels |
---|
| 134 | REAL(wp), DIMENSION(:), ALLOCATABLE :: zwc !> CG vertical w-levels |
---|
| 135 | REAL(wp), DIMENSION(:), ALLOCATABLE :: zwf !> FG vertical w-levels |
---|
| 136 | REAL(wp), DIMENSION(:,:,:), POINTER :: interpol3d !> pointers to simplify function calls |
---|
| 137 | REAL(wp), DIMENSION(:,:,:), POINTER :: anterpol3d !> pointers to simplify function calls |
---|
[2365] | 138 | |
---|
| 139 | |
---|
[2712] | 140 | REAL(wp),DIMENSION(:,:,:), ALLOCATABLE :: work3d !> temporary array for exchange of 3D data |
---|
| 141 | REAL(wp),DIMENSION(:,:), ALLOCATABLE :: work2dusws !> temporary array for exchange of 2D data |
---|
| 142 | REAL(wp),DIMENSION(:,:), ALLOCATABLE :: work2dvsws !> temporary array for exchange of 2D data |
---|
| 143 | REAL(wp),DIMENSION(:,:), ALLOCATABLE :: work2dts !> temporary array for exchange of 2D data |
---|
| 144 | REAL(wp),DIMENSION(:,:), ALLOCATABLE :: work2dus !> temporary array for exchange of 2D data |
---|
| 145 | |
---|
[2365] | 146 | SAVE |
---|
| 147 | |
---|
| 148 | !-- Public functions |
---|
| 149 | PUBLIC vnest_init_fine, vnest_boundary_conds, vnest_anterpolate, & |
---|
[2514] | 150 | vnest_boundary_conds_khkm, vnest_anterpolate_e, & |
---|
| 151 | vnest_init_pegrid_rank, vnest_init_pegrid_domain, vnest_init_grid, & |
---|
| 152 | vnest_timestep_sync, vnest_deallocate |
---|
[2365] | 153 | |
---|
| 154 | !-- Public constants and variables |
---|
[2712] | 155 | PUBLIC vnested, vnest_init, vnest_start_time |
---|
[2365] | 156 | |
---|
| 157 | PRIVATE bdims, bdims_rem, & |
---|
[2712] | 158 | work3d, work2dusws, work2dvsws, work2dts, work2dus, & |
---|
[2365] | 159 | dxc, dyc, dxf, dyf, dzc, dzf, dtc, dtf, & |
---|
| 160 | zuc, zuf, zwc, zwf, interpol3d, anterpol3d, & |
---|
| 161 | cg_nprocs, fg_nprocs, & |
---|
| 162 | c2f_dims_cg, c2f_dims_fg, f2c_dims_cg, f2c_dims_fg, & |
---|
| 163 | f_rnk_lst, c_rnk_lst, cfratio, pdims_partner, & |
---|
| 164 | nxc, nxf, nyc, nyf, nzc, nzf, & |
---|
[3241] | 165 | ngp_c, ngp_f, target_idex, n_cell_c, & |
---|
[2514] | 166 | offset, map_coord, TYPE_VNEST_BC, TYPE_VNEST_ANTER |
---|
[2365] | 167 | |
---|
| 168 | INTERFACE vnest_anterpolate |
---|
| 169 | MODULE PROCEDURE vnest_anterpolate |
---|
| 170 | END INTERFACE vnest_anterpolate |
---|
| 171 | |
---|
| 172 | INTERFACE vnest_anterpolate_e |
---|
| 173 | MODULE PROCEDURE vnest_anterpolate_e |
---|
| 174 | END INTERFACE vnest_anterpolate_e |
---|
| 175 | |
---|
| 176 | INTERFACE vnest_boundary_conds |
---|
| 177 | MODULE PROCEDURE vnest_boundary_conds |
---|
| 178 | END INTERFACE vnest_boundary_conds |
---|
| 179 | |
---|
| 180 | INTERFACE vnest_boundary_conds_khkm |
---|
| 181 | MODULE PROCEDURE vnest_boundary_conds_khkm |
---|
| 182 | END INTERFACE vnest_boundary_conds_khkm |
---|
| 183 | |
---|
| 184 | INTERFACE vnest_check_parameters |
---|
| 185 | MODULE PROCEDURE vnest_check_parameters |
---|
| 186 | END INTERFACE vnest_check_parameters |
---|
| 187 | |
---|
| 188 | INTERFACE vnest_deallocate |
---|
| 189 | MODULE PROCEDURE vnest_deallocate |
---|
| 190 | END INTERFACE vnest_deallocate |
---|
| 191 | |
---|
| 192 | INTERFACE vnest_init_fine |
---|
| 193 | MODULE PROCEDURE vnest_init_fine |
---|
| 194 | END INTERFACE vnest_init_fine |
---|
| 195 | |
---|
| 196 | INTERFACE vnest_init_grid |
---|
| 197 | MODULE PROCEDURE vnest_init_grid |
---|
| 198 | END INTERFACE vnest_init_grid |
---|
| 199 | |
---|
| 200 | INTERFACE vnest_init_pegrid_domain |
---|
| 201 | MODULE PROCEDURE vnest_init_pegrid_domain |
---|
| 202 | END INTERFACE vnest_init_pegrid_domain |
---|
| 203 | |
---|
| 204 | INTERFACE vnest_init_pegrid_rank |
---|
| 205 | MODULE PROCEDURE vnest_init_pegrid_rank |
---|
| 206 | END INTERFACE vnest_init_pegrid_rank |
---|
| 207 | |
---|
| 208 | INTERFACE vnest_timestep_sync |
---|
| 209 | MODULE PROCEDURE vnest_timestep_sync |
---|
| 210 | END INTERFACE vnest_timestep_sync |
---|
| 211 | |
---|
| 212 | CONTAINS |
---|
| 213 | |
---|
| 214 | |
---|
| 215 | |
---|
| 216 | SUBROUTINE vnest_init_fine |
---|
[2712] | 217 | #if defined( __parallel ) |
---|
[2365] | 218 | |
---|
| 219 | !--------------------------------------------------------------------------------! |
---|
| 220 | ! Description: |
---|
| 221 | ! ------------ |
---|
| 222 | ! At the specified vnest_start_time initialize the Fine Grid based on the coarse |
---|
| 223 | ! grid values |
---|
| 224 | !------------------------------------------------------------------------------! |
---|
| 225 | |
---|
| 226 | |
---|
| 227 | USE arrays_3d |
---|
| 228 | USE control_parameters |
---|
| 229 | USE grid_variables |
---|
| 230 | USE indices |
---|
| 231 | USE interfaces |
---|
| 232 | USE pegrid |
---|
[2712] | 233 | USE turbulence_closure_mod, & |
---|
[2696] | 234 | ONLY : tcm_diffusivities |
---|
[2712] | 235 | |
---|
[2365] | 236 | |
---|
| 237 | IMPLICIT NONE |
---|
| 238 | |
---|
[2712] | 239 | REAL(wp) :: time_since_reference_point_rem |
---|
| 240 | INTEGER(iwp) :: i |
---|
| 241 | INTEGER(iwp) :: j |
---|
| 242 | INTEGER(iwp) :: iif |
---|
| 243 | INTEGER(iwp) :: jjf |
---|
| 244 | INTEGER(iwp) :: kkf |
---|
[2365] | 245 | |
---|
| 246 | |
---|
[2712] | 247 | if (myid ==0 ) print *, ' TIME TO INIT FINE from COARSE', simulated_time |
---|
[2365] | 248 | |
---|
| 249 | ! |
---|
| 250 | !-- In case of model termination initiated by the remote model |
---|
| 251 | !-- (terminate_coupled_remote > 0), initiate termination of the local model. |
---|
| 252 | !-- The rest of the coupler must then be skipped because it would cause an MPI |
---|
| 253 | !-- intercomminucation hang. |
---|
| 254 | !-- If necessary, the coupler will be called at the beginning of the next |
---|
| 255 | !-- restart run. |
---|
| 256 | |
---|
| 257 | IF ( myid == 0) THEN |
---|
[3045] | 258 | CALL MPI_SENDRECV( terminate_coupled, 1, MPI_INTEGER, & |
---|
| 259 | target_id, 0, & |
---|
| 260 | terminate_coupled_remote, 1, MPI_INTEGER, & |
---|
| 261 | target_id, 0, & |
---|
[2365] | 262 | comm_inter, status, ierr ) |
---|
| 263 | ENDIF |
---|
| 264 | CALL MPI_BCAST( terminate_coupled_remote, 1, MPI_INTEGER, 0, comm2d, & |
---|
| 265 | ierr ) |
---|
| 266 | |
---|
| 267 | IF ( terminate_coupled_remote > 0 ) THEN |
---|
[3045] | 268 | WRITE( message_string, * ) 'remote model "', & |
---|
| 269 | TRIM( coupling_mode_remote ), & |
---|
| 270 | '" terminated', & |
---|
[3046] | 271 | '&with terminate_coupled_remote = ', & |
---|
[3045] | 272 | terminate_coupled_remote, & |
---|
[3046] | 273 | '&local model "', TRIM( coupling_mode ), & |
---|
[3045] | 274 | '" has', & |
---|
[3046] | 275 | '&terminate_coupled = ', & |
---|
[2365] | 276 | terminate_coupled |
---|
| 277 | CALL message( 'vnest_init_fine', 'PA0310', 1, 2, 0, 6, 0 ) |
---|
| 278 | RETURN |
---|
| 279 | ENDIF |
---|
| 280 | |
---|
| 281 | |
---|
| 282 | ! |
---|
| 283 | !-- Exchange the current simulated time between the models, |
---|
| 284 | !-- currently just for total_2ding |
---|
| 285 | IF ( myid == 0 ) THEN |
---|
| 286 | |
---|
| 287 | CALL MPI_SEND( time_since_reference_point, 1, MPI_REAL, target_id, & |
---|
| 288 | 11, comm_inter, ierr ) |
---|
| 289 | CALL MPI_RECV( time_since_reference_point_rem, 1, MPI_REAL, & |
---|
| 290 | target_id, 11, comm_inter, status, ierr ) |
---|
| 291 | |
---|
| 292 | ENDIF |
---|
| 293 | |
---|
| 294 | CALL MPI_BCAST( time_since_reference_point_rem, 1, MPI_REAL, 0, comm2d, & |
---|
| 295 | ierr ) |
---|
| 296 | |
---|
| 297 | |
---|
| 298 | IF ( coupling_mode == 'vnested_crse' ) THEN |
---|
| 299 | !-- Send data to fine grid for initialization |
---|
| 300 | |
---|
| 301 | offset(1) = ( pdims_partner(1) / pdims(1) ) * pcoord(1) |
---|
| 302 | offset(2) = ( pdims_partner(2) / pdims(2) ) * pcoord(2) |
---|
| 303 | |
---|
| 304 | do j = 0, ( pdims_partner(2) / pdims(2) ) - 1 |
---|
| 305 | do i = 0, ( pdims_partner(1) / pdims(1) ) - 1 |
---|
| 306 | map_coord(1) = i+offset(1) |
---|
| 307 | map_coord(2) = j+offset(2) |
---|
| 308 | |
---|
| 309 | target_idex = f_rnk_lst(map_coord(1),map_coord(2)) + numprocs |
---|
| 310 | |
---|
| 311 | CALL MPI_RECV( bdims_rem, 6, MPI_INTEGER, target_idex, 10, & |
---|
| 312 | comm_inter,status, ierr ) |
---|
| 313 | |
---|
| 314 | bdims (1,1) = bdims_rem (1,1) / cfratio(1) |
---|
| 315 | bdims (1,2) = bdims_rem (1,2) / cfratio(1) |
---|
| 316 | bdims (2,1) = bdims_rem (2,1) / cfratio(2) |
---|
| 317 | bdims (2,2) = bdims_rem (2,2) / cfratio(2) |
---|
| 318 | bdims (3,1) = bdims_rem (3,1) |
---|
| 319 | bdims (3,2) = bdims_rem (3,2) / cfratio(3) |
---|
| 320 | |
---|
| 321 | |
---|
| 322 | CALL MPI_SEND( bdims, 6, MPI_INTEGER, target_idex, 9, & |
---|
| 323 | comm_inter, ierr ) |
---|
| 324 | |
---|
| 325 | |
---|
| 326 | n_cell_c = (bdims(1,2)-bdims(1,1)+3) * & |
---|
| 327 | (bdims(2,2)-bdims(2,1)+3) * & |
---|
| 328 | (bdims(3,2)-bdims(3,1)+3) |
---|
| 329 | |
---|
| 330 | CALL MPI_SEND( u( bdims(3,1):bdims(3,2)+2, & |
---|
| 331 | bdims(2,1)-1:bdims(2,2)+1, & |
---|
| 332 | bdims(1,1)-1:bdims(1,2)+1),& |
---|
| 333 | n_cell_c, MPI_REAL, target_idex, & |
---|
[2514] | 334 | 101, comm_inter, ierr) |
---|
[2365] | 335 | |
---|
| 336 | CALL MPI_SEND( v( bdims(3,1):bdims(3,2)+2, & |
---|
| 337 | bdims(2,1)-1:bdims(2,2)+1, & |
---|
| 338 | bdims(1,1)-1:bdims(1,2)+1),& |
---|
| 339 | n_cell_c, MPI_REAL, target_idex, & |
---|
[2514] | 340 | 102, comm_inter, ierr) |
---|
[2365] | 341 | |
---|
| 342 | CALL MPI_SEND( w( bdims(3,1):bdims(3,2)+2, & |
---|
| 343 | bdims(2,1)-1:bdims(2,2)+1, & |
---|
| 344 | bdims(1,1)-1:bdims(1,2)+1),& |
---|
| 345 | n_cell_c, MPI_REAL, target_idex, & |
---|
[2514] | 346 | 103, comm_inter, ierr) |
---|
[2365] | 347 | |
---|
| 348 | CALL MPI_SEND( pt(bdims(3,1):bdims(3,2)+2, & |
---|
| 349 | bdims(2,1)-1:bdims(2,2)+1, & |
---|
| 350 | bdims(1,1)-1:bdims(1,2)+1),& |
---|
| 351 | n_cell_c, MPI_REAL, target_idex, & |
---|
[2514] | 352 | 105, comm_inter, ierr) |
---|
[2365] | 353 | |
---|
| 354 | IF ( humidity ) THEN |
---|
| 355 | CALL MPI_SEND( q(bdims(3,1):bdims(3,2)+2, & |
---|
| 356 | bdims(2,1)-1:bdims(2,2)+1, & |
---|
| 357 | bdims(1,1)-1:bdims(1,2)+1),& |
---|
| 358 | n_cell_c, MPI_REAL, target_idex, & |
---|
[2514] | 359 | 116, comm_inter, ierr) |
---|
[2365] | 360 | ENDIF |
---|
| 361 | |
---|
| 362 | CALL MPI_SEND( e( bdims(3,1):bdims(3,2)+2, & |
---|
| 363 | bdims(2,1)-1:bdims(2,2)+1, & |
---|
| 364 | bdims(1,1)-1:bdims(1,2)+1),& |
---|
| 365 | n_cell_c, MPI_REAL, target_idex, & |
---|
[2514] | 366 | 104, comm_inter, ierr) |
---|
[2365] | 367 | |
---|
| 368 | CALL MPI_SEND(kh( bdims(3,1):bdims(3,2)+2, & |
---|
| 369 | bdims(2,1)-1:bdims(2,2)+1, & |
---|
| 370 | bdims(1,1)-1:bdims(1,2)+1),& |
---|
| 371 | n_cell_c, MPI_REAL, target_idex, & |
---|
[2514] | 372 | 106, comm_inter, ierr) |
---|
[2365] | 373 | |
---|
| 374 | CALL MPI_SEND(km( bdims(3,1):bdims(3,2)+2, & |
---|
| 375 | bdims(2,1)-1:bdims(2,2)+1, & |
---|
| 376 | bdims(1,1)-1:bdims(1,2)+1),& |
---|
| 377 | n_cell_c, MPI_REAL, target_idex, & |
---|
[2514] | 378 | 107, comm_inter, ierr) |
---|
[2365] | 379 | |
---|
| 380 | !-- Send Surface fluxes |
---|
| 381 | IF ( use_surface_fluxes ) THEN |
---|
| 382 | |
---|
| 383 | n_cell_c = (bdims(1,2)-bdims(1,1)+3) * & |
---|
| 384 | (bdims(2,2)-bdims(2,1)+3) |
---|
| 385 | |
---|
[2712] | 386 | ! |
---|
| 387 | !-- shf and z0 for CG / FG need to initialized in input file or user_code |
---|
| 388 | !-- TODO |
---|
| 389 | !-- initialization of usws, vsws, ts and us not vital to vnest FG |
---|
| 390 | !-- variables are not compatible with the new surface layer module |
---|
| 391 | ! |
---|
| 392 | ! CALL MPI_SEND(surf_def_h(0)%usws( bdims(2,1)-1:bdims(2,2)+1, & |
---|
| 393 | ! bdims(1,1)-1:bdims(1,2)+1),& |
---|
| 394 | ! n_cell_c, MPI_REAL, target_idex, & |
---|
| 395 | ! 110, comm_inter, ierr ) |
---|
| 396 | ! |
---|
| 397 | ! CALL MPI_SEND(surf_def_h(0)%vsws( bdims(2,1)-1:bdims(2,2)+1, & |
---|
| 398 | ! bdims(1,1)-1:bdims(1,2)+1),& |
---|
| 399 | ! n_cell_c, MPI_REAL, target_idex, & |
---|
| 400 | ! 111, comm_inter, ierr ) |
---|
| 401 | ! |
---|
| 402 | ! CALL MPI_SEND(ts ( bdims(2,1)-1:bdims(2,2)+1, & |
---|
| 403 | ! bdims(1,1)-1:bdims(1,2)+1),& |
---|
| 404 | ! n_cell_c, MPI_REAL, target_idex, & |
---|
| 405 | ! 112, comm_inter, ierr ) |
---|
| 406 | ! |
---|
| 407 | ! CALL MPI_SEND(us ( bdims(2,1)-1:bdims(2,2)+1, & |
---|
| 408 | ! bdims(1,1)-1:bdims(1,2)+1),& |
---|
| 409 | ! n_cell_c, MPI_REAL, target_idex, & |
---|
| 410 | ! 113, comm_inter, ierr ) |
---|
| 411 | ! |
---|
[2365] | 412 | ENDIF |
---|
| 413 | |
---|
| 414 | |
---|
| 415 | |
---|
| 416 | |
---|
| 417 | end do |
---|
| 418 | end do |
---|
| 419 | |
---|
| 420 | ELSEIF ( coupling_mode == 'vnested_fine' ) THEN |
---|
| 421 | !-- Receive data from coarse grid for initialization |
---|
| 422 | |
---|
| 423 | offset(1) = pcoord(1) / ( pdims(1)/pdims_partner(1) ) |
---|
| 424 | offset(2) = pcoord(2) / ( pdims(2)/pdims_partner(2) ) |
---|
| 425 | map_coord(1) = offset(1) |
---|
| 426 | map_coord(2) = offset(2) |
---|
| 427 | target_idex = c_rnk_lst(map_coord(1),map_coord(2)) |
---|
| 428 | |
---|
| 429 | bdims (1,1) = nxl |
---|
| 430 | bdims (1,2) = nxr |
---|
| 431 | bdims (2,1) = nys |
---|
| 432 | bdims (2,2) = nyn |
---|
| 433 | bdims (3,1) = nzb |
---|
| 434 | bdims (3,2) = nzt |
---|
| 435 | |
---|
| 436 | CALL MPI_SEND( bdims, 6, MPI_INTEGER, target_idex, 10, & |
---|
| 437 | comm_inter, ierr ) |
---|
| 438 | |
---|
| 439 | CALL MPI_RECV( bdims_rem, 6, MPI_INTEGER, target_idex, 9, & |
---|
| 440 | comm_inter,status, ierr ) |
---|
| 441 | |
---|
| 442 | n_cell_c = (bdims_rem(1,2)-bdims_rem(1,1)+3) * & |
---|
| 443 | (bdims_rem(2,2)-bdims_rem(2,1)+3) * & |
---|
| 444 | (bdims_rem(3,2)-bdims_rem(3,1)+3) |
---|
| 445 | |
---|
| 446 | ALLOCATE( work3d ( bdims_rem(3,1) :bdims_rem(3,2)+2, & |
---|
| 447 | bdims_rem(2,1)-1:bdims_rem(2,2)+1, & |
---|
| 448 | bdims_rem(1,1)-1:bdims_rem(1,2)+1)) |
---|
| 449 | |
---|
| 450 | |
---|
| 451 | CALL MPI_RECV( work3d,n_cell_c, MPI_REAL, target_idex, 101, & |
---|
| 452 | comm_inter,status, ierr ) |
---|
| 453 | interpol3d => u |
---|
[3241] | 454 | call interpolate_to_fine_u |
---|
[2365] | 455 | |
---|
| 456 | CALL MPI_RECV( work3d,n_cell_c, MPI_REAL, target_idex, 102, & |
---|
| 457 | comm_inter,status, ierr ) |
---|
| 458 | interpol3d => v |
---|
[3241] | 459 | call interpolate_to_fine_v |
---|
[2365] | 460 | |
---|
| 461 | CALL MPI_RECV( work3d,n_cell_c, MPI_REAL, target_idex, 103, & |
---|
| 462 | comm_inter,status, ierr ) |
---|
| 463 | interpol3d => w |
---|
[3241] | 464 | call interpolate_to_fine_w |
---|
[2365] | 465 | |
---|
| 466 | CALL MPI_RECV( work3d,n_cell_c, MPI_REAL, target_idex, 105, & |
---|
| 467 | comm_inter,status, ierr ) |
---|
| 468 | interpol3d => pt |
---|
[3241] | 469 | call interpolate_to_fine_s |
---|
[2365] | 470 | |
---|
| 471 | IF ( humidity ) THEN |
---|
| 472 | CALL MPI_RECV( work3d,n_cell_c, MPI_REAL, target_idex, 116, & |
---|
| 473 | comm_inter,status, ierr ) |
---|
| 474 | interpol3d => q |
---|
[3241] | 475 | call interpolate_to_fine_s |
---|
[2365] | 476 | ENDIF |
---|
| 477 | |
---|
| 478 | CALL MPI_RECV( work3d,n_cell_c, MPI_REAL, target_idex, 104, & |
---|
| 479 | comm_inter,status, ierr ) |
---|
| 480 | interpol3d => e |
---|
[3241] | 481 | call interpolate_to_fine_s |
---|
[2365] | 482 | |
---|
| 483 | !-- kh,km no target attribute, use of pointer not possible |
---|
| 484 | CALL MPI_RECV( work3d,n_cell_c, MPI_REAL, target_idex, 106, & |
---|
| 485 | comm_inter,status, ierr ) |
---|
[3241] | 486 | call interpolate_to_fine_kh |
---|
[2365] | 487 | |
---|
| 488 | CALL MPI_RECV( work3d,n_cell_c, MPI_REAL, target_idex, 107, & |
---|
| 489 | comm_inter,status, ierr ) |
---|
[3241] | 490 | call interpolate_to_fine_km |
---|
[2365] | 491 | |
---|
| 492 | DEALLOCATE( work3d ) |
---|
| 493 | NULLIFY ( interpol3d ) |
---|
| 494 | |
---|
[2514] | 495 | !-- Recv Surface Fluxes |
---|
[2365] | 496 | IF ( use_surface_fluxes ) THEN |
---|
| 497 | n_cell_c = (bdims_rem(1,2)-bdims_rem(1,1)+3) * & |
---|
| 498 | (bdims_rem(2,2)-bdims_rem(2,1)+3) |
---|
| 499 | |
---|
| 500 | ALLOCATE( work2dusws ( bdims_rem(2,1)-1:bdims_rem(2,2)+1, & |
---|
| 501 | bdims_rem(1,1)-1:bdims_rem(1,2)+1) ) |
---|
| 502 | ALLOCATE( work2dvsws ( bdims_rem(2,1)-1:bdims_rem(2,2)+1, & |
---|
| 503 | bdims_rem(1,1)-1:bdims_rem(1,2)+1) ) |
---|
| 504 | ALLOCATE( work2dts ( bdims_rem(2,1)-1:bdims_rem(2,2)+1, & |
---|
| 505 | bdims_rem(1,1)-1:bdims_rem(1,2)+1) ) |
---|
| 506 | ALLOCATE( work2dus ( bdims_rem(2,1)-1:bdims_rem(2,2)+1, & |
---|
| 507 | bdims_rem(1,1)-1:bdims_rem(1,2)+1) ) |
---|
| 508 | |
---|
[2712] | 509 | ! |
---|
| 510 | !-- shf and z0 for CG / FG need to initialized in input file or user_code |
---|
| 511 | !-- TODO |
---|
| 512 | !-- initialization of usws, vsws, ts and us not vital to vnest FG |
---|
| 513 | !-- variables are not compatible with the new surface layer module |
---|
| 514 | ! |
---|
| 515 | ! CALL MPI_RECV( work2dusws,n_cell_c, MPI_REAL, target_idex, 110, & |
---|
| 516 | ! comm_inter,status, ierr ) |
---|
| 517 | ! |
---|
| 518 | ! CALL MPI_RECV( work2dvsws,n_cell_c, MPI_REAL, target_idex, 111, & |
---|
| 519 | ! comm_inter,status, ierr ) |
---|
| 520 | ! |
---|
| 521 | ! CALL MPI_RECV( work2dts ,n_cell_c, MPI_REAL, target_idex, 112, & |
---|
| 522 | ! comm_inter,status, ierr ) |
---|
| 523 | ! |
---|
| 524 | ! CALL MPI_RECV( work2dus ,n_cell_c, MPI_REAL, target_idex, 113, & |
---|
| 525 | ! comm_inter,status, ierr ) |
---|
| 526 | ! |
---|
| 527 | ! CALL interpolate_to_fine_flux ( 108 ) |
---|
[2365] | 528 | |
---|
| 529 | DEALLOCATE( work2dusws ) |
---|
| 530 | DEALLOCATE( work2dvsws ) |
---|
| 531 | DEALLOCATE( work2dts ) |
---|
| 532 | DEALLOCATE( work2dus ) |
---|
| 533 | ENDIF |
---|
| 534 | |
---|
| 535 | IF ( .NOT. constant_diffusion ) THEN |
---|
[2712] | 536 | DO kkf = bdims(3,1)+1,bdims(3,2)+1 |
---|
| 537 | DO jjf = bdims(2,1),bdims(2,2) |
---|
| 538 | DO iif = bdims(1,1),bdims(1,2) |
---|
[2365] | 539 | |
---|
[2712] | 540 | IF ( e(kkf,jjf,iif) < 0.0 ) THEN |
---|
| 541 | e(kkf,jjf,iif) = 1E-15_wp |
---|
[2365] | 542 | END IF |
---|
| 543 | |
---|
| 544 | END DO |
---|
| 545 | END DO |
---|
| 546 | END DO |
---|
| 547 | ENDIF |
---|
| 548 | |
---|
| 549 | w(nzt+1,:,:) = w(nzt,:,:) |
---|
| 550 | |
---|
| 551 | CALL exchange_horiz( u, nbgp ) |
---|
| 552 | CALL exchange_horiz( v, nbgp ) |
---|
| 553 | CALL exchange_horiz( w, nbgp ) |
---|
| 554 | CALL exchange_horiz( pt, nbgp ) |
---|
| 555 | IF ( .NOT. constant_diffusion ) CALL exchange_horiz( e, nbgp ) |
---|
| 556 | IF ( humidity ) CALL exchange_horiz( q, nbgp ) |
---|
| 557 | |
---|
| 558 | ! |
---|
| 559 | !-- Velocity boundary conditions at the bottom boundary |
---|
| 560 | IF ( ibc_uv_b == 0 ) THEN |
---|
| 561 | u(nzb,:,:) = 0.0_wp |
---|
| 562 | v(nzb,:,:) = 0.0_wp |
---|
| 563 | ELSE |
---|
| 564 | u(nzb,:,:) = u(nzb+1,:,:) |
---|
| 565 | v(nzb,:,:) = v(nzb+1,:,:) |
---|
| 566 | END IF |
---|
| 567 | |
---|
| 568 | |
---|
| 569 | w(nzb,:,:) = 0.0_wp |
