[2365] | 1 | !> @file vertical_nesting_mod.f90 |
---|
| 2 | !------------------------------------------------------------------------------! |
---|
[2696] | 3 | ! This file is part of the PALM model system. |
---|
[2365] | 4 | ! |
---|
| 5 | ! PALM is free software: you can redistribute it and/or modify it under the |
---|
| 6 | ! terms of the GNU General Public License as published by the Free Software |
---|
| 7 | ! Foundation, either version 3 of the License, or (at your option) any later |
---|
| 8 | ! version. |
---|
| 9 | ! |
---|
| 10 | ! PALM is distributed in the hope that it will be useful, but WITHOUT ANY |
---|
| 11 | ! WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR |
---|
| 12 | ! A PARTICULAR PURPOSE. See the GNU General Public License for more details. |
---|
| 13 | ! |
---|
| 14 | ! You should have received a copy of the GNU General Public License along with |
---|
| 15 | ! PALM. If not, see <http://www.gnu.org/licenses/>. |
---|
| 16 | ! |
---|
[3655] | 17 | ! Copyright 1997-2019 Leibniz Universitaet Hannover |
---|
[2718] | 18 | ! Copyright 2017-2018 Karlsruhe Institute of Technology |
---|
[2365] | 19 | !------------------------------------------------------------------------------! |
---|
| 20 | ! |
---|
| 21 | ! Current revisions: |
---|
| 22 | ! ----------------- |
---|
| 23 | ! |
---|
[3049] | 24 | ! |
---|
[2365] | 25 | ! Former revisions: |
---|
| 26 | ! ----------------- |
---|
| 27 | ! $Id: vertical_nesting_mod.f90 4102 2019-07-17 16:00:03Z schwenkel $ |
---|
[4102] | 28 | ! - Slightly revise setting of boundary conditions at horizontal walls, use |
---|
| 29 | ! data-structure offset index instead of pre-calculate it for each facing |
---|
| 30 | ! |
---|
| 31 | ! 4101 2019-07-17 15:14:26Z gronemeier |
---|
[4101] | 32 | ! remove old_dt |
---|
| 33 | ! |
---|
| 34 | ! 3802 2019-03-17 13:33:42Z raasch |
---|
[3802] | 35 | ! unused subroutines commented out |
---|
| 36 | ! |
---|
| 37 | ! 3655 2019-01-07 16:51:22Z knoop |
---|
[3241] | 38 | ! unused variables removed |
---|
| 39 | ! |
---|
| 40 | ! 3232 2018-09-07 12:21:44Z raasch |
---|
[3232] | 41 | ! references to mrun replaced by palmrun, and updated |
---|
| 42 | ! |
---|
| 43 | ! 3083 2018-06-19 14:03:12Z gronemeier |
---|
[3066] | 44 | ! Error messages revised |
---|
| 45 | ! |
---|
| 46 | ! 3065 2018-06-12 07:03:02Z Giersch |
---|
[3065] | 47 | ! dz was replaced by dz(1), error messages related to vertical grid stretching |
---|
| 48 | ! have been added |
---|
| 49 | ! |
---|
| 50 | ! 3049 2018-05-29 13:52:36Z Giersch |
---|
[3049] | 51 | ! Error messages revised |
---|
| 52 | ! |
---|
| 53 | ! 3045 2018-05-28 07:55:41Z Giersch |
---|
[3045] | 54 | ! Error message revised |
---|
| 55 | ! |
---|
| 56 | ! 2718 2018-01-02 08:49:38Z maronga |
---|
[2716] | 57 | ! Corrected "Former revisions" section |
---|
| 58 | ! |
---|
| 59 | ! 2712 2017-12-20 17:32:50Z kanani |
---|
[2712] | 60 | ! Formatting and clean-up (SadiqHuq) |
---|
| 61 | ! |
---|
| 62 | ! 2696 2017-12-14 17:12:51Z kanani |
---|
[2716] | 63 | ! Change in file header (GPL part) |
---|
| 64 | ! Renamed diffusivities to tcm_diffusivities (TG) |
---|
[2696] | 65 | ! |
---|
| 66 | ! 2516 2017-10-04 11:03:04Z suehring |
---|
[2516] | 67 | ! Remove tabs |
---|
| 68 | ! |
---|
| 69 | ! 2514 2017-10-04 09:52:37Z suehring |
---|
[2696] | 70 | ! Remove tabs |
---|
| 71 | ! |
---|
| 72 | ! 2514 2017-10-04 09:52:37Z suehring |
---|
[2374] | 73 | ! Added todo list |
---|
| 74 | ! |
---|
| 75 | ! 2365 2017-08-21 14:59:59Z kanani |
---|
[2365] | 76 | ! Initial revision (SadiqHuq) |
---|
| 77 | ! |
---|
| 78 | ! |
---|
| 79 | ! |
---|
| 80 | ! |
---|
| 81 | ! Description: |
---|
| 82 | ! ------------ |
---|
[2374] | 83 | !> Module for vertical nesting. |
---|
| 84 | !> |
---|
| 85 | !> Definition of parameters and variables for vertical nesting |
---|
[2712] | 86 | !> The horizontal extent of the parent (Coarse Grid) and the child (Fine Grid) |
---|
| 87 | !> have to be identical. The vertical extent of the FG should be smaller than CG. |
---|
| 88 | !> Only integer nesting ratio supported. Odd nesting ratio preferred |
---|
| 89 | !> The code follows MPI-1 standards. The available processors are split into |
---|
| 90 | !> two groups using MPI_COMM_SPLIT. Exchange of data from CG to FG is called |
---|
| 91 | !> interpolation. FG initialization by interpolation is done once at the start. |
---|
| 92 | !> FG boundary conditions are set by interpolated at every timestep. |
---|
| 93 | !> Exchange of data from CG to FG is called anterpolation, the two-way interaction |
---|
| 94 | !> occurs at every timestep. |
---|
| 95 | !> vnest_start_time set in PARIN allows delayed start of the coupling |
---|
| 96 | !> after spin-up of the CG |
---|
[2374] | 97 | !> |
---|
[3065] | 98 | !> @todo Replace dz(1) appropriatly to account for grid stretching |
---|
[2374] | 99 | !> @todo Ensure that code can be compiled for serial and parallel mode. Please |
---|
| 100 | !> check the placement of the directive "__parallel". |
---|
| 101 | !> @todo Add descriptions for all declared variables/parameters, one declaration |
---|
| 102 | !> statement per variable |
---|
| 103 | !> @todo Add a descriptive header above each subroutine (see land_surface_model) |
---|
| 104 | !> @todo FORTRAN language statements must not be used as names for variables |
---|
| 105 | !> (e.g. if). Please rename it. |
---|
| 106 | !> @todo Revise code according to PALM Coding Standard |
---|
[2365] | 107 | !------------------------------------------------------------------------------! |
---|
| 108 | MODULE vertical_nesting_mod |
---|
| 109 | |
---|
| 110 | USE kinds |
---|
| 111 | |
---|
| 112 | IMPLICIT NONE |
---|
| 113 | |
---|
[3232] | 114 | LOGICAL :: vnested = .FALSE. !> set to true if palmrun |
---|
| 115 | !> provides specific information via stdin |
---|
[2712] | 116 | LOGICAL :: vnest_init = .FALSE. !> set to true when FG is initialized |
---|
| 117 | REAL(wp) :: vnest_start_time = 9999999.9 !> simulated time when FG should be |
---|
| 118 | !> initialized. Should be |
---|
| 119 | !> identical in PARIN & PARIN_N |
---|
[2365] | 120 | |
---|
| 121 | |
---|
| 122 | |
---|
[2712] | 123 | INTEGER(iwp),DIMENSION(3,2) :: bdims = 0 !> sub-domain grid topology of current PE |
---|
| 124 | INTEGER(iwp),DIMENSION(3,2) :: bdims_rem = 0 !> sub-domain grid topology of partner PE |
---|
[3232] | 125 | INTEGER(iwp) :: cg_nprocs !> no. of PE in CG. Set by palmrun -Y |
---|
| 126 | INTEGER(iwp) :: fg_nprocs !> no. of PE in FG. Set by palmrun -Y |
---|
[2712] | 127 | INTEGER(iwp) :: TYPE_VNEST_BC !> derived contiguous data type for interpolation |
---|
| 128 | INTEGER(iwp) :: TYPE_VNEST_ANTER !> derived contiguous data type for anterpolation |
---|
| 129 | INTEGER(iwp),DIMENSION(:,:,:),ALLOCATABLE :: c2f_dims_cg !> One CG PE sends data to multiple FG PEs |
---|
| 130 | !> list of grid-topology of partners |
---|
| 131 | INTEGER(iwp),DIMENSION(:,:,:),ALLOCATABLE :: f2c_dims_cg !> One CG PE receives data from multiple FG PEs |
---|
| 132 | !> list of grid-topology of partners |
---|
| 133 | INTEGER(iwp),DIMENSION(:),ALLOCATABLE :: c2f_dims_fg !> One FG PE sends data to multiple CG PE |
---|
| 134 | !> list of grid-topology of partner |
---|
| 135 | INTEGER(iwp),DIMENSION(:),ALLOCATABLE :: f2c_dims_fg !> One FG PE sends data to only one CG PE |
---|
| 136 | !> list of grid-topology of partner |
---|
[2365] | 137 | |
---|
[2712] | 138 | INTEGER(iwp),DIMENSION(:,:),ALLOCATABLE :: f_rnk_lst !> list storing rank of FG PE denoted by pdims |
---|
| 139 | INTEGER(iwp),DIMENSION(:,:),ALLOCATABLE :: c_rnk_lst !> list storing rank of CG PE denoted by pdims |
---|
| 140 | INTEGER(iwp),DIMENSION(3) :: cfratio !> Nesting ratio in x,y and z-directions |
---|
[2365] | 141 | |
---|
[2712] | 142 | INTEGER(iwp) :: nxc !> no. of CG grid points in x-direction |
---|
| 143 | INTEGER(iwp) :: nxf !> no. of FG grid points in x-direction |
---|
| 144 | INTEGER(iwp) :: nyc !> no. of CG grid points in y-direction |
---|
| 145 | INTEGER(iwp) :: nyf !> no. of FG grid points in y-direction |
---|
| 146 | INTEGER(iwp) :: nzc !> no. of CG grid points in z-direction |
---|
| 147 | INTEGER(iwp) :: nzf !> no. of FG grid points in z-direction |
---|
| 148 | INTEGER(iwp) :: ngp_c !> no. of CG grid points in one vertical level |
---|
| 149 | INTEGER(iwp) :: ngp_f !> no. of FG grid points in one vertical level |
---|
[2365] | 150 | |
---|
[2712] | 151 | INTEGER(iwp) :: n_cell_c !> total no. of CG grid points in a PE |
---|
| 152 | INTEGER(iwp),DIMENSION(2) :: pdims_partner !> processor topology of partner PE |
---|
| 153 | INTEGER(iwp) :: target_idex !> temporary variable |
---|
| 154 | INTEGER(iwp),DIMENSION(2) :: offset !> temporary variable |
---|
| 155 | INTEGER(iwp),DIMENSION(2) :: map_coord !> temporary variable |
---|
[2365] | 156 | |
---|
[2712] | 157 | REAL(wp) :: dxc !> CG grid pacing in x-direction |
---|
| 158 | REAL(wp) :: dyc !> FG grid pacing in x-direction |
---|
| 159 | REAL(wp) :: dxf !> CG grid pacing in y-direction |
---|
| 160 | REAL(wp) :: dyf !> FG grid pacing in y-direction |
---|
| 161 | REAL(wp) :: dzc !> CG grid pacing in z-direction |
---|
| 162 | REAL(wp) :: dzf !> FG grid pacing in z-direction |
---|
| 163 | REAL(wp) :: dtc !> dt calculated for CG |
---|
| 164 | REAL(wp) :: dtf !> dt calculated for FG |
---|
[2365] | 165 | |
---|
[2712] | 166 | REAL(wp), DIMENSION(:), ALLOCATABLE :: zuc !> CG vertical u-levels |
---|
| 167 | REAL(wp), DIMENSION(:), ALLOCATABLE :: zuf !> FG vertical u-levels |
---|
| 168 | REAL(wp), DIMENSION(:), ALLOCATABLE :: zwc !> CG vertical w-levels |
---|
| 169 | REAL(wp), DIMENSION(:), ALLOCATABLE :: zwf !> FG vertical w-levels |
---|
| 170 | REAL(wp), DIMENSION(:,:,:), POINTER :: interpol3d !> pointers to simplify function calls |
---|
| 171 | REAL(wp), DIMENSION(:,:,:), POINTER :: anterpol3d !> pointers to simplify function calls |
---|
[2365] | 172 | |
---|
| 173 | |
---|
[2712] | 174 | REAL(wp),DIMENSION(:,:,:), ALLOCATABLE :: work3d !> temporary array for exchange of 3D data |
---|
| 175 | REAL(wp),DIMENSION(:,:), ALLOCATABLE :: work2dusws !> temporary array for exchange of 2D data |
---|
| 176 | REAL(wp),DIMENSION(:,:), ALLOCATABLE :: work2dvsws !> temporary array for exchange of 2D data |
---|
| 177 | REAL(wp),DIMENSION(:,:), ALLOCATABLE :: work2dts !> temporary array for exchange of 2D data |
---|
| 178 | REAL(wp),DIMENSION(:,:), ALLOCATABLE :: work2dus !> temporary array for exchange of 2D data |
---|
| 179 | |
---|
[2365] | 180 | SAVE |
---|
| 181 | |
---|
| 182 | !-- Public functions |
---|
| 183 | PUBLIC vnest_init_fine, vnest_boundary_conds, vnest_anterpolate, & |
---|
[2514] | 184 | vnest_boundary_conds_khkm, vnest_anterpolate_e, & |
---|
| 185 | vnest_init_pegrid_rank, vnest_init_pegrid_domain, vnest_init_grid, & |
---|
| 186 | vnest_timestep_sync, vnest_deallocate |
---|
[2365] | 187 | |
---|
| 188 | !-- Public constants and variables |
---|
[2712] | 189 | PUBLIC vnested, vnest_init, vnest_start_time |
---|
[2365] | 190 | |
---|
| 191 | PRIVATE bdims, bdims_rem, & |
---|
[2712] | 192 | work3d, work2dusws, work2dvsws, work2dts, work2dus, & |
---|
[2365] | 193 | dxc, dyc, dxf, dyf, dzc, dzf, dtc, dtf, & |
---|
| 194 | zuc, zuf, zwc, zwf, interpol3d, anterpol3d, & |
---|
| 195 | cg_nprocs, fg_nprocs, & |
---|
| 196 | c2f_dims_cg, c2f_dims_fg, f2c_dims_cg, f2c_dims_fg, & |
---|
| 197 | f_rnk_lst, c_rnk_lst, cfratio, pdims_partner, & |
---|
| 198 | nxc, nxf, nyc, nyf, nzc, nzf, & |
---|
[3241] | 199 | ngp_c, ngp_f, target_idex, n_cell_c, & |
---|
[2514] | 200 | offset, map_coord, TYPE_VNEST_BC, TYPE_VNEST_ANTER |
---|
[2365] | 201 | |
---|
| 202 | INTERFACE vnest_anterpolate |
---|
| 203 | MODULE PROCEDURE vnest_anterpolate |
---|
| 204 | END INTERFACE vnest_anterpolate |
---|
| 205 | |
---|
| 206 | INTERFACE vnest_anterpolate_e |
---|
| 207 | MODULE PROCEDURE vnest_anterpolate_e |
---|
| 208 | END INTERFACE vnest_anterpolate_e |
---|
| 209 | |
---|
| 210 | INTERFACE vnest_boundary_conds |
---|
| 211 | MODULE PROCEDURE vnest_boundary_conds |
---|
| 212 | END INTERFACE vnest_boundary_conds |
---|
| 213 | |
---|
| 214 | INTERFACE vnest_boundary_conds_khkm |
---|
| 215 | MODULE PROCEDURE vnest_boundary_conds_khkm |
---|
| 216 | END INTERFACE vnest_boundary_conds_khkm |
---|
| 217 | |
---|
| 218 | INTERFACE vnest_check_parameters |