---|
| 570 | |
---|
[2514] | 571 | ! |
---|
| 572 | !-- Temperature boundary conditions at the bottom boundary |
---|
[2365] | 573 | IF ( ibc_pt_b /= 0 ) THEN |
---|
| 574 | pt(nzb,:,:) = pt(nzb+1,:,:) |
---|
| 575 | END IF |
---|
| 576 | |
---|
| 577 | ! |
---|
| 578 | !-- Bottom boundary condition for the turbulent kinetic energy |
---|
| 579 | !-- Generally a Neumann condition with de/dz=0 is assumed |
---|
| 580 | IF ( .NOT. constant_diffusion ) THEN |
---|
| 581 | e(nzb,:,:) = e(nzb+1,:,:) |
---|
| 582 | END IF |
---|
| 583 | |
---|
| 584 | ! |
---|
| 585 | !-- Bottom boundary condition for turbulent diffusion coefficients |
---|
| 586 | km(nzb,:,:) = km(nzb+1,:,:) |
---|
| 587 | kh(nzb,:,:) = kh(nzb+1,:,:) |
---|
| 588 | |
---|
| 589 | !diffusivities required |
---|
| 590 | IF ( .NOT. humidity ) THEN |
---|
[2696] | 591 | CALL tcm_diffusivities( pt, pt_reference ) |
---|
[2365] | 592 | ELSE |
---|
[2696] | 593 | CALL tcm_diffusivities( vpt, pt_reference ) |
---|
[2365] | 594 | ENDIF |
---|
| 595 | |
---|
| 596 | |
---|
| 597 | ! |
---|
| 598 | !-- Reset Fine Grid top Boundary Condition |
---|
| 599 | !-- At the top of the FG, the scalars always follow Dirichlet condition |
---|
| 600 | |
---|
| 601 | ibc_pt_t = 0 |
---|
| 602 | |
---|
| 603 | !-- Initialize old time levels |
---|
| 604 | pt_p = pt; u_p = u; v_p = v; w_p = w |
---|
| 605 | IF ( .NOT. constant_diffusion ) e_p = e |
---|
| 606 | IF ( humidity ) THEN |
---|
| 607 | ibc_q_t = 0 |
---|
| 608 | q_p = q |
---|
| 609 | ENDIF |
---|
| 610 | |
---|
| 611 | ENDIF |
---|
| 612 | |
---|
| 613 | |
---|
| 614 | if (myid==0) print *, '** Fine Initalized ** simulated_time:', simulated_time |
---|
[2712] | 615 | |
---|
[2365] | 616 | CONTAINS |
---|
| 617 | |
---|
[3241] | 618 | SUBROUTINE interpolate_to_fine_w |
---|
[2365] | 619 | |
---|
| 620 | USE arrays_3d |
---|
| 621 | USE control_parameters |
---|
| 622 | USE grid_variables |
---|
| 623 | USE indices |
---|
| 624 | USE pegrid |
---|
| 625 | |
---|
| 626 | |
---|
| 627 | IMPLICIT NONE |
---|
| 628 | |
---|
[2712] | 629 | INTEGER(iwp) :: i |
---|
| 630 | INTEGER(iwp) :: j |
---|
| 631 | INTEGER(iwp) :: k |
---|
| 632 | INTEGER(iwp) :: iif |
---|
| 633 | INTEGER(iwp) :: jjf |
---|
| 634 | INTEGER(iwp) :: kkf |
---|
| 635 | INTEGER(iwp) :: nzbottom |
---|
| 636 | INTEGER(iwp) :: nztop |
---|
| 637 | INTEGER(iwp) :: bottomx |
---|
| 638 | INTEGER(iwp) :: bottomy |
---|
| 639 | INTEGER(iwp) :: bottomz |
---|
| 640 | INTEGER(iwp) :: topx |
---|
| 641 | INTEGER(iwp) :: topy |
---|
| 642 | INTEGER(iwp) :: topz |
---|
| 643 | REAL(wp) :: eps |
---|
| 644 | REAL(wp) :: alpha |
---|
| 645 | REAL(wp) :: eminus |
---|
| 646 | REAL(wp) :: edot |
---|
| 647 | REAL(wp) :: eplus |
---|
| 648 | REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: wprs |
---|
| 649 | REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: wprf |
---|
[2365] | 650 | |
---|
| 651 | |
---|
| 652 | nzbottom = bdims_rem (3,1) |
---|
| 653 | nztop = bdims_rem (3,2) |
---|
| 654 | |
---|
| 655 | ALLOCATE( wprf(nzbottom:nztop, bdims_rem(2,1)-1: bdims_rem(2,2)+1,nxl:nxr) ) |
---|
| 656 | ALLOCATE( wprs(nzbottom:nztop,nys:nyn,nxl:nxr) ) |
---|
| 657 | |
---|
| 658 | |
---|
| 659 | ! |
---|
| 660 | !-- Initialisation of the velocity component w |
---|
| 661 | ! |
---|
| 662 | !-- Interpolation in x-direction |
---|
| 663 | DO k = nzbottom, nztop |
---|
| 664 | DO j = bdims_rem(2,1)-1, bdims_rem(2,2)+1 |
---|
| 665 | DO i = bdims_rem(1,1),bdims_rem(1,2) |
---|
| 666 | |
---|
| 667 | bottomx = (nxf+1)/(nxc+1) * i |
---|
| 668 | topx = (nxf+1)/(nxc+1) * (i+1) - 1 |
---|
| 669 | |
---|
[2712] | 670 | DO iif = bottomx, topx |
---|
[2365] | 671 | |
---|
[2712] | 672 | eps = ( iif * dxf + 0.5 * dxf - i * dxc - 0.5 * dxc ) / dxc |
---|
[2365] | 673 | alpha = ( ( dxf / dxc )**2.0 - 1.0 ) / 24.0 |
---|
| 674 | eminus = eps * ( eps - 1.0 ) / 2.0 + alpha |
---|
| 675 | edot = ( 1.0 - eps**2.0 ) - 2.0 * alpha |
---|
| 676 | eplus = eps * ( eps + 1.0 ) / 2.0 + alpha |
---|
| 677 | |
---|
[2712] | 678 | wprf(k,j,iif) = eminus * work3d(k,j,i-1) & |
---|
[2365] | 679 | + edot * work3d(k,j,i) & |
---|
| 680 | + eplus * work3d(k,j,i+1) |
---|
| 681 | END DO |
---|
| 682 | |
---|
| 683 | END DO |
---|
| 684 | END DO |
---|
| 685 | END DO |
---|
| 686 | |
---|
| 687 | ! |
---|
| 688 | !-- Interpolation in y-direction (quadratic, Clark and Farley) |
---|
| 689 | DO k = nzbottom, nztop |
---|
| 690 | DO j = bdims_rem(2,1), bdims_rem(2,2) |
---|
| 691 | |
---|
| 692 | bottomy = (nyf+1)/(nyc+1) * j |
---|
| 693 | topy = (nyf+1)/(nyc+1) * (j+1) - 1 |
---|
| 694 | |
---|
[2712] | 695 | DO iif = nxl, nxr |
---|
| 696 | DO jjf = bottomy, topy |
---|
[2365] | 697 | |
---|
[2712] | 698 | eps = ( jjf * dyf + 0.5 * dyf - j * dyc - 0.5 * dyc ) / dyc |
---|
[2365] | 699 | alpha = ( ( dyf / dyc )**2.0 - 1.0 ) / 24.0 |
---|
| 700 | eminus = eps * ( eps - 1.0 ) / 2.0 + alpha |
---|
| 701 | edot = ( 1.0 - eps**2.0 ) - 2.0 * alpha |
---|
| 702 | eplus = eps * ( eps + 1.0 ) / 2.0 + alpha |
---|
| 703 | |
---|
[2712] | 704 | wprs(k,jjf,iif) = eminus * wprf(k,j-1,iif) & |
---|
| 705 | + edot * wprf(k,j,iif) & |
---|
| 706 | + eplus * wprf(k,j+1,iif) |
---|
[2365] | 707 | |
---|
| 708 | END DO |
---|
| 709 | END DO |
---|
| 710 | |
---|
| 711 | END DO |
---|
| 712 | END DO |
---|
| 713 | |
---|
| 714 | ! |
---|
| 715 | !-- Interpolation in z-direction (linear) |
---|
| 716 | |
---|
| 717 | DO k = nzbottom, nztop-1 |
---|
| 718 | |
---|
| 719 | bottomz = (dzc/dzf) * k |
---|
| 720 | topz = (dzc/dzf) * (k+1) - 1 |
---|
| 721 | |
---|
[2712] | 722 | DO jjf = nys, nyn |
---|
| 723 | DO iif = nxl, nxr |
---|
| 724 | DO kkf = bottomz, topz |
---|
[2365] | 725 | |
---|
[2712] | 726 | w(kkf,jjf,iif) = wprs(k,jjf,iif) + ( zwf(kkf) - zwc(k) ) & |
---|
| 727 | * ( wprs(k+1,jjf,iif) - wprs(k,jjf,iif) ) / dzc |
---|
[2365] | 728 | |
---|
| 729 | END DO |
---|
| 730 | END DO |
---|
| 731 | END DO |
---|
| 732 | |
---|
| 733 | END DO |
---|
| 734 | |
---|
[2712] | 735 | DO jjf = nys, nyn |
---|
| 736 | DO iif = nxl, nxr |
---|
[2365] | 737 | |
---|
[2712] | 738 | w(nzt,jjf,iif) = wprs(nztop,jjf,iif) |
---|
[2365] | 739 | |
---|
| 740 | END DO |
---|
| 741 | END DO |
---|
| 742 | ! |
---|
| 743 | ! w(nzb:nzt+1,nys:nyn,nxl:nxr) = 0 |
---|
| 744 | |
---|
| 745 | DEALLOCATE( wprf, wprs ) |
---|
| 746 | |
---|
| 747 | END SUBROUTINE interpolate_to_fine_w |
---|
| 748 | |
---|
[3241] | 749 | SUBROUTINE interpolate_to_fine_u |
---|
[2365] | 750 | |
---|
| 751 | |
---|
| 752 | USE arrays_3d |
---|
| 753 | USE control_parameters |
---|
| 754 | USE grid_variables |
---|
| 755 | USE indices |
---|
| 756 | USE pegrid |
---|
| 757 | |
---|
| 758 | |
---|
| 759 | IMPLICIT NONE |
---|
| 760 | |
---|
[2712] | 761 | INTEGER(iwp) :: i |
---|
| 762 | INTEGER(iwp) :: j |
---|
| 763 | INTEGER(iwp) :: k |
---|
| 764 | INTEGER(iwp) :: iif |
---|
| 765 | INTEGER(iwp) :: jjf |
---|
| 766 | INTEGER(iwp) :: kkf |
---|
| 767 | INTEGER(iwp) :: nzbottom |
---|
| 768 | INTEGER(iwp) :: nztop |
---|
| 769 | INTEGER(iwp) :: bottomx |
---|
| 770 | INTEGER(iwp) :: bottomy |
---|
| 771 | INTEGER(iwp) :: bottomz |
---|
| 772 | INTEGER(iwp) :: topx |
---|
| 773 | INTEGER(iwp) :: topy |
---|
| 774 | INTEGER(iwp) :: topz |
---|
| 775 | REAL(wp) :: eps |
---|
| 776 | REAL(wp) :: alpha |
---|
| 777 | REAL(wp) :: eminus |
---|
| 778 | REAL(wp) :: edot |
---|
| 779 | REAL(wp) :: eplus |
---|
| 780 | REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: uprf |
---|
| 781 | REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: uprs |
---|
[2365] | 782 | |
---|
| 783 | |
---|
| 784 | |
---|
| 785 | nzbottom = bdims_rem (3,1) |
---|
| 786 | nztop = bdims_rem (3,2) |
---|
| 787 | |
---|
| 788 | ALLOCATE( uprf(nzbottom:nztop+2,nys:nyn,bdims_rem(1,1)-1:bdims_rem(1,2)+1) ) |
---|
| 789 | ALLOCATE( uprs(nzb+1:nzt+1,nys:nyn,bdims_rem(1,1)-1:bdims_rem(1,2)+1) ) |
---|
| 790 | |
---|
| 791 | ! |
---|
| 792 | !-- Initialisation of the velocity component uf |
---|
| 793 | |
---|
| 794 | ! |
---|
| 795 | !-- Interpolation in y-direction (quadratic, Clark and Farley) |
---|
| 796 | |
---|
| 797 | DO k = nzbottom, nztop+2 |
---|
| 798 | DO j = bdims_rem(2,1), bdims_rem(2,2) |
---|
| 799 | |
---|
| 800 | bottomy = (nyf+1)/(nyc+1) * j |
---|
| 801 | topy = (nyf+1)/(nyc+1) * (j+1) - 1 |
---|
| 802 | |
---|
| 803 | DO i = bdims_rem(1,1)-1, bdims_rem(1,2)+1 |
---|
[2712] | 804 | DO jjf = bottomy, topy |
---|
[2365] | 805 | |
---|
[2712] | 806 | eps = ( jjf * dyf + 0.5 * dyf - j * dyc - 0.5 * dyc ) / dyc |
---|
[2365] | 807 | alpha = ( ( dyf / dyc )**2.0 - 1.0 ) / 24.0 |
---|
| 808 | eminus = eps * ( eps - 1.0 ) / 2.0 + alpha |
---|
| 809 | edot = ( 1.0 - eps**2.0 ) - 2.0 * alpha |
---|
| 810 | eplus = eps * ( eps + 1.0 ) / 2.0 + alpha |
---|
| 811 | |
---|
[2712] | 812 | uprf(k,jjf,i) = eminus * work3d(k,j-1,i) & |
---|
[2365] | 813 | + edot * work3d(k,j,i) & |
---|
| 814 | + eplus * work3d(k,j+1,i) |
---|
| 815 | |
---|
| 816 | END DO |
---|
| 817 | END DO |
---|
| 818 | |
---|
| 819 | END DO |
---|
| 820 | END DO |
---|
| 821 | |
---|
| 822 | ! |
---|
| 823 | !-- Interpolation in z-direction (quadratic, Clark and Farley) |
---|
| 824 | |
---|
| 825 | DO k = nzbottom+1, nztop |
---|
| 826 | |
---|
| 827 | bottomz = (dzc/dzf) * (k-1) + 1 |
---|
| 828 | topz = (dzc/dzf) * k |
---|
| 829 | |
---|
[2712] | 830 | DO jjf = nys, nyn |
---|
[2365] | 831 | DO i = bdims_rem(1,1)-1, bdims_rem(1,2)+1 |
---|
[2712] | 832 | DO kkf = bottomz, topz |
---|
[2365] | 833 | |
---|
[2712] | 834 | eps = ( zuf(kkf) - zuc(k) ) / dzc |
---|
[2365] | 835 | alpha = ( ( dzf / dzc )**2.0 - 1.0 ) / 24.0 |
---|
| 836 | eminus = eps * ( eps - 1.0 ) / 2.0 + alpha |
---|
| 837 | edot = ( 1.0 - eps**2.0 ) - 2.0 * alpha |
---|
| 838 | eplus = eps * ( eps + 1.0 ) / 2.0 + alpha |
---|
| 839 | |
---|
[2712] | 840 | uprs(kkf,jjf,i) = eminus * uprf(k-1,jjf,i) & |
---|
| 841 | + edot * uprf(k,jjf,i) & |
---|
| 842 | + eplus * uprf(k+1,jjf,i) |
---|
[2365] | 843 | |
---|
| 844 | END DO |
---|
| 845 | END DO |
---|
| 846 | END DO |
---|
| 847 | |
---|
| 848 | END DO |
---|
| 849 | |
---|
[2712] | 850 | DO jjf = nys, nyn |
---|
[2365] | 851 | DO i = bdims_rem(1,1)-1, bdims_rem(1,2)+1 |
---|
| 852 | |
---|
| 853 | eps = ( zuf(nzt+1) - zuc(nztop+1) ) / dzc |
---|
| 854 | alpha = ( ( dzf / dzc )**2.0 - 1.0 ) / 24.0 |
---|
| 855 | eminus = eps * ( eps - 1.0 ) / 2.0 + alpha |
---|
| 856 | edot = ( 1.0 - eps**2.0 ) - 2.0 * alpha |
---|
| 857 | eplus = eps * ( eps + 1.0 ) / 2.0 + alpha |
---|
| 858 | |
---|
[2712] | 859 | uprs(nzt+1,jjf,i) = eminus * uprf(nztop,jjf,i) & |
---|
| 860 | + edot * uprf(nztop+1,jjf,i) & |
---|
| 861 | + eplus * uprf(nztop+2,jjf,i) |
---|
[2365] | 862 | |
---|
| 863 | END DO |
---|
| 864 | END DO |
---|
| 865 | |
---|
| 866 | ! |
---|
| 867 | !-- Interpolation in x-direction (linear) |
---|
| 868 | |
---|
[2712] | 869 | DO kkf = nzb+1, nzt+1 |
---|
| 870 | DO jjf = nys, nyn |
---|
[2365] | 871 | DO i = bdims_rem(1,1), bdims_rem(1,2) |
---|
| 872 | |
---|
| 873 | bottomx = (nxf+1)/(nxc+1) * i |
---|
| 874 | topx = (nxf+1)/(nxc+1) * (i+1) - 1 |
---|
| 875 | |
---|
[2712] | 876 | DO iif = bottomx, topx |
---|
| 877 | u(kkf,jjf,iif) = uprs(kkf,jjf,i) + ( iif * dxf - i * dxc ) & |
---|
| 878 | * ( uprs(kkf,jjf,i+1) - uprs(kkf,jjf,i) ) / dxc |
---|
[2365] | 879 | END DO |
---|
| 880 | |
---|
| 881 | END DO |
---|
| 882 | END DO |
---|
| 883 | END DO |
---|
| 884 | ! |
---|
| 885 | !-- Determination of uf at the bottom boundary |
---|
| 886 | |
---|
| 887 | |
---|
| 888 | |
---|
| 889 | DEALLOCATE( uprf, uprs ) |
---|
| 890 | |
---|
| 891 | END SUBROUTINE interpolate_to_fine_u |
---|
| 892 | |
---|
| 893 | |
---|
[3241] | 894 | SUBROUTINE interpolate_to_fine_v |
---|
[2365] | 895 | |
---|
| 896 | |
---|
| 897 | USE arrays_3d |
---|
| 898 | USE control_parameters |
---|
| 899 | USE grid_variables |
---|
| 900 | USE indices |
---|
| 901 | USE pegrid |
---|
| 902 | |
---|
| 903 | |
---|
| 904 | IMPLICIT NONE |
---|
[2712] | 905 | |
---|
| 906 | INTEGER(iwp) :: i |
---|
| 907 | INTEGER(iwp) :: j |
---|
| 908 | INTEGER(iwp) :: k |
---|
| 909 | INTEGER(iwp) :: iif |
---|
| 910 | INTEGER(iwp) :: jjf |
---|
| 911 | INTEGER(iwp) :: kkf |
---|
| 912 | INTEGER(iwp) :: nzbottom |
---|
| 913 | INTEGER(iwp) :: nztop |
---|
| 914 | INTEGER(iwp) :: bottomx |
---|
| 915 | INTEGER(iwp) :: bottomy |
---|
| 916 | INTEGER(iwp) :: bottomz |
---|
| 917 | INTEGER(iwp) :: topx |
---|
| 918 | INTEGER(iwp) :: topy |
---|
| 919 | INTEGER(iwp) :: topz |
---|
| 920 | REAL(wp) :: eps |
---|
| 921 | REAL(wp) :: alpha |
---|
| 922 | REAL(wp) :: eminus |
---|
| 923 | REAL(wp) :: edot |
---|
| 924 | REAL(wp) :: eplus |
---|
| 925 | REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: vprs |
---|
| 926 | REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: vprf |
---|
[2365] | 927 | |
---|
| 928 | |
---|
| 929 | nzbottom = bdims_rem (3,1) |
---|
| 930 | nztop = bdims_rem (3,2) |
---|
| 931 | |
---|
| 932 | ALLOCATE( vprf(nzbottom:nztop+2,bdims_rem(2,1)-1:bdims_rem(2,2)+1,nxl:nxr) ) |
---|
| 933 | ALLOCATE( vprs(nzb+1:nzt+1, bdims_rem(2,1)-1:bdims_rem(2,2)+1,nxl:nxr) ) |
---|
| 934 | ! |
---|
| 935 | !-- Initialisation of the velocity component vf |
---|
| 936 | |
---|
| 937 | ! |
---|
| 938 | !-- Interpolation in x-direction (quadratic, Clark and Farley) |
---|
| 939 | |
---|
| 940 | DO k = nzbottom, nztop+2 |
---|
| 941 | DO j = bdims_rem(2,1)-1, bdims_rem(2,2)+1 |
---|
| 942 | DO i = bdims_rem(1,1), bdims_rem(1,2) |
---|
| 943 | |
---|
| 944 | bottomx = (nxf+1)/(nxc+1) * i |
---|
| 945 | topx = (nxf+1)/(nxc+1) * (i+1) - 1 |
---|
| 946 | |
---|
[2712] | 947 | DO iif = bottomx, topx |
---|
[2365] | 948 | |
---|
[2712] | 949 | eps = ( iif * dxf + 0.5 * dxf - i * dxc - 0.5 * dxc ) / dxc |
---|
[2365] | 950 | alpha = ( ( dxf / dxc )**2.0 - 1.0 ) / 24.0 |
---|
| 951 | eminus = eps * ( eps - 1.0 ) / 2.0 + alpha |
---|
| 952 | edot = ( 1.0 - eps**2.0 ) - 2.0 * alpha |
---|
| 953 | eplus = eps * ( eps + 1.0 ) / 2.0 + alpha |
---|
| 954 | |
---|
[2712] | 955 | vprf(k,j,iif) = eminus * work3d(k,j,i-1) & |
---|
[2365] | 956 | + edot * work3d(k,j,i) & |
---|
| 957 | + eplus * work3d(k,j,i+1) |
---|
| 958 | |
---|
| 959 | END DO |
---|
| 960 | |
---|
| 961 | END DO |
---|
| 962 | END DO |
---|
| 963 | END DO |
---|
| 964 | |
---|
| 965 | ! |
---|
| 966 | !-- Interpolation in z-direction (quadratic, Clark and Farley) |
---|
| 967 | |
---|
| 968 | DO k = nzbottom+1, nztop |
---|
| 969 | |
---|
| 970 | bottomz = (dzc/dzf) * (k-1) + 1 |
---|
| 971 | topz = (dzc/dzf) * k |
---|
| 972 | |
---|
| 973 | DO j = bdims_rem(2,1)-1, bdims_rem(2,2)+1 |
---|
[2712] | 974 | DO iif = nxl, nxr |
---|
| 975 | DO kkf = bottomz, topz |
---|
[2365] | 976 | |
---|
[2712] | 977 | eps = ( zuf(kkf) - zuc(k) ) / dzc |
---|
[2365] | 978 | alpha = ( ( dzf / dzc )**2.0 - 1.0 ) / 24.0 |
---|
| 979 | eminus = eps * ( eps - 1.0 ) / 2.0 + alpha |
---|
| 980 | edot = ( 1.0 - eps**2.0 ) - 2.0 * alpha |
---|
| 981 | eplus = eps * ( eps + 1.0 ) / 2.0 + alpha |
---|
| 982 | |
---|
[2712] | 983 | vprs(kkf,j,iif) = eminus * vprf(k-1,j,iif) & |
---|
| 984 | + edot * vprf(k,j,iif) & |
---|
| 985 | + eplus * vprf(k+1,j,iif) |
---|
[2365] | 986 | |
---|
| 987 | END DO |
---|
| 988 | END DO |
---|
| 989 | END DO |
---|
| 990 | |
---|
| 991 | END DO |
---|
| 992 | |
---|
| 993 | DO j = bdims_rem(2,1)-1, bdims_rem(2,2)+1 |
---|
[2712] | 994 | DO iif = nxl, nxr |
---|
[2365] | 995 | |
---|
| 996 | eps = ( zuf(nzt+1) - zuc(nztop+1) ) / dzc |
---|
| 997 | alpha = ( ( dzf / dzc )**2.0 - 1.0 ) / 24.0 |
---|
| 998 | eminus = eps * ( eps - 1.0 ) / 2.0 + alpha |
---|
| 999 | edot = ( 1.0 - eps**2.0 ) - 2.0 * alpha |
---|
| 1000 | eplus = eps * ( eps + 1.0 ) / 2.0 + alpha |
---|
| 1001 | |
---|
[2712] | 1002 | vprs(nzt+1,j,iif) = eminus * vprf(nztop,j,iif) & |
---|
| 1003 | + edot * vprf(nztop+1,j,iif) & |
---|
| 1004 | + eplus * vprf(nztop+2,j,iif) |
---|
[2365] | 1005 | |
---|
| 1006 | END DO |
---|
| 1007 | END DO |
---|
| 1008 | |
---|
| 1009 | ! |
---|
| 1010 | !-- Interpolation in y-direction (linear) |
---|
| 1011 | |
---|
[2712] | 1012 | DO kkf = nzb+1, nzt+1 |
---|
[2365] | 1013 | DO j = bdims_rem(2,1), bdims_rem(2,2) |
---|
| 1014 | |
---|
| 1015 | bottomy = (nyf+1)/(nyc+1) * j |
---|
| 1016 | topy = (nyf+1)/(nyc+1) * (j+1) - 1 |
---|
| 1017 | |
---|
[2712] | 1018 | DO iif = nxl, nxr |
---|
| 1019 | DO jjf = bottomy, topy |
---|
| 1020 | v (kkf,jjf,iif) = vprs(kkf,j,iif) + ( jjf * dyf - j * dyc ) & |
---|
| 1021 | * ( vprs(kkf,j+1,iif) - vprs(kkf,j,iif) ) / dyc |
---|
[2365] | 1022 | END DO |
---|
| 1023 | END DO |
---|
| 1024 | |
---|
| 1025 | END DO |
---|
| 1026 | END DO |
---|
| 1027 | |
---|
| 1028 | ! |
---|
| 1029 | !-- Determination of vf at the bottom boundary |
---|
| 1030 | |
---|
| 1031 | |
---|
| 1032 | DEALLOCATE( vprf, vprs ) |
---|
| 1033 | |
---|
| 1034 | END SUBROUTINE interpolate_to_fine_v |
---|
| 1035 | |
---|
| 1036 | |
---|
[3241] | 1037 | SUBROUTINE interpolate_to_fine_s |
---|
[2365] | 1038 | |
---|
| 1039 | |
---|
| 1040 | USE arrays_3d |
---|
| 1041 | USE control_parameters |
---|
| 1042 | USE grid_variables |
---|
| 1043 | USE indices |
---|
| 1044 | USE pegrid |
---|
| 1045 | |
---|
| 1046 | |
---|
| 1047 | IMPLICIT NONE |
---|
[2712] | 1048 | |
---|
| 1049 | INTEGER(iwp) :: i |
---|
| 1050 | INTEGER(iwp) :: j |
---|
| 1051 | INTEGER(iwp) :: k |
---|
| 1052 | INTEGER(iwp) :: iif |
---|
| 1053 | INTEGER(iwp) :: jjf |
---|
| 1054 | INTEGER(iwp) :: kkf |
---|
| 1055 | INTEGER(iwp) :: nzbottom |
---|
| 1056 | INTEGER(iwp) :: nztop |
---|
| 1057 | INTEGER(iwp) :: bottomx |
---|
| 1058 | INTEGER(iwp) :: bottomy |
---|
| 1059 | INTEGER(iwp) :: bottomz |
---|
| 1060 | INTEGER(iwp) :: topx |
---|
| 1061 | INTEGER(iwp) :: topy |
---|
| 1062 | INTEGER(iwp) :: topz |
---|
| 1063 | REAL(wp) :: eps |
---|
| 1064 | REAL(wp) :: alpha |
---|
| 1065 | REAL(wp) :: eminus |
---|
| 1066 | REAL(wp) :: edot |
---|
| 1067 | REAL(wp) :: eplus |
---|
| 1068 | REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: ptprs |
---|
| 1069 | REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: ptprf |
---|
[2365] | 1070 | |
---|
| 1071 | |
---|
| 1072 | nzbottom = bdims_rem (3,1) |
---|
| 1073 | nztop = bdims_rem (3,2) |
---|
| 1074 | |
---|
| 1075 | ALLOCATE( ptprf(nzbottom:nztop+2,bdims_rem(2,1)-1:bdims_rem(2,2)+1,nxl:nxr) ) |
---|
| 1076 | ALLOCATE( ptprs(nzbottom:nztop+2,nys:nyn,nxl:nxr) ) |
---|
| 1077 | |
---|
| 1078 | ! |
---|
| 1079 | !-- Initialisation of scalar variables |
---|
| 1080 | |
---|
| 1081 | ! |
---|
| 1082 | !-- Interpolation in x-direction (quadratic, Clark and Farley) |
---|
| 1083 | |
---|
| 1084 | DO k = nzbottom, nztop+2 |
---|
| 1085 | DO j = bdims_rem(2,1)-1, bdims_rem(2,2)+1 |
---|
| 1086 | DO i = bdims_rem(1,1), bdims_rem(1,2) |
---|
| 1087 | |
---|
| 1088 | bottomx = (nxf+1)/(nxc+1) * i |
---|
| 1089 | topx = (nxf+1)/(nxc+1) * (i+1) - 1 |
---|
| 1090 | |
---|
[2712] | 1091 | DO iif = bottomx, topx |
---|
[2365] | 1092 | |
---|
[2712] | 1093 | eps = ( iif * dxf + 0.5 * dxf - i * dxc - 0.5 * dxc ) / dxc |
---|
[2365] | 1094 | alpha = ( ( dxf / dxc )**2.0 - 1.0 ) / 24.0 |
---|
| 1095 | eminus = eps * ( eps - 1.0 ) / 2.0 + alpha |
---|
| 1096 | edot = ( 1.0 - eps**2.0 ) - 2.0 * alpha |
---|
| 1097 | eplus = eps * ( eps + 1.0 ) / 2.0 + alpha |
---|
| 1098 | |
---|
[2712] | 1099 | ptprf(k,j,iif) = eminus * work3d(k,j,i-1) & |
---|
[2365] | 1100 | + edot * work3d(k,j,i) & |
---|
| 1101 | + eplus * work3d(k,j,i+1) |
---|
| 1102 | END DO |
---|
| 1103 | |
---|
| 1104 | END DO |
---|
| 1105 | END DO |
---|
| 1106 | END DO |
---|
| 1107 | |
---|
| 1108 | ! |
---|
| 1109 | !-- Interpolation in y-direction (quadratic, Clark and Farley) |
---|
| 1110 | |
---|
| 1111 | DO k = nzbottom, nztop+2 |
---|
| 1112 | DO j = bdims_rem(2,1), bdims_rem(2,2) |
---|
| 1113 | |
---|
| 1114 | bottomy = (nyf+1)/(nyc+1) * j |
---|
| 1115 | topy = (nyf+1)/(nyc+1) * (j+1) - 1 |
---|
| 1116 | |
---|
[2712] | 1117 | DO iif = nxl, nxr |
---|
| 1118 | DO jjf = bottomy, topy |
---|
[2365] | 1119 | |
---|
[2712] | 1120 | eps = ( jjf * dyf + 0.5 * dyf - j * dyc - 0.5 * dyc ) / dyc |
---|
[2365] | 1121 | alpha = ( ( dyf / dyc )**2.0 - 1.0 ) / 24.0 |
---|
| 1122 | eminus = eps * ( eps - 1.0 ) / 2.0 + alpha |
---|
| 1123 | edot = ( 1.0 - eps**2.0 ) - 2.0 * alpha |
---|
| 1124 | eplus = eps * ( eps + 1.0 ) / 2.0 + alpha |
---|
| 1125 | |
---|
[2712] | 1126 | ptprs(k,jjf,iif) = eminus * ptprf(k,j-1,iif) & |
---|
| 1127 | + edot * ptprf(k,j,iif) & |
---|
| 1128 | + eplus * ptprf(k,j+1,iif) |
---|
[2365] | 1129 | |
---|
| 1130 | END DO |
---|
| 1131 | END DO |
---|
| 1132 | |
---|
| 1133 | END DO |
---|
| 1134 | END DO |
---|
| 1135 | |
---|
| 1136 | ! |
---|
| 1137 | !-- Interpolation in z-direction (quadratic, Clark and Farley) |
---|
| 1138 | |
---|
| 1139 | DO k = nzbottom+1, nztop |
---|
| 1140 | |
---|
| 1141 | bottomz = (dzc/dzf) * (k-1) + 1 |
---|
| 1142 | topz = (dzc/dzf) * k |
---|
| 1143 | |
---|
[2712] | 1144 | DO jjf = nys, nyn |
---|
| 1145 | DO iif = nxl, nxr |
---|
| 1146 | DO kkf = bottomz, topz |
---|
[2365] | 1147 | |
---|
[2712] | 1148 | eps = ( zuf(kkf) - zuc(k) ) / dzc |
---|
[2365] | 1149 | alpha = ( ( dzf / dzc )**2.0 - 1.0 ) / 24.0 |
---|
| 1150 | eminus = eps * ( eps - 1.0 ) / 2.0 + alpha |
---|
| 1151 | edot = ( 1.0 - eps**2.0 ) - 2.0 * alpha |
---|
| 1152 | eplus = eps * ( eps + 1.0 ) / 2.0 + alpha |
---|
| 1153 | |
---|
[2712] | 1154 | interpol3d(kkf,jjf,iif) = eminus * ptprs(k-1,jjf,iif) & |
---|
| 1155 | + edot * ptprs(k,jjf,iif) & |
---|
| 1156 | + eplus * ptprs(k+1,jjf,iif) |
---|
[2365] | 1157 | |
---|
| 1158 | END DO |
---|
| 1159 | END DO |
---|
| 1160 | END DO |
---|
| 1161 | |
---|
| 1162 | END DO |
---|
| 1163 | |
---|
[2712] | 1164 | DO jjf = nys, nyn |
---|
| 1165 | DO iif = nxl, nxr |
---|
[2365] | 1166 | |
---|
| 1167 | eps = ( zuf(nzt+1) - zuc(nztop+1) ) / dzc |
---|
| 1168 | alpha = ( ( dzf / dzc )**2.0 - 1.0 ) / 24.0 |
---|
| 1169 | eminus = eps * ( eps - 1.0 ) / 2.0 + alpha |
---|
| 1170 | edot = ( 1.0 - eps**2.0 ) - 2.0 * alpha |
---|
| 1171 | eplus = eps * ( eps + 1.0 ) / 2.0 + alpha |
---|
| 1172 | |
---|
[2712] | 1173 | interpol3d(nzt+1,jjf,iif) = eminus * ptprs(nztop,jjf,iif) & |
---|
| 1174 | + edot * ptprs(nztop+1,jjf,iif) & |
---|
| 1175 | + eplus * ptprs(nztop+2,jjf,iif) |
---|
[2365] | 1176 | |
---|
| 1177 | END DO |
---|
| 1178 | END DO |
---|
| 1179 | |
---|
| 1180 | |
---|
| 1181 | DEALLOCATE( ptprf, ptprs ) |
---|
| 1182 | |
---|
| 1183 | END SUBROUTINE interpolate_to_fine_s |
---|
| 1184 | |
---|
| 1185 | |
---|
[3241] | 1186 | SUBROUTINE interpolate_to_fine_kh |
---|
[2365] | 1187 | |
---|
| 1188 | |
---|
| 1189 | USE arrays_3d |
---|
| 1190 | USE control_parameters |
---|
| 1191 | USE grid_variables |
---|
| 1192 | USE indices |
---|
| 1193 | USE pegrid |
---|
| 1194 | |
---|
| 1195 | |
---|
| 1196 | IMPLICIT NONE |
---|
[2712] | 1197 | |
---|
| 1198 | INTEGER(iwp) :: i |
---|
| 1199 | INTEGER(iwp) :: j |
---|
| 1200 | INTEGER(iwp) :: k |
---|
| 1201 | INTEGER(iwp) :: iif |
---|
| 1202 | INTEGER(iwp) :: jjf |
---|
| 1203 | INTEGER(iwp) :: kkf |
---|
| 1204 | INTEGER(iwp) :: nzbottom |
---|
| 1205 | INTEGER(iwp) :: nztop |
---|
| 1206 | INTEGER(iwp) :: bottomx |
---|
| 1207 | INTEGER(iwp) :: bottomy |
---|
| 1208 | INTEGER(iwp) :: bottomz |
---|
| 1209 | INTEGER(iwp) :: topx |
---|
| 1210 | INTEGER(iwp) :: topy |
---|
| 1211 | INTEGER(iwp) :: topz |
---|
| 1212 | REAL(wp) :: eps |
---|
| 1213 | REAL(wp) :: alpha |
---|
| 1214 | REAL(wp) :: eminus |
---|
| 1215 | REAL(wp) :: edot |
---|
| 1216 | REAL(wp) :: eplus |
---|
| 1217 | REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: ptprs |
---|
| 1218 | REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: ptprf |
---|
[2365] | 1219 | |
---|
| 1220 | |
---|
| 1221 | nzbottom = bdims_rem (3,1) |
---|
| 1222 | nztop = bdims_rem (3,2) |
---|
| 1223 | ! nztop = blk_dim_rem (3,2)+1 |
---|
| 1224 | |
---|
| 1225 | |
---|
| 1226 | ALLOCATE( ptprf(nzbottom:nztop+2,bdims_rem(2,1)-1:bdims_rem(2,2)+1,nxl:nxr) ) |
---|
| 1227 | ALLOCATE( ptprs(nzbottom:nztop+2,nys:nyn,nxl:nxr) ) |
---|
| 1228 | |
---|
| 1229 | |
---|
| 1230 | ! |
---|
| 1231 | !-- Initialisation of scalar variables |
---|
| 1232 | |
---|
| 1233 | ! |
---|
| 1234 | !-- Interpolation in x-direction (quadratic, Clark and Farley) |
---|
| 1235 | |
---|
| 1236 | DO k = nzbottom, nztop+2 |
---|
| 1237 | DO j = bdims_rem(2,1)-1, bdims_rem(2,2)+1 |
---|
| 1238 | DO i = bdims_rem(1,1), bdims_rem(1,2) |
---|
| 1239 | |
---|
| 1240 | bottomx = (nxf+1)/(nxc+1) * i |
---|
| 1241 | topx = (nxf+1)/(nxc+1) * (i+1) - 1 |
---|
| 1242 | |
---|
[2712] | 1243 | DO iif = bottomx, topx |
---|
[2365] | 1244 | |
---|
[2712] | 1245 | eps = ( iif * dxf + 0.5 * dxf - i * dxc - 0.5 * dxc ) / dxc |
---|
[2365] | 1246 | alpha = ( ( dxf / dxc )**2.0 - 1.0 ) / 24.0 |
---|
| 1247 | eminus = eps * ( eps - 1.0 ) / 2.0 + alpha |
---|
| 1248 | edot = ( 1.0 - eps**2.0 ) - 2.0 * alpha |
---|
| 1249 | eplus = eps * ( eps + 1.0 ) / 2.0 + alpha |
---|
| 1250 | |
---|
[2712] | 1251 | ptprf(k,j,iif) = eminus * work3d(k,j,i-1) & |
---|
[2365] | 1252 | + edot * work3d(k,j,i) & |
---|
| 1253 | + eplus * work3d(k,j,i+1) |
---|
| 1254 | END DO |
---|
| 1255 | |
---|
| 1256 | END DO |
---|
| 1257 | END DO |
---|
| 1258 | END DO |
---|
| 1259 | |
---|
| 1260 | ! |
---|
| 1261 | !-- Interpolation in y-direction (quadratic, Clark and Farley) |
---|
| 1262 | |
---|
| 1263 | DO k = nzbottom, nztop+2 |
---|
| 1264 | DO j = bdims_rem(2,1), bdims_rem(2,2) |
---|
| 1265 | |
---|
| 1266 | bottomy = (nyf+1)/(nyc+1) * j |
---|
| 1267 | topy = (nyf+1)/(nyc+1) * (j+1) - 1 |
---|
| 1268 | |
---|
[2712] | 1269 | DO iif = nxl, nxr |
---|
| 1270 | DO jjf = bottomy, topy |
---|
[2365] | 1271 | |
---|
[2712] | 1272 | eps = ( jjf * dyf + 0.5 * dyf - j * dyc - 0.5 * dyc ) / dyc |
---|
[2365] | 1273 | alpha = ( ( dyf / dyc )**2.0 - 1.0 ) / 24.0 |
---|
| 1274 | eminus = eps * ( eps - 1.0 ) / 2.0 + alpha |
---|
| 1275 | edot = ( 1.0 - eps**2.0 ) - 2.0 * alpha |
---|
| 1276 | eplus = eps * ( eps + 1.0 ) / 2.0 + alpha |
---|
| 1277 | |
---|
[2712] | 1278 | ptprs(k,jjf,iif) = eminus * ptprf(k,j-1,iif) & |
---|
| 1279 | + edot * ptprf(k,j,iif) & |
---|
| 1280 | + eplus * ptprf(k,j+1,iif) |
---|
[2365] | 1281 | |
---|
| 1282 | END DO |
---|
| 1283 | END DO |
---|
| 1284 | |
---|
| 1285 | END DO |
---|
| 1286 | END DO |
---|
| 1287 | |
---|
| 1288 | ! |
---|
| 1289 | !-- Interpolation in z-direction (quadratic, Clark and Farley) |
---|
| 1290 | |
---|
| 1291 | DO k = nzbottom+1, nztop |
---|
| 1292 | |
---|
| 1293 | bottomz = (dzc/dzf) * (k-1) + 1 |
---|
| 1294 | topz = (dzc/dzf) * k |
---|
| 1295 | |
---|
[2712] | 1296 | DO jjf = nys, nyn |
---|
| 1297 | DO iif = nxl, nxr |
---|
| 1298 | DO kkf = bottomz, topz |
---|
[2365] | 1299 | |
---|
[2712] | 1300 | eps = ( zuf(kkf) - zuc(k) ) / dzc |
---|
[2365] | 1301 | alpha = ( ( dzf / dzc )**2.0 - 1.0 ) / 24.0 |
---|
| 1302 | eminus = eps * ( eps - 1.0 ) / 2.0 + alpha |
---|
| 1303 | edot = ( 1.0 - eps**2.0 ) - 2.0 * alpha |
---|
| 1304 | eplus = eps * ( eps + 1.0 ) / 2.0 + alpha |
---|
| 1305 | |
---|
[2712] | 1306 | kh(kkf,jjf,iif) = eminus * ptprs(k-1,jjf,iif) & |
---|
| 1307 | + edot * ptprs(k,jjf,iif) & |
---|
| 1308 | + eplus * ptprs(k+1,jjf,iif) |
---|
[2365] | 1309 | |
---|
| 1310 | END DO |
---|
| 1311 | END DO |
---|
| 1312 | END DO |
---|
| 1313 | |
---|
| 1314 | END DO |
---|
| 1315 | |
---|
[2712] | 1316 | DO jjf = nys, nyn |
---|
| 1317 | DO iif = nxl, nxr |
---|
[2365] | 1318 | |
---|
| 1319 | eps = ( zuf(nzt+1) - zuc(nztop+1) ) / dzc |
---|
| 1320 | alpha = ( ( dzf / dzc )**2.0 - 1.0 ) / 24.0 |
---|
| 1321 | eminus = eps * ( eps - 1.0 ) / 2.0 + alpha |
---|
| 1322 | edot = ( 1.0 - eps**2.0 ) - 2.0 * alpha |
---|
| 1323 | eplus = eps * ( eps + 1.0 ) / 2.0 + alpha |
---|
| 1324 | |
---|
[2712] | 1325 | kh(nzt+1,jjf,iif) = eminus * ptprs(nztop,jjf,iif) & |
---|
| 1326 | + edot * ptprs(nztop+1,jjf,iif) & |
---|
| 1327 | + eplus * ptprs(nztop+2,jjf,iif) |
---|
[2365] | 1328 | |
---|
| 1329 | END DO |
---|
| 1330 | END DO |
---|
| 1331 | |
---|
| 1332 | |
---|
| 1333 | DEALLOCATE( ptprf, ptprs ) |
---|
| 1334 | |
---|
| 1335 | END SUBROUTINE interpolate_to_fine_kh |
---|
| 1336 | |
---|
[3241] | 1337 | SUBROUTINE interpolate_to_fine_km |
---|
[2365] | 1338 | |
---|
| 1339 | |
---|
| 1340 | USE arrays_3d |
---|
| 1341 | USE control_parameters |
---|
| 1342 | USE grid_variables |
---|
| 1343 | USE indices |
---|
| 1344 | USE pegrid |
---|
| 1345 | |
---|
| 1346 | |
---|
| 1347 | IMPLICIT NONE |
---|
[2712] | 1348 | |
---|
| 1349 | INTEGER(iwp) :: i |
---|
| 1350 | INTEGER(iwp) :: j |
---|
| 1351 | INTEGER(iwp) :: k |
---|
| 1352 | INTEGER(iwp) :: iif |
---|
| 1353 | INTEGER(iwp) :: jjf |
---|
| 1354 | INTEGER(iwp) :: kkf |
---|
| 1355 | INTEGER(iwp) :: nzbottom |
---|
| 1356 | INTEGER(iwp) :: nztop |
---|
| 1357 | INTEGER(iwp) :: bottomx |
---|
| 1358 | INTEGER(iwp) :: bottomy |
---|
| 1359 | INTEGER(iwp) :: bottomz |
---|
| 1360 | INTEGER(iwp) :: topx |
---|
| 1361 | INTEGER(iwp) :: topy |
---|
| 1362 | INTEGER(iwp) :: topz |
---|
| 1363 | REAL(wp) :: eps |
---|
| 1364 | REAL(wp) :: alpha |
---|
| 1365 | REAL(wp) :: eminus |
---|
| 1366 | REAL(wp) :: edot |
---|
| 1367 | REAL(wp) :: eplus |
---|
| 1368 | REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: ptprs |
---|
| 1369 | REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: ptprf |
---|
[2365] | 1370 | |
---|
| 1371 | |
---|
| 1372 | nzbottom = bdims_rem (3,1) |
---|
| 1373 | nztop = bdims_rem (3,2) |
---|
| 1374 | ! nztop = blk_dim_rem (3,2)+1 |
---|
| 1375 | |
---|
| 1376 | |
---|
| 1377 | ALLOCATE( ptprf(nzbottom:nztop+2,bdims_rem(2,1)-1:bdims_rem(2,2)+1,nxl:nxr) ) |
---|
| 1378 | ALLOCATE( ptprs(nzbottom:nztop+2,nys:nyn,nxl:nxr) ) |
---|
| 1379 | |
---|
| 1380 | |
---|
| 1381 | ! |
---|
| 1382 | !-- Initialisation of scalar variables |
---|
| 1383 | |
---|
| 1384 | ! |
---|
| 1385 | !-- Interpolation in x-direction (quadratic, Clark and Farley) |
---|
| 1386 | |
---|
| 1387 | DO k = nzbottom, nztop+2 |
---|
| 1388 | DO j = bdims_rem(2,1)-1, bdims_rem(2,2)+1 |
---|
| 1389 | DO i = bdims_rem(1,1), bdims_rem(1,2) |
---|
| 1390 | |
---|
| 1391 | bottomx = (nxf+1)/(nxc+1) * i |
---|
| 1392 | topx = (nxf+1)/(nxc+1) * (i+1) - 1 |
---|
| 1393 | |
---|
[2712] | 1394 | DO iif = bottomx, topx |
---|
[2365] | 1395 | |
---|
[2712] | 1396 | eps = ( iif * dxf + 0.5 * dxf - i * dxc - 0.5 * dxc ) / dxc |
---|
[2365] | 1397 | alpha = ( ( dxf / dxc )**2.0 - 1.0 ) / 24.0 |
---|
| 1398 | eminus = eps * ( eps - 1.0 ) / 2.0 + alpha |
---|
| 1399 | edot = ( 1.0 - eps**2.0 ) - 2.0 * alpha |
---|
| 1400 | eplus = eps * ( eps + 1.0 ) / 2.0 + alpha |
---|
| 1401 | |
---|
[2712] | 1402 | ptprf(k,j,iif) = eminus * work3d(k,j,i-1) & |
---|
[2365] | 1403 | + edot * work3d(k,j,i) & |
---|
| 1404 | + eplus * work3d(k,j,i+1) |
---|
| 1405 | END DO |
---|
| 1406 | |
---|
| 1407 | END DO |
---|
| 1408 | END DO |
---|
| 1409 | END DO |
---|
| 1410 | |
---|
| 1411 | ! |
---|
| 1412 | !-- Interpolation in y-direction (quadratic, Clark and Farley) |
---|
| 1413 | |
---|
| 1414 | DO k = nzbottom, nztop+2 |
---|
| 1415 | DO j = bdims_rem(2,1), bdims_rem(2,2) |
---|
| 1416 | |
---|
| 1417 | bottomy = (nyf+1)/(nyc+1) * j |
---|
| 1418 | topy = (nyf+1)/(nyc+1) * (j+1) - 1 |
---|
| 1419 | |
---|
[2712] | 1420 | DO iif = nxl, nxr |
---|
| 1421 | DO jjf = bottomy, topy |
---|
[2365] | 1422 | |
---|
[2712] | 1423 | eps = ( jjf * dyf + 0.5 * dyf - j * dyc - 0.5 * dyc ) / dyc |
---|
[2365] | 1424 | alpha = ( ( dyf / dyc )**2.0 - 1.0 ) / 24.0 |
---|
| 1425 | eminus = eps * ( eps - 1.0 ) / 2.0 + alpha |
---|
| 1426 | edot = ( 1.0 - eps**2.0 ) - 2.0 * alpha |
---|
| 1427 | eplus = eps * ( eps + 1.0 ) / 2.0 + alpha |
---|
| 1428 | |
---|
[2712] | 1429 | ptprs(k,jjf,iif) = eminus * ptprf(k,j-1,iif) & |
---|
| 1430 | + edot * ptprf(k,j,iif) & |
---|
| 1431 | + eplus * ptprf(k,j+1,iif) |
---|
[2365] | 1432 | |
---|
| 1433 | END DO |
---|
| 1434 | END DO |
---|
| 1435 | |
---|
| 1436 | END DO |
---|
| 1437 | END DO |
---|
| 1438 | |
---|
| 1439 | ! |
---|
| 1440 | !-- Interpolation in z-direction (quadratic, Clark and Farley) |
---|
| 1441 | |
---|
| 1442 | DO k = nzbottom+1, nztop |
---|
| 1443 | |
---|
| 1444 | bottomz = (dzc/dzf) * (k-1) + 1 |
---|
| 1445 | topz = (dzc/dzf) * k |
---|
| 1446 | |
---|
[2712] | 1447 | DO jjf = nys, nyn |
---|
| 1448 | DO iif = nxl, nxr |
---|
| 1449 | DO kkf = bottomz, topz |
---|
[2365] | 1450 | |
---|
[2712] | 1451 | eps = ( zuf(kkf) - zuc(k) ) / dzc |
---|
[2365] | 1452 | alpha = ( ( dzf / dzc )**2.0 - 1.0 ) / 24.0 |
---|
| 1453 | eminus = eps * ( eps - 1.0 ) / 2.0 + alpha |
---|
| 1454 | edot = ( 1.0 - eps**2.0 ) - 2.0 * alpha |
---|
| 1455 | eplus = eps * ( eps + 1.0 ) / 2.0 + alpha |
---|
| 1456 | |
---|
[2712] | 1457 | km(kkf,jjf,iif) = eminus * ptprs(k-1,jjf,iif) & |
---|
| 1458 | + edot * ptprs(k,jjf,iif) & |
---|
| 1459 | + eplus * ptprs(k+1,jjf,iif) |
---|
[2365] | 1460 | |
---|
| 1461 | END DO |
---|
| 1462 | END DO |
---|
| 1463 | END DO |
---|
| 1464 | |
---|
| 1465 | END DO |
---|
| 1466 | |
---|
[2712] | 1467 | DO jjf = nys, nyn |
---|
| 1468 | DO iif = nxl, nxr |
---|
[2365] | 1469 | |
---|
| 1470 | eps = ( zuf(nzt+1) - zuc(nztop+1) ) / dzc |
---|
| 1471 | alpha = ( ( dzf / dzc )**2.0 - 1.0 ) / 24.0 |
---|
| 1472 | eminus = eps * ( eps - 1.0 ) / 2.0 + alpha |
---|
| 1473 | edot = ( 1.0 - eps**2.0 ) - 2.0 * alpha |
---|
| 1474 | eplus = eps * ( eps + 1.0 ) / 2.0 + alpha |
---|
| 1475 | |
---|
[2712] | 1476 | km(nzt+1,jjf,iif) = eminus * ptprs(nztop,jjf,iif) & |
---|
| 1477 | + edot * ptprs(nztop+1,jjf,iif) & |
---|
| 1478 | + eplus * ptprs(nztop+2,jjf,iif) |
---|
[2365] | 1479 | |
---|
| 1480 | END DO |
---|
| 1481 | END DO |
---|
| 1482 | |
---|
| 1483 | |
---|
| 1484 | DEALLOCATE( ptprf, ptprs ) |
---|
| 1485 | |
---|
| 1486 | END SUBROUTINE interpolate_to_fine_km |
---|
| 1487 | |
---|
| 1488 | |
---|
| 1489 | |
---|
| 1490 | |
---|
[3802] | 1491 | ! SUBROUTINE interpolate_to_fine_flux |
---|
| 1492 | ! |
---|
| 1493 | ! |
---|
| 1494 | ! USE arrays_3d |
---|
| 1495 | ! USE control_parameters |
---|
| 1496 | ! USE grid_variables |
---|
| 1497 | ! USE indices |
---|
| 1498 | ! USE pegrid |
---|
| 1499 | ! |
---|
| 1500 | ! |
---|
| 1501 | ! IMPLICIT NONE |
---|
| 1502 | ! |
---|
| 1503 | ! INTEGER(iwp) :: i |
---|
| 1504 | ! INTEGER(iwp) :: j |
---|
| 1505 | ! INTEGER(iwp) :: iif |
---|
| 1506 | ! INTEGER(iwp) :: jjf |
---|
| 1507 | ! INTEGER(iwp) :: bottomx |
---|
| 1508 | ! INTEGER(iwp) :: bottomy |
---|
| 1509 | ! INTEGER(iwp) :: topx |
---|
| 1510 | ! INTEGER(iwp) :: topy |
---|
| 1511 | ! REAL(wp) :: eps |
---|
| 1512 | ! REAL(wp) :: alpha |
---|
| 1513 | ! REAL(wp) :: eminus |
---|
| 1514 | ! REAL(wp) :: edot |
---|
| 1515 | ! REAL(wp) :: eplus |
---|
| 1516 | ! REAL(wp), DIMENSION(:,:), ALLOCATABLE :: uswspr |
---|
| 1517 | ! REAL(wp), DIMENSION(:,:), ALLOCATABLE :: vswspr |
---|
| 1518 | ! REAL(wp), DIMENSION(:,:), ALLOCATABLE :: tspr |
---|
| 1519 | ! REAL(wp), DIMENSION(:,:), ALLOCATABLE :: uspr |
---|
| 1520 | ! |
---|
| 1521 | ! ALLOCATE( uswspr(bdims_rem(2,1)-1:bdims_rem(2,2)+1,nxl:nxr) ) |
---|
| 1522 | ! ALLOCATE( vswspr(bdims_rem(2,1)-1:bdims_rem(2,2)+1,nxl:nxr) ) |
---|
| 1523 | ! ALLOCATE( tspr (bdims_rem(2,1)-1:bdims_rem(2,2)+1,nxl:nxr) ) |
---|
| 1524 | ! ALLOCATE( uspr (bdims_rem(2,1)-1:bdims_rem(2,2)+1,nxl:nxr) ) |
---|
| 1525 | ! |
---|
| 1526 | ! ! |
---|
| 1527 | ! !-- Initialisation of scalar variables (2D) |
---|
| 1528 | ! |
---|
| 1529 | ! ! |
---|
| 1530 | ! !-- Interpolation in x-direction (quadratic, Clark and Farley) |
---|
| 1531 | ! |
---|
| 1532 | ! DO j = bdims_rem(2,1)-1, bdims_rem(2,2)+1 |
---|
| 1533 | ! DO i = bdims_rem(1,1), bdims_rem(1,2) |
---|
| 1534 | ! |
---|
| 1535 | ! bottomx = (nxf+1)/(nxc+1) * i |
---|
| 1536 | ! topx = (nxf+1)/(nxc+1) * (i+1) - 1 |
---|
| 1537 | ! |
---|
| 1538 | ! DO iif = bottomx, topx |
---|
| 1539 | ! |
---|
| 1540 | ! eps = ( iif * dxf + 0.5 * dxf - i * dxc - 0.5 * dxc ) / dxc |
---|
| 1541 | ! alpha = ( ( dxf / dxc )**2.0 - 1.0 ) / 24.0 |
---|
| 1542 | ! eminus = eps * ( eps - 1.0 ) / 2.0 + alpha |
---|
| 1543 | ! edot = ( 1.0 - eps**2.0 ) - 2.0 * alpha |
---|
| 1544 | ! eplus = eps * ( eps + 1.0 ) / 2.0 + alpha |
---|
| 1545 | ! |
---|
| 1546 | ! uswspr(j,iif) = eminus * work2dusws(j,i-1) & |
---|
| 1547 | ! + edot * work2dusws(j,i) & |
---|
| 1548 | ! + eplus * work2dusws(j,i+1) |
---|
| 1549 | ! |
---|
| 1550 | ! vswspr(j,iif) = eminus * work2dvsws(j,i-1) & |
---|
| 1551 | ! + edot * work2dvsws(j,i) & |
---|
| 1552 | ! + eplus * work2dvsws(j,i+1) |
---|
| 1553 | ! |
---|
| 1554 | ! tspr(j,iif) = eminus * work2dts(j,i-1) & |
---|
| 1555 | ! + edot * work2dts(j,i) & |
---|
| 1556 | ! + eplus * work2dts(j,i+1) |
---|
| 1557 | ! |
---|
| 1558 | ! uspr(j,iif) = eminus * work2dus(j,i-1) & |
---|
| 1559 | ! + edot * work2dus(j,i) & |
---|
| 1560 | ! + eplus * work2dus(j,i+1) |
---|
| 1561 | ! |
---|
| 1562 | ! END DO |
---|
| 1563 | ! |
---|
| 1564 | ! END DO |
---|
| 1565 | ! END DO |
---|
| 1566 | ! |
---|
| 1567 | ! ! |
---|
| 1568 | ! !-- Interpolation in y-direction (quadratic, Clark and Farley) |
---|
| 1569 | ! |
---|
| 1570 | ! DO j = bdims_rem(2,1), bdims_rem(2,2) |
---|
| 1571 | ! |
---|
| 1572 | ! bottomy = (nyf+1)/(nyc+1) * j |
---|
| 1573 | ! topy = (nyf+1)/(nyc+1) * (j+1) - 1 |
---|
| 1574 | ! |
---|
| 1575 | ! DO iif = nxl, nxr |
---|
| 1576 | ! DO jjf = bottomy, topy |
---|
| 1577 | ! |
---|
| 1578 | ! eps = ( jjf * dyf + 0.5 * dyf - j * dyc - 0.5 * dyc ) / dyc |
---|
| 1579 | ! alpha = ( ( dyf / dyc )**2.0 - 1.0 ) / 24.0 |
---|
| 1580 | ! eminus = eps * ( eps - 1.0 ) / 2.0 + alpha |
---|
| 1581 | ! edot = ( 1.0 - eps**2.0 ) - 2.0 * alpha |
---|
| 1582 | ! eplus = eps * ( eps + 1.0 ) / 2.0 + alpha |
---|
| 1583 | ! |
---|
[2712] | 1584 | !! |
---|
| 1585 | !!-- TODO |
---|
| 1586 | !-- variables are not compatible with the new surface layer module |
---|
| 1587 | ! |
---|