---|
| 219 | MODULE PROCEDURE vnest_check_parameters |
---|
| 220 | END INTERFACE vnest_check_parameters |
---|
| 221 | |
---|
| 222 | INTERFACE vnest_deallocate |
---|
| 223 | MODULE PROCEDURE vnest_deallocate |
---|
| 224 | END INTERFACE vnest_deallocate |
---|
| 225 | |
---|
| 226 | INTERFACE vnest_init_fine |
---|
| 227 | MODULE PROCEDURE vnest_init_fine |
---|
| 228 | END INTERFACE vnest_init_fine |
---|
| 229 | |
---|
| 230 | INTERFACE vnest_init_grid |
---|
| 231 | MODULE PROCEDURE vnest_init_grid |
---|
| 232 | END INTERFACE vnest_init_grid |
---|
| 233 | |
---|
| 234 | INTERFACE vnest_init_pegrid_domain |
---|
| 235 | MODULE PROCEDURE vnest_init_pegrid_domain |
---|
| 236 | END INTERFACE vnest_init_pegrid_domain |
---|
| 237 | |
---|
| 238 | INTERFACE vnest_init_pegrid_rank |
---|
| 239 | MODULE PROCEDURE vnest_init_pegrid_rank |
---|
| 240 | END INTERFACE vnest_init_pegrid_rank |
---|
| 241 | |
---|
| 242 | INTERFACE vnest_timestep_sync |
---|
| 243 | MODULE PROCEDURE vnest_timestep_sync |
---|
| 244 | END INTERFACE vnest_timestep_sync |
---|
| 245 | |
---|
| 246 | CONTAINS |
---|
| 247 | |
---|
| 248 | |
---|
| 249 | |
---|
| 250 | SUBROUTINE vnest_init_fine |
---|
[2712] | 251 | #if defined( __parallel ) |
---|
[2365] | 252 | |
---|
| 253 | !--------------------------------------------------------------------------------! |
---|
| 254 | ! Description: |
---|
| 255 | ! ------------ |
---|
| 256 | ! At the specified vnest_start_time initialize the Fine Grid based on the coarse |
---|
| 257 | ! grid values |
---|
| 258 | !------------------------------------------------------------------------------! |
---|
| 259 | |
---|
| 260 | |
---|
| 261 | USE arrays_3d |
---|
| 262 | USE control_parameters |
---|
| 263 | USE grid_variables |
---|
| 264 | USE indices |
---|
| 265 | USE interfaces |
---|
| 266 | USE pegrid |
---|
[2712] | 267 | USE turbulence_closure_mod, & |
---|
[2696] | 268 | ONLY : tcm_diffusivities |
---|
[2712] | 269 | |
---|
[2365] | 270 | |
---|
| 271 | IMPLICIT NONE |
---|
| 272 | |
---|
[2712] | 273 | REAL(wp) :: time_since_reference_point_rem |
---|
| 274 | INTEGER(iwp) :: i |
---|
| 275 | INTEGER(iwp) :: j |
---|
| 276 | INTEGER(iwp) :: iif |
---|
| 277 | INTEGER(iwp) :: jjf |
---|
| 278 | INTEGER(iwp) :: kkf |
---|
[2365] | 279 | |
---|
| 280 | |
---|
[2712] | 281 | if (myid ==0 ) print *, ' TIME TO INIT FINE from COARSE', simulated_time |
---|
[2365] | 282 | |
---|
| 283 | ! |
---|
| 284 | !-- In case of model termination initiated by the remote model |
---|
| 285 | !-- (terminate_coupled_remote > 0), initiate termination of the local model. |
---|
| 286 | !-- The rest of the coupler must then be skipped because it would cause an MPI |
---|
| 287 | !-- intercomminucation hang. |
---|
| 288 | !-- If necessary, the coupler will be called at the beginning of the next |
---|
| 289 | !-- restart run. |
---|
| 290 | |
---|
| 291 | IF ( myid == 0) THEN |
---|
[3045] | 292 | CALL MPI_SENDRECV( terminate_coupled, 1, MPI_INTEGER, & |
---|
| 293 | target_id, 0, & |
---|
| 294 | terminate_coupled_remote, 1, MPI_INTEGER, & |
---|
| 295 | target_id, 0, & |
---|
[2365] | 296 | comm_inter, status, ierr ) |
---|
| 297 | ENDIF |
---|
| 298 | CALL MPI_BCAST( terminate_coupled_remote, 1, MPI_INTEGER, 0, comm2d, & |
---|
| 299 | ierr ) |
---|
| 300 | |
---|
| 301 | IF ( terminate_coupled_remote > 0 ) THEN |
---|
[3045] | 302 | WRITE( message_string, * ) 'remote model "', & |
---|
| 303 | TRIM( coupling_mode_remote ), & |
---|
| 304 | '" terminated', & |
---|
[3046] | 305 | '&with terminate_coupled_remote = ', & |
---|
[3045] | 306 | terminate_coupled_remote, & |
---|
[3046] | 307 | '&local model "', TRIM( coupling_mode ), & |
---|
[3045] | 308 | '" has', & |
---|
[3046] | 309 | '&terminate_coupled = ', & |
---|
[2365] | 310 | terminate_coupled |
---|
| 311 | CALL message( 'vnest_init_fine', 'PA0310', 1, 2, 0, 6, 0 ) |
---|
| 312 | RETURN |
---|
| 313 | ENDIF |
---|
| 314 | |
---|
| 315 | |
---|
| 316 | ! |
---|
| 317 | !-- Exchange the current simulated time between the models, |
---|
| 318 | !-- currently just for total_2ding |
---|
| 319 | IF ( myid == 0 ) THEN |
---|
| 320 | |
---|
| 321 | CALL MPI_SEND( time_since_reference_point, 1, MPI_REAL, target_id, & |
---|
| 322 | 11, comm_inter, ierr ) |
---|
| 323 | CALL MPI_RECV( time_since_reference_point_rem, 1, MPI_REAL, & |
---|
| 324 | target_id, 11, comm_inter, status, ierr ) |
---|
| 325 | |
---|
| 326 | ENDIF |
---|
| 327 | |
---|
| 328 | CALL MPI_BCAST( time_since_reference_point_rem, 1, MPI_REAL, 0, comm2d, & |
---|
| 329 | ierr ) |
---|
| 330 | |
---|
| 331 | |
---|
| 332 | IF ( coupling_mode == 'vnested_crse' ) THEN |
---|
| 333 | !-- Send data to fine grid for initialization |
---|
| 334 | |
---|
| 335 | offset(1) = ( pdims_partner(1) / pdims(1) ) * pcoord(1) |
---|
| 336 | offset(2) = ( pdims_partner(2) / pdims(2) ) * pcoord(2) |
---|
| 337 | |
---|
| 338 | do j = 0, ( pdims_partner(2) / pdims(2) ) - 1 |
---|
| 339 | do i = 0, ( pdims_partner(1) / pdims(1) ) - 1 |
---|
| 340 | map_coord(1) = i+offset(1) |
---|
| 341 | map_coord(2) = j+offset(2) |
---|
| 342 | |
---|
| 343 | target_idex = f_rnk_lst(map_coord(1),map_coord(2)) + numprocs |
---|
| 344 | |
---|
| 345 | CALL MPI_RECV( bdims_rem, 6, MPI_INTEGER, target_idex, 10, & |
---|
| 346 | comm_inter,status, ierr ) |
---|
| 347 | |
---|
| 348 | bdims (1,1) = bdims_rem (1,1) / cfratio(1) |
---|
| 349 | bdims (1,2) = bdims_rem (1,2) / cfratio(1) |
---|
| 350 | bdims (2,1) = bdims_rem (2,1) / cfratio(2) |
---|
| 351 | bdims (2,2) = bdims_rem (2,2) / cfratio(2) |
---|
| 352 | bdims (3,1) = bdims_rem (3,1) |
---|
| 353 | bdims (3,2) = bdims_rem (3,2) / cfratio(3) |
---|
| 354 | |
---|
| 355 | |
---|
| 356 | CALL MPI_SEND( bdims, 6, MPI_INTEGER, target_idex, 9, & |
---|
| 357 | comm_inter, ierr ) |
---|
| 358 | |
---|
| 359 | |
---|
| 360 | n_cell_c = (bdims(1,2)-bdims(1,1)+3) * & |
---|
| 361 | (bdims(2,2)-bdims(2,1)+3) * & |
---|
| 362 | (bdims(3,2)-bdims(3,1)+3) |
---|
| 363 | |
---|
| 364 | CALL MPI_SEND( u( bdims(3,1):bdims(3,2)+2, & |
---|
| 365 | bdims(2,1)-1:bdims(2,2)+1, & |
---|
| 366 | bdims(1,1)-1:bdims(1,2)+1),& |
---|
| 367 | n_cell_c, MPI_REAL, target_idex, & |
---|
[2514] | 368 | 101, comm_inter, ierr) |
---|
[2365] | 369 | |
---|
| 370 | CALL MPI_SEND( v( bdims(3,1):bdims(3,2)+2, & |
---|
| 371 | bdims(2,1)-1:bdims(2,2)+1, & |
---|
| 372 | bdims(1,1)-1:bdims(1,2)+1),& |
---|
| 373 | n_cell_c, MPI_REAL, target_idex, & |
---|
[2514] | 374 | 102, comm_inter, ierr) |
---|
[2365] | 375 | |
---|
| 376 | CALL MPI_SEND( w( bdims(3,1):bdims(3,2)+2, & |
---|
| 377 | bdims(2,1)-1:bdims(2,2)+1, & |
---|
| 378 | bdims(1,1)-1:bdims(1,2)+1),& |
---|
| 379 | n_cell_c, MPI_REAL, target_idex, & |
---|
[2514] | 380 | 103, comm_inter, ierr) |
---|
[2365] | 381 | |
---|
| 382 | CALL MPI_SEND( pt(bdims(3,1):bdims(3,2)+2, & |
---|
| 383 | bdims(2,1)-1:bdims(2,2)+1, & |
---|
| 384 | bdims(1,1)-1:bdims(1,2)+1),& |
---|
| 385 | n_cell_c, MPI_REAL, target_idex, & |
---|
[2514] | 386 | 105, comm_inter, ierr) |
---|
[2365] | 387 | |
---|
| 388 | IF ( humidity ) THEN |
---|
| 389 | CALL MPI_SEND( q(bdims(3,1):bdims(3,2)+2, & |
---|
| 390 | bdims(2,1)-1:bdims(2,2)+1, & |
---|
| 391 | bdims(1,1)-1:bdims(1,2)+1),& |
---|
| 392 | n_cell_c, MPI_REAL, target_idex, & |
---|
[2514] | 393 | 116, comm_inter, ierr) |
---|
[2365] | 394 | ENDIF |
---|
| 395 | |
---|
| 396 | CALL MPI_SEND( e( bdims(3,1):bdims(3,2)+2, & |
---|
| 397 | bdims(2,1)-1:bdims(2,2)+1, & |
---|
| 398 | bdims(1,1)-1:bdims(1,2)+1),& |
---|
| 399 | n_cell_c, MPI_REAL, target_idex, & |
---|
[2514] | 400 | 104, comm_inter, ierr) |
---|
[2365] | 401 | |
---|
| 402 | CALL MPI_SEND(kh( bdims(3,1):bdims(3,2)+2, & |
---|
| 403 | bdims(2,1)-1:bdims(2,2)+1, & |
---|
| 404 | bdims(1,1)-1:bdims(1,2)+1),& |
---|
| 405 | n_cell_c, MPI_REAL, target_idex, & |
---|
[2514] | 406 | 106, comm_inter, ierr) |
---|
[2365] | 407 | |
---|
| 408 | CALL MPI_SEND(km( bdims(3,1):bdims(3,2)+2, & |
---|
| 409 | bdims(2,1)-1:bdims(2,2)+1, & |
---|
| 410 | bdims(1,1)-1:bdims(1,2)+1),& |
---|
| 411 | n_cell_c, MPI_REAL, target_idex, & |
---|
[2514] | 412 | 107, comm_inter, ierr) |
---|
[2365] | 413 | |
---|
| 414 | !-- Send Surface fluxes |
---|
| 415 | IF ( use_surface_fluxes ) THEN |
---|
| 416 | |
---|
| 417 | n_cell_c = (bdims(1,2)-bdims(1,1)+3) * & |
---|
| 418 | (bdims(2,2)-bdims(2,1)+3) |
---|
| 419 | |
---|
[2712] | 420 | ! |
---|
| 421 | !-- shf and z0 for CG / FG need to initialized in input file or user_code |
---|
| 422 | !-- TODO |
---|
| 423 | !-- initialization of usws, vsws, ts and us not vital to vnest FG |
---|
| 424 | !-- variables are not compatible with the new surface layer module |
---|
| 425 | ! |
---|
| 426 | ! CALL MPI_SEND(surf_def_h(0)%usws( bdims(2,1)-1:bdims(2,2)+1, & |
---|
| 427 | ! bdims(1,1)-1:bdims(1,2)+1),& |
---|
| 428 | ! n_cell_c, MPI_REAL, target_idex, & |
---|
| 429 | ! 110, comm_inter, ierr ) |
---|
| 430 | ! |
---|
| 431 | ! CALL MPI_SEND(surf_def_h(0)%vsws( bdims(2,1)-1:bdims(2,2)+1, & |
---|
| 432 | ! bdims(1,1)-1:bdims(1,2)+1),& |
---|
| 433 | ! n_cell_c, MPI_REAL, target_idex, & |
---|
| 434 | ! 111, comm_inter, ierr ) |
---|
| 435 | ! |
---|
| 436 | ! CALL MPI_SEND(ts ( bdims(2,1)-1:bdims(2,2)+1, & |
---|
| 437 | ! bdims(1,1)-1:bdims(1,2)+1),& |
---|
| 438 | ! n_cell_c, MPI_REAL, target_idex, & |
---|
| 439 | ! 112, comm_inter, ierr ) |
---|
| 440 | ! |
---|
| 441 | ! CALL MPI_SEND(us ( bdims(2,1)-1:bdims(2,2)+1, & |
---|
| 442 | ! bdims(1,1)-1:bdims(1,2)+1),& |
---|
| 443 | ! n_cell_c, MPI_REAL, target_idex, & |
---|
| 444 | ! 113, comm_inter, ierr ) |
---|
| 445 | ! |
---|
[2365] | 446 | ENDIF |
---|
| 447 | |
---|
| 448 | |
---|
| 449 | |
---|
| 450 | |
---|
| 451 | end do |
---|
| 452 | end do |
---|
| 453 | |
---|
| 454 | ELSEIF ( coupling_mode == 'vnested_fine' ) THEN |
---|
| 455 | !-- Receive data from coarse grid for initialization |
---|
| 456 | |
---|
| 457 | offset(1) = pcoord(1) / ( pdims(1)/pdims_partner(1) ) |
---|
| 458 | offset(2) = pcoord(2) / ( pdims(2)/pdims_partner(2) ) |
---|
| 459 | map_coord(1) = offset(1) |
---|
| 460 | map_coord(2) = offset(2) |
---|
| 461 | target_idex = c_rnk_lst(map_coord(1),map_coord(2)) |
---|
| 462 | |
---|
| 463 | bdims (1,1) = nxl |
---|
| 464 | bdims (1,2) = nxr |
---|
| 465 | bdims (2,1) = nys |
---|
| 466 | bdims (2,2) = nyn |
---|
| 467 | bdims (3,1) = nzb |
---|
| 468 | bdims (3,2) = nzt |
---|
| 469 | |
---|
| 470 | CALL MPI_SEND( bdims, 6, MPI_INTEGER, target_idex, 10, & |
---|
| 471 | comm_inter, ierr ) |
---|
| 472 | |
---|
| 473 | CALL MPI_RECV( bdims_rem, 6, MPI_INTEGER, target_idex, 9, & |
---|
| 474 | comm_inter,status, ierr ) |
---|
| 475 | |
---|
| 476 | n_cell_c = (bdims_rem(1,2)-bdims_rem(1,1)+3) * & |
---|
| 477 | (bdims_rem(2,2)-bdims_rem(2,1)+3) * & |
---|
| 478 | (bdims_rem(3,2)-bdims_rem(3,1)+3) |
---|
| 479 | |
---|
| 480 | ALLOCATE( work3d ( bdims_rem(3,1) :bdims_rem(3,2)+2, & |
---|
| 481 | bdims_rem(2,1)-1:bdims_rem(2,2)+1, & |
---|
| 482 | bdims_rem(1,1)-1:bdims_rem(1,2)+1)) |
---|
| 483 | |
---|
| 484 | |
---|
| 485 | CALL MPI_RECV( work3d,n_cell_c, MPI_REAL, target_idex, 101, & |
---|
| 486 | comm_inter,status, ierr ) |
---|
| 487 | interpol3d => u |
---|
[3241] | 488 | call interpolate_to_fine_u |
---|
[2365] | 489 | |
---|
| 490 | CALL MPI_RECV( work3d,n_cell_c, MPI_REAL, target_idex, 102, & |
---|
| 491 | comm_inter,status, ierr ) |
---|
| 492 | interpol3d => v |
---|
[3241] | 493 | call interpolate_to_fine_v |
---|
[2365] | 494 | |
---|
| 495 | CALL MPI_RECV( work3d,n_cell_c, MPI_REAL, target_idex, 103, & |
---|
| 496 | comm_inter,status, ierr ) |
---|
| 497 | interpol3d => w |
---|
[3241] | 498 | call interpolate_to_fine_w |
---|
[2365] | 499 | |
---|
| 500 | CALL MPI_RECV( work3d,n_cell_c, MPI_REAL, target_idex, 105, & |
---|
| 501 | comm_inter,status, ierr ) |
---|
| 502 | interpol3d => pt |
---|
[3241] | 503 | call interpolate_to_fine_s |
---|
[2365] | 504 | |
---|
| 505 | IF ( humidity ) THEN |
---|
| 506 | CALL MPI_RECV( work3d,n_cell_c, MPI_REAL, target_idex, 116, & |
---|
| 507 | comm_inter,status, ierr ) |
---|
| 508 | interpol3d => q |
---|
[3241] | 509 | call interpolate_to_fine_s |
---|
[2365] | 510 | ENDIF |
---|
| 511 | |
---|
| 512 | CALL MPI_RECV( work3d,n_cell_c, MPI_REAL, target_idex, 104, & |
---|
| 513 | comm_inter,status, ierr ) |