| 1588 | ! surf_def_h(0)%usws(jjf,iif) = eminus * uswspr(j-1,if) & |
---|
| 1589 | ! + edot * uswspr(j,iif) & |
---|
| 1590 | ! + eplus * uswspr(j+1,iif) |
---|
| 1591 | ! |
---|
| 1592 | ! surf_def_h(0)%vsws(jjf,iif) = eminus * vswspr(j-1,if) & |
---|
| 1593 | ! + edot * vswspr(j,iif) & |
---|
| 1594 | ! + eplus * vswspr(j+1,iif) |
---|
| 1595 | ! |
---|
| 1596 | ! ts(jjf,iif) = eminus * tspr(j-1,if) & |
---|
| 1597 | ! + edot * tspr(j,iif) & |
---|
| 1598 | ! + eplus * tspr(j+1,iif) |
---|
| 1599 | ! |
---|
| 1600 | ! us(jjf,iif) = eminus * uspr(j-1,if) & |
---|
| 1601 | ! + edot * uspr(j,iif) & |
---|
| 1602 | ! + eplus * uspr(j+1,iif) |
---|
[3802] | 1603 | ! |
---|
| 1604 | ! END DO |
---|
| 1605 | ! END DO |
---|
| 1606 | ! |
---|
| 1607 | ! END DO |
---|
| 1608 | ! |
---|
| 1609 | ! |
---|
| 1610 | ! DEALLOCATE( uswspr, vswspr ) |
---|
| 1611 | ! DEALLOCATE( tspr, uspr ) |
---|
| 1612 | ! |
---|
| 1613 | ! |
---|
| 1614 | ! END SUBROUTINE interpolate_to_fine_flux |
---|
[2365] | 1615 | |
---|
| 1616 | |
---|
[2712] | 1617 | #endif |
---|
[2365] | 1618 | END SUBROUTINE vnest_init_fine |
---|
| 1619 | |
---|
| 1620 | SUBROUTINE vnest_boundary_conds |
---|
[2712] | 1621 | #if defined( __parallel ) |
---|
[2365] | 1622 | !------------------------------------------------------------------------------! |
---|
| 1623 | ! Description: |
---|
| 1624 | ! ------------ |
---|
| 1625 | ! Boundary conditions for the prognostic quantities. |
---|
| 1626 | ! One additional bottom boundary condition is applied for the TKE (=(u*)**2) |
---|
| 1627 | ! in prandtl_fluxes. The cyclic lateral boundary conditions are implicitly |
---|
| 1628 | ! handled in routine exchange_horiz. Pressure boundary conditions are |
---|
| 1629 | ! explicitly set in routines pres, poisfft, poismg and sor. |
---|
| 1630 | !------------------------------------------------------------------------------! |
---|
| 1631 | |
---|
| 1632 | USE arrays_3d |
---|
| 1633 | USE control_parameters |
---|
| 1634 | USE grid_variables |
---|
| 1635 | USE indices |
---|
| 1636 | USE pegrid |
---|
| 1637 | |
---|
| 1638 | |
---|
| 1639 | IMPLICIT NONE |
---|
| 1640 | |
---|
[2712] | 1641 | INTEGER(iwp) :: i |
---|
| 1642 | INTEGER(iwp) :: j |
---|
| 1643 | INTEGER(iwp) :: iif |
---|
| 1644 | INTEGER(iwp) :: jjf |
---|
[2365] | 1645 | |
---|
| 1646 | |
---|
| 1647 | ! |
---|
| 1648 | !-- vnest: top boundary conditions |
---|
| 1649 | |
---|
| 1650 | IF ( coupling_mode == 'vnested_crse' ) THEN |
---|
| 1651 | !-- Send data to fine grid for TOP BC |
---|
| 1652 | |
---|
| 1653 | offset(1) = ( pdims_partner(1) / pdims(1) ) * pcoord(1) |
---|
| 1654 | offset(2) = ( pdims_partner(2) / pdims(2) ) * pcoord(2) |
---|
| 1655 | |
---|
| 1656 | do j = 0, ( pdims_partner(2) / pdims(2) ) - 1 |
---|
| 1657 | do i = 0, ( pdims_partner(1) / pdims(1) ) - 1 |
---|
| 1658 | map_coord(1) = i+offset(1) |
---|
| 1659 | map_coord(2) = j+offset(2) |
---|
| 1660 | |
---|
| 1661 | target_idex = f_rnk_lst(map_coord(1),map_coord(2)) + numprocs |
---|
| 1662 | |
---|
| 1663 | bdims (1,1) = c2f_dims_cg (0,map_coord(1),map_coord(2)) |
---|
| 1664 | bdims (1,2) = c2f_dims_cg (1,map_coord(1),map_coord(2)) |
---|
| 1665 | bdims (2,1) = c2f_dims_cg (2,map_coord(1),map_coord(2)) |
---|
| 1666 | bdims (2,2) = c2f_dims_cg (3,map_coord(1),map_coord(2)) |
---|
| 1667 | bdims (3,1) = c2f_dims_cg (4,map_coord(1),map_coord(2)) |
---|
| 1668 | bdims (3,2) = c2f_dims_cg (5,map_coord(1),map_coord(2)) |
---|
| 1669 | |
---|
| 1670 | n_cell_c = ( (bdims(1,2)-bdims(1,1)) + 3 ) * & |
---|
| 1671 | ( (bdims(2,2)-bdims(2,1)) + 3 ) * & |
---|
| 1672 | ( (bdims(3,2)-bdims(3,1)) + 1 ) |
---|
| 1673 | |
---|
| 1674 | CALL MPI_SEND(u (bdims(3,1), bdims(2,1)-1, bdims(1,1)-1), & |
---|
| 1675 | 1, TYPE_VNEST_BC, target_idex, & |
---|
| 1676 | 201, comm_inter, ierr) |
---|
| 1677 | |
---|
| 1678 | CALL MPI_SEND(v(bdims(3,1), bdims(2,1)-1, bdims(1,1)-1),& |
---|
| 1679 | 1, TYPE_VNEST_BC, target_idex, & |
---|
| 1680 | 202, comm_inter, ierr) |
---|
| 1681 | |
---|
| 1682 | CALL MPI_SEND(w(bdims(3,1), bdims(2,1)-1, bdims(1,1)-1),& |
---|
| 1683 | 1, TYPE_VNEST_BC, target_idex, & |
---|
| 1684 | 203, comm_inter, ierr) |
---|
| 1685 | |
---|
| 1686 | CALL MPI_SEND(pt(bdims(3,1), bdims(2,1)-1, bdims(1,1)-1),& |
---|
| 1687 | 1, TYPE_VNEST_BC, target_idex, & |
---|
| 1688 | 205, comm_inter, ierr) |
---|
| 1689 | |
---|
| 1690 | IF ( humidity ) THEN |
---|
| 1691 | CALL MPI_SEND(q(bdims(3,1), bdims(2,1)-1, bdims(1,1)-1),& |
---|
| 1692 | 1, TYPE_VNEST_BC, target_idex, & |
---|
| 1693 | 209, comm_inter, ierr) |
---|
| 1694 | ENDIF |
---|
| 1695 | |
---|
| 1696 | end do |
---|
| 1697 | end do |
---|
| 1698 | |
---|
| 1699 | ELSEIF ( coupling_mode == 'vnested_fine' ) THEN |
---|
| 1700 | !-- Receive data from coarse grid for TOP BC |
---|
| 1701 | |
---|
| 1702 | offset(1) = pcoord(1) / ( pdims(1)/pdims_partner(1) ) |
---|
| 1703 | offset(2) = pcoord(2) / ( pdims(2)/pdims_partner(2) ) |
---|
| 1704 | map_coord(1) = offset(1) |
---|
| 1705 | map_coord(2) = offset(2) |
---|
| 1706 | target_idex = c_rnk_lst(map_coord(1),map_coord(2)) |
---|
| 1707 | |
---|
| 1708 | bdims_rem (1,1) = c2f_dims_fg(0) |
---|
| 1709 | bdims_rem (1,2) = c2f_dims_fg(1) |
---|
| 1710 | bdims_rem (2,1) = c2f_dims_fg(2) |
---|
| 1711 | bdims_rem (2,2) = c2f_dims_fg(3) |
---|
| 1712 | bdims_rem (3,1) = c2f_dims_fg(4) |
---|
| 1713 | bdims_rem (3,2) = c2f_dims_fg(5) |
---|
| 1714 | |
---|
| 1715 | n_cell_c = & |
---|
| 1716 | ( (bdims_rem(1,2)-bdims_rem(1,1)) + 3 ) * & |
---|
| 1717 | ( (bdims_rem(2,2)-bdims_rem(2,1)) + 3 ) * & |
---|
| 1718 | ( (bdims_rem(3,2)-bdims_rem(3,1)) + 1 ) |
---|
| 1719 | |
---|
| 1720 | ALLOCATE( work3d ( & |
---|
| 1721 | bdims_rem(3,1) :bdims_rem(3,2) , & |
---|
| 1722 | bdims_rem(2,1)-1:bdims_rem(2,2)+1, & |
---|
| 1723 | bdims_rem(1,1)-1:bdims_rem(1,2)+1)) |
---|
| 1724 | |
---|
| 1725 | |
---|
| 1726 | CALL MPI_RECV( work3d ,n_cell_c, MPI_REAL, target_idex, 201, & |
---|
| 1727 | comm_inter,status, ierr ) |
---|
| 1728 | interpol3d => u |
---|
| 1729 | call vnest_set_topbc_u |
---|
| 1730 | |
---|
| 1731 | CALL MPI_RECV( work3d ,n_cell_c, MPI_REAL, target_idex, 202, & |
---|
| 1732 | comm_inter,status, ierr ) |
---|
| 1733 | interpol3d => v |
---|
| 1734 | call vnest_set_topbc_v |
---|
| 1735 | |
---|
| 1736 | CALL MPI_RECV( work3d ,n_cell_c, MPI_REAL, target_idex, 203, & |
---|
| 1737 | comm_inter,status, ierr ) |
---|
| 1738 | interpol3d => w |
---|
| 1739 | call vnest_set_topbc_w |
---|
| 1740 | |
---|
| 1741 | CALL MPI_RECV( work3d,n_cell_c, MPI_REAL, target_idex, 205, & |
---|
| 1742 | comm_inter,status, ierr ) |
---|
| 1743 | interpol3d => pt |
---|
| 1744 | call vnest_set_topbc_s |
---|
| 1745 | |
---|
| 1746 | IF ( humidity ) THEN |
---|
[2514] | 1747 | CALL MPI_RECV( work3d,n_cell_c, MPI_REAL, target_idex, 209, & |
---|
[2365] | 1748 | comm_inter,status, ierr ) |
---|
| 1749 | interpol3d => q |
---|
| 1750 | call vnest_set_topbc_s |
---|
| 1751 | |
---|
| 1752 | CALL exchange_horiz_2d(q (nzt+1,:,:) ) |
---|
| 1753 | ENDIF |
---|
| 1754 | |
---|
| 1755 | !-- TKE Neumann BC for FG top |
---|
[2712] | 1756 | DO jjf = nys, nyn |
---|
| 1757 | DO iif = nxl, nxr |
---|
| 1758 | e(nzt+1,jjf,iif) = e(nzt,jjf,iif) |
---|
[2365] | 1759 | END DO |
---|
| 1760 | END DO |
---|
| 1761 | |
---|
| 1762 | ! |
---|
| 1763 | !-- w level nzt+1 does not impact results. Only to avoid jumps while |
---|
| 1764 | !-- plotting profiles |
---|
| 1765 | w(nzt+1,:,:) = w(nzt,:,:) |
---|
| 1766 | |
---|
| 1767 | CALL exchange_horiz_2d(u (nzt+1,:,:) ) |
---|
| 1768 | CALL exchange_horiz_2d(v (nzt+1,:,:) ) |
---|
| 1769 | CALL exchange_horiz_2d(pt(nzt+1,:,:) ) |
---|
| 1770 | CALL exchange_horiz_2d(e (nzt+1,:,:) ) |
---|
| 1771 | CALL exchange_horiz_2d(w (nzt+1,:,:) ) |
---|
| 1772 | CALL exchange_horiz_2d(w (nzt ,:,:) ) |
---|
| 1773 | |
---|
| 1774 | NULLIFY ( interpol3d ) |
---|
| 1775 | DEALLOCATE ( work3d ) |
---|
| 1776 | |
---|
| 1777 | ENDIF |
---|
| 1778 | |
---|
| 1779 | |
---|
| 1780 | CONTAINS |
---|
| 1781 | |
---|
| 1782 | SUBROUTINE vnest_set_topbc_w |
---|
| 1783 | |
---|
| 1784 | |
---|
| 1785 | USE arrays_3d |
---|
| 1786 | USE control_parameters |
---|
| 1787 | USE grid_variables |
---|
| 1788 | USE indices |
---|
| 1789 | USE pegrid |
---|
| 1790 | |
---|
| 1791 | |
---|
| 1792 | IMPLICIT NONE |
---|
[2712] | 1793 | |
---|
| 1794 | INTEGER(iwp) :: i |
---|
| 1795 | INTEGER(iwp) :: j |
---|
| 1796 | INTEGER(iwp) :: iif |
---|
| 1797 | INTEGER(iwp) :: jjf |
---|
| 1798 | INTEGER(iwp) :: bottomx |
---|
| 1799 | INTEGER(iwp) :: bottomy |
---|
| 1800 | INTEGER(iwp) :: topx |
---|
| 1801 | INTEGER(iwp) :: topy |
---|
| 1802 | REAL(wp) :: eps |
---|
| 1803 | REAL(wp) :: alpha |
---|
| 1804 | REAL(wp) :: eminus |
---|
| 1805 | REAL(wp) :: edot |
---|
| 1806 | REAL(wp) :: eplus |
---|
| 1807 | REAL(wp), DIMENSION(:,:), ALLOCATABLE :: wprf |
---|
[2365] | 1808 | |
---|
| 1809 | |
---|
| 1810 | ALLOCATE( wprf(bdims_rem(2,1)-1:bdims_rem(2,2)+1,nxl:nxr) ) |
---|
| 1811 | |
---|
| 1812 | ! |
---|
| 1813 | !-- Determination of a boundary condition for the vertical velocity component w: |
---|
| 1814 | !-- In this case only interpolation in x- and y- direction is necessary, as the |
---|
| 1815 | !-- boundary w-node of the fine grid coincides with a w-node in the coarse grid. |
---|
| 1816 | !-- For both interpolations the scheme of Clark and Farley is used. |
---|
| 1817 | |
---|
| 1818 | ! |
---|
| 1819 | !-- Interpolation in x-direction |
---|
| 1820 | |
---|
| 1821 | DO j = bdims_rem(2,1)-1, bdims_rem(2,2)+1 |
---|
| 1822 | |
---|
| 1823 | DO i = bdims_rem(1,1), bdims_rem(1,2) |
---|
| 1824 | |
---|
| 1825 | bottomx = (nxf+1)/(nxc+1) * i |
---|
| 1826 | topx = (nxf+1)/(nxc+1) * (i+1) - 1 |
---|
| 1827 | |
---|
[2712] | 1828 | DO iif = bottomx, topx |
---|
[2365] | 1829 | |
---|
[2712] | 1830 | eps = (iif * dxf + 0.5 * dxf - i * dxc - 0.5 * dxc) / dxc |
---|
[2365] | 1831 | alpha = ( (dxf/dxc)**2.0 - 1.0) / 24.0 |
---|
| 1832 | eminus = eps * ( eps - 1.0 ) / 2.0 + alpha |
---|
| 1833 | edot = ( 1.0 - eps**2.0 ) - 2.0 * alpha |
---|
| 1834 | eplus = eps * ( eps + 1.0 ) / 2.0 + alpha |
---|
[2712] | 1835 | wprf(j,iif) = eminus * work3d(bdims_rem(3,1),j,i-1) & |
---|
[2365] | 1836 | + edot * work3d(bdims_rem(3,1),j,i) & |
---|
| 1837 | + eplus * work3d(bdims_rem(3,1),j,i+1) |
---|
| 1838 | |
---|
| 1839 | END DO |
---|
| 1840 | |
---|
| 1841 | END DO |
---|
| 1842 | |
---|
| 1843 | END DO |
---|
| 1844 | |
---|
| 1845 | ! |
---|
| 1846 | !-- Interpolation in y-direction |
---|
| 1847 | |
---|
| 1848 | DO j = bdims_rem(2,1), bdims_rem(2,2) |
---|
| 1849 | |
---|
| 1850 | bottomy = (nyf+1)/(nyc+1) * j |
---|
| 1851 | topy = (nyf+1)/(nyc+1) * (j+1) - 1 |
---|
| 1852 | |
---|
[2712] | 1853 | DO iif = nxl, nxr |
---|
[2365] | 1854 | |
---|
[2712] | 1855 | DO jjf = bottomy, topy |
---|
[2365] | 1856 | |
---|
[2712] | 1857 | eps = (jjf * dyf + 0.5 * dyf - j * dyc - 0.5 * dyc) / dyc |
---|
[2365] | 1858 | |
---|
| 1859 | alpha = ( (dyf/dyc)**2.0 - 1.0) / 24.0 |
---|
| 1860 | |
---|
| 1861 | eminus = eps * ( eps - 1.0 ) / 2.0 + alpha |
---|
| 1862 | |
---|
| 1863 | edot = ( 1.0 - eps**2.0 ) - 2.0 * alpha |
---|
| 1864 | |
---|
| 1865 | eplus = eps * ( eps + 1.0 ) / 2.0 + alpha |
---|
| 1866 | |
---|
[2712] | 1867 | w(nzt,jjf,iif) = eminus * wprf(j-1,iif) & |
---|
| 1868 | + edot * wprf(j,iif) & |
---|
| 1869 | + eplus * wprf(j+1,iif) |
---|
[2365] | 1870 | |
---|
| 1871 | END DO |
---|
| 1872 | |
---|
| 1873 | END DO |
---|
| 1874 | |
---|
| 1875 | END DO |
---|
| 1876 | |
---|
| 1877 | DEALLOCATE( wprf ) |
---|
| 1878 | |
---|
| 1879 | END SUBROUTINE vnest_set_topbc_w |
---|
| 1880 | |
---|
| 1881 | |
---|
| 1882 | SUBROUTINE vnest_set_topbc_u |
---|
| 1883 | |
---|
| 1884 | |
---|
| 1885 | USE arrays_3d |
---|
| 1886 | USE control_parameters |
---|
| 1887 | USE grid_variables |
---|
| 1888 | USE indices |
---|
| 1889 | USE pegrid |
---|
| 1890 | |
---|
| 1891 | |
---|
| 1892 | IMPLICIT NONE |
---|
[2712] | 1893 | |
---|
| 1894 | INTEGER(iwp) :: i |
---|
| 1895 | INTEGER(iwp) :: j |
---|
| 1896 | INTEGER(iwp) :: k |
---|
| 1897 | INTEGER(iwp) :: iif |
---|
| 1898 | INTEGER(iwp) :: jjf |
---|
| 1899 | INTEGER(iwp) :: bottomx |
---|
| 1900 | INTEGER(iwp) :: bottomy |
---|
| 1901 | INTEGER(iwp) :: topx |
---|
| 1902 | INTEGER(iwp) :: topy |
---|
| 1903 | REAL(wp) :: eps |
---|
| 1904 | REAL(wp) :: alpha |
---|
| 1905 | REAL(wp) :: eminus |
---|
| 1906 | REAL(wp) :: edot |
---|
| 1907 | REAL(wp) :: eplus |
---|
| 1908 | REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: uprf |
---|
| 1909 | REAL(wp), DIMENSION(:,:), ALLOCATABLE :: uprs |
---|
[2365] | 1910 | |
---|
| 1911 | ALLOCATE( uprf(bdims_rem(3,1):bdims_rem(3,2),nys:nyn,bdims_rem(1,1)-1:bdims_rem(1,2)+1) ) |
---|
| 1912 | ALLOCATE( uprs(nys:nyn,bdims_rem(1,1)-1:bdims_rem(1,2)+1) ) |
---|
| 1913 | |
---|
| 1914 | |
---|
| 1915 | ! |
---|
| 1916 | !-- Interpolation in y-direction |
---|
| 1917 | |
---|
| 1918 | DO k = bdims_rem(3,1), bdims_rem(3,2) |
---|
| 1919 | DO j = bdims_rem(2,1), bdims_rem(2,2) |
---|
| 1920 | |
---|
| 1921 | bottomy = (nyf+1)/(nyc+1) * j |
---|
| 1922 | topy = (nyf+1)/(nyc+1) * (j+1) - 1 |
---|
| 1923 | |
---|
| 1924 | DO i = bdims_rem(1,1)-1, bdims_rem(1,2)+1 |
---|
[2712] | 1925 | DO jjf = bottomy, topy |
---|
[2365] | 1926 | |
---|
[2712] | 1927 | eps = (jjf * dyf + 0.5 * dyf - j * dyc - 0.5 * dyc) / dyc |
---|
[2365] | 1928 | alpha = ( (dyf/dyc)**2.0 - 1.0) / 24.0 |
---|
| 1929 | eminus = eps * ( eps - 1.0 ) / 2.0 + alpha |
---|
| 1930 | edot = ( 1.0 - eps**2.0 ) - 2.0 * alpha |
---|
| 1931 | eplus = eps * ( eps + 1.0 ) / 2.0 + alpha |
---|
| 1932 | |
---|
[2712] | 1933 | uprf(k,jjf,i) = eminus * work3d(k,j-1,i) & |
---|
[2365] | 1934 | + edot * work3d(k,j,i) & |
---|
| 1935 | + eplus * work3d(k,j+1,i) |
---|
| 1936 | END DO |
---|
| 1937 | END DO |
---|
| 1938 | |
---|
| 1939 | END DO |
---|
| 1940 | END DO |
---|
| 1941 | |
---|
| 1942 | ! |
---|
| 1943 | !-- Interpolation in z-direction |
---|
| 1944 | |
---|
[2712] | 1945 | DO jjf = nys, nyn |
---|
[2365] | 1946 | DO i = bdims_rem(1,1)-1, bdims_rem(1,2)+1 |
---|
| 1947 | eps = ( zuf(nzt+1) - zuc(bdims_rem(3,1)+1) ) / dzc |
---|
| 1948 | alpha = ( (dzf/dzc)**2.0 - 1.0) / 24.0 |
---|
| 1949 | eminus = eps * ( eps - 1.0 ) / 2.0 + alpha |
---|
| 1950 | edot = ( 1.0 - eps**2.0 ) - 2.0 * alpha |
---|
| 1951 | eplus = eps * ( eps + 1.0 ) / 2.0 + alpha |
---|
[2712] | 1952 | uprs(jjf,i) = eminus * uprf(bdims_rem(3,1),jjf,i) & |
---|
| 1953 | + edot * uprf(bdims_rem(3,1)+1,jjf,i) & |
---|
| 1954 | + eplus * uprf(bdims_rem(3,1)+2,jjf,i) |
---|
[2365] | 1955 | END DO |
---|
| 1956 | END DO |
---|
| 1957 | |
---|
| 1958 | ! |
---|
| 1959 | !-- Interpolation in x-direction |
---|
| 1960 | |
---|
[2712] | 1961 | DO jjf = nys, nyn |
---|
[2365] | 1962 | DO i = bdims_rem(1,1), bdims_rem(1,2) |
---|
| 1963 | |
---|
| 1964 | bottomx = (nxf+1)/(nxc+1) * i |
---|
| 1965 | topx = (nxf+1)/(nxc+1) * (i+1) - 1 |
---|
| 1966 | |
---|
[2712] | 1967 | DO iif = bottomx, topx |
---|
| 1968 | u(nzt+1,jjf,iif) = uprs(jjf,i) + ( iif * dxf - i * dxc ) * ( uprs(jjf,i+1) - uprs(jjf,i) ) / dxc |
---|
[2365] | 1969 | END DO |
---|
| 1970 | |
---|
| 1971 | END DO |
---|
| 1972 | END DO |
---|
| 1973 | |
---|
| 1974 | |
---|
| 1975 | |
---|
| 1976 | DEALLOCATE ( uprf, uprs ) |
---|
| 1977 | |
---|
| 1978 | END SUBROUTINE vnest_set_topbc_u |
---|
| 1979 | |
---|
| 1980 | |
---|
| 1981 | SUBROUTINE vnest_set_topbc_v |
---|
| 1982 | |
---|
| 1983 | |
---|
| 1984 | USE arrays_3d |
---|
| 1985 | USE control_parameters |
---|
| 1986 | USE grid_variables |
---|
| 1987 | USE indices |
---|
| 1988 | USE pegrid |
---|
| 1989 | |
---|
| 1990 | |
---|
| 1991 | IMPLICIT NONE |
---|
[2712] | 1992 | |
---|
| 1993 | INTEGER(iwp) :: i |
---|
| 1994 | INTEGER(iwp) :: j |
---|
| 1995 | INTEGER(iwp) :: k |
---|
| 1996 | INTEGER(iwp) :: iif |
---|
| 1997 | INTEGER(iwp) :: jjf |
---|
| 1998 | INTEGER(iwp) :: bottomx |
---|
| 1999 | INTEGER(iwp) :: bottomy |
---|
| 2000 | INTEGER(iwp) :: topx |
---|
| 2001 | INTEGER(iwp) :: topy |
---|
| 2002 | REAL(wp) :: eps |
---|
| 2003 | REAL(wp) :: alpha |
---|
| 2004 | REAL(wp) :: eminus |
---|
| 2005 | REAL(wp) :: edot |
---|
| 2006 | REAL(wp) :: eplus |
---|
| 2007 | REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: vprf |
---|
| 2008 | REAL(wp), DIMENSION(:,:), ALLOCATABLE :: vprs |
---|
[2365] | 2009 | |
---|
| 2010 | |
---|
| 2011 | |
---|
| 2012 | ALLOCATE( vprf(bdims_rem(3,1):bdims_rem(3,2),bdims_rem(2,1)-1:bdims_rem(2,2)+1,nxl:nxr) ) |
---|
| 2013 | ALLOCATE( vprs(bdims_rem(2,1)-1:bdims_rem(2,2)+1,nxl:nxr) ) |
---|
| 2014 | ! |
---|
| 2015 | !-- Determination of a boundary condition for the horizontal velocity component v: |
---|
| 2016 | !-- Interpolation in x- and z-direction is carried out by using the scheme, |
---|
| 2017 | !-- which was derived by Clark and Farley (1984). In y-direction a |
---|
| 2018 | !-- linear interpolation is carried out. |
---|
| 2019 | |
---|
| 2020 | ! |
---|
| 2021 | !-- Interpolation in x-direction |
---|
| 2022 | |
---|
| 2023 | DO k = bdims_rem(3,1), bdims_rem(3,2) |
---|
| 2024 | DO j = bdims_rem(2,1)-1, bdims_rem(2,2)+1 |
---|
| 2025 | DO i = bdims_rem(1,1), bdims_rem(1,2) |
---|
| 2026 | |
---|
| 2027 | bottomx = (nxf+1)/(nxc+1) * i |
---|
| 2028 | topx = (nxf+1)/(nxc+1) * (i+1) - 1 |
---|
| 2029 | |
---|
[2712] | 2030 | DO iif = bottomx, topx |
---|
[2365] | 2031 | |
---|
[2712] | 2032 | eps = (iif * dxf + 0.5 * dxf - i * dxc - 0.5 * dxc) / dxc |
---|
[2365] | 2033 | alpha = ( (dxf/dxc)**2.0 - 1.0) / 24.0 |
---|
| 2034 | eminus = eps * ( eps - 1.0 ) / 2.0 + alpha |
---|
| 2035 | edot = ( 1.0 - eps**2.0 ) - 2.0 * alpha |
---|
| 2036 | eplus = eps * ( eps + 1.0 ) / 2.0 + alpha |
---|
[2712] | 2037 | vprf(k,j,iif) = eminus * work3d(k,j,i-1) & |
---|
[2365] | 2038 | + edot * work3d(k,j,i) & |
---|
| 2039 | + eplus * work3d(k,j,i+1) |
---|
| 2040 | END DO |
---|
| 2041 | |
---|
| 2042 | END DO |
---|
| 2043 | END DO |
---|
| 2044 | END DO |
---|
| 2045 | |
---|
| 2046 | ! |
---|
| 2047 | !-- Interpolation in z-direction |
---|
| 2048 | |
---|
| 2049 | DO j = bdims_rem(2,1)-1, bdims_rem(2,2)+1 |
---|
[2712] | 2050 | DO iif = nxl, nxr |
---|
[2365] | 2051 | |
---|
| 2052 | eps = ( zuf(nzt+1) - zuc(bdims_rem(3,1)+1) ) / dzc |
---|
| 2053 | alpha = ( (dzf/dzc)**2.0 - 1.0) / 24.0 |
---|
| 2054 | eminus = eps * ( eps - 1.0 ) / 2.0 + alpha |
---|
| 2055 | edot = ( 1.0 - eps**2.0 ) - 2.0 * alpha |
---|
| 2056 | eplus = eps * ( eps + 1.0 ) / 2.0 + alpha |
---|
[2712] | 2057 | vprs(j,iif) = eminus * vprf(bdims_rem(3,1),j,iif) & |
---|
| 2058 | + edot * vprf(bdims_rem(3,1)+1,j,iif) & |
---|
| 2059 | + eplus * vprf(bdims_rem(3,1)+2,j,iif) |
---|
[2365] | 2060 | |
---|
| 2061 | END DO |
---|
| 2062 | END DO |
---|
| 2063 | |
---|
| 2064 | ! |
---|
| 2065 | !-- Interpolation in y-direction |
---|
| 2066 | |
---|
| 2067 | DO j = bdims_rem(2,1), bdims_rem(2,2) |
---|
[2712] | 2068 | DO iif = nxl, nxr |
---|
[2365] | 2069 | |
---|
| 2070 | bottomy = (nyf+1)/(nyc+1) * j |
---|
| 2071 | topy = (nyf+1)/(nyc+1) * (j+1) - 1 |
---|
| 2072 | |
---|
[2712] | 2073 | DO jjf = bottomy, topy |
---|
[2365] | 2074 | |
---|
[2712] | 2075 | v(nzt+1,jjf,iif) = vprs(j,iif) + ( jjf * dyf - j * dyc ) * ( vprs(j+1,iif) - vprs(j,iif) ) / dyc |
---|
[2365] | 2076 | |
---|
| 2077 | END DO |
---|
| 2078 | END DO |
---|
| 2079 | END DO |
---|
| 2080 | |
---|
| 2081 | |
---|
| 2082 | DEALLOCATE ( vprf, vprs) |
---|
| 2083 | |
---|
| 2084 | |
---|
| 2085 | |
---|
| 2086 | END SUBROUTINE vnest_set_topbc_v |
---|
| 2087 | |
---|
| 2088 | |
---|
| 2089 | SUBROUTINE vnest_set_topbc_s |
---|
| 2090 | |
---|
| 2091 | |
---|
| 2092 | USE arrays_3d |
---|
| 2093 | USE control_parameters |
---|
| 2094 | USE grid_variables |
---|
| 2095 | USE indices |
---|
| 2096 | USE pegrid |
---|
| 2097 | |
---|
| 2098 | |
---|
| 2099 | IMPLICIT NONE |
---|
[2712] | 2100 | |
---|
| 2101 | INTEGER(iwp) :: i |
---|
| 2102 | INTEGER(iwp) :: j |
---|
| 2103 | INTEGER(iwp) :: k |
---|
| 2104 | INTEGER(iwp) :: iif |
---|
| 2105 | INTEGER(iwp) :: jjf |
---|
| 2106 | INTEGER(iwp) :: bottomx |
---|
| 2107 | INTEGER(iwp) :: bottomy |
---|
| 2108 | INTEGER(iwp) :: topx |
---|
| 2109 | INTEGER(iwp) :: topy |
---|
| 2110 | REAL(wp) :: eps |
---|
| 2111 | REAL(wp) :: alpha |
---|
| 2112 | REAL(wp) :: eminus |
---|
| 2113 | REAL(wp) :: edot |
---|
| 2114 | REAL(wp) :: eplus |
---|
| 2115 | REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: ptprf |
---|
| 2116 | REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: ptprs |
---|
[2365] | 2117 | |
---|
| 2118 | |
---|
| 2119 | |
---|
| 2120 | ALLOCATE( ptprf(bdims_rem(3,1):bdims_rem(3,2),bdims_rem(2,1)-1:bdims_rem(2,2)+1,nxl:nxr) ) |
---|
| 2121 | ALLOCATE( ptprs(bdims_rem(3,1):bdims_rem(3,2),nys:nyn,nxl:nxr) ) |
---|
| 2122 | |
---|
| 2123 | ! |
---|
| 2124 | !-- Determination of a boundary condition for the potential temperature pt: |
---|
| 2125 | !-- The scheme derived by Clark and Farley can be used in all three dimensions. |
---|
| 2126 | |
---|
| 2127 | ! |
---|
| 2128 | !-- Interpolation in x-direction |
---|
| 2129 | |
---|
| 2130 | DO k = bdims_rem(3,1), bdims_rem(3,2) |
---|
| 2131 | |
---|
| 2132 | DO j = bdims_rem(2,1)-1, bdims_rem(2,2)+1 |
---|
| 2133 | |
---|
| 2134 | DO i = bdims_rem(1,1), bdims_rem(1,2) |
---|
| 2135 | |
---|
| 2136 | bottomx = (nxf+1)/(nxc+1) * i |
---|
| 2137 | topx = (nxf+1)/(nxc+1) *(i+1) - 1 |
---|
| 2138 | |
---|
[2712] | 2139 | DO iif = bottomx, topx |
---|
[2365] | 2140 | |
---|
[2712] | 2141 | eps = (iif * dxf + 0.5 * dxf - i * dxc - 0.5 * dxc) / dxc |
---|
[2365] | 2142 | |
---|
| 2143 | alpha = ( (dxf/dxc)**2.0 - 1.0) / 24.0 |
---|
| 2144 | |
---|
| 2145 | eminus = eps * (eps - 1.0 ) / 2.0 + alpha |
---|
| 2146 | |
---|
| 2147 | edot = ( 1.0 - eps**2.0 ) - 2.0 * alpha |
---|
| 2148 | |
---|
| 2149 | eplus = eps * ( eps + 1.0 ) / 2.0 + alpha |
---|
| 2150 | |
---|
[2712] | 2151 | ptprf(k,j,iif) = eminus * work3d(k,j,i-1) & |
---|
[2365] | 2152 | + edot * work3d(k,j,i) & |
---|
| 2153 | + eplus * work3d(k,j,i+1) |
---|
| 2154 | END DO |
---|
| 2155 | |
---|
| 2156 | END DO |
---|
| 2157 | |
---|
| 2158 | END DO |
---|
| 2159 | |
---|
| 2160 | END DO |
---|
| 2161 | |
---|
| 2162 | ! |
---|
| 2163 | !-- Interpolation in y-direction |
---|
| 2164 | |
---|
| 2165 | DO k = bdims_rem(3,1), bdims_rem(3,2) |
---|
| 2166 | |
---|
| 2167 | DO j = bdims_rem(2,1), bdims_rem(2,2) |
---|
| 2168 | |
---|
| 2169 | bottomy = (nyf+1)/(nyc+1) * j |
---|
| 2170 | topy = (nyf+1)/(nyc+1) * (j+1) - 1 |
---|
| 2171 | |
---|
[2712] | 2172 | DO iif = nxl, nxr |
---|
[2365] | 2173 | |
---|
[2712] | 2174 | DO jjf = bottomy, topy |
---|
[2365] | 2175 | |
---|
[2712] | 2176 | eps = (jjf * dyf + 0.5 * dyf - j * dyc - 0.5 * dyc) / dyc |
---|
[2365] | 2177 | |
---|
| 2178 | alpha = ( (dyf/dyc)**2.0 - 1.0) / 24.0 |
---|
| 2179 | |
---|
| 2180 | eminus = eps * (eps - 1.0) / 2.0 + alpha |
---|
| 2181 | |
---|
| 2182 | edot = ( 1.0 - eps**2.0 ) - 2.0 * alpha |
---|
| 2183 | |
---|
| 2184 | eplus = eps * ( eps + 1.0 ) / 2.0 + alpha |
---|
| 2185 | |
---|
[2712] | 2186 | ptprs(k,jjf,iif) = eminus * ptprf(k,j-1,iif) & |
---|
| 2187 | + edot * ptprf(k,j,iif) & |
---|
| 2188 | + eplus * ptprf(k,j+1,iif) |
---|
[2365] | 2189 | END DO |
---|
| 2190 | |
---|
| 2191 | END DO |
---|
| 2192 | |
---|
| 2193 | END DO |
---|
| 2194 | |
---|
| 2195 | END DO |
---|
| 2196 | |
---|
| 2197 | ! |
---|
| 2198 | !-- Interpolation in z-direction |
---|
| 2199 | |
---|
[2712] | 2200 | DO jjf = nys, nyn |
---|
| 2201 | DO iif = nxl, nxr |
---|
[2365] | 2202 | |
---|
| 2203 | eps = ( zuf(nzt+1) - zuc(bdims_rem(3,1)+1) ) / dzc |
---|
| 2204 | |
---|
| 2205 | alpha = ( (dzf/dzc)**2.0 - 1.0) / 24.0 |
---|
| 2206 | |
---|
| 2207 | eminus = eps * ( eps - 1.0 ) / 2.0 + alpha |
---|
| 2208 | |
---|
| 2209 | edot = ( 1.0 - eps**2.0 ) - 2.0 * alpha |
---|
| 2210 | |
---|
| 2211 | eplus = eps * ( eps + 1.0 ) / 2.0 + alpha |
---|
| 2212 | |
---|
[2712] | 2213 | interpol3d (nzt+1,jjf,iif) = eminus * ptprs(bdims_rem(3,1),jjf,iif) & |
---|
| 2214 | + edot * ptprs(bdims_rem(3,1)+1,jjf,iif) & |
---|
| 2215 | + eplus * ptprs(bdims_rem(3,1)+2,jjf,iif) |
---|
[2365] | 2216 | |
---|
| 2217 | END DO |
---|
| 2218 | END DO |
---|
| 2219 | |
---|
| 2220 | DEALLOCATE ( ptprf, ptprs ) |
---|
| 2221 | |
---|
| 2222 | |
---|
| 2223 | |
---|
| 2224 | END SUBROUTINE vnest_set_topbc_s |
---|
[2712] | 2225 | #endif |
---|
[2365] | 2226 | END SUBROUTINE vnest_boundary_conds |
---|
| 2227 | |
---|
| 2228 | |
---|
| 2229 | SUBROUTINE vnest_boundary_conds_khkm |
---|
[2712] | 2230 | #if defined( __parallel ) |
---|
[2365] | 2231 | |
---|
| 2232 | !--------------------------------------------------------------------------------! |
---|
| 2233 | ! Description: |
---|
| 2234 | ! ------------ |
---|
| 2235 | ! Boundary conditions for the prognostic quantities. |
---|
| 2236 | ! One additional bottom boundary condition is applied for the TKE (=(u*)**2) |
---|
| 2237 | ! in prandtl_fluxes. The cyclic lateral boundary conditions are implicitly |
---|
| 2238 | ! handled in routine exchange_horiz. Pressure boundary conditions are |
---|
| 2239 | ! explicitly set in routines pres, poisfft, poismg and sor. |
---|
| 2240 | !------------------------------------------------------------------------------! |
---|
| 2241 | |
---|
| 2242 | USE arrays_3d |
---|
| 2243 | USE control_parameters |
---|
| 2244 | USE grid_variables |
---|
| 2245 | USE indices |
---|
| 2246 | USE pegrid |
---|
| 2247 | |
---|
| 2248 | |
---|
| 2249 | IMPLICIT NONE |
---|
| 2250 | |
---|
[2712] | 2251 | INTEGER(iwp) :: i |
---|
| 2252 | INTEGER(iwp) :: j |
---|
| 2253 | INTEGER(iwp) :: iif |
---|
| 2254 | INTEGER(iwp) :: jjf |
---|
[2365] | 2255 | |
---|
| 2256 | |
---|
| 2257 | IF ( coupling_mode == 'vnested_crse' ) THEN |
---|
| 2258 | ! Send data to fine grid for TOP BC |
---|
| 2259 | |
---|
| 2260 | offset(1) = ( pdims_partner(1) / pdims(1) ) * pcoord(1) |
---|
| 2261 | offset(2) = ( pdims_partner(2) / pdims(2) ) * pcoord(2) |
---|
| 2262 | |
---|
| 2263 | do j = 0, ( pdims_partner(2) / pdims(2) ) - 1 |
---|
| 2264 | do i = 0, ( pdims_partner(1) / pdims(1) ) - 1 |
---|
| 2265 | map_coord(1) = i+offset(1) |
---|
| 2266 | map_coord(2) = j+offset(2) |
---|
| 2267 | |
---|
| 2268 | target_idex = f_rnk_lst(map_coord(1),map_coord(2)) + numprocs |
---|
| 2269 | |
---|
| 2270 | CALL MPI_RECV( bdims_rem, 6, MPI_INTEGER, target_idex, 10, & |
---|
| 2271 | comm_inter,status, ierr ) |
---|
| 2272 | |
---|
| 2273 | bdims (1,1) = bdims_rem (1,1) / cfratio(1) |
---|
| 2274 | bdims (1,2) = bdims_rem (1,2) / cfratio(1) |
---|
| 2275 | bdims (2,1) = bdims_rem (2,1) / cfratio(2) |
---|
| 2276 | bdims (2,2) = bdims_rem (2,2) / cfratio(2) |
---|
| 2277 | bdims (3,1) = bdims_rem (3,2) / cfratio(3) |
---|
| 2278 | bdims (3,2) = bdims (3,1) + 2 |
---|
| 2279 | |
---|
| 2280 | CALL MPI_SEND( bdims, 6, MPI_INTEGER, target_idex, 9, & |
---|
| 2281 | comm_inter, ierr ) |
---|
| 2282 | |
---|
| 2283 | |
---|
| 2284 | n_cell_c = ( (bdims(1,2)-bdims(1,1)) + 3 ) * & |
---|
| 2285 | ( (bdims(2,2)-bdims(2,1)) + 3 ) * & |
---|
| 2286 | ( (bdims(3,2)-bdims(3,1)) + 1 ) |
---|
| 2287 | |
---|
| 2288 | CALL MPI_SEND(kh(bdims(3,1) :bdims(3,2) , & |
---|
| 2289 | bdims(2,1)-1:bdims(2,2)+1, & |
---|
| 2290 | bdims(1,1)-1:bdims(1,2)+1),& |
---|
| 2291 | n_cell_c, MPI_REAL, target_idex, & |
---|
[2514] | 2292 | 207, comm_inter, ierr) |
---|
[2365] | 2293 | |
---|
| 2294 | CALL MPI_SEND(km(bdims(3,1) :bdims(3,2) , & |
---|
| 2295 | bdims(2,1)-1:bdims(2,2)+1, & |
---|
| 2296 | bdims(1,1)-1:bdims(1,2)+1),& |
---|
| 2297 | n_cell_c, MPI_REAL, target_idex, & |
---|
[2514] | 2298 | 208, comm_inter, ierr) |
---|
[2365] | 2299 | |
---|
| 2300 | |
---|
| 2301 | |
---|
| 2302 | end do |
---|
| 2303 | end do |
---|
| 2304 | |
---|
| 2305 | ELSEIF ( coupling_mode == 'vnested_fine' ) THEN |
---|
| 2306 | ! Receive data from coarse grid for TOP BC |
---|
| 2307 | |
---|
| 2308 | offset(1) = pcoord(1) / ( pdims(1)/pdims_partner(1) ) |
---|
| 2309 | offset(2) = pcoord(2) / ( pdims(2)/pdims_partner(2) ) |
---|
| 2310 | map_coord(1) = offset(1) |
---|
| 2311 | map_coord(2) = offset(2) |
---|
| 2312 | target_idex = c_rnk_lst(map_coord(1),map_coord(2)) |
---|
| 2313 | |
---|
| 2314 | bdims (1,1) = nxl |
---|
| 2315 | bdims (1,2) = nxr |
---|
| 2316 | bdims (2,1) = nys |
---|
| 2317 | bdims (2,2) = nyn |
---|
| 2318 | bdims (3,1) = nzb |
---|
| 2319 | bdims (3,2) = nzt |
---|
| 2320 | |
---|
| 2321 | CALL MPI_SEND( bdims, 6, MPI_INTEGER, target_idex, 10, & |
---|
| 2322 | comm_inter, ierr ) |
---|
| 2323 | |
---|
| 2324 | CALL MPI_RECV( bdims_rem, 6, MPI_INTEGER, target_idex, 9, & |
---|
| 2325 | comm_inter,status, ierr ) |
---|
| 2326 | |
---|
| 2327 | n_cell_c = ( (bdims_rem(1,2)-bdims_rem(1,1)) + 3 ) * & |
---|
| 2328 | ( (bdims_rem(2,2)-bdims_rem(2,1)) + 3 ) * & |
---|
| 2329 | ( (bdims_rem(3,2)-bdims_rem(3,1)) + 1 ) |
---|
| 2330 | |
---|
| 2331 | ALLOCATE( work3d ( bdims_rem(3,1) :bdims_rem(3,2) , & |
---|
| 2332 | bdims_rem(2,1)-1:bdims_rem(2,2)+1, & |
---|
| 2333 | bdims_rem(1,1)-1:bdims_rem(1,2)+1)) |
---|
| 2334 | |
---|
| 2335 | |
---|
| 2336 | CALL MPI_RECV( work3d,n_cell_c, MPI_REAL, target_idex, 207, & |
---|
| 2337 | comm_inter,status, ierr ) |
---|
| 2338 | |
---|
| 2339 | ! Neumann BC for FG kh |
---|
[2712] | 2340 | DO jjf = nys, nyn |
---|
| 2341 | DO iif = nxl, nxr |
---|
| 2342 | kh(nzt+1,jjf,iif) = kh(nzt,jjf,iif) |
---|
[2365] | 2343 | END DO |
---|
| 2344 | END DO |
---|
| 2345 | |
---|
| 2346 | CALL MPI_RECV( work3d,n_cell_c, MPI_REAL, target_idex, 208, & |
---|
| 2347 | comm_inter,status, ierr ) |
---|
| 2348 | |
---|
| 2349 | ! Neumann BC for FG kh |
---|
[2712] | 2350 | DO jjf = nys, nyn |
---|
| 2351 | DO iif = nxl, nxr |
---|
| 2352 | km(nzt+1,jjf,iif) = km(nzt,jjf,iif) |
---|
[2365] | 2353 | END DO |
---|
| 2354 | END DO |
---|
| 2355 | |
---|
| 2356 | |
---|
| 2357 | ! |
---|
| 2358 | !-- The following evaluation can only be performed, if the fine grid is situated below the inversion |
---|
[2712] | 2359 | !! DO jjf = nys-1, nyn+1 |
---|
| 2360 | !! DO iif = nxl-1, nxr+1 |
---|
[2365] | 2361 | !! |
---|
[2712] | 2362 | !! km(nzt+1,jjf,iif) = 0.1 * l_grid(nzt+1) * SQRT( e(nzt+1,jjf,iif) ) |
---|
| 2363 | !! kh(nzt+1,jjf,iif) = 3.0 * km(nzt+1,jjf,iif) |
---|
[2365] | 2364 | !! |
---|
| 2365 | !! END DO |
---|
| 2366 | !! END DO |
---|
| 2367 | |
---|
| 2368 | CALL exchange_horiz_2d(km(nzt+1,:,:) ) |
---|
| 2369 | CALL exchange_horiz_2d(kh(nzt+1,:,:) ) |
---|
| 2370 | |
---|
| 2371 | DEALLOCATE ( work3d ) |
---|
| 2372 | |
---|
| 2373 | ENDIF |
---|
| 2374 | |
---|
| 2375 | |
---|
[3802] | 2376 | ! CONTAINS |
---|
| 2377 | ! |
---|
| 2378 | ! SUBROUTINE vnest_set_topbc_kh |
---|
| 2379 | ! |
---|
| 2380 | ! |
---|
| 2381 | ! USE arrays_3d |
---|
| 2382 | ! USE control_parameters |
---|
| 2383 | ! USE grid_variables |
---|
| 2384 | ! USE indices |
---|
| 2385 | ! USE pegrid |
---|
| 2386 | ! |
---|
| 2387 | ! |
---|
| 2388 | ! IMPLICIT NONE |
---|
| 2389 | ! |
---|
| 2390 | ! INTEGER(iwp) :: i |
---|
| 2391 | ! INTEGER(iwp) :: j |
---|
| 2392 | ! INTEGER(iwp) :: k |
---|
| 2393 | ! INTEGER(iwp) :: iif |
---|
| 2394 | ! INTEGER(iwp) :: jjf |
---|
| 2395 | ! INTEGER(iwp) :: bottomx |
---|
| 2396 | ! INTEGER(iwp) :: bottomy |
---|
| 2397 | ! INTEGER(iwp) :: topx |
---|
| 2398 | ! INTEGER(iwp) :: topy |
---|
| 2399 | ! REAL(wp) :: eps |
---|
| 2400 | ! REAL(wp) :: alpha |
---|
| 2401 | ! REAL(wp) :: eminus |
---|
| 2402 | ! REAL(wp) :: edot |
---|
| 2403 | ! REAL(wp) :: eplus |
---|
| 2404 | ! REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: ptprf |
---|
| 2405 | ! REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: ptprs |
---|
| 2406 | ! |
---|
| 2407 | ! |
---|
| 2408 | ! |
---|
| 2409 | ! ALLOCATE( ptprf(bdims_rem(3,1):bdims_rem(3,2),bdims_rem(2,1)-1:bdims_rem(2,2)+1,nxl:nxr) ) |
---|
| 2410 | ! ALLOCATE( ptprs(bdims_rem(3,1):bdims_rem(3,2),nys:nyn,nxl:nxr) ) |
---|
| 2411 | ! |
---|
| 2412 | ! ! |
---|
| 2413 | ! !-- Determination of a boundary condition for the potential temperature pt: |
---|
| 2414 | ! !-- The scheme derived by Clark and Farley can be used in all three dimensions. |
---|
| 2415 | ! |
---|
| 2416 | ! ! |
---|
| 2417 | ! !-- Interpolation in x-direction |
---|
| 2418 | ! |
---|
| 2419 | ! DO k = bdims_rem(3,1), bdims_rem(3,2) |
---|
| 2420 | ! |
---|
| 2421 | ! DO j = bdims_rem(2,1)-1, bdims_rem(2,2)+1 |
---|
| 2422 | ! |
---|
| 2423 | ! DO i = bdims_rem(1,1), bdims_rem(1,2) |
---|
| 2424 | ! |
---|
| 2425 | ! bottomx = (nxf+1)/(nxc+1) * i |
---|
| 2426 | ! topx = (nxf+1)/(nxc+1) *(i+1) - 1 |
---|
| 2427 | ! |
---|
| 2428 | ! DO iif = bottomx, topx |
---|
| 2429 | ! |
---|
| 2430 | ! eps = (iif * dxf + 0.5 * dxf - i * dxc - 0.5 * dxc) / dxc |
---|
| 2431 | ! |
---|
| 2432 | ! alpha = ( (dxf/dxc)**2.0 - 1.0) / 24.0 |
---|
| 2433 | ! |
---|
| 2434 | ! eminus = eps * (eps - 1.0 ) / 2.0 + alpha |
---|
| 2435 | ! |
---|
| 2436 | ! edot = ( 1.0 - eps**2.0 ) - 2.0 * alpha |
---|
| 2437 | ! |
---|
| 2438 | ! eplus = eps * ( eps + 1.0 ) / 2.0 + alpha |
---|
| 2439 | ! |
---|
| 2440 | ! ptprf(k,j,iif) = eminus * work3d(k,j,i-1) & |
---|
| 2441 | ! + edot * work3d(k,j,i) & |
---|
| 2442 | ! + eplus * work3d(k,j,i+1) |
---|
| 2443 | ! END DO |
---|
| 2444 | ! |
---|
| 2445 | ! END DO |
---|
| 2446 | ! |
---|
| 2447 | ! END DO |
---|
| 2448 | ! |
---|
| 2449 | ! END DO |
---|
| 2450 | ! |
---|
| 2451 | ! ! |
---|
| 2452 | ! !-- Interpolation in y-direction |
---|
| 2453 | ! |
---|
| 2454 | ! DO k = bdims_rem(3,1), bdims_rem(3,2) |
---|
| 2455 | ! |
---|
| 2456 | ! DO j = bdims_rem(2,1), bdims_rem(2,2) |
---|
| 2457 | ! |
---|
| 2458 | ! bottomy = (nyf+1)/(nyc+1) * j |
---|
| 2459 | ! topy = (nyf+1)/(nyc+1) * (j+1) - 1 |
---|
| 2460 | ! |
---|
| 2461 | ! DO iif = nxl, nxr |
---|
| 2462 | ! |
---|
| 2463 | ! DO jjf = bottomy, topy |
---|
| 2464 | ! |
---|
| 2465 | ! eps = (jjf * dyf + 0.5 * dyf - j * dyc - 0.5 * dyc) / dyc |
---|
| 2466 | ! |
---|
| 2467 | ! alpha = ( (dyf/dyc)**2.0 - 1.0) / 24.0 |
---|
| 2468 | ! |
---|
| 2469 | ! eminus = eps * (eps - 1.0) / 2.0 + alpha |
---|
| 2470 | ! |
---|
| 2471 | ! edot = ( 1.0 - eps**2.0 ) - 2.0 * alpha |
---|
| 2472 | ! |
---|
| 2473 | ! eplus = eps * ( eps + 1.0 ) / 2.0 + alpha |
---|
| 2474 | ! |
---|
| 2475 | ! ptprs(k,jjf,iif) = eminus * ptprf(k,j-1,iif) & |
---|
| 2476 | ! + edot * ptprf(k,j,iif) & |
---|
| 2477 | ! + eplus * ptprf(k,j+1,iif) |
---|
| 2478 | ! END DO |
---|
| 2479 | ! |
---|
| 2480 | ! END DO |
---|
| 2481 | ! |
---|
| 2482 | ! END DO |
---|
| 2483 | ! |
---|
| 2484 | ! END DO |
---|
| 2485 | ! |
---|
| 2486 | ! ! |
---|
| 2487 | ! !-- Interpolation in z-direction |
---|
| 2488 | ! |
---|
| 2489 | ! DO jjf = nys, nyn |
---|
| 2490 | ! DO iif = nxl, nxr |
---|
| 2491 | ! |
---|
| 2492 | ! eps = ( zuf(nzt+1) - zuc(bdims_rem(3,1)+1) ) / dzc |
---|
| 2493 | ! |
---|
| 2494 | ! alpha = ( (dzf/dzc)**2.0 - 1.0) / 24.0 |
---|
| 2495 | ! |
---|
| 2496 | ! eminus = eps * ( eps - 1.0 ) / 2.0 + alpha |
---|
| 2497 | ! |
---|
| 2498 | ! edot = ( 1.0 - eps**2.0 ) - 2.0 * alpha |
---|
| 2499 | ! |
---|
| 2500 | ! eplus = eps * ( eps + 1.0 ) / 2.0 + alpha |
---|
| 2501 | ! |
---|
| 2502 | ! kh (nzt+1,jjf,iif) = eminus * ptprs(bdims_rem(3,1),jjf,iif) & |
---|
| 2503 | ! + edot * ptprs(bdims_rem(3,1)+1,jjf,iif) & |
---|
| 2504 | ! + eplus * ptprs(bdims_rem(3,1)+2,jjf,iif) |
---|
| 2505 | ! |
---|
| 2506 | ! END DO |
---|
| 2507 | ! END DO |
---|
| 2508 | ! |
---|
| 2509 | ! DEALLOCATE ( ptprf, ptprs ) |
---|
| 2510 | ! |
---|
| 2511 | ! |
---|
| 2512 | ! |
---|
| 2513 | ! END SUBROUTINE vnest_set_topbc_kh |
---|
[2365] | 2514 | |
---|
[3802] | 2515 | ! SUBROUTINE vnest_set_topbc_km |
---|
| 2516 | ! |
---|
| 2517 | ! |
---|
| 2518 | ! USE arrays_3d |
---|
| 2519 | ! USE control_parameters |
---|
| 2520 | ! USE grid_variables |
---|
| 2521 | ! USE indices |
---|
| 2522 | ! USE pegrid |
---|
| 2523 | ! |
---|
| 2524 | ! |
---|
| 2525 | ! IMPLICIT NONE |
---|
| 2526 | ! |
---|
| 2527 | ! INTEGER(iwp) :: i |
---|
| 2528 | ! INTEGER(iwp) :: j |
---|
| 2529 | ! INTEGER(iwp) :: k |
---|
| 2530 | ! INTEGER(iwp) :: iif |
---|
| 2531 | ! INTEGER(iwp) :: jjf |
---|
| 2532 | ! INTEGER(iwp) :: bottomx |
---|
| 2533 | ! INTEGER(iwp) :: bottomy |
---|
| 2534 | ! INTEGER(iwp) :: topx |
---|
| 2535 | ! INTEGER(iwp) :: topy |
---|
| 2536 | ! REAL(wp) :: eps |
---|
| 2537 | ! REAL(wp) :: alpha |
---|
| 2538 | ! REAL(wp) :: eminus |
---|
| 2539 | ! REAL(wp) :: edot |
---|
| 2540 | ! REAL(wp) :: eplus |
---|
| 2541 | ! REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: ptprf |
---|
| 2542 | ! REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: ptprs |
---|
| 2543 | ! |
---|
| 2544 | ! |
---|
| 2545 | ! |
---|
| 2546 | ! ALLOCATE( ptprf(bdims_rem(3,1):bdims_rem(3,2),bdims_rem(2,1)-1:bdims_rem(2,2)+1,nxl:nxr) ) |
---|
| 2547 | ! ALLOCATE( ptprs(bdims_rem(3,1):bdims_rem(3,2),nys:nyn,nxl:nxr) ) |
---|
| 2548 | ! |
---|
| 2549 | ! ! |
---|
| 2550 | ! !-- Determination of a boundary condition for the potential temperature pt: |
---|
| 2551 | ! !-- The scheme derived by Clark and Farley can be used in all three dimensions. |
---|
| 2552 | ! |
---|
| 2553 | ! ! |
---|
| 2554 | ! !-- Interpolation in x-direction |
---|
| 2555 | ! |
---|
| 2556 | ! DO k = bdims_rem(3,1), bdims_rem(3,2) |
---|
| 2557 | ! |
---|
| 2558 | ! DO j = bdims_rem(2,1)-1, bdims_rem(2,2)+1 |
---|
| 2559 | ! |
---|
| 2560 | ! DO i = bdims_rem(1,1), bdims_rem(1,2) |
---|
| 2561 | ! |
---|
| 2562 | ! bottomx = (nxf+1)/(nxc+1) * i |
---|
| 2563 | ! topx = (nxf+1)/(nxc+1) *(i+1) - 1 |
---|
| 2564 | ! |
---|
| 2565 | ! DO iif = bottomx, topx |
---|
| 2566 | ! |
---|
| 2567 | ! eps = (iif * dxf + 0.5 * dxf - i * dxc - 0.5 * dxc) / dxc |
---|
| 2568 | ! |
---|
| 2569 | ! alpha = ( (dxf/dxc)**2.0 - 1.0) / 24.0 |
---|
| 2570 | ! |
---|
| 2571 | ! eminus = eps * (eps - 1.0 ) / 2.0 + alpha |
---|
| 2572 | ! |
---|