---|
| 514 | interpol3d => e |
---|
[3241] | 515 | call interpolate_to_fine_s |
---|
[2365] | 516 | |
---|
| 517 | !-- kh,km no target attribute, use of pointer not possible |
---|
| 518 | CALL MPI_RECV( work3d,n_cell_c, MPI_REAL, target_idex, 106, & |
---|
| 519 | comm_inter,status, ierr ) |
---|
[3241] | 520 | call interpolate_to_fine_kh |
---|
[2365] | 521 | |
---|
| 522 | CALL MPI_RECV( work3d,n_cell_c, MPI_REAL, target_idex, 107, & |
---|
| 523 | comm_inter,status, ierr ) |
---|
[3241] | 524 | call interpolate_to_fine_km |
---|
[2365] | 525 | |
---|
| 526 | DEALLOCATE( work3d ) |
---|
| 527 | NULLIFY ( interpol3d ) |
---|
| 528 | |
---|
[2514] | 529 | !-- Recv Surface Fluxes |
---|
[2365] | 530 | IF ( use_surface_fluxes ) THEN |
---|
| 531 | n_cell_c = (bdims_rem(1,2)-bdims_rem(1,1)+3) * & |
---|
| 532 | (bdims_rem(2,2)-bdims_rem(2,1)+3) |
---|
| 533 | |
---|
| 534 | ALLOCATE( work2dusws ( bdims_rem(2,1)-1:bdims_rem(2,2)+1, & |
---|
| 535 | bdims_rem(1,1)-1:bdims_rem(1,2)+1) ) |
---|
| 536 | ALLOCATE( work2dvsws ( bdims_rem(2,1)-1:bdims_rem(2,2)+1, & |
---|
| 537 | bdims_rem(1,1)-1:bdims_rem(1,2)+1) ) |
---|
| 538 | ALLOCATE( work2dts ( bdims_rem(2,1)-1:bdims_rem(2,2)+1, & |
---|
| 539 | bdims_rem(1,1)-1:bdims_rem(1,2)+1) ) |
---|
| 540 | ALLOCATE( work2dus ( bdims_rem(2,1)-1:bdims_rem(2,2)+1, & |
---|
| 541 | bdims_rem(1,1)-1:bdims_rem(1,2)+1) ) |
---|
| 542 | |
---|
[2712] | 543 | ! |
---|
| 544 | !-- shf and z0 for CG / FG need to initialized in input file or user_code |
---|
| 545 | !-- TODO |
---|
| 546 | !-- initialization of usws, vsws, ts and us not vital to vnest FG |
---|
| 547 | !-- variables are not compatible with the new surface layer module |
---|
| 548 | ! |
---|
| 549 | ! CALL MPI_RECV( work2dusws,n_cell_c, MPI_REAL, target_idex, 110, & |
---|
| 550 | ! comm_inter,status, ierr ) |
---|
| 551 | ! |
---|
| 552 | ! CALL MPI_RECV( work2dvsws,n_cell_c, MPI_REAL, target_idex, 111, & |
---|
| 553 | ! comm_inter,status, ierr ) |
---|
| 554 | ! |
---|
| 555 | ! CALL MPI_RECV( work2dts ,n_cell_c, MPI_REAL, target_idex, 112, & |
---|
| 556 | ! comm_inter,status, ierr ) |
---|
| 557 | ! |
---|
| 558 | ! CALL MPI_RECV( work2dus ,n_cell_c, MPI_REAL, target_idex, 113, & |
---|
| 559 | ! comm_inter,status, ierr ) |
---|
| 560 | ! |
---|
| 561 | ! CALL interpolate_to_fine_flux ( 108 ) |
---|
[2365] | 562 | |
---|
| 563 | DEALLOCATE( work2dusws ) |
---|
| 564 | DEALLOCATE( work2dvsws ) |
---|
| 565 | DEALLOCATE( work2dts ) |
---|
| 566 | DEALLOCATE( work2dus ) |
---|
| 567 | ENDIF |
---|
| 568 | |
---|
| 569 | IF ( .NOT. constant_diffusion ) THEN |
---|
[2712] | 570 | DO kkf = bdims(3,1)+1,bdims(3,2)+1 |
---|
| 571 | DO jjf = bdims(2,1),bdims(2,2) |
---|
| 572 | DO iif = bdims(1,1),bdims(1,2) |
---|
[2365] | 573 | |
---|
[2712] | 574 | IF ( e(kkf,jjf,iif) < 0.0 ) THEN |
---|
| 575 | e(kkf,jjf,iif) = 1E-15_wp |
---|
[2365] | 576 | END IF |
---|
| 577 | |
---|
| 578 | END DO |
---|
| 579 | END DO |
---|
| 580 | END DO |
---|
| 581 | ENDIF |
---|
| 582 | |
---|
| 583 | w(nzt+1,:,:) = w(nzt,:,:) |
---|
| 584 | |
---|
| 585 | CALL exchange_horiz( u, nbgp ) |
---|
| 586 | CALL exchange_horiz( v, nbgp ) |
---|
| 587 | CALL exchange_horiz( w, nbgp ) |
---|
| 588 | CALL exchange_horiz( pt, nbgp ) |
---|
| 589 | IF ( .NOT. constant_diffusion ) CALL exchange_horiz( e, nbgp ) |
---|
| 590 | IF ( humidity ) CALL exchange_horiz( q, nbgp ) |
---|
| 591 | |
---|
| 592 | ! |
---|
| 593 | !-- Velocity boundary conditions at the bottom boundary |
---|
| 594 | IF ( ibc_uv_b == 0 ) THEN |
---|
| 595 | u(nzb,:,:) = 0.0_wp |
---|
| 596 | v(nzb,:,:) = 0.0_wp |
---|
| 597 | ELSE |
---|
| 598 | u(nzb,:,:) = u(nzb+1,:,:) |
---|
| 599 | v(nzb,:,:) = v(nzb+1,:,:) |
---|
| 600 | END IF |
---|
| 601 | |
---|
| 602 | |
---|
| 603 | w(nzb,:,:) = 0.0_wp |
---|
| 604 | |
---|
[2514] | 605 | ! |
---|
| 606 | !-- Temperature boundary conditions at the bottom boundary |
---|
[2365] | 607 | IF ( ibc_pt_b /= 0 ) THEN |
---|
| 608 | pt(nzb,:,:) = pt(nzb+1,:,:) |
---|
| 609 | END IF |
---|
| 610 | |
---|
| 611 | ! |
---|
| 612 | !-- Bottom boundary condition for the turbulent kinetic energy |
---|
| 613 | !-- Generally a Neumann condition with de/dz=0 is assumed |
---|
| 614 | IF ( .NOT. constant_diffusion ) THEN |
---|
| 615 | e(nzb,:,:) = e(nzb+1,:,:) |
---|
| 616 | END IF |
---|
| 617 | |
---|
| 618 | ! |
---|
| 619 | !-- Bottom boundary condition for turbulent diffusion coefficients |
---|
| 620 | km(nzb,:,:) = km(nzb+1,:,:) |
---|
| 621 | kh(nzb,:,:) = kh(nzb+1,:,:) |
---|
| 622 | |
---|
| 623 | !diffusivities required |
---|
| 624 | IF ( .NOT. humidity ) THEN |
---|
[2696] | 625 | CALL tcm_diffusivities( pt, pt_reference ) |
---|
[2365] | 626 | ELSE |
---|
[2696] | 627 | CALL tcm_diffusivities( vpt, pt_reference ) |
---|
[2365] | 628 | ENDIF |
---|
| 629 | |
---|
| 630 | |
---|
| 631 | ! |
---|
| 632 | !-- Reset Fine Grid top Boundary Condition |
---|
| 633 | !-- At the top of the FG, the scalars always follow Dirichlet condition |
---|
| 634 | |
---|
| 635 | ibc_pt_t = 0 |
---|
| 636 | |
---|
| 637 | !-- Initialize old time levels |
---|
| 638 | pt_p = pt; u_p = u; v_p = v; w_p = w |
---|
| 639 | IF ( .NOT. constant_diffusion ) e_p = e |
---|
| 640 | IF ( humidity ) THEN |
---|
| 641 | ibc_q_t = 0 |
---|
| 642 | q_p = q |
---|
| 643 | ENDIF |
---|
| 644 | |
---|
| 645 | ENDIF |
---|
| 646 | |
---|
| 647 | |
---|
| 648 | if (myid==0) print *, '** Fine Initalized ** simulated_time:', simulated_time |
---|
[2712] | 649 | |
---|
[2365] | 650 | CONTAINS |
---|
| 651 | |
---|
[3241] | 652 | SUBROUTINE interpolate_to_fine_w |
---|
[2365] | 653 | |
---|
| 654 | USE arrays_3d |
---|
| 655 | USE control_parameters |
---|
| 656 | USE grid_variables |
---|
| 657 | USE indices |
---|
| 658 | USE pegrid |
---|
| 659 | |
---|
| 660 | |
---|
| 661 | IMPLICIT NONE |
---|
| 662 | |
---|
[2712] | 663 | INTEGER(iwp) :: i |
---|
| 664 | INTEGER(iwp) :: j |
---|
| 665 | INTEGER(iwp) :: k |
---|
| 666 | INTEGER(iwp) :: iif |
---|
| 667 | INTEGER(iwp) :: jjf |
---|
| 668 | INTEGER(iwp) :: kkf |
---|
| 669 | INTEGER(iwp) :: nzbottom |
---|
| 670 | INTEGER(iwp) :: nztop |
---|
| 671 | INTEGER(iwp) :: bottomx |
---|
| 672 | INTEGER(iwp) :: bottomy |
---|
| 673 | INTEGER(iwp) :: bottomz |
---|
| 674 | INTEGER(iwp) :: topx |
---|
| 675 | INTEGER(iwp) :: topy |
---|
| 676 | INTEGER(iwp) :: topz |
---|
| 677 | REAL(wp) :: eps |
---|
| 678 | REAL(wp) :: alpha |
---|
| 679 | REAL(wp) :: eminus |
---|
| 680 | REAL(wp) :: edot |
---|
| 681 | REAL(wp) :: eplus |
---|
| 682 | REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: wprs |
---|
| 683 | REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: wprf |
---|
[2365] | 684 | |
---|
| 685 | |
---|
| 686 | nzbottom = bdims_rem (3,1) |
---|
| 687 | nztop = bdims_rem (3,2) |
---|
| 688 | |
---|
| 689 | ALLOCATE( wprf(nzbottom:nztop, bdims_rem(2,1)-1: bdims_rem(2,2)+1,nxl:nxr) ) |
---|
| 690 | ALLOCATE( wprs(nzbottom:nztop,nys:nyn,nxl:nxr) ) |
---|
| 691 | |
---|
| 692 | |
---|
| 693 | ! |
---|
| 694 | !-- Initialisation of the velocity component w |
---|
| 695 | ! |
---|
| 696 | !-- Interpolation in x-direction |
---|
| 697 | DO k = nzbottom, nztop |
---|
| 698 | DO j = bdims_rem(2,1)-1, bdims_rem(2,2)+1 |
---|
| 699 | DO i = bdims_rem(1,1),bdims_rem(1,2) |
---|
| 700 | |
---|
| 701 | bottomx = (nxf+1)/(nxc+1) * i |
---|
| 702 | topx = (nxf+1)/(nxc+1) * (i+1) - 1 |
---|
| 703 | |
---|
[2712] | 704 | DO iif = bottomx, topx |
---|
[2365] | 705 | |
---|
[2712] | 706 | eps = ( iif * dxf + 0.5 * dxf - i * dxc - 0.5 * dxc ) / dxc |
---|
[2365] | 707 | alpha = ( ( dxf / dxc )**2.0 - 1.0 ) / 24.0 |
---|
| 708 | eminus = eps * ( eps - 1.0 ) / 2.0 + alpha |
---|
| 709 | edot = ( 1.0 - eps**2.0 ) - 2.0 * alpha |
---|
| 710 | eplus = eps * ( eps + 1.0 ) / 2.0 + alpha |
---|
| 711 | |
---|
[2712] | 712 | wprf(k,j,iif) = eminus * work3d(k,j,i-1) & |
---|
[2365] | 713 | + edot * work3d(k,j,i) & |
---|
| 714 | + eplus * work3d(k,j,i+1) |
---|
| 715 | END DO |
---|
| 716 | |
---|
| 717 | END DO |
---|
| 718 | END DO |
---|
| 719 | END DO |
---|
| 720 | |
---|
| 721 | ! |
---|
| 722 | !-- Interpolation in y-direction (quadratic, Clark and Farley) |
---|
| 723 | DO k = nzbottom, nztop |
---|
| 724 | DO j = bdims_rem(2,1), bdims_rem(2,2) |
---|
| 725 | |
---|
| 726 | bottomy = (nyf+1)/(nyc+1) * j |
---|
| 727 | topy = (nyf+1)/(nyc+1) * (j+1) - 1 |
---|
| 728 | |
---|
[2712] | 729 | DO iif = nxl, nxr |
---|
| 730 | DO jjf = bottomy, topy |
---|
[2365] | 731 | |
---|
[2712] | 732 | eps = ( jjf * dyf + 0.5 * dyf - j * dyc - 0.5 * dyc ) / dyc |
---|
[2365] | 733 | alpha = ( ( dyf / dyc )**2.0 - 1.0 ) / 24.0 |
---|
| 734 | eminus = eps * ( eps - 1.0 ) / 2.0 + alpha |
---|
| 735 | edot = ( 1.0 - eps**2.0 ) - 2.0 * alpha |
---|
| 736 | eplus = eps * ( eps + 1.0 ) / 2.0 + alpha |
---|
| 737 | |
---|
[2712] | 738 | wprs(k,jjf,iif) = eminus * wprf(k,j-1,iif) & |
---|
| 739 | + edot * wprf(k,j,iif) & |
---|
| 740 | + eplus * wprf(k,j+1,iif) |
---|
[2365] | 741 | |
---|
| 742 | END DO |
---|
| 743 | END DO |
---|
| 744 | |
---|
| 745 | END DO |
---|
| 746 | END DO |
---|
| 747 | |
---|
| 748 | ! |
---|
| 749 | !-- Interpolation in z-direction (linear) |
---|
| 750 | |
---|
| 751 | DO k = nzbottom, nztop-1 |
---|
| 752 | |
---|
| 753 | bottomz = (dzc/dzf) * k |
---|
| 754 | topz = (dzc/dzf) * (k+1) - 1 |
---|
| 755 | |
---|
[2712] | 756 | DO jjf = nys, nyn |
---|
| 757 | DO iif = nxl, nxr |
---|
| 758 | DO kkf = bottomz, topz |
---|
[2365] | 759 | |
---|
[2712] | 760 | w(kkf,jjf,iif) = wprs(k,jjf,iif) + ( zwf(kkf) - zwc(k) ) & |
---|
| 761 | * ( wprs(k+1,jjf,iif) - wprs(k,jjf,iif) ) / dzc |
---|
[2365] | 762 | |
---|
| 763 | END DO |
---|
| 764 | END DO |
---|
| 765 | END DO |
---|
| 766 | |
---|
| 767 | END DO |
---|
| 768 | |
---|
[2712] | 769 | DO jjf = nys, nyn |
---|
| 770 | DO iif = nxl, nxr |
---|
[2365] | 771 | |
---|
[2712] | 772 | w(nzt,jjf,iif) = wprs(nztop,jjf,iif) |
---|
[2365] | 773 | |
---|
| 774 | END DO |
---|
| 775 | END DO |
---|
| 776 | ! |
---|
| 777 | ! w(nzb:nzt+1,nys:nyn,nxl:nxr) = 0 |
---|
| 778 | |
---|
| 779 | DEALLOCATE( wprf, wprs ) |
---|
| 780 | |
---|
| 781 | END SUBROUTINE interpolate_to_fine_w |
---|
| 782 | |
---|
[3241] | 783 | SUBROUTINE interpolate_to_fine_u |
---|
[2365] | 784 | |
---|
| 785 | |
---|
| 786 | USE arrays_3d |
---|
| 787 | USE control_parameters |
---|
| 788 | USE grid_variables |
---|
| 789 | USE indices |
---|
| 790 | USE pegrid |
---|
| 791 | |
---|
| 792 | |
---|
| 793 | IMPLICIT NONE |
---|
| 794 | |
---|
[2712] | 795 | INTEGER(iwp) :: i |
---|
| 796 | INTEGER(iwp) :: j |
---|
| 797 | INTEGER(iwp) :: k |
---|
| 798 | INTEGER(iwp) :: iif |
---|
| 799 | INTEGER(iwp) :: jjf |
---|
| 800 | INTEGER(iwp) :: kkf |
---|
| 801 | INTEGER(iwp) :: nzbottom |
---|
| 802 | INTEGER(iwp) :: nztop |
---|
| 803 | INTEGER(iwp) :: bottomx |
---|
| 804 | INTEGER(iwp) :: bottomy |
---|
| 805 | INTEGER(iwp) :: bottomz |
---|
| 806 | INTEGER(iwp) :: topx |
---|
| 807 | INTEGER(iwp) :: topy |
---|
| 808 | INTEGER(iwp) :: topz |
---|
| 809 | REAL(wp) :: eps |
---|
| 810 | REAL(wp) :: alpha |
---|
| 811 | REAL(wp) :: eminus |
---|
| 812 | REAL(wp) :: edot |
---|
| 813 | REAL(wp) :: eplus |
---|
| 814 | REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: uprf |
---|
| 815 | REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: uprs |
---|
[2365] | 816 | |
---|
| 817 | |
---|
| 818 | |
---|
| 819 | nzbottom = bdims_rem (3,1) |
---|
| 820 | nztop = bdims_rem (3,2) |
---|
| 821 | |
---|
| 822 | ALLOCATE( uprf(nzbottom:nztop+2,nys:nyn,bdims_rem(1,1)-1:bdims_rem(1,2)+1) ) |
---|
| 823 | ALLOCATE( uprs(nzb+1:nzt+1,nys:nyn,bdims_rem(1,1)-1:bdims_rem(1,2)+1) ) |
---|
| 824 | |
---|
| 825 | ! |
---|
| 826 | !-- Initialisation of the velocity component uf |
---|
| 827 | |
---|
| 828 | ! |
---|
| 829 | !-- Interpolation in y-direction (quadratic, Clark and Farley) |
---|
| 830 | |
---|
| 831 | DO k = nzbottom, nztop+2 |
---|
| 832 | DO j = bdims_rem(2,1), bdims_rem(2,2) |
---|
| 833 | |
---|
| 834 | bottomy = (nyf+1)/(nyc+1) * j |
---|
| 835 | topy = (nyf+1)/(nyc+1) * (j+1) - 1 |
---|
| 836 | |
---|
| 837 | DO i = bdims_rem(1,1)-1, bdims_rem(1,2)+1 |
---|
[2712] | 838 | DO jjf = bottomy, topy |
---|
[2365] | 839 | |
---|
[2712] | 840 | eps = ( jjf * dyf + 0.5 * dyf - j * dyc - 0.5 * dyc ) / dyc |
---|