| 2573 | ! edot = ( 1.0 - eps**2.0 ) - 2.0 * alpha |
---|
| 2574 | ! |
---|
| 2575 | ! eplus = eps * ( eps + 1.0 ) / 2.0 + alpha |
---|
| 2576 | ! |
---|
| 2577 | ! ptprf(k,j,iif) = eminus * work3d(k,j,i-1) & |
---|
| 2578 | ! + edot * work3d(k,j,i) & |
---|
| 2579 | ! + eplus * work3d(k,j,i+1) |
---|
| 2580 | ! END DO |
---|
| 2581 | ! |
---|
| 2582 | ! END DO |
---|
| 2583 | ! |
---|
| 2584 | ! END DO |
---|
| 2585 | ! |
---|
| 2586 | ! END DO |
---|
| 2587 | ! |
---|
| 2588 | ! ! |
---|
| 2589 | ! !-- Interpolation in y-direction |
---|
| 2590 | ! |
---|
| 2591 | ! DO k = bdims_rem(3,1), bdims_rem(3,2) |
---|
| 2592 | ! |
---|
| 2593 | ! DO j = bdims_rem(2,1), bdims_rem(2,2) |
---|
| 2594 | ! |
---|
| 2595 | ! bottomy = (nyf+1)/(nyc+1) * j |
---|
| 2596 | ! topy = (nyf+1)/(nyc+1) * (j+1) - 1 |
---|
| 2597 | ! |
---|
| 2598 | ! DO iif = nxl, nxr |
---|
| 2599 | ! |
---|
| 2600 | ! DO jjf = bottomy, topy |
---|
| 2601 | ! |
---|
| 2602 | ! eps = (jjf * dyf + 0.5 * dyf - j * dyc - 0.5 * dyc) / dyc |
---|
| 2603 | ! |
---|
| 2604 | ! alpha = ( (dyf/dyc)**2.0 - 1.0) / 24.0 |
---|
| 2605 | ! |
---|
| 2606 | ! eminus = eps * (eps - 1.0) / 2.0 + alpha |
---|
| 2607 | ! |
---|
| 2608 | ! edot = ( 1.0 - eps**2.0 ) - 2.0 * alpha |
---|
| 2609 | ! |
---|
| 2610 | ! eplus = eps * ( eps + 1.0 ) / 2.0 + alpha |
---|
| 2611 | ! |
---|
| 2612 | ! ptprs(k,jjf,iif) = eminus * ptprf(k,j-1,iif) & |
---|
| 2613 | ! + edot * ptprf(k,j,iif) & |
---|
| 2614 | ! + eplus * ptprf(k,j+1,iif) |
---|
| 2615 | ! END DO |
---|
| 2616 | ! |
---|
| 2617 | ! END DO |
---|
| 2618 | ! |
---|
| 2619 | ! END DO |
---|
| 2620 | ! |
---|
| 2621 | ! END DO |
---|
| 2622 | ! |
---|
| 2623 | ! ! |
---|
| 2624 | ! !-- Interpolation in z-direction |
---|
| 2625 | ! |
---|
| 2626 | ! DO jjf = nys, nyn |
---|
| 2627 | ! DO iif = nxl, nxr |
---|
| 2628 | ! |
---|
| 2629 | ! eps = ( zuf(nzt+1) - zuc(bdims_rem(3,1)+1) ) / dzc |
---|
| 2630 | ! |
---|
| 2631 | ! alpha = ( (dzf/dzc)**2.0 - 1.0) / 24.0 |
---|
| 2632 | ! |
---|
| 2633 | ! eminus = eps * ( eps - 1.0 ) / 2.0 + alpha |
---|
| 2634 | ! |
---|
| 2635 | ! edot = ( 1.0 - eps**2.0 ) - 2.0 * alpha |
---|
| 2636 | ! |
---|
| 2637 | ! eplus = eps * ( eps + 1.0 ) / 2.0 + alpha |
---|
| 2638 | ! |
---|
| 2639 | ! km (nzt+1,jjf,iif) = eminus * ptprs(bdims_rem(3,1),jjf,iif) & |
---|
| 2640 | ! + edot * ptprs(bdims_rem(3,1)+1,jjf,iif) & |
---|
| 2641 | ! + eplus * ptprs(bdims_rem(3,1)+2,jjf,iif) |
---|
| 2642 | ! |
---|
| 2643 | ! END DO |
---|
| 2644 | ! END DO |
---|
| 2645 | ! |
---|
| 2646 | ! DEALLOCATE ( ptprf, ptprs ) |
---|
| 2647 | ! |
---|
| 2648 | ! |
---|
| 2649 | ! |
---|
| 2650 | ! END SUBROUTINE vnest_set_topbc_km |
---|
[2365] | 2651 | |
---|
| 2652 | |
---|
[2712] | 2653 | #endif |
---|
[2365] | 2654 | END SUBROUTINE vnest_boundary_conds_khkm |
---|
| 2655 | |
---|
| 2656 | |
---|
| 2657 | |
---|
| 2658 | SUBROUTINE vnest_anterpolate |
---|
[2712] | 2659 | |
---|
| 2660 | #if defined( __parallel ) |
---|
[2365] | 2661 | |
---|
| 2662 | !--------------------------------------------------------------------------------! |
---|
| 2663 | ! Description: |
---|
| 2664 | ! ------------ |
---|
| 2665 | ! Anterpolate data from fine grid to coarse grid. |
---|
| 2666 | !------------------------------------------------------------------------------! |
---|
| 2667 | |
---|
| 2668 | USE arrays_3d |
---|
| 2669 | USE control_parameters |
---|
| 2670 | USE grid_variables |
---|
| 2671 | USE indices |
---|
| 2672 | USE interfaces |
---|
| 2673 | USE pegrid |
---|
| 2674 | USE surface_mod, & |
---|
| 2675 | ONLY : bc_h |
---|
| 2676 | |
---|
| 2677 | |
---|
| 2678 | IMPLICIT NONE |
---|
| 2679 | |
---|
[2712] | 2680 | REAL(wp) :: time_since_reference_point_rem |
---|
| 2681 | INTEGER(iwp) :: i |
---|
| 2682 | INTEGER(iwp) :: j |
---|
[4102] | 2683 | INTEGER(iwp) :: k |
---|
[2712] | 2684 | INTEGER(iwp) :: l !< running index boundary type, for up- and downward-facing walls |
---|
| 2685 | INTEGER(iwp) :: m !< running index surface elements |
---|
[2365] | 2686 | |
---|
| 2687 | |
---|
| 2688 | |
---|
| 2689 | ! |
---|
| 2690 | !-- In case of model termination initiated by the remote model |
---|
| 2691 | !-- (terminate_coupled_remote > 0), initiate termination of the local model. |
---|
| 2692 | !-- The rest of the coupler must then be skipped because it would cause an MPI |
---|
| 2693 | !-- intercomminucation hang. |
---|
| 2694 | !-- If necessary, the coupler will be called at the beginning of the next |
---|
| 2695 | !-- restart run. |
---|
| 2696 | |
---|
| 2697 | IF ( myid == 0) THEN |
---|
| 2698 | CALL MPI_SENDRECV( terminate_coupled, 1, MPI_INTEGER, & |
---|
| 2699 | target_id, 0, & |
---|
| 2700 | terminate_coupled_remote, 1, MPI_INTEGER, & |
---|
| 2701 | target_id, 0, & |
---|
| 2702 | comm_inter, status, ierr ) |
---|
| 2703 | ENDIF |
---|
| 2704 | CALL MPI_BCAST( terminate_coupled_remote, 1, MPI_INTEGER, 0, comm2d, & |
---|
| 2705 | ierr ) |
---|
| 2706 | |
---|
| 2707 | IF ( terminate_coupled_remote > 0 ) THEN |
---|
[3045] | 2708 | WRITE( message_string, * ) 'remote model "', & |
---|
| 2709 | TRIM( coupling_mode_remote ), & |
---|
| 2710 | '" terminated', & |
---|
[3046] | 2711 | '&with terminate_coupled_remote = ', & |
---|
[3045] | 2712 | terminate_coupled_remote, & |
---|
[3046] | 2713 | '&local model "', TRIM( coupling_mode ), & |
---|
[3045] | 2714 | '" has', & |
---|
[3046] | 2715 | '&terminate_coupled = ', & |
---|
[2365] | 2716 | terminate_coupled |
---|
| 2717 | CALL message( 'vnest_anterpolate', 'PA0310', 1, 2, 0, 6, 0 ) |
---|
| 2718 | RETURN |
---|
| 2719 | ENDIF |
---|
| 2720 | |
---|
| 2721 | |
---|
| 2722 | ! |
---|
| 2723 | !-- Exchange the current simulated time between the models |
---|
| 2724 | |
---|
| 2725 | IF ( myid == 0 ) THEN |
---|
| 2726 | |
---|
| 2727 | CALL MPI_SEND( time_since_reference_point, 1, MPI_REAL, target_id, & |
---|
| 2728 | 11, comm_inter, ierr ) |
---|
| 2729 | CALL MPI_RECV( time_since_reference_point_rem, 1, MPI_REAL, & |
---|
| 2730 | target_id, 11, comm_inter, status, ierr ) |
---|
| 2731 | |
---|
| 2732 | ENDIF |
---|
| 2733 | |
---|
| 2734 | CALL MPI_BCAST( time_since_reference_point_rem, 1, MPI_REAL, 0, comm2d, & |
---|
| 2735 | ierr ) |
---|
| 2736 | |
---|
| 2737 | IF ( coupling_mode == 'vnested_crse' ) THEN |
---|
| 2738 | ! Receive data from fine grid for anterpolation |
---|
| 2739 | |
---|
| 2740 | offset(1) = ( pdims_partner(1) / pdims(1) ) * pcoord(1) |
---|
| 2741 | offset(2) = ( pdims_partner(2) / pdims(2) ) * pcoord(2) |
---|
| 2742 | |
---|
| 2743 | do j = 0, ( pdims_partner(2) / pdims(2) ) - 1 |
---|
| 2744 | do i = 0, ( pdims_partner(1) / pdims(1) ) - 1 |
---|
| 2745 | map_coord(1) = i+offset(1) |
---|
| 2746 | map_coord(2) = j+offset(2) |
---|
| 2747 | |
---|
| 2748 | target_idex = f_rnk_lst(map_coord(1),map_coord(2)) + numprocs |
---|
| 2749 | |
---|
| 2750 | CALL MPI_RECV( bdims_rem, 6, MPI_INTEGER, target_idex, 10, & |
---|
| 2751 | comm_inter,status, ierr ) |
---|
| 2752 | |
---|
| 2753 | bdims (1,1) = bdims_rem (1,1) / cfratio(1) |
---|
| 2754 | bdims (1,2) = bdims_rem (1,2) / cfratio(1) |
---|
| 2755 | bdims (2,1) = bdims_rem (2,1) / cfratio(2) |
---|
| 2756 | bdims (2,2) = bdims_rem (2,2) / cfratio(2) |
---|
| 2757 | bdims (3,1) = bdims_rem (3,1) |
---|
| 2758 | bdims (3,2) = bdims_rem (3,2) / cfratio(3) |
---|
| 2759 | |
---|
| 2760 | CALL MPI_SEND( bdims, 6, MPI_INTEGER, target_idex, 9, & |
---|
| 2761 | comm_inter, ierr ) |
---|
| 2762 | |
---|
| 2763 | n_cell_c = & |
---|
| 2764 | (bdims(1,2)-bdims(1,1)+1) * & |
---|
| 2765 | (bdims(2,2)-bdims(2,1)+1) * & |
---|
| 2766 | (bdims(3,2)-bdims(3,1)+0) |
---|
| 2767 | |
---|
| 2768 | CALL MPI_RECV( u( & |
---|
| 2769 | bdims(3,1)+1:bdims(3,2), & |
---|
| 2770 | bdims(2,1) :bdims(2,2), & |
---|
| 2771 | bdims(1,1) :bdims(1,2)),& |
---|
| 2772 | n_cell_c, MPI_REAL, target_idex, 101, & |
---|
| 2773 | comm_inter,status, ierr ) |
---|
| 2774 | |
---|
| 2775 | CALL MPI_RECV( v( & |
---|
| 2776 | bdims(3,1)+1:bdims(3,2), & |
---|
| 2777 | bdims(2,1) :bdims(2,2), & |
---|
| 2778 | bdims(1,1) :bdims(1,2)),& |
---|
| 2779 | n_cell_c, MPI_REAL, target_idex, 102, & |
---|
| 2780 | comm_inter,status, ierr ) |
---|
| 2781 | |
---|
| 2782 | CALL MPI_RECV(pt( & |
---|
| 2783 | bdims(3,1)+1:bdims(3,2), & |
---|
| 2784 | bdims(2,1) :bdims(2,2), & |
---|
| 2785 | bdims(1,1) :bdims(1,2)),& |
---|
| 2786 | n_cell_c, MPI_REAL, target_idex, 105, & |
---|
| 2787 | comm_inter,status, ierr ) |
---|
| 2788 | |
---|
[2514] | 2789 | IF ( humidity ) THEN |
---|
[2365] | 2790 | CALL MPI_RECV(q( & |
---|
| 2791 | bdims(3,1)+1:bdims(3,2), & |
---|
| 2792 | bdims(2,1) :bdims(2,2), & |
---|
| 2793 | bdims(1,1) :bdims(1,2)),& |
---|
| 2794 | n_cell_c, MPI_REAL, target_idex, 106, & |
---|
| 2795 | comm_inter,status, ierr ) |
---|
[2514] | 2796 | ENDIF |
---|
[2365] | 2797 | |
---|
| 2798 | CALL MPI_RECV( w( & |
---|
| 2799 | bdims(3,1) :bdims(3,2)-1, & |
---|
| 2800 | bdims(2,1) :bdims(2,2), & |
---|
| 2801 | bdims(1,1) :bdims(1,2)), & |
---|
| 2802 | n_cell_c, MPI_REAL, target_idex, 103, & |
---|
| 2803 | comm_inter,status, ierr ) |
---|
| 2804 | |
---|
| 2805 | end do |
---|
| 2806 | end do |
---|
| 2807 | |
---|
| 2808 | |
---|
| 2809 | |
---|
| 2810 | ! |
---|
| 2811 | !-- Boundary conditions for the velocity components u and v |
---|
| 2812 | |
---|
| 2813 | |
---|
| 2814 | IF ( ibc_uv_b == 0 ) THEN |
---|
| 2815 | u(nzb,:,:) = 0.0_wp |
---|
| 2816 | v(nzb,:,:) = 0.0_wp |
---|
| 2817 | ELSE |
---|
| 2818 | u(nzb,:,:) = u(nzb+1,:,:) |
---|
| 2819 | v(nzb,:,:) = v(nzb+1,:,:) |
---|
| 2820 | END IF |
---|
| 2821 | ! |
---|
| 2822 | !-- Boundary conditions for the velocity components w |
---|
| 2823 | |
---|
| 2824 | w(nzb,:,:) = 0.0_wp |
---|
| 2825 | |
---|
| 2826 | ! |
---|
| 2827 | !-- Temperature at bottom boundary. |
---|
| 2828 | !-- Neumann, zero-gradient |
---|
| 2829 | IF ( ibc_pt_b == 1 ) THEN |
---|
| 2830 | DO l = 0, 1 |
---|
[4102] | 2831 | DO m = 1, bc_h(l)%ns |
---|
| 2832 | i = bc_h(l)%i(m) |
---|
| 2833 | j = bc_h(l)%j(m) |
---|
| 2834 | k = bc_h(l)%k(m) |
---|
| 2835 | pt(k+bc_h(l)%koff,j,i) = pt(k,j,i) |
---|
| 2836 | ENDDO |
---|
| 2837 | ENDDO |
---|
[2365] | 2838 | ENDIF |
---|
| 2839 | |
---|
| 2840 | |
---|
| 2841 | CALL exchange_horiz( u, nbgp ) |
---|
| 2842 | CALL exchange_horiz( v, nbgp ) |
---|
| 2843 | CALL exchange_horiz( w, nbgp ) |
---|
| 2844 | CALL exchange_horiz( pt, nbgp ) |
---|
| 2845 | |
---|
| 2846 | |
---|
| 2847 | ELSEIF ( coupling_mode == 'vnested_fine' ) THEN |
---|
| 2848 | ! Send data to coarse grid for anterpolation |
---|
| 2849 | |
---|
| 2850 | offset(1) = pcoord(1) / ( pdims(1)/pdims_partner(1) ) |
---|
| 2851 | offset(2) = pcoord(2) / ( pdims(2)/pdims_partner(2) ) |
---|
| 2852 | map_coord(1) = offset(1) |
---|
| 2853 | map_coord(2) = offset(2) |
---|
| 2854 | target_idex = c_rnk_lst(map_coord(1),map_coord(2)) |
---|
| 2855 | |
---|
| 2856 | !-- Limit anterpolation level to nzt - z nesting ratio (a pseudo-buffer layer) |
---|
| 2857 | bdims (1,1) = nxl |
---|
| 2858 | bdims (1,2) = nxr |
---|
| 2859 | bdims (2,1) = nys |
---|
| 2860 | bdims (2,2) = nyn |
---|
| 2861 | bdims (3,1) = nzb |
---|
| 2862 | bdims (3,2) = nzt-cfratio(3) |
---|
| 2863 | |
---|
| 2864 | CALL MPI_SEND( bdims, 6, MPI_INTEGER, target_idex, 10, & |
---|
| 2865 | comm_inter, ierr ) |
---|
| 2866 | |
---|
| 2867 | CALL MPI_RECV( bdims_rem, 6, MPI_INTEGER, target_idex, 9, & |
---|
| 2868 | comm_inter,status, ierr ) |
---|
| 2869 | |
---|
| 2870 | |
---|
| 2871 | ALLOCATE( work3d ( & |
---|
| 2872 | bdims_rem(3,1)+1:bdims_rem(3,2), & |
---|
| 2873 | bdims_rem(2,1) :bdims_rem(2,2), & |
---|
| 2874 | bdims_rem(1,1) :bdims_rem(1,2))) |
---|
| 2875 | |
---|
| 2876 | |
---|
| 2877 | anterpol3d => u |
---|
[2514] | 2878 | |
---|
[3241] | 2879 | CALL anterpolate_to_crse_u |
---|
[2365] | 2880 | CALL MPI_SEND( work3d, 1, TYPE_VNEST_ANTER, target_idex, & |
---|
[2514] | 2881 | 101, comm_inter, ierr) |
---|
[2365] | 2882 | |
---|
| 2883 | anterpol3d => v |
---|
| 2884 | |
---|
[3241] | 2885 | CALL anterpolate_to_crse_v |
---|
[2365] | 2886 | CALL MPI_SEND( work3d, 1, TYPE_VNEST_ANTER, target_idex, & |
---|
[2514] | 2887 | 102, comm_inter, ierr) |
---|
[2365] | 2888 | |
---|
| 2889 | anterpol3d => pt |
---|
| 2890 | |
---|
[3241] | 2891 | CALL anterpolate_to_crse_s |
---|
[2365] | 2892 | CALL MPI_SEND( work3d, 1, TYPE_VNEST_ANTER, target_idex, & |
---|
[2514] | 2893 | 105, comm_inter, ierr) |
---|
[2365] | 2894 | |
---|
| 2895 | |
---|
| 2896 | IF ( humidity ) THEN |
---|
| 2897 | |
---|
| 2898 | anterpol3d => q |
---|
| 2899 | |
---|
[3241] | 2900 | CALL anterpolate_to_crse_s |
---|
[2365] | 2901 | CALL MPI_SEND( work3d, 1, TYPE_VNEST_ANTER, target_idex, & |
---|
[2514] | 2902 | 106, comm_inter, ierr) |
---|
[2365] | 2903 | ENDIF |
---|
| 2904 | |
---|
| 2905 | |
---|
| 2906 | DEALLOCATE( work3d ) |
---|
| 2907 | ALLOCATE( work3d ( bdims_rem(3,1) :bdims_rem(3,2)-1, & |
---|
| 2908 | bdims_rem(2,1) :bdims_rem(2,2), & |
---|
| 2909 | bdims_rem(1,1) :bdims_rem(1,2))) |
---|
| 2910 | anterpol3d => w |
---|
[3241] | 2911 | CALL anterpolate_to_crse_w |
---|
[2365] | 2912 | CALL MPI_SEND( work3d, 1, TYPE_VNEST_ANTER, target_idex, & |
---|
[2514] | 2913 | 103, comm_inter, ierr) |
---|
[2365] | 2914 | |
---|
| 2915 | NULLIFY ( anterpol3d ) |
---|
| 2916 | DEALLOCATE( work3d ) |
---|
| 2917 | |
---|
| 2918 | ENDIF |
---|
| 2919 | |
---|
| 2920 | |
---|
| 2921 | |
---|
| 2922 | CONTAINS |
---|
[3241] | 2923 | SUBROUTINE anterpolate_to_crse_u |
---|
[2365] | 2924 | |
---|
| 2925 | |
---|
| 2926 | USE arrays_3d |
---|
| 2927 | USE control_parameters |
---|
| 2928 | USE grid_variables |
---|
| 2929 | USE indices |
---|
| 2930 | USE pegrid |
---|
| 2931 | |
---|
| 2932 | |
---|
| 2933 | IMPLICIT NONE |
---|
[2712] | 2934 | |
---|
| 2935 | INTEGER(iwp) :: i |
---|
| 2936 | INTEGER(iwp) :: j |
---|
| 2937 | INTEGER(iwp) :: k |
---|
| 2938 | INTEGER(iwp) :: iif |
---|
| 2939 | INTEGER(iwp) :: jjf |
---|
| 2940 | INTEGER(iwp) :: kkf |
---|
| 2941 | INTEGER(iwp) :: bottomy |
---|
| 2942 | INTEGER(iwp) :: bottomz |
---|
| 2943 | INTEGER(iwp) :: topy |
---|
| 2944 | INTEGER(iwp) :: topz |
---|
| 2945 | REAL(wp) :: aweight |
---|
[2365] | 2946 | |
---|
| 2947 | ! |
---|
| 2948 | !-- Anterpolation of the velocity components u |
---|
| 2949 | !-- only values in yz-planes that coincide in the fine and |
---|
| 2950 | !-- the coarse grid are considered |
---|
| 2951 | |
---|
| 2952 | DO k = bdims_rem(3,1)+1, bdims_rem(3,2) |
---|
| 2953 | |
---|
| 2954 | bottomz = (dzc/dzf) * (k-1) + 1 |
---|
| 2955 | topz = (dzc/dzf) * k |
---|
| 2956 | |
---|
| 2957 | DO j = bdims_rem(2,1),bdims_rem(2,2) |
---|
| 2958 | |
---|
| 2959 | bottomy = (nyf+1) / (nyc+1) * j |
---|
| 2960 | topy = (nyf+1) / (nyc+1) * (j+1) - 1 |
---|
| 2961 | |
---|
| 2962 | DO i = bdims_rem(1,1),bdims_rem(1,2) |
---|
| 2963 | |
---|
[2712] | 2964 | iif = (nxf+1) / (nxc+1) * i |
---|
[2365] | 2965 | |
---|
| 2966 | aweight = 0.0 |
---|
| 2967 | |
---|
[2712] | 2968 | DO kkf = bottomz, topz |
---|
| 2969 | DO jjf = bottomy, topy |
---|
[2365] | 2970 | |
---|
[2712] | 2971 | aweight = aweight + anterpol3d(kkf,jjf,iif) * & |
---|
[2365] | 2972 | (dzf/dzc) * (dyf/dyc) |
---|
| 2973 | |
---|
| 2974 | END DO |
---|
| 2975 | END DO |
---|
| 2976 | |
---|
| 2977 | work3d(k,j,i) = aweight |
---|
| 2978 | |
---|
| 2979 | END DO |
---|
| 2980 | |
---|
| 2981 | END DO |
---|
| 2982 | |
---|
| 2983 | END DO |
---|
| 2984 | |
---|
| 2985 | |
---|
| 2986 | |
---|
| 2987 | END SUBROUTINE anterpolate_to_crse_u |
---|
| 2988 | |
---|
| 2989 | |
---|
[3241] | 2990 | SUBROUTINE anterpolate_to_crse_v |
---|
[2365] | 2991 | |
---|
| 2992 | |
---|
| 2993 | USE arrays_3d |
---|
| 2994 | USE control_parameters |
---|
| 2995 | USE grid_variables |
---|
| 2996 | USE indices |
---|
| 2997 | USE pegrid |
---|
| 2998 | |
---|
| 2999 | |
---|
| 3000 | IMPLICIT NONE |
---|
[2712] | 3001 | |
---|
| 3002 | INTEGER(iwp) :: i |
---|
| 3003 | INTEGER(iwp) :: j |
---|
| 3004 | INTEGER(iwp) :: k |
---|
| 3005 | INTEGER(iwp) :: iif |
---|
| 3006 | INTEGER(iwp) :: jjf |
---|
| 3007 | INTEGER(iwp) :: kkf |
---|
| 3008 | INTEGER(iwp) :: bottomx |
---|
| 3009 | INTEGER(iwp) :: bottomz |
---|
| 3010 | INTEGER(iwp) :: topx |
---|
| 3011 | INTEGER(iwp) :: topz |
---|
| 3012 | REAL(wp) :: aweight |
---|
| 3013 | |
---|
[2365] | 3014 | ! |
---|
| 3015 | !-- Anterpolation of the velocity components v |
---|
| 3016 | !-- only values in xz-planes that coincide in the fine and |
---|
| 3017 | !-- the coarse grid are considered |
---|
| 3018 | |
---|
| 3019 | DO k = bdims_rem(3,1)+1, bdims_rem(3,2) |
---|
| 3020 | |
---|
| 3021 | bottomz = (dzc/dzf) * (k-1) + 1 |
---|
| 3022 | topz = (dzc/dzf) * k |
---|
| 3023 | |
---|
| 3024 | DO j = bdims_rem(2,1), bdims_rem(2,2) |
---|
| 3025 | |
---|
[2712] | 3026 | jjf = (nyf+1) / (nyc+1) * j |
---|
[2365] | 3027 | |
---|
| 3028 | DO i = bdims_rem(1,1), bdims_rem(1,2) |
---|
| 3029 | |
---|
| 3030 | bottomx = (nxf+1) / (nxc+1) * i |
---|
| 3031 | topx = (nxf+1) / (nxc+1) * (i+1) - 1 |
---|
| 3032 | |
---|
| 3033 | aweight = 0.0 |
---|
| 3034 | |
---|
[2712] | 3035 | DO kkf = bottomz, topz |
---|
| 3036 | DO iif = bottomx, topx |
---|
[2365] | 3037 | |
---|
[2712] | 3038 | aweight = aweight + anterpol3d(kkf,jjf,iif) * & |
---|
[2365] | 3039 | (dzf/dzc) * (dxf/dxc) |
---|
| 3040 | |
---|
| 3041 | |
---|
| 3042 | END DO |
---|
| 3043 | END DO |
---|
| 3044 | |
---|
| 3045 | work3d(k,j,i) = aweight |
---|
| 3046 | |
---|
| 3047 | END DO |
---|
| 3048 | END DO |
---|
| 3049 | END DO |
---|
| 3050 | |
---|
| 3051 | |
---|
| 3052 | |
---|
| 3053 | END SUBROUTINE anterpolate_to_crse_v |
---|
| 3054 | |
---|
| 3055 | |
---|
[3241] | 3056 | SUBROUTINE anterpolate_to_crse_w |
---|
[2365] | 3057 | |
---|
| 3058 | |
---|
| 3059 | USE arrays_3d |
---|
| 3060 | USE control_parameters |
---|
| 3061 | USE grid_variables |
---|
| 3062 | USE indices |
---|
| 3063 | USE pegrid |
---|
| 3064 | |
---|
| 3065 | |
---|
| 3066 | IMPLICIT NONE |
---|
[2712] | 3067 | |
---|
| 3068 | INTEGER(iwp) :: i |
---|
| 3069 | INTEGER(iwp) :: j |
---|
| 3070 | INTEGER(iwp) :: k |
---|
| 3071 | INTEGER(iwp) :: iif |
---|
| 3072 | INTEGER(iwp) :: jjf |
---|
| 3073 | INTEGER(iwp) :: kkf |
---|
| 3074 | INTEGER(iwp) :: bottomx |
---|
| 3075 | INTEGER(iwp) :: bottomy |
---|
| 3076 | INTEGER(iwp) :: topx |
---|
| 3077 | INTEGER(iwp) :: topy |
---|
| 3078 | REAL(wp) :: aweight |
---|
| 3079 | |
---|
[2365] | 3080 | ! |
---|
| 3081 | !-- Anterpolation of the velocity components w |
---|
| 3082 | !-- only values in xy-planes that coincide in the fine and |
---|
| 3083 | !-- the coarse grid are considered |
---|
| 3084 | |
---|
| 3085 | DO k = bdims_rem(3,1), bdims_rem(3,2)-1 |
---|
| 3086 | |
---|
[2712] | 3087 | kkf = cfratio(3) * k |
---|
[2365] | 3088 | |
---|
| 3089 | DO j = bdims_rem(2,1), bdims_rem(2,2) |
---|
| 3090 | |
---|
| 3091 | bottomy = (nyf+1) / (nyc+1) * j |
---|
| 3092 | topy = (nyf+1) / (nyc+1) * (j+1) - 1 |
---|