[2365] | 841 | alpha = ( ( dyf / dyc )**2.0 - 1.0 ) / 24.0 |
---|
| 842 | eminus = eps * ( eps - 1.0 ) / 2.0 + alpha |
---|
| 843 | edot = ( 1.0 - eps**2.0 ) - 2.0 * alpha |
---|
| 844 | eplus = eps * ( eps + 1.0 ) / 2.0 + alpha |
---|
| 845 | |
---|
[2712] | 846 | uprf(k,jjf,i) = eminus * work3d(k,j-1,i) & |
---|
[2365] | 847 | + edot * work3d(k,j,i) & |
---|
| 848 | + eplus * work3d(k,j+1,i) |
---|
| 849 | |
---|
| 850 | END DO |
---|
| 851 | END DO |
---|
| 852 | |
---|
| 853 | END DO |
---|
| 854 | END DO |
---|
| 855 | |
---|
| 856 | ! |
---|
| 857 | !-- Interpolation in z-direction (quadratic, Clark and Farley) |
---|
| 858 | |
---|
| 859 | DO k = nzbottom+1, nztop |
---|
| 860 | |
---|
| 861 | bottomz = (dzc/dzf) * (k-1) + 1 |
---|
| 862 | topz = (dzc/dzf) * k |
---|
| 863 | |
---|
[2712] | 864 | DO jjf = nys, nyn |
---|
[2365] | 865 | DO i = bdims_rem(1,1)-1, bdims_rem(1,2)+1 |
---|
[2712] | 866 | DO kkf = bottomz, topz |
---|
[2365] | 867 | |
---|
[2712] | 868 | eps = ( zuf(kkf) - zuc(k) ) / dzc |
---|
[2365] | 869 | alpha = ( ( dzf / dzc )**2.0 - 1.0 ) / 24.0 |
---|
| 870 | eminus = eps * ( eps - 1.0 ) / 2.0 + alpha |
---|
| 871 | edot = ( 1.0 - eps**2.0 ) - 2.0 * alpha |
---|
| 872 | eplus = eps * ( eps + 1.0 ) / 2.0 + alpha |
---|
| 873 | |
---|
[2712] | 874 | uprs(kkf,jjf,i) = eminus * uprf(k-1,jjf,i) & |
---|
| 875 | + edot * uprf(k,jjf,i) & |
---|
| 876 | + eplus * uprf(k+1,jjf,i) |
---|
[2365] | 877 | |
---|
| 878 | END DO |
---|
| 879 | END DO |
---|
| 880 | END DO |
---|
| 881 | |
---|
| 882 | END DO |
---|
| 883 | |
---|
[2712] | 884 | DO jjf = nys, nyn |
---|
[2365] | 885 | DO i = bdims_rem(1,1)-1, bdims_rem(1,2)+1 |
---|
| 886 | |
---|
| 887 | eps = ( zuf(nzt+1) - zuc(nztop+1) ) / dzc |
---|
| 888 | alpha = ( ( dzf / dzc )**2.0 - 1.0 ) / 24.0 |
---|
| 889 | eminus = eps * ( eps - 1.0 ) / 2.0 + alpha |
---|
| 890 | edot = ( 1.0 - eps**2.0 ) - 2.0 * alpha |
---|
| 891 | eplus = eps * ( eps + 1.0 ) / 2.0 + alpha |
---|
| 892 | |
---|
[2712] | 893 | uprs(nzt+1,jjf,i) = eminus * uprf(nztop,jjf,i) & |
---|
| 894 | + edot * uprf(nztop+1,jjf,i) & |
---|
| 895 | + eplus * uprf(nztop+2,jjf,i) |
---|
[2365] | 896 | |
---|
| 897 | END DO |
---|
| 898 | END DO |
---|
| 899 | |
---|
| 900 | ! |
---|
| 901 | !-- Interpolation in x-direction (linear) |
---|
| 902 | |
---|
[2712] | 903 | DO kkf = nzb+1, nzt+1 |
---|
| 904 | DO jjf = nys, nyn |
---|
[2365] | 905 | DO i = bdims_rem(1,1), bdims_rem(1,2) |
---|
| 906 | |
---|
| 907 | bottomx = (nxf+1)/(nxc+1) * i |
---|
| 908 | topx = (nxf+1)/(nxc+1) * (i+1) - 1 |
---|
| 909 | |
---|
[2712] | 910 | DO iif = bottomx, topx |
---|
| 911 | u(kkf,jjf,iif) = uprs(kkf,jjf,i) + ( iif * dxf - i * dxc ) & |
---|
| 912 | * ( uprs(kkf,jjf,i+1) - uprs(kkf,jjf,i) ) / dxc |
---|
[2365] | 913 | END DO |
---|
| 914 | |
---|
| 915 | END DO |
---|
| 916 | END DO |
---|
| 917 | END DO |
---|
| 918 | ! |
---|
| 919 | !-- Determination of uf at the bottom boundary |
---|
| 920 | |
---|
| 921 | |
---|
| 922 | |
---|
| 923 | DEALLOCATE( uprf, uprs ) |
---|
| 924 | |
---|
| 925 | END SUBROUTINE interpolate_to_fine_u |
---|
| 926 | |
---|
| 927 | |
---|
[3241] | 928 | SUBROUTINE interpolate_to_fine_v |
---|
[2365] | 929 | |
---|
| 930 | |
---|
| 931 | USE arrays_3d |
---|
| 932 | USE control_parameters |
---|
| 933 | USE grid_variables |
---|
| 934 | USE indices |
---|
| 935 | USE pegrid |
---|
| 936 | |
---|
| 937 | |
---|
| 938 | IMPLICIT NONE |
---|
[2712] | 939 | |
---|
| 940 | INTEGER(iwp) :: i |
---|
| 941 | INTEGER(iwp) :: j |
---|
| 942 | INTEGER(iwp) :: k |
---|
| 943 | INTEGER(iwp) :: iif |
---|
| 944 | INTEGER(iwp) :: jjf |
---|
| 945 | INTEGER(iwp) :: kkf |
---|
| 946 | INTEGER(iwp) :: nzbottom |
---|
| 947 | INTEGER(iwp) :: nztop |
---|
| 948 | INTEGER(iwp) :: bottomx |
---|
| 949 | INTEGER(iwp) :: bottomy |
---|
| 950 | INTEGER(iwp) :: bottomz |
---|
| 951 | INTEGER(iwp) :: topx |
---|
| 952 | INTEGER(iwp) :: topy |
---|
| 953 | INTEGER(iwp) :: topz |
---|
| 954 | REAL(wp) :: eps |
---|
| 955 | REAL(wp) :: alpha |
---|
| 956 | REAL(wp) :: eminus |
---|
| 957 | REAL(wp) :: edot |
---|
| 958 | REAL(wp) :: eplus |
---|
| 959 | REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: vprs |
---|
| 960 | REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: vprf |
---|
[2365] | 961 | |
---|
| 962 | |
---|
| 963 | nzbottom = bdims_rem (3,1) |
---|
| 964 | nztop = bdims_rem (3,2) |
---|
| 965 | |
---|
| 966 | ALLOCATE( vprf(nzbottom:nztop+2,bdims_rem(2,1)-1:bdims_rem(2,2)+1,nxl:nxr) ) |
---|
| 967 | ALLOCATE( vprs(nzb+1:nzt+1, bdims_rem(2,1)-1:bdims_rem(2,2)+1,nxl:nxr) ) |
---|
| 968 | ! |
---|
| 969 | !-- Initialisation of the velocity component vf |
---|
| 970 | |
---|
| 971 | ! |
---|
| 972 | !-- Interpolation in x-direction (quadratic, Clark and Farley) |
---|
| 973 | |
---|
| 974 | DO k = nzbottom, nztop+2 |
---|
| 975 | DO j = bdims_rem(2,1)-1, bdims_rem(2,2)+1 |
---|
| 976 | DO i = bdims_rem(1,1), bdims_rem(1,2) |
---|
| 977 | |
---|
| 978 | bottomx = (nxf+1)/(nxc+1) * i |
---|
| 979 | topx = (nxf+1)/(nxc+1) * (i+1) - 1 |
---|
| 980 | |
---|
[2712] | 981 | DO iif = bottomx, topx |
---|
[2365] | 982 | |
---|
[2712] | 983 | eps = ( iif * dxf + 0.5 * dxf - i * dxc - 0.5 * dxc ) / dxc |
---|
[2365] | 984 | alpha = ( ( dxf / dxc )**2.0 - 1.0 ) / 24.0 |
---|
| 985 | eminus = eps * ( eps - 1.0 ) / 2.0 + alpha |
---|
| 986 | edot = ( 1.0 - eps**2.0 ) - 2.0 * alpha |
---|
| 987 | eplus = eps * ( eps + 1.0 ) / 2.0 + alpha |
---|
| 988 | |
---|
[2712] | 989 | vprf(k,j,iif) = eminus * work3d(k,j,i-1) & |
---|
[2365] | 990 | + edot * work3d(k,j,i) & |
---|
| 991 | + eplus * work3d(k,j,i+1) |
---|
| 992 | |
---|
| 993 | END DO |
---|
| 994 | |
---|
| 995 | END DO |
---|
| 996 | END DO |
---|
| 997 | END DO |
---|
| 998 | |
---|
| 999 | ! |
---|
| 1000 | !-- Interpolation in z-direction (quadratic, Clark and Farley) |
---|
| 1001 | |
---|
| 1002 | DO k = nzbottom+1, nztop |
---|
| 1003 | |
---|
| 1004 | bottomz = (dzc/dzf) * (k-1) + 1 |
---|
| 1005 | topz = (dzc/dzf) * k |
---|
| 1006 | |
---|
| 1007 | DO j = bdims_rem(2,1)-1, bdims_rem(2,2)+1 |
---|
[2712] | 1008 | DO iif = nxl, nxr |
---|
| 1009 | DO kkf = bottomz, topz |
---|
[2365] | 1010 | |
---|
[2712] | 1011 | eps = ( zuf(kkf) - zuc(k) ) / dzc |
---|
[2365] | 1012 | alpha = ( ( dzf / dzc )**2.0 - 1.0 ) / 24.0 |
---|
| 1013 | eminus = eps * ( eps - 1.0 ) / 2.0 + alpha |
---|
| 1014 | edot = ( 1.0 - eps**2.0 ) - 2.0 * alpha |
---|
| 1015 | eplus = eps * ( eps + 1.0 ) / 2.0 + alpha |
---|
| 1016 | |
---|
[2712] | 1017 | vprs(kkf,j,iif) = eminus * vprf(k-1,j,iif) & |
---|
| 1018 | + edot * vprf(k,j,iif) & |
---|
| 1019 | + eplus * vprf(k+1,j,iif) |
---|
[2365] | 1020 | |
---|
| 1021 | END DO |
---|
| 1022 | END DO |
---|
| 1023 | END DO |
---|
| 1024 | |
---|
| 1025 | END DO |
---|
| 1026 | |
---|
| 1027 | DO j = bdims_rem(2,1)-1, bdims_rem(2,2)+1 |
---|
[2712] | 1028 | DO iif = nxl, nxr |
---|
[2365] | 1029 | |
---|
| 1030 | eps = ( zuf(nzt+1) - zuc(nztop+1) ) / dzc |
---|
| 1031 | alpha = ( ( dzf / dzc )**2.0 - 1.0 ) / 24.0 |
---|
| 1032 | eminus = eps * ( eps - 1.0 ) / 2.0 + alpha |
---|
| 1033 | edot = ( 1.0 - eps**2.0 ) - 2.0 * alpha |
---|
| 1034 | eplus = eps * ( eps + 1.0 ) / 2.0 + alpha |
---|
| 1035 | |
---|
[2712] | 1036 | vprs(nzt+1,j,iif) = eminus * vprf(nztop,j,iif) & |
---|
| 1037 | + edot * vprf(nztop+1,j,iif) & |
---|
| 1038 | + eplus * vprf(nztop+2,j,iif) |
---|
[2365] | 1039 | |
---|
| 1040 | END DO |
---|
| 1041 | END DO |
---|
| 1042 | |
---|
| 1043 | ! |
---|
| 1044 | !-- Interpolation in y-direction (linear) |
---|
| 1045 | |
---|
[2712] | 1046 | DO kkf = nzb+1, nzt+1 |
---|
[2365] | 1047 | DO j = bdims_rem(2,1), bdims_rem(2,2) |
---|
| 1048 | |
---|
| 1049 | bottomy = (nyf+1)/(nyc+1) * j |
---|
| 1050 | topy = (nyf+1)/(nyc+1) * (j+1) - 1 |
---|
| 1051 | |
---|
[2712] | 1052 | DO iif = nxl, nxr |
---|
| 1053 | DO jjf = bottomy, topy |
---|
| 1054 | v (kkf,jjf,iif) = vprs(kkf,j,iif) + ( jjf * dyf - j * dyc ) & |
---|
| 1055 | * ( vprs(kkf,j+1,iif) - vprs(kkf,j,iif) ) / dyc |
---|
[2365] | 1056 | END DO |
---|
| 1057 | END DO |
---|
| 1058 | |
---|
| 1059 | END DO |
---|
| 1060 | END DO |
---|
| 1061 | |
---|
| 1062 | ! |
---|
| 1063 | !-- Determination of vf at the bottom boundary |
---|
| 1064 | |
---|
| 1065 | |
---|
| 1066 | DEALLOCATE( vprf, vprs ) |
---|
| 1067 | |
---|
| 1068 | END SUBROUTINE interpolate_to_fine_v |
---|
| 1069 | |
---|
| 1070 | |
---|
[3241] | 1071 | SUBROUTINE interpolate_to_fine_s |
---|
[2365] | 1072 | |
---|
| 1073 | |
---|
| 1074 | USE arrays_3d |
---|
| 1075 | USE control_parameters |
---|
| 1076 | USE grid_variables |
---|
| 1077 | USE indices |
---|
| 1078 | USE pegrid |
---|
| 1079 | |
---|
| 1080 | |
---|
| 1081 | IMPLICIT NONE |
---|
[2712] | 1082 | |
---|
| 1083 | INTEGER(iwp) :: i |
---|
| 1084 | INTEGER(iwp) :: j |
---|
| 1085 | INTEGER(iwp) :: k |
---|
| 1086 | INTEGER(iwp) :: iif |
---|
| 1087 | INTEGER(iwp) :: jjf |
---|
| 1088 | INTEGER(iwp) :: kkf |
---|
| 1089 | INTEGER(iwp) :: nzbottom |
---|
| 1090 | INTEGER(iwp) :: nztop |
---|
| 1091 | INTEGER(iwp) :: bottomx |
---|
| 1092 | INTEGER(iwp) :: bottomy |
---|
| 1093 | INTEGER(iwp) :: bottomz |
---|
| 1094 | INTEGER(iwp) :: topx |
---|
| 1095 | INTEGER(iwp) :: topy |
---|
| 1096 | INTEGER(iwp) :: topz |
---|
| 1097 | REAL(wp) :: eps |
---|
| 1098 | REAL(wp) :: alpha |
---|
| 1099 | REAL(wp) :: eminus |
---|
| 1100 | REAL(wp) :: edot |
---|
| 1101 | REAL(wp) :: eplus |
---|
| 1102 | REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: ptprs |
---|
| 1103 | REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: ptprf |
---|
[2365] | 1104 | |
---|
| 1105 | |
---|
| 1106 | nzbottom = bdims_rem (3,1) |
---|
| 1107 | nztop = bdims_rem (3,2) |
---|
| 1108 | |
---|
| 1109 | ALLOCATE( ptprf(nzbottom:nztop+2,bdims_rem(2,1)-1:bdims_rem(2,2)+1,nxl:nxr) ) |
---|
| 1110 | ALLOCATE( ptprs(nzbottom:nztop+2,nys:nyn,nxl:nxr) ) |
---|
| 1111 | |
---|
| 1112 | ! |
---|
| 1113 | !-- Initialisation of scalar variables |
---|
| 1114 | |
---|
| 1115 | ! |
---|
| 1116 | !-- Interpolation in x-direction (quadratic, Clark and Farley) |
---|
| 1117 | |
---|
| 1118 | DO k = nzbottom, nztop+2 |
---|
| 1119 | DO j = bdims_rem(2,1)-1, bdims_rem(2,2)+1 |
---|
| 1120 | DO i = bdims_rem(1,1), bdims_rem(1,2) |
---|
| 1121 | |
---|
| 1122 | bottomx = (nxf+1)/(nxc+1) * i |
---|
| 1123 | topx = (nxf+1)/(nxc+1) * (i+1) - 1 |
---|
| 1124 | |
---|
[2712] | 1125 | DO iif = bottomx, topx |
---|
[2365] | 1126 | |
---|
[2712] | 1127 | eps = ( iif * dxf + 0.5 * dxf - i * dxc - 0.5 * dxc ) / dxc |
---|
[2365] | 1128 | alpha = ( ( dxf / dxc )**2.0 - 1.0 ) / 24.0 |
---|
| 1129 | eminus = eps * ( eps - 1.0 ) / 2.0 + alpha |
---|
| 1130 | edot = ( 1.0 - eps**2.0 ) - 2.0 * alpha |
---|
| 1131 | eplus = eps * ( eps + 1.0 ) / 2.0 + alpha |
---|
| 1132 | |
---|
[2712] | 1133 | ptprf(k,j,iif) = eminus * work3d(k,j,i-1) & |
---|
[2365] | 1134 | + edot * work3d(k,j,i) & |
---|
| 1135 | + eplus * work3d(k,j,i+1) |
---|
| 1136 | END DO |
---|
| 1137 | |
---|
| 1138 | END DO |
---|
| 1139 | END DO |
---|
| 1140 | END DO |
---|
| 1141 | |
---|
| 1142 | ! |
---|
| 1143 | !-- Interpolation in y-direction (quadratic, Clark and Farley) |
---|
| 1144 | |
---|
| 1145 | DO k = nzbottom, nztop+2 |
---|
| 1146 | DO j = bdims_rem(2,1), bdims_rem(2,2) |
---|
| 1147 | |
---|
| 1148 | bottomy = (nyf+1)/(nyc+1) * j |
---|
| 1149 | topy = (nyf+1)/(nyc+1) * (j+1) - 1 |
---|
| 1150 | |
---|
[2712] | 1151 | DO iif = nxl, nxr |
---|
| 1152 | DO jjf = bottomy, topy |
---|
[2365] | 1153 | |
---|
[2712] | 1154 | eps = ( jjf * dyf + 0.5 * dyf - j * dyc - 0.5 * dyc ) / dyc |
---|
[2365] | 1155 | alpha = ( ( dyf / dyc )**2.0 - 1.0 ) / 24.0 |
---|
| 1156 | eminus = eps * ( eps - 1.0 ) / 2.0 + alpha |
---|
| 1157 | edot = ( 1.0 - eps**2.0 ) - 2.0 * alpha |
---|
| 1158 | eplus = eps * ( eps + 1.0 ) / 2.0 + alpha |
---|
| 1159 | |
---|
[2712] | 1160 | ptprs(k,jjf,iif) = eminus * ptprf(k,j-1,iif) & |
---|
| 1161 | + edot * ptprf(k,j,iif) & |
---|
| 1162 | + eplus * ptprf(k,j+1,iif) |
---|
[2365] | 1163 | |
---|
| 1164 | END DO |
---|
| 1165 | END DO |
---|
| 1166 | |
---|
| 1167 | END DO |
---|
| 1168 | END DO |
---|
| 1169 | |
---|
| 1170 | ! |
---|
| 1171 | !-- Interpolation in z-direction (quadratic, Clark and Farley) |
---|
| 1172 | |
---|
| 1173 | DO k = nzbottom+1, nztop |
---|
| 1174 | |
---|
| 1175 | bottomz = (dzc/dzf) * (k-1) + 1 |
---|
| 1176 | topz = (dzc/dzf) * k |
---|
| 1177 | |
---|
[2712] | 1178 | DO jjf = nys, nyn |
---|
| 1179 | DO iif = nxl, nxr |
---|
| 1180 | DO kkf = bottomz, topz |
---|
[2365] | 1181 | |
---|
[2712] | 1182 | eps = ( zuf(kkf) - zuc(k) ) / dzc |
---|
[2365] | 1183 | alpha = ( ( dzf / dzc )**2.0 - 1.0 ) / 24.0 |
---|
| 1184 | eminus = eps * ( eps - 1.0 ) / 2.0 + alpha |
---|
| 1185 | edot = ( 1.0 - eps**2.0 ) - 2.0 * alpha |
---|
| 1186 | eplus = eps * ( eps + 1.0 ) / 2.0 + alpha |
---|
| 1187 | |
---|
[2712] | 1188 | interpol3d(kkf,jjf,iif) = eminus * ptprs(k-1,jjf,iif) & |
---|
| 1189 | + edot * ptprs(k,jjf,iif) & |
---|
| 1190 | + eplus * ptprs(k+1,jjf,iif) |
---|
[2365] | 1191 | |
---|
| 1192 | END DO |
---|
| 1193 | END DO |
---|
| 1194 | END DO |
---|
| 1195 | |
---|
| 1196 | END DO |
---|
| 1197 | |
---|
[2712] | 1198 | DO jjf = nys, nyn |
---|
| 1199 | DO iif = nxl, nxr |
---|
[2365] | 1200 | |
---|
| 1201 | eps = ( zuf(nzt+1) - zuc(nztop+1) ) / dzc |
---|
| 1202 | alpha = ( ( dzf / dzc )**2.0 - 1.0 ) / 24.0 |
---|
| 1203 | eminus = eps * ( eps - 1.0 ) / 2.0 + alpha |
---|
| 1204 | edot = ( 1.0 - eps**2.0 ) - 2.0 * alpha |
---|
| 1205 | eplus = eps * ( eps + 1.0 ) / 2.0 + alpha |
---|
| 1206 | |
---|
[2712] | 1207 | interpol3d(nzt+1,jjf,iif) = eminus * ptprs(nztop,jjf,iif) & |
---|
| 1208 | + edot * ptprs(nztop+1,jjf,iif) & |
---|
| 1209 | + eplus * ptprs(nztop+2,jjf,iif) |
---|
[2365] | 1210 | |
---|
| 1211 | END DO |
---|
| 1212 | END DO |
---|
| 1213 | |
---|
| 1214 | |
---|
| 1215 | DEALLOCATE( ptprf, ptprs ) |
---|
| 1216 | |
---|
| 1217 | END SUBROUTINE interpolate_to_fine_s |
---|
| 1218 | |
---|
| 1219 | |
---|
[3241] | 1220 | SUBROUTINE interpolate_to_fine_kh |
---|
[2365] | 1221 | |
---|
| 1222 | |
---|
| 1223 | USE arrays_3d |
---|
| 1224 | USE control_parameters |
---|
| 1225 | USE grid_variables |
---|
| 1226 | USE indices |
---|
| 1227 | USE pegrid |
---|
| 1228 | |
---|
| 1229 | |
---|
| 1230 | IMPLICIT NONE |
---|
[2712] | 1231 | |
---|
| 1232 | INTEGER(iwp) :: i |
---|
| 1233 | INTEGER(iwp) :: j |
---|
| 1234 | INTEGER(iwp) :: k |
---|
| 1235 | INTEGER(iwp) :: iif |
---|
| 1236 | INTEGER(iwp) :: jjf |
---|
| 1237 | INTEGER(iwp) :: kkf |
---|
| 1238 | INTEGER(iwp) :: nzbottom |
---|
| 1239 | INTEGER(iwp) :: nztop |
---|
| 1240 | INTEGER(iwp) :: bottomx |
---|
| 1241 | INTEGER(iwp) :: bottomy |
---|
| 1242 | INTEGER(iwp) :: bottomz |
---|
| 1243 | INTEGER(iwp) :: topx |
---|
| 1244 | INTEGER(iwp) :: topy |
---|
| 1245 | INTEGER(iwp) :: topz |
---|
| 1246 | REAL(wp) :: eps |
---|
| 1247 | REAL(wp) :: alpha |
---|
| 1248 | REAL(wp) :: eminus |
---|
| 1249 | REAL(wp) :: edot |
---|
| 1250 | REAL(wp) :: eplus |
---|
| 1251 | REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: ptprs |
---|
| 1252 | REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: ptprf |
---|
[2365] | 1253 | |
---|
| 1254 | |
---|
| 1255 | nzbottom = bdims_rem (3,1) |
---|
| 1256 | nztop = bdims_rem (3,2) |
---|
| 1257 | ! nztop = blk_dim_rem (3,2)+1 |
---|
| 1258 | |
---|
| 1259 | |
---|
| 1260 | ALLOCATE( ptprf(nzbottom:nztop+2,bdims_rem(2,1)-1:bdims_rem(2,2)+1,nxl:nxr) ) |
---|
| 1261 | ALLOCATE( ptprs(nzbottom:nztop+2,nys:nyn,nxl:nxr) ) |
---|
| 1262 | |
---|
| 1263 | |
---|
| 1264 | ! |
---|
| 1265 | !-- Initialisation of scalar variables |
---|
| 1266 | |
---|
| 1267 | ! |
---|
| 1268 | !-- Interpolation in x-direction (quadratic, Clark and Farley) |
---|
| 1269 | |
---|
| 1270 | DO k = nzbottom, nztop+2 |
---|
| 1271 | DO j = bdims_rem(2,1)-1, bdims_rem(2,2)+1 |
---|
| 1272 | DO i = bdims_rem(1,1), bdims_rem(1,2) |
---|
| 1273 | |
---|
| 1274 | bottomx = (nxf+1)/(nxc+1) * i |
---|
| 1275 | topx = (nxf+1)/(nxc+1) * (i+1) - 1 |
---|
| 1276 | |
---|
[2712] | 1277 | DO iif = bottomx, topx |
---|
[2365] | 1278 | |
---|
[2712] | 1279 | eps = ( iif * dxf + 0.5 * dxf - i * dxc - 0.5 * dxc ) / dxc |
---|
[2365] | 1280 | alpha = ( ( dxf / dxc )**2.0 - 1.0 ) / 24.0 |
---|
| 1281 | eminus = eps * ( eps - 1.0 ) / 2.0 + alpha |
---|
| 1282 | edot = ( 1.0 - eps**2.0 ) - 2.0 * alpha |
---|
| 1283 | eplus = eps * ( eps + 1.0 ) / 2.0 + alpha |
---|
| 1284 | |
---|
[2712] | 1285 | ptprf(k,j,iif) = eminus * work3d(k,j,i-1) & |
---|
[2365] | 1286 | + edot * work3d(k,j,i) & |
---|
| 1287 | + eplus * work3d(k,j,i+1) |
---|
| 1288 | END DO |
---|
| 1289 | |
---|
| 1290 | END DO |
---|
| 1291 | END DO |
---|
| 1292 | END DO |
---|
| 1293 | |
---|
| 1294 | ! |
---|
| 1295 | !-- Interpolation in y-direction (quadratic, Clark and Farley) |
---|
| 1296 | |
---|
| 1297 | DO k = nzbottom, nztop+2 |
---|
| 1298 | DO j = bdims_rem(2,1), bdims_rem(2,2) |
---|
| 1299 | |
---|
| 1300 | bottomy = (nyf+1)/(nyc+1) * j |
---|
| 1301 | topy = (nyf+1)/(nyc+1) * (j+1) - 1 |
---|
| 1302 | |
---|
[2712] | 1303 | DO iif = nxl, nxr |
---|
| 1304 | DO jjf = bottomy, topy |
---|
[2365] | 1305 | |
---|
[2712] | 1306 | eps = ( jjf * dyf + 0.5 * dyf - j * dyc - 0.5 * dyc ) / dyc |
---|
[2365] | 1307 | alpha = ( ( dyf / dyc )**2.0 - 1.0 ) / 24.0 |
---|
| 1308 | eminus = eps * ( eps - 1.0 ) / 2.0 + alpha |
---|
| 1309 | edot = ( 1.0 - eps**2.0 ) - 2.0 * alpha |
---|
| 1310 | eplus = eps * ( eps + 1.0 ) / 2.0 + alpha |
---|
| 1311 | |
---|
[2712] | 1312 | ptprs(k,jjf,iif) = eminus * ptprf(k,j-1,iif) & |
---|
| 1313 | + edot * ptprf(k,j,iif) & |
---|
| 1314 | + eplus * ptprf(k,j+1,iif) |
---|
[2365] | 1315 | |
---|
| 1316 | END DO |
---|
| 1317 | END DO |
---|
| 1318 | |
---|
| 1319 | END DO |
---|
| 1320 | END DO |
---|
| 1321 | |
---|
| 1322 | ! |
---|
| 1323 | !-- Interpolation in z-direction (quadratic, Clark and Farley) |
---|
| 1324 | |
---|
| 1325 | DO k = nzbottom+1, nztop |
---|
| 1326 | |
---|
| 1327 | bottomz = (dzc/dzf) * (k-1) + 1 |
---|
| 1328 | topz = (dzc/dzf) * k |
---|
| 1329 | |
---|
[2712] | 1330 | DO jjf = nys, nyn |
---|
| 1331 | DO iif = nxl, nxr |
---|
| 1332 | DO kkf = bottomz, topz |
---|
[2365] | 1333 | |
---|
[2712] | 1334 | eps = ( zuf(kkf) - zuc(k) ) / dzc |
---|
[2365] | 1335 | alpha = ( ( dzf / dzc )**2.0 - 1.0 ) / 24.0 |
---|
| 1336 | eminus = eps * ( eps - 1.0 ) / 2.0 + alpha |
---|
| 1337 | edot = ( 1.0 - eps**2.0 ) - 2.0 * alpha |
---|
| 1338 | eplus = eps * ( eps + 1.0 ) / 2.0 + alpha |
---|
| 1339 | |
---|
[2712] | 1340 | kh(kkf,jjf,iif) = eminus * ptprs(k-1,jjf,iif) & |
---|
| 1341 | + edot * ptprs(k,jjf,iif) & |
---|
| 1342 | + eplus * ptprs(k+1,jjf,iif) |
---|
[2365] | 1343 | |
---|
| 1344 | END DO |
---|
| 1345 | END DO |
---|
| 1346 | END DO |
---|
| 1347 | |
---|
| 1348 | END DO |
---|
| 1349 | |
---|
[2712] | 1350 | DO jjf = nys, nyn |
---|
| 1351 | DO iif = nxl, nxr |
---|
[2365] | 1352 | |
---|
| 1353 | eps = ( zuf(nzt+1) - zuc(nztop+1) ) / dzc |
---|
| 1354 | alpha = ( ( dzf / dzc )**2.0 - 1.0 ) / 24.0 |
---|
| 1355 | eminus = eps * ( eps - 1.0 ) / 2.0 + alpha |
---|
| 1356 | edot = ( 1.0 - eps**2.0 ) - 2.0 * alpha |
---|
| 1357 | eplus = eps * ( eps + 1.0 ) / 2.0 + alpha |
---|
| 1358 | |
---|
[2712] | 1359 | kh(nzt+1,jjf,iif) = eminus * ptprs(nztop,jjf,iif) & |
---|
| 1360 | + edot * ptprs(nztop+1,jjf,iif) & |
---|
| 1361 | + eplus * ptprs(nztop+2,jjf,iif) |
---|
[2365] | 1362 | |
---|
| 1363 | END DO |
---|
| 1364 | END DO |
---|
| 1365 | |
---|
| 1366 | |
---|
| 1367 | DEALLOCATE( ptprf, ptprs ) |
---|
| 1368 | |
---|
| 1369 | END SUBROUTINE interpolate_to_fine_kh |
---|
| 1370 | |
---|
[3241] | 1371 | SUBROUTINE interpolate_to_fine_km |
---|
[2365] | 1372 | |
---|
| 1373 | |
---|
| 1374 | USE arrays_3d |
---|
| 1375 | USE control_parameters |
---|
| 1376 | USE grid_variables |
---|
| 1377 | USE indices |
---|
| 1378 | USE pegrid |
---|
| 1379 | |
---|
| 1380 | |
---|
| 1381 | IMPLICIT NONE |
---|
[2712] | 1382 | |
---|
| 1383 | INTEGER(iwp) :: i |
---|
| 1384 | INTEGER(iwp) :: j |
---|
| 1385 | INTEGER(iwp) :: k |
---|
| 1386 | INTEGER(iwp) :: iif |
---|
| 1387 | INTEGER(iwp) :: jjf |
---|
| 1388 | INTEGER(iwp) :: kkf |
---|
| 1389 | INTEGER(iwp) :: nzbottom |
---|
| 1390 | INTEGER(iwp) :: nztop |
---|
| 1391 | INTEGER(iwp) :: bottomx |
---|
| 1392 | INTEGER(iwp) :: bottomy |
---|
| 1393 | INTEGER(iwp) :: bottomz |
---|
| 1394 | INTEGER(iwp) :: topx |
---|
| 1395 | INTEGER(iwp) :: topy |
---|
| 1396 | INTEGER(iwp) :: topz |
---|
| 1397 | REAL(wp) :: eps |
---|
| 1398 | REAL(wp) :: alpha |
---|
| 1399 | REAL(wp) :: eminus |
---|
| 1400 | REAL(wp) :: edot |
---|
| 1401 | REAL(wp) :: eplus |
---|
| 1402 | REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: ptprs |
---|
| 1403 | REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: ptprf |
---|
[2365] | 1404 | |
---|
| 1405 | |
---|
| 1406 | nzbottom = bdims_rem (3,1) |
---|
| 1407 | nztop = bdims_rem (3,2) |
---|
| 1408 | ! nztop = blk_dim_rem (3,2)+1 |
---|
| 1409 | |
---|
| 1410 | |
---|
| 1411 | ALLOCATE( ptprf(nzbottom:nztop+2,bdims_rem(2,1)-1:bdims_rem(2,2)+1,nxl:nxr) ) |
---|
| 1412 | ALLOCATE( ptprs(nzbottom:nztop+2,nys:nyn,nxl:nxr) ) |
---|
| 1413 | |
---|
| 1414 | |
---|
| 1415 | ! |
---|
| 1416 | !-- Initialisation of scalar variables |
---|
| 1417 | |
---|
| 1418 | ! |
---|
| 1419 | !-- Interpolation in x-direction (quadratic, Clark and Farley) |
---|
| 1420 | |
---|
| 1421 | DO k = nzbottom, nztop+2 |
---|
| 1422 | DO j = bdims_rem(2,1)-1, bdims_rem(2,2)+1 |
---|
| 1423 | DO i = bdims_rem(1,1), bdims_rem(1,2) |
---|
| 1424 | |
---|
| 1425 | bottomx = (nxf+1)/(nxc+1) * i |
---|
| 1426 | topx = (nxf+1)/(nxc+1) * (i+1) - 1 |
---|
| 1427 | |
---|
[2712] | 1428 | DO iif = bottomx, topx |
---|
[2365] | 1429 | |
---|
[2712] | 1430 | eps = ( iif * dxf + 0.5 * dxf - i * dxc - 0.5 * dxc ) / dxc |
---|
[2365] | 1431 | alpha = ( ( dxf / dxc )**2.0 - 1.0 ) / 24.0 |
---|
| 1432 | eminus = eps * ( eps - 1.0 ) / 2.0 + alpha |
---|
| 1433 | edot = ( 1.0 - eps**2.0 ) - 2.0 * alpha |
---|
| 1434 | eplus = eps * ( eps + 1.0 ) / 2.0 + alpha |
---|
| 1435 | |
---|
[2712] | 1436 | ptprf(k,j,iif) = eminus * work3d(k,j,i-1) & |
---|
[2365] | 1437 | + edot * work3d(k,j,i) & |
---|
| 1438 | + eplus * work3d(k,j,i+1) |
---|
| 1439 | END DO |
---|
| 1440 | |
---|
| 1441 | END DO |
---|
| 1442 | END DO |
---|
| 1443 | END DO |
---|
| 1444 | |
---|
| 1445 | ! |
---|
| 1446 | !-- Interpolation in y-direction (quadratic, Clark and Farley) |
---|
| 1447 | |
---|
| 1448 | DO k = nzbottom, nztop+2 |
---|
| 1449 | DO j = bdims_rem(2,1), bdims_rem(2,2) |
---|
| 1450 | |
---|
| 1451 | bottomy = (nyf+1)/(nyc+1) * j |
---|
| 1452 | topy = (nyf+1)/(nyc+1) * (j+1) - 1 |
---|
| 1453 | |
---|
[2712] | 1454 | DO iif = nxl, nxr |
---|
| 1455 | DO jjf = bottomy, topy |
---|
[2365] | 1456 | |
---|
[2712] | 1457 | eps = ( jjf * dyf + 0.5 * dyf - j * dyc - 0.5 * dyc ) / dyc |
---|
[2365] | 1458 | alpha = ( ( dyf / dyc )**2.0 - 1.0 ) / 24.0 |
---|
| 1459 | eminus = eps * ( eps - 1.0 ) / 2.0 + alpha |
---|
| 1460 | edot = ( 1.0 - eps**2.0 ) - 2.0 * alpha |
---|
| 1461 | eplus = eps * ( eps + 1.0 ) / 2.0 + alpha |
---|
| 1462 | |
---|
[2712] | 1463 | ptprs(k,jjf,iif) = eminus * ptprf(k,j-1,iif) & |
---|
| 1464 | + edot * ptprf(k,j,iif) & |
---|
| 1465 | + eplus * ptprf(k,j+1,iif) |
---|
[2365] | 1466 | |
---|
| 1467 | END DO |
---|
| 1468 | END DO |
---|
| 1469 | |
---|
| 1470 | END DO |
---|
| 1471 | END DO |
---|
| 1472 | |
---|
| 1473 | ! |
---|
| 1474 | !-- Interpolation in z-direction (quadratic, Clark and Farley) |
---|
| 1475 | |
---|
| 1476 | DO k = nzbottom+1, nztop |
---|
| 1477 | |
---|
| 1478 | bottomz = (dzc/dzf) * (k-1) + 1 |
---|
| 1479 | topz = (dzc/dzf) * k |
---|
| 1480 | |
---|
[2712] | 1481 | DO jjf = nys, nyn |
---|
| 1482 | DO iif = nxl, nxr |
---|
| 1483 | DO kkf = bottomz, topz |
---|
[2365] | 1484 | |
---|
[2712] | 1485 | eps = ( zuf(kkf) - zuc(k) ) / dzc |
---|
[2365] | 1486 | alpha = ( ( dzf / dzc )**2.0 - 1.0 ) / 24.0 |
---|
| 1487 | eminus = eps * ( eps - 1.0 ) / 2.0 + alpha |
---|
| 1488 | edot = ( 1.0 - eps**2.0 ) - 2.0 * alpha |
---|
| 1489 | eplus = eps * ( eps + 1.0 ) / 2.0 + alpha |
---|
| 1490 | |
---|
[2712] | 1491 | km(kkf,jjf,iif) = eminus * ptprs(k-1,jjf,iif) & |
---|
| 1492 | + edot * ptprs(k,jjf,iif) & |
---|
| 1493 | + eplus * ptprs(k+1,jjf,iif) |
---|
[2365] | 1494 | |
---|
| 1495 | END DO |
---|
| 1496 | END DO |
---|
| 1497 | END DO |
---|
| 1498 | |
---|
| 1499 | END DO |
---|
| 1500 | |
---|
[2712] | 1501 | DO jjf = nys, nyn |
---|
| 1502 | DO iif = nxl, nxr |
---|
[2365] | 1503 | |
---|
| 1504 | eps = ( zuf(nzt+1) - zuc(nztop+1) ) / dzc |