| 3093 | |
---|
| 3094 | DO i = bdims_rem(1,1), bdims_rem(1,2) |
---|
| 3095 | |
---|
| 3096 | bottomx = (nxf+1) / (nxc+1) * i |
---|
| 3097 | topx = (nxf+1) / (nxc+1) * (i+1) - 1 |
---|
| 3098 | |
---|
| 3099 | aweight = 0.0 |
---|
| 3100 | |
---|
[2712] | 3101 | DO jjf = bottomy, topy |
---|
| 3102 | DO iif = bottomx, topx |
---|
[2365] | 3103 | |
---|
[2712] | 3104 | aweight = aweight + anterpol3d (kkf,jjf,iif) * & |
---|
[2365] | 3105 | (dxf/dxc) * (dyf/dyc) |
---|
| 3106 | |
---|
| 3107 | END DO |
---|
| 3108 | END DO |
---|
| 3109 | |
---|
| 3110 | work3d(k,j,i) = aweight |
---|
| 3111 | |
---|
| 3112 | END DO |
---|
| 3113 | |
---|
| 3114 | END DO |
---|
| 3115 | |
---|
| 3116 | END DO |
---|
| 3117 | |
---|
| 3118 | |
---|
| 3119 | END SUBROUTINE anterpolate_to_crse_w |
---|
| 3120 | |
---|
| 3121 | |
---|
[3241] | 3122 | SUBROUTINE anterpolate_to_crse_s |
---|
[2365] | 3123 | |
---|
| 3124 | |
---|
| 3125 | USE arrays_3d |
---|
| 3126 | USE control_parameters |
---|
| 3127 | USE grid_variables |
---|
| 3128 | USE indices |
---|
| 3129 | USE pegrid |
---|
| 3130 | |
---|
| 3131 | |
---|
| 3132 | IMPLICIT NONE |
---|
[2712] | 3133 | |
---|
| 3134 | INTEGER(iwp) :: i |
---|
| 3135 | INTEGER(iwp) :: j |
---|
| 3136 | INTEGER(iwp) :: k |
---|
| 3137 | INTEGER(iwp) :: iif |
---|
| 3138 | INTEGER(iwp) :: jjf |
---|
| 3139 | INTEGER(iwp) :: kkf |
---|
| 3140 | INTEGER(iwp) :: bottomx |
---|
| 3141 | INTEGER(iwp) :: bottomy |
---|
| 3142 | INTEGER(iwp) :: bottomz |
---|
| 3143 | INTEGER(iwp) :: topx |
---|
| 3144 | INTEGER(iwp) :: topy |
---|
| 3145 | INTEGER(iwp) :: topz |
---|
| 3146 | REAL(wp) :: aweight |
---|
[2365] | 3147 | |
---|
| 3148 | ! |
---|
| 3149 | !-- Anterpolation of the potential temperature pt |
---|
| 3150 | !-- all fine grid values are considered |
---|
| 3151 | |
---|
| 3152 | DO k = bdims_rem(3,1)+1, bdims_rem(3,2) |
---|
| 3153 | |
---|
| 3154 | bottomz = (dzc/dzf) * (k-1) + 1 |
---|
| 3155 | topz = (dzc/dzf) * k |
---|
| 3156 | |
---|
| 3157 | DO j = bdims_rem(2,1), bdims_rem(2,2) |
---|
| 3158 | |
---|
| 3159 | bottomy = (nyf+1) / (nyc+1) * j |
---|
| 3160 | topy = (nyf+1) / (nyc+1) * (j+1) - 1 |
---|
| 3161 | |
---|
| 3162 | DO i = bdims_rem(1,1), bdims_rem(1,2) |
---|
| 3163 | |
---|
| 3164 | bottomx = (nxf+1) / (nxc+1) * i |
---|
| 3165 | topx = (nxf+1) / (nxc+1) * (i+1) - 1 |
---|
| 3166 | |
---|
| 3167 | aweight = 0.0 |
---|
| 3168 | |
---|
[2712] | 3169 | DO kkf = bottomz, topz |
---|
| 3170 | DO jjf = bottomy, topy |
---|
| 3171 | DO iif = bottomx, topx |
---|
[2365] | 3172 | |
---|
[2712] | 3173 | aweight = aweight + anterpol3d(kkf,jjf,iif) * & |
---|
[2365] | 3174 | (dzf/dzc) * (dyf/dyc) * (dxf/dxc) |
---|
| 3175 | |
---|
| 3176 | END DO |
---|
| 3177 | END DO |
---|
| 3178 | END DO |
---|
| 3179 | |
---|
| 3180 | work3d(k,j,i) = aweight |
---|
| 3181 | |
---|
| 3182 | END DO |
---|
| 3183 | |
---|
| 3184 | END DO |
---|
| 3185 | |
---|
| 3186 | END DO |
---|
| 3187 | |
---|
| 3188 | |
---|
| 3189 | END SUBROUTINE anterpolate_to_crse_s |
---|
[2712] | 3190 | #endif |
---|
[2365] | 3191 | END SUBROUTINE vnest_anterpolate |
---|
| 3192 | |
---|
| 3193 | |
---|
| 3194 | |
---|
| 3195 | SUBROUTINE vnest_anterpolate_e |
---|
[2712] | 3196 | #if defined( __parallel ) |
---|
[2365] | 3197 | |
---|
| 3198 | !--------------------------------------------------------------------------------! |
---|
| 3199 | ! Description: |
---|
| 3200 | ! ------------ |
---|
| 3201 | ! Anterpolate TKE from fine grid to coarse grid. |
---|
| 3202 | !------------------------------------------------------------------------------! |
---|
| 3203 | |
---|
| 3204 | USE arrays_3d |
---|
| 3205 | USE control_parameters |
---|
| 3206 | USE grid_variables |
---|
| 3207 | USE indices |
---|
| 3208 | USE interfaces |
---|
| 3209 | USE pegrid |
---|
| 3210 | |
---|
| 3211 | |
---|
| 3212 | IMPLICIT NONE |
---|
| 3213 | |
---|
[2712] | 3214 | REAL(wp) :: time_since_reference_point_rem |
---|
| 3215 | INTEGER(iwp) :: i |
---|
| 3216 | INTEGER(iwp) :: j |
---|
[2365] | 3217 | |
---|
| 3218 | ! |
---|
| 3219 | !-- In case of model termination initiated by the remote model |
---|
| 3220 | !-- (terminate_coupled_remote > 0), initiate termination of the local model. |
---|
| 3221 | !-- The rest of the coupler must then be skipped because it would cause an MPI |
---|
| 3222 | !-- intercomminucation hang. |
---|
| 3223 | !-- If necessary, the coupler will be called at the beginning of the next |
---|
| 3224 | !-- restart run. |
---|
| 3225 | |
---|
| 3226 | IF ( myid == 0) THEN |
---|
[3045] | 3227 | CALL MPI_SENDRECV( terminate_coupled, 1, MPI_INTEGER, & |
---|
| 3228 | target_id, 0, & |
---|
| 3229 | terminate_coupled_remote, 1, MPI_INTEGER, & |
---|
| 3230 | target_id, 0, & |
---|
[2365] | 3231 | comm_inter, status, ierr ) |
---|
| 3232 | ENDIF |
---|
[3045] | 3233 | CALL MPI_BCAST( terminate_coupled_remote, 1, MPI_INTEGER, 0, comm2d, & |
---|
[2365] | 3234 | ierr ) |
---|
| 3235 | |
---|
| 3236 | IF ( terminate_coupled_remote > 0 ) THEN |
---|
[3045] | 3237 | WRITE( message_string, * ) 'remote model "', & |
---|
| 3238 | TRIM( coupling_mode_remote ), & |
---|
| 3239 | '" terminated', & |
---|
[3046] | 3240 | '&with terminate_coupled_remote = ', & |
---|
[3045] | 3241 | terminate_coupled_remote, & |
---|
[3046] | 3242 | '&local model "', TRIM( coupling_mode ), & |
---|
[3045] | 3243 | '" has', & |
---|
[3046] | 3244 | '&terminate_coupled = ', & |
---|
[2365] | 3245 | terminate_coupled |
---|
| 3246 | CALL message( 'vnest_anterpolate_e', 'PA0310', 1, 2, 0, 6, 0 ) |
---|
| 3247 | RETURN |
---|
| 3248 | ENDIF |
---|
| 3249 | |
---|
| 3250 | |
---|
| 3251 | ! |
---|
| 3252 | !-- Exchange the current simulated time between the models |
---|
| 3253 | IF ( myid == 0 ) THEN |
---|
| 3254 | |
---|
| 3255 | CALL MPI_SEND( time_since_reference_point, 1, MPI_REAL, target_id, & |
---|
| 3256 | 11, comm_inter, ierr ) |
---|
| 3257 | CALL MPI_RECV( time_since_reference_point_rem, 1, MPI_REAL, & |
---|
| 3258 | target_id, 11, comm_inter, status, ierr ) |
---|
| 3259 | |
---|
| 3260 | ENDIF |
---|
| 3261 | |
---|
| 3262 | CALL MPI_BCAST( time_since_reference_point_rem, 1, MPI_REAL, 0, comm2d, & |
---|
| 3263 | ierr ) |
---|
| 3264 | |
---|
| 3265 | IF ( coupling_mode == 'vnested_crse' ) THEN |
---|
| 3266 | ! Receive data from fine grid for anterpolation |
---|
| 3267 | |
---|
| 3268 | offset(1) = ( pdims_partner(1) / pdims(1) ) * pcoord(1) |
---|
| 3269 | offset(2) = ( pdims_partner(2) / pdims(2) ) * pcoord(2) |
---|
| 3270 | |
---|
| 3271 | do j = 0, ( pdims_partner(2) / pdims(2) ) - 1 |
---|
| 3272 | do i = 0, ( pdims_partner(1) / pdims(1) ) - 1 |
---|
| 3273 | map_coord(1) = i+offset(1) |
---|
| 3274 | map_coord(2) = j+offset(2) |
---|
| 3275 | |
---|
| 3276 | target_idex = f_rnk_lst(map_coord(1),map_coord(2)) + numprocs |
---|
| 3277 | |
---|
| 3278 | bdims (1,1) = f2c_dims_cg (0,map_coord(1),map_coord(2)) |
---|
| 3279 | bdims (1,2) = f2c_dims_cg (1,map_coord(1),map_coord(2)) |
---|
| 3280 | bdims (2,1) = f2c_dims_cg (2,map_coord(1),map_coord(2)) |
---|
| 3281 | bdims (2,2) = f2c_dims_cg (3,map_coord(1),map_coord(2)) |
---|
| 3282 | bdims (3,1) = f2c_dims_cg (4,map_coord(1),map_coord(2)) |
---|
| 3283 | bdims (3,2) = f2c_dims_cg (5,map_coord(1),map_coord(2)) |
---|
| 3284 | |
---|
| 3285 | |
---|
| 3286 | n_cell_c = (bdims(1,2)-bdims(1,1)+1) * & |
---|
| 3287 | (bdims(2,2)-bdims(2,1)+1) * & |
---|
| 3288 | (bdims(3,2)-bdims(3,1)+0) |
---|
| 3289 | |
---|
| 3290 | |
---|
| 3291 | CALL MPI_RECV( e( bdims(3,1)+1:bdims(3,2), & |
---|
| 3292 | bdims(2,1) :bdims(2,2), & |
---|
| 3293 | bdims(1,1) :bdims(1,2)),& |
---|
| 3294 | n_cell_c, MPI_REAL, target_idex, 104, & |
---|
| 3295 | comm_inter,status, ierr ) |
---|
| 3296 | end do |
---|
| 3297 | end do |
---|
| 3298 | |
---|
| 3299 | |
---|
| 3300 | ! |
---|
| 3301 | !-- Boundary conditions |
---|
| 3302 | |
---|
| 3303 | IF ( .NOT. constant_diffusion ) THEN |
---|
| 3304 | e(nzb,:,:) = e(nzb+1,:,:) |
---|
| 3305 | END IF |
---|
| 3306 | |
---|
| 3307 | IF ( .NOT. constant_diffusion ) CALL exchange_horiz( e, nbgp ) |
---|
| 3308 | |
---|
| 3309 | ELSEIF ( coupling_mode == 'vnested_fine' ) THEN |
---|
| 3310 | ! Send data to coarse grid for anterpolation |
---|
| 3311 | |
---|
| 3312 | offset(1) = pcoord(1) / ( pdims(1)/pdims_partner(1) ) |
---|
| 3313 | offset(2) = pcoord(2) / ( pdims(2)/pdims_partner(2) ) |
---|
| 3314 | map_coord(1) = offset(1) |
---|
| 3315 | map_coord(2) = offset(2) |
---|
| 3316 | target_idex = c_rnk_lst(map_coord(1),map_coord(2)) |
---|
| 3317 | |
---|
| 3318 | bdims_rem (1,1) = f2c_dims_fg (0) |
---|
| 3319 | bdims_rem (1,2) = f2c_dims_fg (1) |
---|
| 3320 | bdims_rem (2,1) = f2c_dims_fg (2) |
---|
| 3321 | bdims_rem (2,2) = f2c_dims_fg (3) |
---|
| 3322 | bdims_rem (3,1) = f2c_dims_fg (4) |
---|
| 3323 | bdims_rem (3,2) = f2c_dims_fg (5) |
---|
| 3324 | |
---|
| 3325 | ALLOCATE( work3d ( & |
---|
| 3326 | bdims_rem(3,1)+1:bdims_rem(3,2), & |
---|
| 3327 | bdims_rem(2,1) :bdims_rem(2,2), & |
---|
| 3328 | bdims_rem(1,1) :bdims_rem(1,2))) |
---|
| 3329 | |
---|
| 3330 | anterpol3d => e |
---|
| 3331 | |
---|
[3241] | 3332 | CALL anterpolate_to_crse_e |
---|
[2365] | 3333 | |
---|
| 3334 | CALL MPI_SEND( work3d, 1, TYPE_VNEST_ANTER, target_idex, & |
---|
[2514] | 3335 | 104, comm_inter, ierr) |
---|
[2365] | 3336 | |
---|
| 3337 | NULLIFY ( anterpol3d ) |
---|
| 3338 | DEALLOCATE( work3d ) |
---|
| 3339 | ENDIF |
---|
| 3340 | |
---|
| 3341 | |
---|
| 3342 | CONTAINS |
---|
| 3343 | |
---|
| 3344 | |
---|
| 3345 | |
---|
| 3346 | |
---|
| 3347 | |
---|
[3241] | 3348 | SUBROUTINE anterpolate_to_crse_e |
---|
[2365] | 3349 | |
---|
| 3350 | |
---|
| 3351 | USE arrays_3d |
---|
| 3352 | USE control_parameters |
---|
| 3353 | USE grid_variables |
---|
| 3354 | USE indices |
---|
| 3355 | USE pegrid |
---|
| 3356 | |
---|
| 3357 | |
---|
| 3358 | IMPLICIT NONE |
---|
[2712] | 3359 | |
---|
| 3360 | INTEGER(iwp) :: i |
---|
| 3361 | INTEGER(iwp) :: j |
---|
| 3362 | INTEGER(iwp) :: k |
---|
| 3363 | INTEGER(iwp) :: iif |
---|
| 3364 | INTEGER(iwp) :: jjf |
---|
| 3365 | INTEGER(iwp) :: kkf |
---|
| 3366 | INTEGER(iwp) :: bottomx |
---|
| 3367 | INTEGER(iwp) :: bottomy |
---|
| 3368 | INTEGER(iwp) :: bottomz |
---|
| 3369 | INTEGER(iwp) :: topx |
---|
| 3370 | INTEGER(iwp) :: topy |
---|
| 3371 | INTEGER(iwp) :: topz |
---|
| 3372 | REAL(wp) :: aweight_a |
---|
| 3373 | REAL(wp) :: aweight_b |
---|
| 3374 | REAL(wp) :: aweight_c |
---|
| 3375 | REAL(wp) :: aweight_d |
---|
| 3376 | REAL(wp) :: aweight_e |
---|
| 3377 | REAL(wp) :: energ |
---|
[2365] | 3378 | |
---|
| 3379 | DO k = bdims_rem(3,1)+1, bdims_rem(3,2) |
---|
| 3380 | |
---|
| 3381 | bottomz = (dzc/dzf) * (k-1) + 1 |
---|
| 3382 | topz = (dzc/dzf) * k |
---|
| 3383 | |
---|
| 3384 | DO j = bdims_rem(2,1), bdims_rem(2,2) |
---|
| 3385 | |
---|
| 3386 | bottomy = (nyf+1) / (nyc+1) * j |
---|
| 3387 | topy = (nyf+1) / (nyc+1) * (j+1) - 1 |
---|
| 3388 | |
---|
| 3389 | DO i = bdims_rem(1,1), bdims_rem(1,2) |
---|
| 3390 | |
---|
| 3391 | bottomx = (nxf+1) / (nxc+1) * i |
---|
| 3392 | topx = (nxf+1) / (nxc+1) * (i+1) - 1 |
---|
| 3393 | |
---|
| 3394 | aweight_a = 0.0 |
---|
| 3395 | aweight_b = 0.0 |
---|
| 3396 | aweight_c = 0.0 |
---|
| 3397 | aweight_d = 0.0 |
---|
| 3398 | aweight_e = 0.0 |
---|
| 3399 | |
---|
[2712] | 3400 | DO kkf = bottomz, topz |
---|
| 3401 | DO jjf = bottomy, topy |
---|
| 3402 | DO iif = bottomx, topx |
---|
[2365] | 3403 | |
---|
[2712] | 3404 | aweight_a = aweight_a + anterpol3d(kkf,jjf,iif) * & |
---|
[2365] | 3405 | (dzf/dzc) * (dyf/dyc) * (dxf/dxc) |
---|
| 3406 | |
---|
| 3407 | |
---|
[2712] | 3408 | energ = ( 0.5 * ( u(kkf,jjf,iif) + u(kkf,jjf,iif+1) ) )**2.0 + & |
---|
| 3409 | ( 0.5 * ( v(kkf,jjf,iif) + v(kkf,jjf+1,iif) ) )**2.0 + & |
---|
| 3410 | ( 0.5 * ( w(kkf-1,jjf,iif) + w(kkf,jjf,iif) ) )**2.0 |
---|
[2365] | 3411 | |
---|
| 3412 | aweight_b = aweight_b + energ * & |
---|
| 3413 | (dzf/dzc) * (dyf/dyc) * (dxf/dxc) |
---|
| 3414 | |
---|
[2712] | 3415 | aweight_c = aweight_c + 0.5 * ( u(kkf,jjf,iif) + u(kkf,jjf,iif+1) ) * & |
---|
[2365] | 3416 | (dzf/dzc) * (dyf/dyc) * (dxf/dxc) |
---|
| 3417 | |
---|
[2712] | 3418 | aweight_d = aweight_d + 0.5 * ( v(kkf,jjf,iif) + v(kkf,jjf+1,iif) ) * & |
---|
[2365] | 3419 | (dzf/dzc) * (dyf/dyc) * (dxf/dxc) |
---|
| 3420 | |
---|
[2712] | 3421 | aweight_e = aweight_e + 0.5 * ( w(kkf-1,jjf,iif) + w(kkf,jjf,iif) ) * & |
---|
[2365] | 3422 | (dzf/dzc) * (dyf/dyc) * (dxf/dxc) |
---|
| 3423 | |
---|
| 3424 | |
---|
| 3425 | END DO |
---|
| 3426 | END DO |
---|
| 3427 | END DO |
---|
| 3428 | |
---|
| 3429 | work3d(k,j,i) = aweight_a + 0.5 * ( aweight_b - & |
---|
| 3430 | aweight_c**2.0 - & |
---|
| 3431 | aweight_d**2.0 - & |
---|
| 3432 | aweight_e**2.0 ) |
---|
| 3433 | |
---|
| 3434 | END DO |
---|
| 3435 | |
---|
| 3436 | END DO |
---|
| 3437 | |
---|
| 3438 | END DO |
---|
| 3439 | |
---|
| 3440 | |
---|
| 3441 | |
---|
| 3442 | END SUBROUTINE anterpolate_to_crse_e |
---|
[2712] | 3443 | #endif |
---|
[2365] | 3444 | END SUBROUTINE vnest_anterpolate_e |
---|
| 3445 | |
---|
| 3446 | SUBROUTINE vnest_init_pegrid_rank |
---|
[2712] | 3447 | #if defined( __parallel ) |
---|
[2365] | 3448 | ! Domain decomposition and exchange of grid variables between coarse and fine |
---|
| 3449 | ! Given processor coordinates as index f_rnk_lst(pcoord(1), pcoord(2)) |
---|
| 3450 | ! returns the rank. A single coarse block will have to send data to multiple |
---|
| 3451 | ! fine blocks. In the coarse grid the pcoords of the remote block is first found and then using |
---|
| 3452 | ! f_rnk_lst the target_idex is identified. |
---|
| 3453 | ! blk_dim stores the index limits of a given block. blk_dim_remote is received |
---|
| 3454 | ! from the asscoiated nest partner. |
---|
| 3455 | ! cf_ratio(1:3) is the ratio between fine and coarse grid: nxc/nxf, nyc/nyf and |
---|
| 3456 | ! ceiling(dxc/dxf) |
---|
| 3457 | |
---|
| 3458 | |
---|
[3241] | 3459 | USE control_parameters, & |
---|
| 3460 | ONLY: coupling_mode |
---|
[2365] | 3461 | |
---|
| 3462 | USE kinds |
---|
| 3463 | |
---|
| 3464 | USE pegrid |
---|
| 3465 | |
---|
| 3466 | |
---|
| 3467 | IMPLICIT NONE |
---|
| 3468 | |
---|
[2712] | 3469 | INTEGER(iwp) :: dest_rnk |
---|
| 3470 | INTEGER(iwp) :: i !< |
---|
[2365] | 3471 | |
---|
| 3472 | IF (myid == 0) THEN |
---|
| 3473 | IF ( coupling_mode == 'vnested_crse') THEN |
---|
| 3474 | CALL MPI_SEND( pdims, 2, MPI_INTEGER, numprocs, 33, comm_inter, & |
---|
| 3475 | ierr ) |
---|
[3241] | 3476 | CALL MPI_RECV( pdims_partner, 2, MPI_INTEGER, numprocs, 66, & |
---|
[2365] | 3477 | comm_inter, status, ierr ) |
---|
| 3478 | ELSEIF ( coupling_mode == 'vnested_fine') THEN |
---|
| 3479 | CALL MPI_RECV( pdims_partner, 2, MPI_INTEGER, 0, 33, & |
---|
| 3480 | comm_inter, status, ierr ) |
---|
| 3481 | CALL MPI_SEND( pdims, 2, MPI_INTEGER, 0, 66, comm_inter, & |
---|
| 3482 | ierr ) |
---|
| 3483 | ENDIF |
---|
| 3484 | ENDIF |
---|
| 3485 | |
---|
| 3486 | |
---|
| 3487 | IF ( coupling_mode == 'vnested_crse') THEN |
---|
| 3488 | CALL MPI_BCAST( pdims_partner, 2, MPI_INTEGER, 0, comm2d, ierr ) |
---|
| 3489 | ALLOCATE( c_rnk_lst( 0:(pdims(1)-1) ,0:(pdims(2)-1) ) ) |
---|
| 3490 | ALLOCATE( f_rnk_lst( 0:(pdims_partner(1)-1) ,0:(pdims_partner(2)-1) ) ) |
---|
| 3491 | do i=0,numprocs-1 |
---|
| 3492 | CALL MPI_CART_COORDS( comm2d, i, ndim, pcoord, ierr ) |
---|
| 3493 | call MPI_Cart_rank(comm2d, pcoord, dest_rnk, ierr) |
---|
| 3494 | c_rnk_lst(pcoord(1),pcoord(2)) = dest_rnk |
---|
| 3495 | end do |
---|
| 3496 | ELSEIF ( coupling_mode == 'vnested_fine') THEN |
---|
| 3497 | CALL MPI_BCAST( pdims_partner, 2, MPI_INTEGER, 0, comm2d, ierr ) |
---|
| 3498 | ALLOCATE( c_rnk_lst( 0:(pdims_partner(1)-1) ,0:(pdims_partner(2)-1) ) ) |
---|
| 3499 | ALLOCATE( f_rnk_lst( 0:(pdims(1)-1) ,0:(pdims(2)-1) ) ) |
---|
| 3500 | |
---|
| 3501 | do i=0,numprocs-1 |
---|
| 3502 | CALL MPI_CART_COORDS( comm2d, i, ndim, pcoord, ierr ) |
---|
| 3503 | call MPI_Cart_rank(comm2d, pcoord, dest_rnk, ierr) |
---|
| 3504 | f_rnk_lst(pcoord(1),pcoord(2)) = dest_rnk |
---|
| 3505 | enddo |
---|
| 3506 | ENDIF |
---|
| 3507 | |
---|
| 3508 | |
---|
| 3509 | IF ( coupling_mode == 'vnested_crse') THEN |
---|
| 3510 | if (myid == 0) then |
---|
| 3511 | CALL MPI_SEND( c_rnk_lst, pdims(1)*pdims(2), MPI_INTEGER, numprocs, 0, comm_inter, ierr ) |
---|
| 3512 | CALL MPI_RECV( f_rnk_lst, pdims_partner(1)*pdims_partner(2), MPI_INTEGER, numprocs, 4, comm_inter,status, ierr ) |
---|
| 3513 | end if |
---|
| 3514 | CALL MPI_BCAST( f_rnk_lst, pdims_partner(1)*pdims_partner(2), MPI_INTEGER, 0, comm2d, ierr ) |
---|
| 3515 | ELSEIF ( coupling_mode == 'vnested_fine') THEN |
---|
| 3516 | if (myid == 0) then |
---|
| 3517 | CALL MPI_RECV( c_rnk_lst, pdims_partner(1)*pdims_partner(2), MPI_INTEGER, 0, 0, comm_inter,status, ierr ) |
---|
| 3518 | CALL MPI_SEND( f_rnk_lst, pdims(1)*pdims(2), MPI_INTEGER, 0, 4, comm_inter, ierr ) |
---|
| 3519 | end if |
---|
| 3520 | CALL MPI_BCAST( c_rnk_lst, pdims_partner(1)*pdims_partner(2), MPI_INTEGER, 0, comm2d, ierr ) |
---|
| 3521 | ENDIF |
---|
| 3522 | |
---|
| 3523 | !-- Reason for MPI error unknown; solved if three lines duplicated |
---|
| 3524 | CALL MPI_CART_COORDS( comm2d, myid, ndim, pcoord, ierr ) |
---|
| 3525 | CALL MPI_CART_SHIFT( comm2d, 0, 1, pleft, pright, ierr ) |
---|
| 3526 | CALL MPI_CART_SHIFT( comm2d, 1, 1, psouth, pnorth, ierr ) |
---|
| 3527 | |
---|
| 3528 | |
---|
[2712] | 3529 | #endif |
---|
[2365] | 3530 | |
---|
| 3531 | END SUBROUTINE vnest_init_pegrid_rank |
---|
| 3532 | |
---|
| 3533 | |
---|
| 3534 | SUBROUTINE vnest_init_pegrid_domain |
---|
[2712] | 3535 | #if defined( __parallel ) |
---|
[2365] | 3536 | |
---|
[3241] | 3537 | USE control_parameters, & |
---|
| 3538 | ONLY: coupling_mode, coupling_topology, dz, & |
---|
[3065] | 3539 | dz_stretch_level_start, message_string |
---|
[2365] | 3540 | |
---|
[3241] | 3541 | USE grid_variables, & |
---|
[2365] | 3542 | ONLY: dx, dy |
---|
| 3543 | |
---|
[3241] | 3544 | USE indices, & |
---|
| 3545 | ONLY: nbgp, nx, ny, nz, nxl, nxr, nys, nyn, nzb, nzt |
---|
[2365] | 3546 | |
---|
| 3547 | USE kinds |
---|
| 3548 | |
---|
| 3549 | USE pegrid |
---|
| 3550 | |
---|
| 3551 | IMPLICIT NONE |
---|
| 3552 | |
---|
[2712] | 3553 | INTEGER(iwp) :: i !< |
---|
| 3554 | INTEGER(iwp) :: j !< |
---|
| 3555 | INTEGER(iwp) :: tempx |
---|
| 3556 | INTEGER(iwp) :: tempy |
---|
| 3557 | INTEGER(iwp) :: TYPE_INT_YZ |
---|
| 3558 | INTEGER(iwp) :: SIZEOFREAL |
---|
| 3559 | INTEGER(iwp) :: MTV_X |
---|
| 3560 | INTEGER(iwp) :: MTV_Y |
---|
| 3561 | INTEGER(iwp) :: MTV_Z |
---|
| 3562 | INTEGER(iwp) :: MTV_RX |
---|
| 3563 | INTEGER(iwp) :: MTV_RY |
---|
| 3564 | INTEGER(iwp) :: MTV_RZ |
---|
[2365] | 3565 | |
---|
| 3566 | ! |
---|
| 3567 | !-- Pass the number of grid points of the coarse model to |
---|
| 3568 | !-- the nested model and vice versa |
---|
| 3569 | IF ( coupling_mode == 'vnested_crse' ) THEN |