---|
| 1505 | alpha = ( ( dzf / dzc )**2.0 - 1.0 ) / 24.0 |
---|
| 1506 | eminus = eps * ( eps - 1.0 ) / 2.0 + alpha |
---|
| 1507 | edot = ( 1.0 - eps**2.0 ) - 2.0 * alpha |
---|
| 1508 | eplus = eps * ( eps + 1.0 ) / 2.0 + alpha |
---|
| 1509 | |
---|
[2712] | 1510 | km(nzt+1,jjf,iif) = eminus * ptprs(nztop,jjf,iif) & |
---|
| 1511 | + edot * ptprs(nztop+1,jjf,iif) & |
---|
| 1512 | + eplus * ptprs(nztop+2,jjf,iif) |
---|
[2365] | 1513 | |
---|
| 1514 | END DO |
---|
| 1515 | END DO |
---|
| 1516 | |
---|
| 1517 | |
---|
| 1518 | DEALLOCATE( ptprf, ptprs ) |
---|
| 1519 | |
---|
| 1520 | END SUBROUTINE interpolate_to_fine_km |
---|
| 1521 | |
---|
| 1522 | |
---|
| 1523 | |
---|
| 1524 | |
---|
[3802] | 1525 | ! SUBROUTINE interpolate_to_fine_flux |
---|
| 1526 | ! |
---|
| 1527 | ! |
---|
| 1528 | ! USE arrays_3d |
---|
| 1529 | ! USE control_parameters |
---|
| 1530 | ! USE grid_variables |
---|
| 1531 | ! USE indices |
---|
| 1532 | ! USE pegrid |
---|
| 1533 | ! |
---|
| 1534 | ! |
---|
| 1535 | ! IMPLICIT NONE |
---|
| 1536 | ! |
---|
| 1537 | ! INTEGER(iwp) :: i |
---|
| 1538 | ! INTEGER(iwp) :: j |
---|
| 1539 | ! INTEGER(iwp) :: iif |
---|
| 1540 | ! INTEGER(iwp) :: jjf |
---|
| 1541 | ! INTEGER(iwp) :: bottomx |
---|
| 1542 | ! INTEGER(iwp) :: bottomy |
---|
| 1543 | ! INTEGER(iwp) :: topx |
---|
| 1544 | ! INTEGER(iwp) :: topy |
---|
| 1545 | ! REAL(wp) :: eps |
---|
| 1546 | ! REAL(wp) :: alpha |
---|
| 1547 | ! REAL(wp) :: eminus |
---|
| 1548 | ! REAL(wp) :: edot |
---|
| 1549 | ! REAL(wp) :: eplus |
---|
| 1550 | ! REAL(wp), DIMENSION(:,:), ALLOCATABLE :: uswspr |
---|
| 1551 | ! REAL(wp), DIMENSION(:,:), ALLOCATABLE :: vswspr |
---|
| 1552 | ! REAL(wp), DIMENSION(:,:), ALLOCATABLE :: tspr |
---|
| 1553 | ! REAL(wp), DIMENSION(:,:), ALLOCATABLE :: uspr |
---|
| 1554 | ! |
---|
| 1555 | ! ALLOCATE( uswspr(bdims_rem(2,1)-1:bdims_rem(2,2)+1,nxl:nxr) ) |
---|
| 1556 | ! ALLOCATE( vswspr(bdims_rem(2,1)-1:bdims_rem(2,2)+1,nxl:nxr) ) |
---|
| 1557 | ! ALLOCATE( tspr (bdims_rem(2,1)-1:bdims_rem(2,2)+1,nxl:nxr) ) |
---|
| 1558 | ! ALLOCATE( uspr (bdims_rem(2,1)-1:bdims_rem(2,2)+1,nxl:nxr) ) |
---|
| 1559 | ! |
---|
| 1560 | ! ! |
---|
| 1561 | ! !-- Initialisation of scalar variables (2D) |
---|
| 1562 | ! |
---|
| 1563 | ! ! |
---|
| 1564 | ! !-- Interpolation in x-direction (quadratic, Clark and Farley) |
---|
| 1565 | ! |
---|
| 1566 | ! DO j = bdims_rem(2,1)-1, bdims_rem(2,2)+1 |
---|
| 1567 | ! DO i = bdims_rem(1,1), bdims_rem(1,2) |
---|
| 1568 | ! |
---|
| 1569 | ! bottomx = (nxf+1)/(nxc+1) * i |
---|
| 1570 | ! topx = (nxf+1)/(nxc+1) * (i+1) - 1 |
---|
| 1571 | ! |
---|
| 1572 | ! DO iif = bottomx, topx |
---|
| 1573 | ! |
---|
| 1574 | ! eps = ( iif * dxf + 0.5 * dxf - i * dxc - 0.5 * dxc ) / dxc |
---|
| 1575 | ! alpha = ( ( dxf / dxc )**2.0 - 1.0 ) / 24.0 |
---|
| 1576 | ! eminus = eps * ( eps - 1.0 ) / 2.0 + alpha |
---|
| 1577 | ! edot = ( 1.0 - eps**2.0 ) - 2.0 * alpha |
---|
| 1578 | ! eplus = eps * ( eps + 1.0 ) / 2.0 + alpha |
---|
| 1579 | ! |
---|
| 1580 | ! uswspr(j,iif) = eminus * work2dusws(j,i-1) & |
---|
| 1581 | ! + edot * work2dusws(j,i) & |
---|
| 1582 | ! + eplus * work2dusws(j,i+1) |
---|
| 1583 | ! |
---|
| 1584 | ! vswspr(j,iif) = eminus * work2dvsws(j,i-1) & |
---|
| 1585 | ! + edot * work2dvsws(j,i) & |
---|
| 1586 | ! + eplus * work2dvsws(j,i+1) |
---|
| 1587 | ! |
---|
| 1588 | ! tspr(j,iif) = eminus * work2dts(j,i-1) & |
---|
| 1589 | ! + edot * work2dts(j,i) & |
---|
| 1590 | ! + eplus * work2dts(j,i+1) |
---|
| 1591 | ! |
---|
| 1592 | ! uspr(j,iif) = eminus * work2dus(j,i-1) & |
---|
| 1593 | ! + edot * work2dus(j,i) & |
---|
| 1594 | ! + eplus * work2dus(j,i+1) |
---|
| 1595 | ! |
---|
| 1596 | ! END DO |
---|
| 1597 | ! |
---|
| 1598 | ! END DO |
---|
| 1599 | ! END DO |
---|
| 1600 | ! |
---|
| 1601 | ! ! |
---|
| 1602 | ! !-- Interpolation in y-direction (quadratic, Clark and Farley) |
---|
| 1603 | ! |
---|
| 1604 | ! DO j = bdims_rem(2,1), bdims_rem(2,2) |
---|
| 1605 | ! |
---|
| 1606 | ! bottomy = (nyf+1)/(nyc+1) * j |
---|
| 1607 | ! topy = (nyf+1)/(nyc+1) * (j+1) - 1 |
---|
| 1608 | ! |
---|
| 1609 | ! DO iif = nxl, nxr |
---|
| 1610 | ! DO jjf = bottomy, topy |
---|
| 1611 | ! |
---|
| 1612 | ! eps = ( jjf * dyf + 0.5 * dyf - j * dyc - 0.5 * dyc ) / dyc |
---|
| 1613 | ! alpha = ( ( dyf / dyc )**2.0 - 1.0 ) / 24.0 |
---|
| 1614 | ! eminus = eps * ( eps - 1.0 ) / 2.0 + alpha |
---|
| 1615 | ! edot = ( 1.0 - eps**2.0 ) - 2.0 * alpha |
---|
| 1616 | ! eplus = eps * ( eps + 1.0 ) / 2.0 + alpha |
---|
| 1617 | ! |
---|
[2712] | 1618 | !! |
---|
| 1619 | !!-- TODO |
---|
| 1620 | !-- variables are not compatible with the new surface layer module |
---|
| 1621 | ! |
---|
| 1622 | ! surf_def_h(0)%usws(jjf,iif) = eminus * uswspr(j-1,if) & |
---|
| 1623 | ! + edot * uswspr(j,iif) & |
---|
| 1624 | ! + eplus * uswspr(j+1,iif) |
---|
| 1625 | ! |
---|
| 1626 | ! surf_def_h(0)%vsws(jjf,iif) = eminus * vswspr(j-1,if) & |
---|
| 1627 | ! + edot * vswspr(j,iif) & |
---|
| 1628 | ! + eplus * vswspr(j+1,iif) |
---|
| 1629 | ! |
---|
| 1630 | ! ts(jjf,iif) = eminus * tspr(j-1,if) & |
---|
| 1631 | ! + edot * tspr(j,iif) & |
---|
| 1632 | ! + eplus * tspr(j+1,iif) |
---|
| 1633 | ! |
---|
| 1634 | ! us(jjf,iif) = eminus * uspr(j-1,if) & |
---|
| 1635 | ! + edot * uspr(j,iif) & |
---|
| 1636 | ! + eplus * uspr(j+1,iif) |
---|
[3802] | 1637 | ! |
---|
| 1638 | ! END DO |
---|
| 1639 | ! END DO |
---|
| 1640 | ! |
---|
| 1641 | ! END DO |
---|
| 1642 | ! |
---|
| 1643 | ! |
---|
| 1644 | ! DEALLOCATE( uswspr, vswspr ) |
---|
| 1645 | ! DEALLOCATE( tspr, uspr ) |
---|
| 1646 | ! |
---|
| 1647 | ! |
---|
| 1648 | ! END SUBROUTINE interpolate_to_fine_flux |
---|
[2365] | 1649 | |
---|
| 1650 | |
---|
[2712] | 1651 | #endif |
---|
[2365] | 1652 | END SUBROUTINE vnest_init_fine |
---|
| 1653 | |
---|
| 1654 | SUBROUTINE vnest_boundary_conds |
---|
[2712] | 1655 | #if defined( __parallel ) |
---|
[2365] | 1656 | !------------------------------------------------------------------------------! |
---|
| 1657 | ! Description: |
---|
| 1658 | ! ------------ |
---|
| 1659 | ! Boundary conditions for the prognostic quantities. |
---|
| 1660 | ! One additional bottom boundary condition is applied for the TKE (=(u*)**2) |
---|
| 1661 | ! in prandtl_fluxes. The cyclic lateral boundary conditions are implicitly |
---|
| 1662 | ! handled in routine exchange_horiz. Pressure boundary conditions are |
---|
| 1663 | ! explicitly set in routines pres, poisfft, poismg and sor. |
---|
| 1664 | !------------------------------------------------------------------------------! |
---|
| 1665 | |
---|
| 1666 | USE arrays_3d |
---|
| 1667 | USE control_parameters |
---|
| 1668 | USE grid_variables |
---|
| 1669 | USE indices |
---|
| 1670 | USE pegrid |
---|
| 1671 | |
---|
| 1672 | |
---|
| 1673 | IMPLICIT NONE |
---|
| 1674 | |
---|
[2712] | 1675 | INTEGER(iwp) :: i |
---|
| 1676 | INTEGER(iwp) :: j |
---|
| 1677 | INTEGER(iwp) :: iif |
---|
| 1678 | INTEGER(iwp) :: jjf |
---|
[2365] | 1679 | |
---|
| 1680 | |
---|
| 1681 | ! |
---|
| 1682 | !-- vnest: top boundary conditions |
---|
| 1683 | |
---|
| 1684 | IF ( coupling_mode == 'vnested_crse' ) THEN |
---|
| 1685 | !-- Send data to fine grid for TOP BC |
---|
| 1686 | |
---|
| 1687 | offset(1) = ( pdims_partner(1) / pdims(1) ) * pcoord(1) |
---|
| 1688 | offset(2) = ( pdims_partner(2) / pdims(2) ) * pcoord(2) |
---|
| 1689 | |
---|
| 1690 | do j = 0, ( pdims_partner(2) / pdims(2) ) - 1 |
---|
| 1691 | do i = 0, ( pdims_partner(1) / pdims(1) ) - 1 |
---|
| 1692 | map_coord(1) = i+offset(1) |
---|
| 1693 | map_coord(2) = j+offset(2) |
---|
| 1694 | |
---|
| 1695 | target_idex = f_rnk_lst(map_coord(1),map_coord(2)) + numprocs |
---|
| 1696 | |
---|
| 1697 | bdims (1,1) = c2f_dims_cg (0,map_coord(1),map_coord(2)) |
---|
| 1698 | bdims (1,2) = c2f_dims_cg (1,map_coord(1),map_coord(2)) |
---|
| 1699 | bdims (2,1) = c2f_dims_cg (2,map_coord(1),map_coord(2)) |
---|
| 1700 | bdims (2,2) = c2f_dims_cg (3,map_coord(1),map_coord(2)) |
---|
| 1701 | bdims (3,1) = c2f_dims_cg (4,map_coord(1),map_coord(2)) |
---|
| 1702 | bdims (3,2) = c2f_dims_cg (5,map_coord(1),map_coord(2)) |
---|
| 1703 | |
---|
| 1704 | n_cell_c = ( (bdims(1,2)-bdims(1,1)) + 3 ) * & |
---|
| 1705 | ( (bdims(2,2)-bdims(2,1)) + 3 ) * & |
---|
| 1706 | ( (bdims(3,2)-bdims(3,1)) + 1 ) |
---|
| 1707 | |
---|
| 1708 | CALL MPI_SEND(u (bdims(3,1), bdims(2,1)-1, bdims(1,1)-1), & |
---|
| 1709 | 1, TYPE_VNEST_BC, target_idex, & |
---|
| 1710 | 201, comm_inter, ierr) |
---|
| 1711 | |
---|
| 1712 | CALL MPI_SEND(v(bdims(3,1), bdims(2,1)-1, bdims(1,1)-1),& |
---|
| 1713 | 1, TYPE_VNEST_BC, target_idex, & |
---|
| 1714 | 202, comm_inter, ierr) |
---|
| 1715 | |
---|
| 1716 | CALL MPI_SEND(w(bdims(3,1), bdims(2,1)-1, bdims(1,1)-1),& |
---|
| 1717 | 1, TYPE_VNEST_BC, target_idex, & |
---|
| 1718 | 203, comm_inter, ierr) |
---|
| 1719 | |
---|
| 1720 | CALL MPI_SEND(pt(bdims(3,1), bdims(2,1)-1, bdims(1,1)-1),& |
---|
| 1721 | 1, TYPE_VNEST_BC, target_idex, & |
---|
| 1722 | 205, comm_inter, ierr) |
---|
| 1723 | |
---|
| 1724 | IF ( humidity ) THEN |
---|
| 1725 | CALL MPI_SEND(q(bdims(3,1), bdims(2,1)-1, bdims(1,1)-1),& |
---|
| 1726 | 1, TYPE_VNEST_BC, target_idex, & |
---|
| 1727 | 209, comm_inter, ierr) |
---|
| 1728 | ENDIF |
---|
| 1729 | |
---|
| 1730 | end do |
---|
| 1731 | end do |
---|
| 1732 | |
---|
| 1733 | ELSEIF ( coupling_mode == 'vnested_fine' ) THEN |
---|
| 1734 | !-- Receive data from coarse grid for TOP BC |
---|
| 1735 | |
---|
| 1736 | offset(1) = pcoord(1) / ( pdims(1)/pdims_partner(1) ) |
---|
| 1737 | offset(2) = pcoord(2) / ( pdims(2)/pdims_partner(2) ) |
---|
| 1738 | map_coord(1) = offset(1) |
---|
| 1739 | map_coord(2) = offset(2) |
---|
| 1740 | target_idex = c_rnk_lst(map_coord(1),map_coord(2)) |
---|
| 1741 | |
---|
| 1742 | bdims_rem (1,1) = c2f_dims_fg(0) |
---|
| 1743 | bdims_rem (1,2) = c2f_dims_fg(1) |
---|
| 1744 | bdims_rem (2,1) = c2f_dims_fg(2) |
---|
| 1745 | bdims_rem (2,2) = c2f_dims_fg(3) |
---|
| 1746 | bdims_rem (3,1) = c2f_dims_fg(4) |
---|
| 1747 | bdims_rem (3,2) = c2f_dims_fg(5) |
---|
| 1748 | |
---|
| 1749 | n_cell_c = & |
---|
| 1750 | ( (bdims_rem(1,2)-bdims_rem(1,1)) + 3 ) * & |
---|
| 1751 | ( (bdims_rem(2,2)-bdims_rem(2,1)) + 3 ) * & |
---|
| 1752 | ( (bdims_rem(3,2)-bdims_rem(3,1)) + 1 ) |
---|
| 1753 | |
---|
| 1754 | ALLOCATE( work3d ( & |
---|
| 1755 | bdims_rem(3,1) :bdims_rem(3,2) , & |
---|
| 1756 | bdims_rem(2,1)-1:bdims_rem(2,2)+1, & |
---|
| 1757 | bdims_rem(1,1)-1:bdims_rem(1,2)+1)) |
---|
| 1758 | |
---|
| 1759 | |
---|
| 1760 | CALL MPI_RECV( work3d ,n_cell_c, MPI_REAL, target_idex, 201, & |
---|
| 1761 | comm_inter,status, ierr ) |
---|
| 1762 | interpol3d => u |
---|
| 1763 | call vnest_set_topbc_u |
---|
| 1764 | |
---|
| 1765 | CALL MPI_RECV( work3d ,n_cell_c, MPI_REAL, target_idex, 202, & |
---|
| 1766 | comm_inter,status, ierr ) |
---|
| 1767 | interpol3d => v |
---|
| 1768 | call vnest_set_topbc_v |
---|
| 1769 | |
---|
| 1770 | CALL MPI_RECV( work3d ,n_cell_c, MPI_REAL, target_idex, 203, & |
---|
| 1771 | comm_inter,status, ierr ) |
---|
| 1772 | interpol3d => w |
---|
| 1773 | call vnest_set_topbc_w |
---|
| 1774 | |
---|
| 1775 | CALL MPI_RECV( work3d,n_cell_c, MPI_REAL, target_idex, 205, & |
---|
| 1776 | comm_inter,status, ierr ) |
---|
| 1777 | interpol3d => pt |
---|
| 1778 | call vnest_set_topbc_s |
---|
| 1779 | |
---|
| 1780 | IF ( humidity ) THEN |
---|
[2514] | 1781 | CALL MPI_RECV( work3d,n_cell_c, MPI_REAL, target_idex, 209, & |
---|
[2365] | 1782 | comm_inter,status, ierr ) |
---|
| 1783 | interpol3d => q |
---|
| 1784 | call vnest_set_topbc_s |
---|
| 1785 | |
---|
| 1786 | CALL exchange_horiz_2d(q (nzt+1,:,:) ) |
---|
| 1787 | ENDIF |
---|
| 1788 | |
---|
| 1789 | !-- TKE Neumann BC for FG top |
---|
[2712] | 1790 | DO jjf = nys, nyn |
---|
| 1791 | DO iif = nxl, nxr |
---|
| 1792 | e(nzt+1,jjf,iif) = e(nzt,jjf,iif) |
---|
[2365] | 1793 | END DO |
---|
| 1794 | END DO |
---|
| 1795 | |
---|
| 1796 | ! |
---|
| 1797 | !-- w level nzt+1 does not impact results. Only to avoid jumps while |
---|
| 1798 | !-- plotting profiles |
---|
| 1799 | w(nzt+1,:,:) = w(nzt,:,:) |
---|
| 1800 | |
---|
| 1801 | CALL exchange_horiz_2d(u (nzt+1,:,:) ) |
---|
| 1802 | CALL exchange_horiz_2d(v (nzt+1,:,:) ) |
---|
| 1803 | CALL exchange_horiz_2d(pt(nzt+1,:,:) ) |
---|
| 1804 | CALL exchange_horiz_2d(e (nzt+1,:,:) ) |
---|
| 1805 | CALL exchange_horiz_2d(w (nzt+1,:,:) ) |
---|
| 1806 | CALL exchange_horiz_2d(w (nzt ,:,:) ) |
---|
| 1807 | |
---|
| 1808 | NULLIFY ( interpol3d ) |
---|
| 1809 | DEALLOCATE ( work3d ) |
---|
| 1810 | |
---|
| 1811 | ENDIF |
---|
| 1812 | |
---|
| 1813 | |
---|
| 1814 | CONTAINS |
---|
| 1815 | |
---|
| 1816 | SUBROUTINE vnest_set_topbc_w |
---|
| 1817 | |
---|
| 1818 | |
---|
| 1819 | USE arrays_3d |
---|
| 1820 | USE control_parameters |
---|
| 1821 | USE grid_variables |
---|
| 1822 | USE indices |
---|
| 1823 | USE pegrid |
---|
| 1824 | |
---|
| 1825 | |
---|
| 1826 | IMPLICIT NONE |
---|
[2712] | 1827 | |
---|
| 1828 | INTEGER(iwp) :: i |
---|
| 1829 | INTEGER(iwp) :: j |
---|
| 1830 | INTEGER(iwp) :: iif |
---|
| 1831 | INTEGER(iwp) :: jjf |
---|
| 1832 | INTEGER(iwp) :: bottomx |
---|
| 1833 | INTEGER(iwp) :: bottomy |
---|
| 1834 | INTEGER(iwp) :: topx |
---|
| 1835 | INTEGER(iwp) :: topy |
---|
| 1836 | REAL(wp) :: eps |
---|
| 1837 | REAL(wp) :: alpha |
---|
| 1838 | REAL(wp) :: eminus |
---|
| 1839 | REAL(wp) :: edot |
---|
| 1840 | REAL(wp) :: eplus |
---|
| 1841 | REAL(wp), DIMENSION(:,:), ALLOCATABLE :: wprf |
---|
[2365] | 1842 | |
---|
| 1843 | |
---|
| 1844 | ALLOCATE( wprf(bdims_rem(2,1)-1:bdims_rem(2,2)+1,nxl:nxr) ) |
---|
| 1845 | |
---|
| 1846 | ! |
---|
| 1847 | !-- Determination of a boundary condition for the vertical velocity component w: |
---|
| 1848 | !-- In this case only interpolation in x- and y- direction is necessary, as the |
---|
| 1849 | !-- boundary w-node of the fine grid coincides with a w-node in the coarse grid. |
---|
| 1850 | !-- For both interpolations the scheme of Clark and Farley is used. |
---|
| 1851 | |
---|
| 1852 | ! |
---|
| 1853 | !-- Interpolation in x-direction |
---|
| 1854 | |
---|
| 1855 | DO j = bdims_rem(2,1)-1, bdims_rem(2,2)+1 |
---|
| 1856 | |
---|
| 1857 | DO i = bdims_rem(1,1), bdims_rem(1,2) |
---|
| 1858 | |
---|
| 1859 | bottomx = (nxf+1)/(nxc+1) * i |
---|
| 1860 | topx = (nxf+1)/(nxc+1) * (i+1) - 1 |
---|
| 1861 | |
---|
[2712] | 1862 | DO iif = bottomx, topx |
---|
[2365] | 1863 | |
---|
[2712] | 1864 | eps = (iif * dxf + 0.5 * dxf - i * dxc - 0.5 * dxc) / dxc |
---|
[2365] | 1865 | alpha = ( (dxf/dxc)**2.0 - 1.0) / 24.0 |
---|
| 1866 | eminus = eps * ( eps - 1.0 ) / 2.0 + alpha |
---|
| 1867 | edot = ( 1.0 - eps**2.0 ) - 2.0 * alpha |
---|
| 1868 | eplus = eps * ( eps + 1.0 ) / 2.0 + alpha |
---|
[2712] | 1869 | wprf(j,iif) = eminus * work3d(bdims_rem(3,1),j,i-1) & |
---|
[2365] | 1870 | + edot * work3d(bdims_rem(3,1),j,i) & |
---|
| 1871 | + eplus * work3d(bdims_rem(3,1),j,i+1) |
---|
| 1872 | |
---|
| 1873 | END DO |
---|
| 1874 | |
---|
| 1875 | END DO |
---|
| 1876 | |
---|
| 1877 | END DO |
---|
| 1878 | |
---|
| 1879 | ! |
---|
| 1880 | !-- Interpolation in y-direction |
---|
| 1881 | |
---|
| 1882 | DO j = bdims_rem(2,1), bdims_rem(2,2) |
---|
| 1883 | |
---|
| 1884 | bottomy = (nyf+1)/(nyc+1) * j |
---|
| 1885 | topy = (nyf+1)/(nyc+1) * (j+1) - 1 |
---|
| 1886 | |
---|
[2712] | 1887 | DO iif = nxl, nxr |
---|
[2365] | 1888 | |
---|
[2712] | 1889 | DO jjf = bottomy, topy |
---|
[2365] | 1890 | |
---|
[2712] | 1891 | eps = (jjf * dyf + 0.5 * dyf - j * dyc - 0.5 * dyc) / dyc |
---|
[2365] | 1892 | |
---|
| 1893 | alpha = ( (dyf/dyc)**2.0 - 1.0) / 24.0 |
---|
| 1894 | |
---|
| 1895 | eminus = eps * ( eps - 1.0 ) / 2.0 + alpha |
---|
| 1896 | |
---|
| 1897 | edot = ( 1.0 - eps**2.0 ) - 2.0 * alpha |
---|
| 1898 | |
---|
| 1899 | eplus = eps * ( eps + 1.0 ) / 2.0 + alpha |
---|
| 1900 | |
---|
[2712] | 1901 | w(nzt,jjf,iif) = eminus * wprf(j-1,iif) & |
---|
| 1902 | + edot * wprf(j,iif) & |
---|
| 1903 | + eplus * wprf(j+1,iif) |
---|
[2365] | 1904 | |
---|
| 1905 | END DO |
---|
| 1906 | |
---|
| 1907 | END DO |
---|
| 1908 | |
---|
| 1909 | END DO |
---|
| 1910 | |
---|
| 1911 | DEALLOCATE( wprf ) |
---|
| 1912 | |
---|
| 1913 | END SUBROUTINE vnest_set_topbc_w |
---|
| 1914 | |
---|
| 1915 | |
---|
| 1916 | SUBROUTINE vnest_set_topbc_u |
---|
| 1917 | |
---|
| 1918 | |
---|
| 1919 | USE arrays_3d |
---|
| 1920 | USE control_parameters |
---|
| 1921 | USE grid_variables |
---|
| 1922 | USE indices |
---|
| 1923 | USE pegrid |
---|
| 1924 | |
---|
| 1925 | |
---|
| 1926 | IMPLICIT NONE |
---|
[2712] | 1927 | |
---|
| 1928 | INTEGER(iwp) :: i |
---|
| 1929 | INTEGER(iwp) :: j |
---|
| 1930 | INTEGER(iwp) :: k |
---|
| 1931 | INTEGER(iwp) :: iif |
---|
| 1932 | INTEGER(iwp) :: jjf |
---|
| 1933 | INTEGER(iwp) :: bottomx |
---|
| 1934 | INTEGER(iwp) :: bottomy |
---|
| 1935 | INTEGER(iwp) :: topx |
---|
| 1936 | INTEGER(iwp) :: topy |
---|
| 1937 | REAL(wp) :: eps |
---|
| 1938 | REAL(wp) :: alpha |
---|
| 1939 | REAL(wp) :: eminus |
---|
| 1940 | REAL(wp) :: edot |
---|
| 1941 | REAL(wp) :: eplus |
---|
| 1942 | REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: uprf |
---|
| 1943 | REAL(wp), DIMENSION(:,:), ALLOCATABLE :: uprs |
---|
[2365] | 1944 | |
---|
| 1945 | ALLOCATE( uprf(bdims_rem(3,1):bdims_rem(3,2),nys:nyn,bdims_rem(1,1)-1:bdims_rem(1,2)+1) ) |
---|
| 1946 | ALLOCATE( uprs(nys:nyn,bdims_rem(1,1)-1:bdims_rem(1,2)+1) ) |
---|
| 1947 | |
---|
| 1948 | |
---|
| 1949 | ! |
---|
| 1950 | !-- Interpolation in y-direction |
---|
| 1951 | |
---|
| 1952 | DO k = bdims_rem(3,1), bdims_rem(3,2) |
---|
| 1953 | DO j = bdims_rem(2,1), bdims_rem(2,2) |
---|
| 1954 | |
---|
| 1955 | bottomy = (nyf+1)/(nyc+1) * j |
---|
| 1956 | topy = (nyf+1)/(nyc+1) * (j+1) - 1 |
---|
| 1957 | |
---|
| 1958 | DO i = bdims_rem(1,1)-1, bdims_rem(1,2)+1 |
---|
[2712] | 1959 | DO jjf = bottomy, topy |
---|
[2365] | 1960 | |
---|
[2712] | 1961 | eps = (jjf * dyf + 0.5 * dyf - j * dyc - 0.5 * dyc) / dyc |
---|
[2365] | 1962 | alpha = ( (dyf/dyc)**2.0 - 1.0) / 24.0 |
---|
| 1963 | eminus = eps * ( eps - 1.0 ) / 2.0 + alpha |
---|
| 1964 | edot = ( 1.0 - eps**2.0 ) - 2.0 * alpha |
---|
| 1965 | eplus = eps * ( eps + 1.0 ) / 2.0 + alpha |
---|
| 1966 | |
---|
[2712] | 1967 | uprf(k,jjf,i) = eminus * work3d(k,j-1,i) & |
---|
[2365] | 1968 | + edot * work3d(k,j,i) & |
---|
| 1969 | + eplus * work3d(k,j+1,i) |
---|
| 1970 | END DO |
---|
| 1971 | END DO |
---|
| 1972 | |
---|
| 1973 | END DO |
---|
| 1974 | END DO |
---|
| 1975 | |
---|
| 1976 | ! |
---|
| 1977 | !-- Interpolation in z-direction |
---|
| 1978 | |
---|
[2712] | 1979 | DO jjf = nys, nyn |
---|
[2365] | 1980 | DO i = bdims_rem(1,1)-1, bdims_rem(1,2)+1 |
---|
| 1981 | eps = ( zuf(nzt+1) - zuc(bdims_rem(3,1)+1) ) / dzc |
---|
| 1982 | alpha = ( (dzf/dzc)**2.0 - 1.0) / 24.0 |
---|
| 1983 | eminus = eps * ( eps - 1.0 ) / 2.0 + alpha |
---|
| 1984 | edot = ( 1.0 - eps**2.0 ) - 2.0 * alpha |
---|
| 1985 | eplus = eps * ( eps + 1.0 ) / 2.0 + alpha |
---|
[2712] | 1986 | uprs(jjf,i) = eminus * uprf(bdims_rem(3,1),jjf,i) & |
---|
| 1987 | + edot * uprf(bdims_rem(3,1)+1,jjf,i) & |
---|
| 1988 | + eplus * uprf(bdims_rem(3,1)+2,jjf,i) |
---|
[2365] | 1989 | END DO |
---|
| 1990 | END DO |
---|
| 1991 | |
---|
| 1992 | ! |
---|
| 1993 | !-- Interpolation in x-direction |
---|
| 1994 | |
---|
[2712] | 1995 | DO jjf = nys, nyn |
---|
[2365] | 1996 | DO i = bdims_rem(1,1), bdims_rem(1,2) |
---|
| 1997 | |
---|
| 1998 | bottomx = (nxf+1)/(nxc+1) * i |
---|
| 1999 | topx = (nxf+1)/(nxc+1) * (i+1) - 1 |
---|
| 2000 | |
---|
[2712] | 2001 | DO iif = bottomx, topx |
---|
| 2002 | u(nzt+1,jjf,iif) = uprs(jjf,i) + ( iif * dxf - i * dxc ) * ( uprs(jjf,i+1) - uprs(jjf,i) ) / dxc |
---|
[2365] | 2003 | END DO |
---|
| 2004 | |
---|
| 2005 | END DO |
---|
| 2006 | END DO |
---|
| 2007 | |
---|
| 2008 | |
---|
| 2009 | |
---|
| 2010 | DEALLOCATE ( uprf, uprs ) |
---|
| 2011 | |
---|
| 2012 | END SUBROUTINE vnest_set_topbc_u |
---|
| 2013 | |
---|
| 2014 | |
---|
| 2015 | SUBROUTINE vnest_set_topbc_v |
---|
| 2016 | |
---|
| 2017 | |
---|
| 2018 | USE arrays_3d |
---|
| 2019 | USE control_parameters |
---|
| 2020 | USE grid_variables |
---|
| 2021 | USE indices |
---|
| 2022 | USE pegrid |
---|
| 2023 | |
---|
| 2024 | |
---|
| 2025 | IMPLICIT NONE |
---|
[2712] | 2026 | |
---|
| 2027 | INTEGER(iwp) :: i |
---|
| 2028 | INTEGER(iwp) :: j |
---|
| 2029 | INTEGER(iwp) :: k |
---|
| 2030 | INTEGER(iwp) :: iif |
---|
| 2031 | INTEGER(iwp) :: jjf |
---|
| 2032 | INTEGER(iwp) :: bottomx |
---|
| 2033 | INTEGER(iwp) :: bottomy |
---|
| 2034 | INTEGER(iwp) :: topx |
---|
| 2035 | INTEGER(iwp) :: topy |
---|
| 2036 | REAL(wp) :: eps |
---|
| 2037 | REAL(wp) :: alpha |
---|
| 2038 | REAL(wp) :: eminus |
---|
| 2039 | REAL(wp) :: edot |
---|
| 2040 | REAL(wp) :: eplus |
---|
| 2041 | REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: vprf |
---|
| 2042 | REAL(wp), DIMENSION(:,:), ALLOCATABLE :: vprs |
---|
[2365] | 2043 | |
---|
| 2044 | |
---|
| 2045 | |
---|
| 2046 | ALLOCATE( vprf(bdims_rem(3,1):bdims_rem(3,2),bdims_rem(2,1)-1:bdims_rem(2,2)+1,nxl:nxr) ) |
---|
| 2047 | ALLOCATE( vprs(bdims_rem(2,1)-1:bdims_rem(2,2)+1,nxl:nxr) ) |
---|
| 2048 | ! |
---|
| 2049 | !-- Determination of a boundary condition for the horizontal velocity component v: |
---|
| 2050 | !-- Interpolation in x- and z-direction is carried out by using the scheme, |
---|
| 2051 | !-- which was derived by Clark and Farley (1984). In y-direction a |
---|
| 2052 | !-- linear interpolation is carried out. |
---|
| 2053 | |
---|
| 2054 | ! |
---|
| 2055 | !-- Interpolation in x-direction |
---|
| 2056 | |
---|
| 2057 | DO k = bdims_rem(3,1), bdims_rem(3,2) |
---|
| 2058 | DO j = bdims_rem(2,1)-1, bdims_rem(2,2)+1 |
---|
| 2059 | DO i = bdims_rem(1,1), bdims_rem(1,2) |
---|
| 2060 | |
---|
| 2061 | bottomx = (nxf+1)/(nxc+1) * i |
---|
| 2062 | topx = (nxf+1)/(nxc+1) * (i+1) - 1 |
---|
| 2063 | |
---|
[2712] | 2064 | DO iif = bottomx, topx |
---|
[2365] | 2065 | |
---|
[2712] | 2066 | eps = (iif * dxf + 0.5 * dxf - i * dxc - 0.5 * dxc) / dxc |
---|
[2365] | 2067 | alpha = ( (dxf/dxc)**2.0 - 1.0) / 24.0 |
---|
| 2068 | eminus = eps * ( eps - 1.0 ) / 2.0 + alpha |
---|
| 2069 | edot = ( 1.0 - eps**2.0 ) - 2.0 * alpha |
---|
| 2070 | eplus = eps * ( eps + 1.0 ) / 2.0 + alpha |
---|
[2712] | 2071 | vprf(k,j,iif) = eminus * work3d(k,j,i-1) & |
---|
[2365] | 2072 | + edot * work3d(k,j,i) & |
---|
| 2073 | + eplus * work3d(k,j,i+1) |
---|
| 2074 | END DO |
---|
| 2075 | |
---|
| 2076 | END DO |
---|
| 2077 | END DO |
---|
| 2078 | END DO |
---|
| 2079 | |
---|
| 2080 | ! |
---|
| 2081 | !-- Interpolation in z-direction |
---|
| 2082 | |
---|
| 2083 | DO j = bdims_rem(2,1)-1, bdims_rem(2,2)+1 |
---|
[2712] | 2084 | DO iif = nxl, nxr |
---|
[2365] | 2085 | |
---|
| 2086 | eps = ( zuf(nzt+1) - zuc(bdims_rem(3,1)+1) ) / dzc |
---|
| 2087 | alpha = ( (dzf/dzc)**2.0 - 1.0) / 24.0 |
---|
| 2088 | eminus = eps * ( eps - 1.0 ) / 2.0 + alpha |
---|
| 2089 | edot = ( 1.0 - eps**2.0 ) - 2.0 * alpha |
---|
| 2090 | eplus = eps * ( eps + 1.0 ) / 2.0 + alpha |
---|
[2712] | 2091 | vprs(j,iif) = eminus * vprf(bdims_rem(3,1),j,iif) & |
---|
| 2092 | + edot * vprf(bdims_rem(3,1)+1,j,iif) & |
---|
| 2093 | + eplus * vprf(bdims_rem(3,1)+2,j,iif) |
---|
[2365] | 2094 | |
---|
| 2095 | END DO |
---|
| 2096 | END DO |
---|
| 2097 | |
---|
| 2098 | ! |
---|
| 2099 | !-- Interpolation in y-direction |
---|
| 2100 | |
---|
| 2101 | DO j = bdims_rem(2,1), bdims_rem(2,2) |
---|
[2712] | 2102 | DO iif = nxl, nxr |
---|
[2365] | 2103 | |
---|
| 2104 | bottomy = (nyf+1)/(nyc+1) * j |
---|
| 2105 | topy = (nyf+1)/(nyc+1) * (j+1) - 1 |
---|
| 2106 | |
---|
[2712] | 2107 | DO jjf = bottomy, topy |
---|
[2365] | 2108 | |
---|
[2712] | 2109 | v(nzt+1,jjf,iif) = vprs(j,iif) + ( jjf * dyf - j * dyc ) * ( vprs(j+1,iif) - vprs(j,iif) ) / dyc |
---|
[2365] | 2110 | |
---|
| 2111 | END DO |
---|
| 2112 | END DO |
---|
| 2113 | END DO |
---|
| 2114 | |
---|
| 2115 | |
---|
| 2116 | DEALLOCATE ( vprf, vprs) |
---|
| 2117 | |
---|
| 2118 | |
---|
| 2119 | |
---|
| 2120 | END SUBROUTINE vnest_set_topbc_v |
---|
| 2121 | |
---|
| 2122 | |
---|
| 2123 | SUBROUTINE vnest_set_topbc_s |
---|
| 2124 | |
---|
| 2125 | |
---|
| 2126 | USE arrays_3d |
---|
| 2127 | USE control_parameters |
---|
| 2128 | USE grid_variables |
---|
| 2129 | USE indices |
---|
| 2130 | USE pegrid |
---|
| 2131 | |
---|
| 2132 | |
---|
| 2133 | IMPLICIT NONE |
---|
[2712] | 2134 | |
---|
| 2135 | INTEGER(iwp) :: i |
---|
| 2136 | INTEGER(iwp) :: j |