---|
| 3570 | |
---|
| 3571 | nxc = nx |
---|
| 3572 | nyc = ny |
---|
| 3573 | nzc = nz |
---|
| 3574 | dxc = dx |
---|
| 3575 | dyc = dy |
---|
[3065] | 3576 | dzc = dz(1) |
---|
[2365] | 3577 | cg_nprocs = numprocs |
---|
| 3578 | |
---|
| 3579 | IF ( myid == 0 ) THEN |
---|
| 3580 | |
---|
[3065] | 3581 | CALL MPI_SEND( nxc, 1, MPI_INTEGER , numprocs, 1, comm_inter, & |
---|
[2365] | 3582 | ierr ) |
---|
[3065] | 3583 | CALL MPI_SEND( nyc, 1, MPI_INTEGER , numprocs, 2, comm_inter, & |
---|
[2365] | 3584 | ierr ) |
---|
[3065] | 3585 | CALL MPI_SEND( nzc, 1, MPI_INTEGER , numprocs, 3, comm_inter, & |
---|
[2365] | 3586 | ierr ) |
---|
[3065] | 3587 | CALL MPI_SEND( dxc, 1, MPI_REAL , numprocs, 4, comm_inter, & |
---|
[2365] | 3588 | ierr ) |
---|
[3065] | 3589 | CALL MPI_SEND( dyc, 1, MPI_REAL , numprocs, 5, comm_inter, & |
---|
[2365] | 3590 | ierr ) |
---|
[3065] | 3591 | CALL MPI_SEND( dzc, 1, MPI_REAL , numprocs, 6, comm_inter, & |
---|
[2365] | 3592 | ierr ) |
---|
[3065] | 3593 | CALL MPI_SEND( pdims, 2, MPI_INTEGER, numprocs, 7, comm_inter, & |
---|
[2365] | 3594 | ierr ) |
---|
| 3595 | CALL MPI_SEND( cg_nprocs, 1, MPI_INTEGER, numprocs, 8, comm_inter, & |
---|
| 3596 | ierr ) |
---|
[3065] | 3597 | CALL MPI_RECV( nxf, 1, MPI_INTEGER, numprocs, 21, comm_inter, & |
---|
[2365] | 3598 | status, ierr ) |
---|
[3065] | 3599 | CALL MPI_RECV( nyf, 1, MPI_INTEGER, numprocs, 22, comm_inter, & |
---|
[2365] | 3600 | status, ierr ) |
---|
[3065] | 3601 | CALL MPI_RECV( nzf, 1, MPI_INTEGER, numprocs, 23, comm_inter, & |
---|
[2365] | 3602 | status, ierr ) |
---|
[3065] | 3603 | CALL MPI_RECV( dxf, 1, MPI_REAL, numprocs, 24, comm_inter, & |
---|
[2365] | 3604 | status, ierr ) |
---|
[3065] | 3605 | CALL MPI_RECV( dyf, 1, MPI_REAL, numprocs, 25, comm_inter, & |
---|
[2365] | 3606 | status, ierr ) |
---|
[3065] | 3607 | CALL MPI_RECV( dzf, 1, MPI_REAL, numprocs, 26, comm_inter, & |
---|
[2365] | 3608 | status, ierr ) |
---|
[3065] | 3609 | CALL MPI_RECV( pdims_partner, 2, MPI_INTEGER, & |
---|
[2365] | 3610 | numprocs, 27, comm_inter, status, ierr ) |
---|
[3065] | 3611 | CALL MPI_RECV( fg_nprocs, 1, MPI_INTEGER, & |
---|
[2365] | 3612 | numprocs, 28, comm_inter, status, ierr ) |
---|
| 3613 | ENDIF |
---|
| 3614 | |
---|
| 3615 | CALL MPI_BCAST( nxf, 1, MPI_INTEGER, 0, comm2d, ierr ) |
---|
| 3616 | CALL MPI_BCAST( nyf, 1, MPI_INTEGER, 0, comm2d, ierr ) |
---|
| 3617 | CALL MPI_BCAST( nzf, 1, MPI_INTEGER, 0, comm2d, ierr ) |
---|
| 3618 | CALL MPI_BCAST( dxf, 1, MPI_REAL, 0, comm2d, ierr ) |
---|
| 3619 | CALL MPI_BCAST( dyf, 1, MPI_REAL, 0, comm2d, ierr ) |
---|
| 3620 | CALL MPI_BCAST( dzf, 1, MPI_REAL, 0, comm2d, ierr ) |
---|
| 3621 | CALL MPI_BCAST( pdims_partner, 2, MPI_INTEGER, 0, comm2d, ierr ) |
---|
| 3622 | CALL MPI_BCAST( fg_nprocs, 1, MPI_INTEGER, 0, comm2d, ierr ) |
---|
[3065] | 3623 | |
---|
| 3624 | ! |
---|
| 3625 | !-- Check if stretching is used within the nested domain. ABS(...) is |
---|
| 3626 | !-- necessary because of the default value of -9999999.9_wp (negative) |
---|
| 3627 | IF ( ABS( dz_stretch_level_start(1) ) <= (nzf+1)*dzf ) THEN |
---|
| 3628 | message_string = 'Stretching in the parent domain is '// & |
---|
| 3629 | 'only allowed above the nested domain' |
---|
[3066] | 3630 | CALL message( 'vnest_init_pegrid_domain', 'PA0497', 1, 2, 0, 6, 0 ) |
---|
[3065] | 3631 | ENDIF |
---|
[2365] | 3632 | |
---|
| 3633 | ELSEIF ( coupling_mode == 'vnested_fine' ) THEN |
---|
| 3634 | |
---|
| 3635 | nxf = nx |
---|
| 3636 | nyf = ny |
---|
| 3637 | nzf = nz |
---|
| 3638 | dxf = dx |
---|
| 3639 | dyf = dy |
---|
[3065] | 3640 | dzf = dz(1) |
---|
[2365] | 3641 | fg_nprocs = numprocs |
---|
| 3642 | |
---|
| 3643 | IF ( myid == 0 ) THEN |
---|
| 3644 | |
---|
| 3645 | CALL MPI_RECV( nxc, 1, MPI_INTEGER, 0, 1, comm_inter, status, & |
---|
| 3646 | ierr ) |
---|
| 3647 | CALL MPI_RECV( nyc, 1, MPI_INTEGER, 0, 2, comm_inter, status, & |
---|
| 3648 | ierr ) |
---|
| 3649 | CALL MPI_RECV( nzc, 1, MPI_INTEGER, 0, 3, comm_inter, status, & |
---|
| 3650 | ierr ) |
---|
| 3651 | CALL MPI_RECV( dxc, 1, MPI_REAL, 0, 4, comm_inter, status, & |
---|
| 3652 | ierr ) |
---|
| 3653 | CALL MPI_RECV( dyc, 1, MPI_REAL, 0, 5, comm_inter, status, & |
---|
| 3654 | ierr ) |
---|
| 3655 | CALL MPI_RECV( dzc, 1, MPI_REAL, 0, 6, comm_inter, status, & |
---|
| 3656 | ierr ) |
---|
| 3657 | CALL MPI_RECV( pdims_partner, 2, MPI_INTEGER, 0, 7, comm_inter, & |
---|
| 3658 | status, ierr ) |
---|
| 3659 | CALL MPI_RECV( cg_nprocs, 1, MPI_INTEGER, 0, 8, comm_inter, & |
---|
| 3660 | status, ierr ) |
---|
| 3661 | CALL MPI_SEND( nxf, 1, MPI_INTEGER, 0, 21, comm_inter, ierr ) |
---|
| 3662 | CALL MPI_SEND( nyf, 1, MPI_INTEGER, 0, 22, comm_inter, ierr ) |
---|
| 3663 | CALL MPI_SEND( nzf, 1, MPI_INTEGER, 0, 23, comm_inter, ierr ) |
---|
| 3664 | CALL MPI_SEND( dxf, 1, MPI_REAL, 0, 24, comm_inter, ierr ) |
---|
| 3665 | CALL MPI_SEND( dyf, 1, MPI_REAL, 0, 25, comm_inter, ierr ) |
---|
| 3666 | CALL MPI_SEND( dzf, 1, MPI_REAL, 0, 26, comm_inter, ierr ) |
---|
| 3667 | CALL MPI_SEND( pdims,2,MPI_INTEGER, 0, 27, comm_inter, ierr ) |
---|
| 3668 | CALL MPI_SEND( fg_nprocs,1,MPI_INTEGER, 0, 28, comm_inter, ierr ) |
---|
| 3669 | ENDIF |
---|
| 3670 | |
---|
| 3671 | CALL MPI_BCAST( nxc, 1, MPI_INTEGER, 0, comm2d, ierr) |
---|
| 3672 | CALL MPI_BCAST( nyc, 1, MPI_INTEGER, 0, comm2d, ierr) |
---|
| 3673 | CALL MPI_BCAST( nzc, 1, MPI_INTEGER, 0, comm2d, ierr) |
---|
| 3674 | CALL MPI_BCAST( dxc, 1, MPI_REAL, 0, comm2d, ierr) |
---|
| 3675 | CALL MPI_BCAST( dyc, 1, MPI_REAL, 0, comm2d, ierr) |
---|
| 3676 | CALL MPI_BCAST( dzc, 1, MPI_REAL, 0, comm2d, ierr) |
---|
| 3677 | CALL MPI_BCAST( pdims_partner, 2, MPI_INTEGER, 0, comm2d, ierr) |
---|
| 3678 | CALL MPI_BCAST( cg_nprocs, 1, MPI_INTEGER, 0, comm2d, ierr) |
---|
| 3679 | |
---|
| 3680 | ENDIF |
---|
[3065] | 3681 | |
---|
[2365] | 3682 | ngp_c = ( nxc+1 + 2 * nbgp ) * ( nyc+1 + 2 * nbgp ) |
---|
| 3683 | ngp_f = ( nxf+1 + 2 * nbgp ) * ( nyf+1 + 2 * nbgp ) |
---|
| 3684 | |
---|
| 3685 | IF ( coupling_mode(1:8) == 'vnested_') coupling_topology = 1 |
---|
| 3686 | |
---|
| 3687 | |
---|
| 3688 | !-- Nesting Ratio: For each coarse grid cell how many fine grid cells exist |
---|
| 3689 | cfratio(1) = INT ( (nxf+1) / (nxc+1) ) |
---|
| 3690 | cfratio(2) = INT ( (nyf+1) / (nyc+1) ) |
---|
| 3691 | cfratio(3) = CEILING ( dzc / dzf ) |
---|
| 3692 | |
---|
| 3693 | !-- target_id is used only for exhange of information like simulated_time |
---|
| 3694 | !-- which are then MPI_BCAST to other processors in the group |
---|
| 3695 | IF ( myid == 0 ) THEN |
---|
| 3696 | |
---|
| 3697 | IF ( TRIM( coupling_mode ) == 'vnested_crse' ) THEN |
---|
| 3698 | target_id = numprocs |
---|
| 3699 | ELSE IF ( TRIM( coupling_mode ) == 'vnested_fine' ) THEN |
---|
| 3700 | target_id = 0 |
---|
| 3701 | ENDIF |
---|
| 3702 | |
---|
| 3703 | ENDIF |
---|
| 3704 | |
---|
| 3705 | !-- Store partner grid dimenstions and create MPI derived types |
---|
| 3706 | |
---|
| 3707 | IF ( coupling_mode == 'vnested_crse' ) THEN |
---|
| 3708 | |
---|
| 3709 | offset(1) = ( pdims_partner(1) / pdims(1) ) * pcoord(1) |
---|
| 3710 | offset(2) = ( pdims_partner(2) / pdims(2) ) * pcoord(2) |
---|
| 3711 | |
---|
[2514] | 3712 | tempx = ( pdims_partner(1) / pdims(1) ) - 1 |
---|
| 3713 | tempy = ( pdims_partner(2) / pdims(2) ) - 1 |
---|
[2365] | 3714 | ALLOCATE( c2f_dims_cg (0:5,offset(1):tempx+offset(1),offset(2):tempy+offset(2) ) ) |
---|
| 3715 | ALLOCATE( f2c_dims_cg (0:5,offset(1):tempx+offset(1),offset(2):tempy+offset(2) ) ) |
---|
| 3716 | |
---|
| 3717 | do j = 0, ( pdims_partner(2) / pdims(2) ) - 1 |
---|
| 3718 | do i = 0, ( pdims_partner(1) / pdims(1) ) - 1 |
---|
| 3719 | map_coord(1) = i+offset(1) |
---|
| 3720 | map_coord(2) = j+offset(2) |
---|
| 3721 | |
---|
| 3722 | target_idex = f_rnk_lst(map_coord(1),map_coord(2)) + numprocs |
---|
| 3723 | |
---|
| 3724 | CALL MPI_RECV( bdims_rem, 6, MPI_INTEGER, target_idex, 10, & |
---|
| 3725 | comm_inter,status, ierr ) |
---|
| 3726 | |
---|
| 3727 | !-- Store the CG dimensions that correspond to the FG partner; needed for FG top BC |
---|
| 3728 | !-- One CG can have multiple FG partners. The 3D array is mapped by partner proc co-ord |
---|
| 3729 | c2f_dims_cg (0,map_coord(1),map_coord(2)) = bdims_rem (1,1) / cfratio(1) |
---|
| 3730 | c2f_dims_cg (1,map_coord(1),map_coord(2)) = bdims_rem (1,2) / cfratio(1) |
---|
| 3731 | c2f_dims_cg (2,map_coord(1),map_coord(2)) = bdims_rem (2,1) / cfratio(2) |
---|
| 3732 | c2f_dims_cg (3,map_coord(1),map_coord(2)) = bdims_rem (2,2) / cfratio(2) |
---|
| 3733 | c2f_dims_cg (4,map_coord(1),map_coord(2)) = bdims_rem (3,2) / cfratio(3) |
---|
| 3734 | c2f_dims_cg (5,map_coord(1),map_coord(2)) =(bdims_rem (3,2) / cfratio(3)) + 2 |
---|
| 3735 | |
---|
| 3736 | !-- Store the CG dimensions that correspond to the FG partner; needed for anterpolation |
---|
| 3737 | f2c_dims_cg (0,map_coord(1),map_coord(2)) = bdims_rem (1,1) / cfratio(1) |
---|
| 3738 | f2c_dims_cg (1,map_coord(1),map_coord(2)) = bdims_rem (1,2) / cfratio(1) |
---|
| 3739 | f2c_dims_cg (2,map_coord(1),map_coord(2)) = bdims_rem (2,1) / cfratio(2) |
---|
| 3740 | f2c_dims_cg (3,map_coord(1),map_coord(2)) = bdims_rem (2,2) / cfratio(2) |
---|
| 3741 | f2c_dims_cg (4,map_coord(1),map_coord(2)) = bdims_rem (3,1) |
---|
| 3742 | f2c_dims_cg (5,map_coord(1),map_coord(2)) =(bdims_rem (3,2)-cfratio(3))/ cfratio(3) |
---|
| 3743 | |
---|
| 3744 | CALL MPI_SEND( c2f_dims_cg (:,map_coord(1),map_coord(2)), 6, & |
---|
[2514] | 3745 | MPI_INTEGER, target_idex, 100, comm_inter, ierr ) |
---|
[2365] | 3746 | |
---|
| 3747 | CALL MPI_SEND( f2c_dims_cg (:,map_coord(1),map_coord(2)), 6, & |
---|
[2514] | 3748 | MPI_INTEGER, target_idex, 101, comm_inter, ierr ) |
---|
[2365] | 3749 | |
---|
| 3750 | end do |
---|
| 3751 | end do |
---|
| 3752 | |
---|
| 3753 | !-- A derived data type to pack 3 Z-levels of CG to set FG top BC |
---|
| 3754 | MTV_X = ( nxr - nxl + 1 ) + 2*nbgp |
---|
| 3755 | MTV_Y = ( nyn - nys + 1 ) + 2*nbgp |
---|
| 3756 | MTV_Z = nzt+1 - nzb +1 |
---|
| 3757 | |
---|
| 3758 | MTV_RX = ( c2f_dims_cg (1,offset(1),offset(2)) - c2f_dims_cg (0,offset(1),offset(2)) ) +1+2 |
---|
| 3759 | MTV_RY = ( c2f_dims_cg (3,offset(1),offset(2)) - c2f_dims_cg (2,offset(1),offset(2)) ) +1+2 |
---|
| 3760 | MTV_RZ = ( c2f_dims_cg (5,offset(1),offset(2)) - c2f_dims_cg (4,offset(1),offset(2)) ) +1 |
---|
| 3761 | |
---|
| 3762 | CALL MPI_TYPE_EXTENT(MPI_REAL, SIZEOFREAL, IERR) |
---|
| 3763 | |
---|
| 3764 | CALL MPI_TYPE_VECTOR ( MTV_RY, MTV_RZ, MTV_Z, MPI_REAL, TYPE_INT_YZ, IERR) |
---|
| 3765 | CALL MPI_TYPE_HVECTOR( MTV_RX, 1, MTV_Z*MTV_Y*SIZEOFREAL, & |
---|
[2514] | 3766 | TYPE_INT_YZ, TYPE_VNEST_BC, IERR) |
---|
[2365] | 3767 | CALL MPI_TYPE_FREE(TYPE_INT_YZ, IERR) |
---|
[2514] | 3768 | CALL MPI_TYPE_COMMIT(TYPE_VNEST_BC, IERR) |
---|
[2365] | 3769 | |
---|
| 3770 | |
---|
| 3771 | ELSEIF ( coupling_mode == 'vnested_fine' ) THEN |
---|
| 3772 | |
---|
| 3773 | ALLOCATE( c2f_dims_fg (0:5) ) |
---|
| 3774 | ALLOCATE( f2c_dims_fg (0:5) ) |
---|
| 3775 | |
---|
| 3776 | offset(1) = pcoord(1) / ( pdims(1)/pdims_partner(1) ) |
---|
| 3777 | offset(2) = pcoord(2) / ( pdims(2)/pdims_partner(2) ) |
---|
| 3778 | map_coord(1) = offset(1) |
---|
| 3779 | map_coord(2) = offset(2) |
---|
| 3780 | target_idex = c_rnk_lst(map_coord(1),map_coord(2)) |
---|
| 3781 | |
---|
| 3782 | bdims (1,1) = nxl |
---|
| 3783 | bdims (1,2) = nxr |
---|
| 3784 | bdims (2,1) = nys |
---|
| 3785 | bdims (2,2) = nyn |
---|
| 3786 | bdims (3,1) = nzb |
---|
| 3787 | bdims (3,2) = nzt |
---|
| 3788 | |
---|
| 3789 | CALL MPI_SEND( bdims, 6, MPI_INTEGER, target_idex, 10, & |
---|
| 3790 | comm_inter, ierr ) |
---|
| 3791 | |
---|
| 3792 | !-- Store the CG dimensions that correspond to the FG partner; needed for FG top BC |
---|
| 3793 | !-- One FG can have only one CG partner |
---|
| 3794 | CALL MPI_RECV( c2f_dims_fg, 6, MPI_INTEGER, target_idex, 100, & |
---|
| 3795 | comm_inter,status, ierr ) |
---|
| 3796 | |
---|
| 3797 | CALL MPI_RECV( f2c_dims_fg, 6, MPI_INTEGER, target_idex, 101, & |
---|
| 3798 | comm_inter,status, ierr ) |
---|
| 3799 | |
---|
| 3800 | !-- Store the CG dimensions that correspond to the FG partner; needed for anterpolation |
---|
| 3801 | |
---|
| 3802 | n_cell_c = (f2c_dims_fg(1)-f2c_dims_fg(0)+1) * & |
---|
| 3803 | (f2c_dims_fg(3)-f2c_dims_fg(2)+1) * & |
---|
| 3804 | (f2c_dims_fg(5)-f2c_dims_fg(4)+0) |
---|
| 3805 | |
---|
| 3806 | CALL MPI_TYPE_CONTIGUOUS(n_cell_c, MPI_REAL, TYPE_VNEST_ANTER, IERR) |
---|
| 3807 | CALL MPI_TYPE_COMMIT(TYPE_VNEST_ANTER, ierr) |
---|
| 3808 | |
---|
| 3809 | ENDIF |
---|
[2712] | 3810 | #endif |
---|
[2365] | 3811 | END SUBROUTINE vnest_init_pegrid_domain |
---|
| 3812 | |
---|
| 3813 | |
---|
| 3814 | SUBROUTINE vnest_init_grid |
---|
| 3815 | |
---|
[2712] | 3816 | #if defined( __parallel ) |
---|
[3065] | 3817 | USE arrays_3d, & |
---|
[2365] | 3818 | ONLY: zu, zw |
---|
| 3819 | |
---|
[3065] | 3820 | USE control_parameters, & |
---|
| 3821 | ONLY: coupling_mode, message_string, number_stretch_level_start |
---|
[2365] | 3822 | |
---|
[3065] | 3823 | USE indices, & |
---|
[2365] | 3824 | ONLY: nzt |
---|
| 3825 | |
---|
| 3826 | USE kinds |
---|
| 3827 | |
---|
| 3828 | USE pegrid |
---|
| 3829 | |
---|
[2514] | 3830 | IMPLICIT NONE |
---|
[2365] | 3831 | |
---|
[3065] | 3832 | ! |
---|
| 3833 | !-- Allocate and Exchange zuc and zuf, zwc and zwf |
---|
[2365] | 3834 | IF ( coupling_mode(1:8) == 'vnested_' ) THEN |
---|
| 3835 | |
---|
| 3836 | ALLOCATE( zuc(0:nzc+1), zuf(0:nzf+1) ) |
---|
| 3837 | ALLOCATE( zwc(0:nzc+1), zwf(0:nzf+1) ) |
---|
| 3838 | |
---|
| 3839 | IF ( coupling_mode == 'vnested_crse' ) THEN |
---|
[3065] | 3840 | |
---|
| 3841 | zuc = zu |
---|
| 3842 | zwc = zw |
---|
| 3843 | |
---|
[2365] | 3844 | IF ( myid == 0 ) THEN |
---|
| 3845 | |
---|
| 3846 | CALL MPI_SEND( zuc, nzt+2, MPI_REAL, numprocs, 41, comm_inter, & |
---|
| 3847 | ierr ) |
---|
| 3848 | CALL MPI_RECV( zuf, nzf+2, MPI_REAL, numprocs, 42, comm_inter, & |
---|
| 3849 | status, ierr ) |
---|
| 3850 | |
---|
| 3851 | CALL MPI_SEND( zwc, nzt+2, MPI_REAL, numprocs, 43, comm_inter, & |
---|
| 3852 | ierr ) |
---|
| 3853 | CALL MPI_RECV( zwf, nzf+2, MPI_REAL, numprocs, 44, comm_inter, & |
---|
| 3854 | status, ierr ) |
---|
| 3855 | |
---|
| 3856 | ENDIF |
---|
| 3857 | |
---|
| 3858 | CALL MPI_BCAST( zuf,nzf+2,MPI_REAL, 0, comm2d, ierr ) |
---|
| 3859 | CALL MPI_BCAST( zwf,nzf+2,MPI_REAL, 0, comm2d, ierr ) |
---|
| 3860 | |
---|
| 3861 | ELSEIF ( coupling_mode == 'vnested_fine' ) THEN |
---|
| 3862 | |
---|
[3065] | 3863 | ! |
---|
| 3864 | !-- Check if stretching is used within the nested domain |
---|
| 3865 | IF ( number_stretch_level_start > 0 ) THEN |
---|
| 3866 | message_string = 'Stretching in the nested domain is not '//& |
---|
| 3867 | 'allowed' |
---|
[3066] | 3868 | CALL message( 'vnest_init_grid', 'PA0498', 1, 2, 0, 6, 0 ) |
---|
[3065] | 3869 | ENDIF |
---|
| 3870 | |
---|
| 3871 | zuf = zu |
---|
| 3872 | zwf = zw |
---|
| 3873 | |
---|
[2365] | 3874 | IF ( myid == 0 ) THEN |
---|
| 3875 | |
---|
| 3876 | CALL MPI_RECV( zuc,nzc+2, MPI_REAL, 0, 41, comm_inter, status, & |
---|
| 3877 | ierr ) |
---|
| 3878 | CALL MPI_SEND( zuf,nzt+2, MPI_REAL, 0, 42, comm_inter, ierr ) |
---|
| 3879 | |
---|
| 3880 | CALL MPI_RECV( zwc,nzc+2, MPI_REAL, 0, 43, comm_inter, status, & |
---|
| 3881 | ierr ) |
---|
| 3882 | CALL MPI_SEND( zwf,nzt+2, MPI_REAL, 0, 44, comm_inter, ierr ) |
---|
| 3883 | ENDIF |
---|
| 3884 | |
---|
| 3885 | CALL MPI_BCAST( zuc,nzc+2,MPI_REAL, 0, comm2d, ierr ) |
---|
| 3886 | CALL MPI_BCAST( zwc,nzc+2,MPI_REAL, 0, comm2d, ierr ) |
---|
| 3887 | |
---|
| 3888 | ENDIF |
---|
| 3889 | ENDIF |
---|
| 3890 | |
---|
[2712] | 3891 | #endif |
---|
[2365] | 3892 | END SUBROUTINE vnest_init_grid |
---|
| 3893 | |
---|
| 3894 | |
---|
| 3895 | SUBROUTINE vnest_check_parameters |
---|
[2712] | 3896 | #if defined( __parallel ) |
---|
[2365] | 3897 | |
---|
[2712] | 3898 | USE pegrid, & |
---|
| 3899 | ONLY: myid |
---|
[2365] | 3900 | |
---|
[2514] | 3901 | IMPLICIT NONE |
---|
[2365] | 3902 | |
---|
[2514] | 3903 | IF (myid==0) PRINT*, '*** vnest: check parameters not implemented yet ***' |
---|
[2365] | 3904 | |
---|
[2712] | 3905 | #endif |
---|
[2365] | 3906 | END SUBROUTINE vnest_check_parameters |
---|
| 3907 | |
---|
| 3908 | |
---|
| 3909 | SUBROUTINE vnest_timestep_sync |
---|
| 3910 | |
---|
[2712] | 3911 | #if defined( __parallel ) |
---|
[2365] | 3912 | USE control_parameters, & |
---|
[4101] | 3913 | ONLY: coupling_mode, dt_3d |
---|
[2365] | 3914 | |
---|
| 3915 | USE interfaces |
---|
| 3916 | |
---|
| 3917 | USE kinds |
---|
| 3918 | |
---|
| 3919 | USE pegrid |
---|
| 3920 | |
---|
| 3921 | IMPLICIT NONE |
---|
| 3922 | |
---|
| 3923 | IF ( coupling_mode == 'vnested_crse') THEN |
---|
[2514] | 3924 | dtc = dt_3d |
---|
| 3925 | if (myid == 0) then |
---|
[2365] | 3926 | CALL MPI_SEND( dt_3d, 1, MPI_REAL, target_id, & |
---|
| 3927 | 31, comm_inter, ierr ) |
---|
| 3928 | CALL MPI_RECV( dtf, 1, MPI_REAL, & |
---|
| 3929 | target_id, 32, comm_inter, status, ierr ) |
---|
| 3930 | |
---|
[2514] | 3931 | endif |
---|
| 3932 | CALL MPI_BCAST( dtf, 1, MPI_REAL, 0, comm2d, ierr ) |
---|
[2365] | 3933 | ELSE |
---|
[2514] | 3934 | dtf = dt_3d |
---|
| 3935 | if (myid == 0) then |
---|
[2365] | 3936 | CALL MPI_RECV( dtc, 1, MPI_REAL, & |
---|
| 3937 | target_id, 31, comm_inter, status, ierr ) |
---|
| 3938 | CALL MPI_SEND( dt_3d, 1, MPI_REAL, target_id, & |
---|
| 3939 | 32, comm_inter, ierr ) |
---|
| 3940 | |
---|
[2514] | 3941 | endif |
---|
| 3942 | CALL MPI_BCAST( dtc, 1, MPI_REAL, 0, comm2d, ierr ) |
---|
[2365] | 3943 | |
---|
| 3944 | ENDIF |
---|
| 3945 | !-- Identical timestep for coarse and fine grids |
---|
| 3946 | dt_3d = MIN( dtc, dtf ) |
---|
[2712] | 3947 | #endif |
---|
[2365] | 3948 | END SUBROUTINE vnest_timestep_sync |
---|
| 3949 | |
---|
| 3950 | SUBROUTINE vnest_deallocate |
---|
[2712] | 3951 | #if defined( __parallel ) |
---|
[2365] | 3952 | USE control_parameters, & |
---|
| 3953 | ONLY: coupling_mode |
---|
| 3954 | |
---|
| 3955 | IMPLICIT NONE |
---|
| 3956 | |
---|
| 3957 | IF ( ALLOCATED(c_rnk_lst) ) DEALLOCATE (c_rnk_lst) |
---|
| 3958 | IF ( ALLOCATED(f_rnk_lst) ) DEALLOCATE (f_rnk_lst) |
---|
| 3959 | |
---|
| 3960 | IF ( coupling_mode == 'vnested_crse') THEN |
---|
| 3961 | IF ( ALLOCATED (c2f_dims_cg) ) DEALLOCATE (c2f_dims_cg) |
---|
| 3962 | IF ( ALLOCATED (f2c_dims_cg) ) DEALLOCATE (f2c_dims_cg) |
---|
| 3963 | ELSEIF( coupling_mode == 'vnested_fine' ) THEN |
---|
| 3964 | IF ( ALLOCATED (c2f_dims_fg) ) DEALLOCATE (c2f_dims_fg) |
---|
| 3965 | IF ( ALLOCATED (f2c_dims_fg) ) DEALLOCATE (f2c_dims_fg) |
---|
| 3966 | ENDIF |
---|
[2712] | 3967 | #endif |
---|
[2365] | 3968 | END SUBROUTINE vnest_deallocate |
---|
| 3969 | |
---|
[3802] | 3970 | END MODULE vertical_nesting_mod |
---|