---|
| 2137 | INTEGER(iwp) :: k |
---|
| 2138 | INTEGER(iwp) :: iif |
---|
| 2139 | INTEGER(iwp) :: jjf |
---|
| 2140 | INTEGER(iwp) :: bottomx |
---|
| 2141 | INTEGER(iwp) :: bottomy |
---|
| 2142 | INTEGER(iwp) :: topx |
---|
| 2143 | INTEGER(iwp) :: topy |
---|
| 2144 | REAL(wp) :: eps |
---|
| 2145 | REAL(wp) :: alpha |
---|
| 2146 | REAL(wp) :: eminus |
---|
| 2147 | REAL(wp) :: edot |
---|
| 2148 | REAL(wp) :: eplus |
---|
| 2149 | REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: ptprf |
---|
| 2150 | REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: ptprs |
---|
[2365] | 2151 | |
---|
| 2152 | |
---|
| 2153 | |
---|
| 2154 | ALLOCATE( ptprf(bdims_rem(3,1):bdims_rem(3,2),bdims_rem(2,1)-1:bdims_rem(2,2)+1,nxl:nxr) ) |
---|
| 2155 | ALLOCATE( ptprs(bdims_rem(3,1):bdims_rem(3,2),nys:nyn,nxl:nxr) ) |
---|
| 2156 | |
---|
| 2157 | ! |
---|
| 2158 | !-- Determination of a boundary condition for the potential temperature pt: |
---|
| 2159 | !-- The scheme derived by Clark and Farley can be used in all three dimensions. |
---|
| 2160 | |
---|
| 2161 | ! |
---|
| 2162 | !-- Interpolation in x-direction |
---|
| 2163 | |
---|
| 2164 | DO k = bdims_rem(3,1), bdims_rem(3,2) |
---|
| 2165 | |
---|
| 2166 | DO j = bdims_rem(2,1)-1, bdims_rem(2,2)+1 |
---|
| 2167 | |
---|
| 2168 | DO i = bdims_rem(1,1), bdims_rem(1,2) |
---|
| 2169 | |
---|
| 2170 | bottomx = (nxf+1)/(nxc+1) * i |
---|
| 2171 | topx = (nxf+1)/(nxc+1) *(i+1) - 1 |
---|
| 2172 | |
---|
[2712] | 2173 | DO iif = bottomx, topx |
---|
[2365] | 2174 | |
---|
[2712] | 2175 | eps = (iif * dxf + 0.5 * dxf - i * dxc - 0.5 * dxc) / dxc |
---|
[2365] | 2176 | |
---|
| 2177 | alpha = ( (dxf/dxc)**2.0 - 1.0) / 24.0 |
---|
| 2178 | |
---|
| 2179 | eminus = eps * (eps - 1.0 ) / 2.0 + alpha |
---|
| 2180 | |
---|
| 2181 | edot = ( 1.0 - eps**2.0 ) - 2.0 * alpha |
---|
| 2182 | |
---|
| 2183 | eplus = eps * ( eps + 1.0 ) / 2.0 + alpha |
---|
| 2184 | |
---|
[2712] | 2185 | ptprf(k,j,iif) = eminus * work3d(k,j,i-1) & |
---|
[2365] | 2186 | + edot * work3d(k,j,i) & |
---|
| 2187 | + eplus * work3d(k,j,i+1) |
---|
| 2188 | END DO |
---|
| 2189 | |
---|
| 2190 | END DO |
---|
| 2191 | |
---|
| 2192 | END DO |
---|
| 2193 | |
---|
| 2194 | END DO |
---|
| 2195 | |
---|
| 2196 | ! |
---|
| 2197 | !-- Interpolation in y-direction |
---|
| 2198 | |
---|
| 2199 | DO k = bdims_rem(3,1), bdims_rem(3,2) |
---|
| 2200 | |
---|
| 2201 | DO j = bdims_rem(2,1), bdims_rem(2,2) |
---|
| 2202 | |
---|
| 2203 | bottomy = (nyf+1)/(nyc+1) * j |
---|
| 2204 | topy = (nyf+1)/(nyc+1) * (j+1) - 1 |
---|
| 2205 | |
---|
[2712] | 2206 | DO iif = nxl, nxr |
---|
[2365] | 2207 | |
---|
[2712] | 2208 | DO jjf = bottomy, topy |
---|
[2365] | 2209 | |
---|
[2712] | 2210 | eps = (jjf * dyf + 0.5 * dyf - j * dyc - 0.5 * dyc) / dyc |
---|
[2365] | 2211 | |
---|
| 2212 | alpha = ( (dyf/dyc)**2.0 - 1.0) / 24.0 |
---|
| 2213 | |
---|
| 2214 | eminus = eps * (eps - 1.0) / 2.0 + alpha |
---|
| 2215 | |
---|
| 2216 | edot = ( 1.0 - eps**2.0 ) - 2.0 * alpha |
---|
| 2217 | |
---|
| 2218 | eplus = eps * ( eps + 1.0 ) / 2.0 + alpha |
---|
| 2219 | |
---|
[2712] | 2220 | ptprs(k,jjf,iif) = eminus * ptprf(k,j-1,iif) & |
---|
| 2221 | + edot * ptprf(k,j,iif) & |
---|
| 2222 | + eplus * ptprf(k,j+1,iif) |
---|
[2365] | 2223 | END DO |
---|
| 2224 | |
---|
| 2225 | END DO |
---|
| 2226 | |
---|
| 2227 | END DO |
---|
| 2228 | |
---|
| 2229 | END DO |
---|
| 2230 | |
---|
| 2231 | ! |
---|
| 2232 | !-- Interpolation in z-direction |
---|
| 2233 | |
---|
[2712] | 2234 | DO jjf = nys, nyn |
---|
| 2235 | DO iif = nxl, nxr |
---|
[2365] | 2236 | |
---|
| 2237 | eps = ( zuf(nzt+1) - zuc(bdims_rem(3,1)+1) ) / dzc |
---|
| 2238 | |
---|
| 2239 | alpha = ( (dzf/dzc)**2.0 - 1.0) / 24.0 |
---|
| 2240 | |
---|
| 2241 | eminus = eps * ( eps - 1.0 ) / 2.0 + alpha |
---|
| 2242 | |
---|
| 2243 | edot = ( 1.0 - eps**2.0 ) - 2.0 * alpha |
---|
| 2244 | |
---|
| 2245 | eplus = eps * ( eps + 1.0 ) / 2.0 + alpha |
---|
| 2246 | |
---|
[2712] | 2247 | interpol3d (nzt+1,jjf,iif) = eminus * ptprs(bdims_rem(3,1),jjf,iif) & |
---|
| 2248 | + edot * ptprs(bdims_rem(3,1)+1,jjf,iif) & |
---|
| 2249 | + eplus * ptprs(bdims_rem(3,1)+2,jjf,iif) |
---|
[2365] | 2250 | |
---|
| 2251 | END DO |
---|
| 2252 | END DO |
---|
| 2253 | |
---|
| 2254 | DEALLOCATE ( ptprf, ptprs ) |
---|
| 2255 | |
---|
| 2256 | |
---|
| 2257 | |
---|
| 2258 | END SUBROUTINE vnest_set_topbc_s |
---|
[2712] | 2259 | #endif |
---|
[2365] | 2260 | END SUBROUTINE vnest_boundary_conds |
---|
| 2261 | |
---|
| 2262 | |
---|
| 2263 | SUBROUTINE vnest_boundary_conds_khkm |
---|
[2712] | 2264 | #if defined( __parallel ) |
---|
[2365] | 2265 | |
---|
| 2266 | !--------------------------------------------------------------------------------! |
---|
| 2267 | ! Description: |
---|
| 2268 | ! ------------ |
---|
| 2269 | ! Boundary conditions for the prognostic quantities. |
---|
| 2270 | ! One additional bottom boundary condition is applied for the TKE (=(u*)**2) |
---|
| 2271 | ! in prandtl_fluxes. The cyclic lateral boundary conditions are implicitly |
---|
| 2272 | ! handled in routine exchange_horiz. Pressure boundary conditions are |
---|
| 2273 | ! explicitly set in routines pres, poisfft, poismg and sor. |
---|
| 2274 | !------------------------------------------------------------------------------! |
---|
| 2275 | |
---|
| 2276 | USE arrays_3d |
---|
| 2277 | USE control_parameters |
---|
| 2278 | USE grid_variables |
---|
| 2279 | USE indices |
---|
| 2280 | USE pegrid |
---|
| 2281 | |
---|
| 2282 | |
---|
| 2283 | IMPLICIT NONE |
---|
| 2284 | |
---|
[2712] | 2285 | INTEGER(iwp) :: i |
---|
| 2286 | INTEGER(iwp) :: j |
---|
| 2287 | INTEGER(iwp) :: iif |
---|
| 2288 | INTEGER(iwp) :: jjf |
---|
[2365] | 2289 | |
---|
| 2290 | |
---|
| 2291 | IF ( coupling_mode == 'vnested_crse' ) THEN |
---|
| 2292 | ! Send data to fine grid for TOP BC |
---|
| 2293 | |
---|
| 2294 | offset(1) = ( pdims_partner(1) / pdims(1) ) * pcoord(1) |
---|
| 2295 | offset(2) = ( pdims_partner(2) / pdims(2) ) * pcoord(2) |
---|
| 2296 | |
---|
| 2297 | do j = 0, ( pdims_partner(2) / pdims(2) ) - 1 |
---|
| 2298 | do i = 0, ( pdims_partner(1) / pdims(1) ) - 1 |
---|
| 2299 | map_coord(1) = i+offset(1) |
---|
| 2300 | map_coord(2) = j+offset(2) |
---|
| 2301 | |
---|
| 2302 | target_idex = f_rnk_lst(map_coord(1),map_coord(2)) + numprocs |
---|
| 2303 | |
---|
| 2304 | CALL MPI_RECV( bdims_rem, 6, MPI_INTEGER, target_idex, 10, & |
---|
| 2305 | comm_inter,status, ierr ) |
---|
| 2306 | |
---|
| 2307 | bdims (1,1) = bdims_rem (1,1) / cfratio(1) |
---|
| 2308 | bdims (1,2) = bdims_rem (1,2) / cfratio(1) |
---|
| 2309 | bdims (2,1) = bdims_rem (2,1) / cfratio(2) |
---|
| 2310 | bdims (2,2) = bdims_rem (2,2) / cfratio(2) |
---|
| 2311 | bdims (3,1) = bdims_rem (3,2) / cfratio(3) |
---|
| 2312 | bdims (3,2) = bdims (3,1) + 2 |
---|
| 2313 | |
---|
| 2314 | CALL MPI_SEND( bdims, 6, MPI_INTEGER, target_idex, 9, & |
---|
| 2315 | comm_inter, ierr ) |
---|
| 2316 | |
---|
| 2317 | |
---|
| 2318 | n_cell_c = ( (bdims(1,2)-bdims(1,1)) + 3 ) * & |
---|
| 2319 | ( (bdims(2,2)-bdims(2,1)) + 3 ) * & |
---|
| 2320 | ( (bdims(3,2)-bdims(3,1)) + 1 ) |
---|
| 2321 | |
---|
| 2322 | CALL MPI_SEND(kh(bdims(3,1) :bdims(3,2) , & |
---|
| 2323 | bdims(2,1)-1:bdims(2,2)+1, & |
---|
| 2324 | bdims(1,1)-1:bdims(1,2)+1),& |
---|
| 2325 | n_cell_c, MPI_REAL, target_idex, & |
---|
[2514] | 2326 | 207, comm_inter, ierr) |
---|
[2365] | 2327 | |
---|
| 2328 | CALL MPI_SEND(km(bdims(3,1) :bdims(3,2) , & |
---|
| 2329 | bdims(2,1)-1:bdims(2,2)+1, & |
---|
| 2330 | bdims(1,1)-1:bdims(1,2)+1),& |
---|
| 2331 | n_cell_c, MPI_REAL, target_idex, & |
---|
[2514] | 2332 | 208, comm_inter, ierr) |
---|
[2365] | 2333 | |
---|
| 2334 | |
---|
| 2335 | |
---|
| 2336 | end do |
---|
| 2337 | end do |
---|
| 2338 | |
---|
| 2339 | ELSEIF ( coupling_mode == 'vnested_fine' ) THEN |
---|
| 2340 | ! Receive data from coarse grid for TOP BC |
---|
| 2341 | |
---|
| 2342 | offset(1) = pcoord(1) / ( pdims(1)/pdims_partner(1) ) |
---|
| 2343 | offset(2) = pcoord(2) / ( pdims(2)/pdims_partner(2) ) |
---|
| 2344 | map_coord(1) = offset(1) |
---|
| 2345 | map_coord(2) = offset(2) |
---|
| 2346 | target_idex = c_rnk_lst(map_coord(1),map_coord(2)) |
---|
| 2347 | |
---|
| 2348 | bdims (1,1) = nxl |
---|
| 2349 | bdims (1,2) = nxr |
---|
| 2350 | bdims (2,1) = nys |
---|
| 2351 | bdims (2,2) = nyn |
---|
| 2352 | bdims (3,1) = nzb |
---|
| 2353 | bdims (3,2) = nzt |
---|
| 2354 | |
---|
| 2355 | CALL MPI_SEND( bdims, 6, MPI_INTEGER, target_idex, 10, & |
---|
| 2356 | comm_inter, ierr ) |
---|
| 2357 | |
---|
| 2358 | CALL MPI_RECV( bdims_rem, 6, MPI_INTEGER, target_idex, 9, & |
---|
| 2359 | comm_inter,status, ierr ) |
---|
| 2360 | |
---|
| 2361 | n_cell_c = ( (bdims_rem(1,2)-bdims_rem(1,1)) + 3 ) * & |
---|
| 2362 | ( (bdims_rem(2,2)-bdims_rem(2,1)) + 3 ) * & |
---|
| 2363 | ( (bdims_rem(3,2)-bdims_rem(3,1)) + 1 ) |
---|
| 2364 | |
---|
| 2365 | ALLOCATE( work3d ( bdims_rem(3,1) :bdims_rem(3,2) , & |
---|
| 2366 | bdims_rem(2,1)-1:bdims_rem(2,2)+1, & |
---|
| 2367 | bdims_rem(1,1)-1:bdims_rem(1,2)+1)) |
---|
| 2368 | |
---|
| 2369 | |
---|
| 2370 | CALL MPI_RECV( work3d,n_cell_c, MPI_REAL, target_idex, 207, & |
---|
| 2371 | comm_inter,status, ierr ) |
---|
| 2372 | |
---|
| 2373 | ! Neumann BC for FG kh |
---|
[2712] | 2374 | DO jjf = nys, nyn |
---|
| 2375 | DO iif = nxl, nxr |
---|
| 2376 | kh(nzt+1,jjf,iif) = kh(nzt,jjf,iif) |
---|
[2365] | 2377 | END DO |
---|
| 2378 | END DO |
---|
| 2379 | |
---|
| 2380 | CALL MPI_RECV( work3d,n_cell_c, MPI_REAL, target_idex, 208, & |
---|
| 2381 | comm_inter,status, ierr ) |
---|
| 2382 | |
---|
| 2383 | ! Neumann BC for FG kh |
---|
[2712] | 2384 | DO jjf = nys, nyn |
---|
| 2385 | DO iif = nxl, nxr |
---|
| 2386 | km(nzt+1,jjf,iif) = km(nzt,jjf,iif) |
---|
[2365] | 2387 | END DO |
---|
| 2388 | END DO |
---|
| 2389 | |
---|
| 2390 | |
---|
| 2391 | ! |
---|
| 2392 | !-- The following evaluation can only be performed, if the fine grid is situated below the inversion |
---|
[2712] | 2393 | !! DO jjf = nys-1, nyn+1 |
---|
| 2394 | !! DO iif = nxl-1, nxr+1 |
---|
[2365] | 2395 | !! |
---|
[2712] | 2396 | !! km(nzt+1,jjf,iif) = 0.1 * l_grid(nzt+1) * SQRT( e(nzt+1,jjf,iif) ) |
---|
| 2397 | !! kh(nzt+1,jjf,iif) = 3.0 * km(nzt+1,jjf,iif) |
---|
[2365] | 2398 | !! |
---|
| 2399 | !! END DO |
---|
| 2400 | !! END DO |
---|
| 2401 | |
---|
| 2402 | CALL exchange_horiz_2d(km(nzt+1,:,:) ) |
---|
| 2403 | CALL exchange_horiz_2d(kh(nzt+1,:,:) ) |
---|
| 2404 | |
---|
| 2405 | DEALLOCATE ( work3d ) |
---|
| 2406 | |
---|
| 2407 | ENDIF |
---|
| 2408 | |
---|
| 2409 | |
---|
[3802] | 2410 | ! CONTAINS |
---|
| 2411 | ! |
---|
| 2412 | ! SUBROUTINE vnest_set_topbc_kh |
---|
| 2413 | ! |
---|
| 2414 | ! |
---|
| 2415 | ! USE arrays_3d |
---|
| 2416 | ! USE control_parameters |
---|
| 2417 | ! USE grid_variables |
---|
| 2418 | ! USE indices |
---|
| 2419 | ! USE pegrid |
---|
| 2420 | ! |
---|
| 2421 | ! |
---|
| 2422 | ! IMPLICIT NONE |
---|
| 2423 | ! |
---|
| 2424 | ! INTEGER(iwp) :: i |
---|
| 2425 | ! INTEGER(iwp) :: j |
---|
| 2426 | ! INTEGER(iwp) :: k |
---|
| 2427 | ! INTEGER(iwp) :: iif |
---|
| 2428 | ! INTEGER(iwp) :: jjf |
---|
| 2429 | ! INTEGER(iwp) :: bottomx |
---|
| 2430 | ! INTEGER(iwp) :: bottomy |
---|
| 2431 | ! INTEGER(iwp) :: topx |
---|
| 2432 | ! INTEGER(iwp) :: topy |
---|
| 2433 | ! REAL(wp) :: eps |
---|
| 2434 | ! REAL(wp) :: alpha |
---|
| 2435 | ! REAL(wp) :: eminus |
---|
| 2436 | ! REAL(wp) :: edot |
---|
| 2437 | ! REAL(wp) :: eplus |
---|
| 2438 | ! REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: ptprf |
---|
| 2439 | ! REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: ptprs |
---|
| 2440 | ! |
---|
| 2441 | ! |
---|
| 2442 | ! |
---|
| 2443 | ! ALLOCATE( ptprf(bdims_rem(3,1):bdims_rem(3,2),bdims_rem(2,1)-1:bdims_rem(2,2)+1,nxl:nxr) ) |
---|
| 2444 | ! ALLOCATE( ptprs(bdims_rem(3,1):bdims_rem(3,2),nys:nyn,nxl:nxr) ) |
---|
| 2445 | ! |
---|
| 2446 | ! ! |
---|
| 2447 | ! !-- Determination of a boundary condition for the potential temperature pt: |
---|
| 2448 | ! !-- The scheme derived by Clark and Farley can be used in all three dimensions. |
---|
| 2449 | ! |
---|
| 2450 | ! ! |
---|
| 2451 | ! !-- Interpolation in x-direction |
---|
| 2452 | ! |
---|
| 2453 | ! DO k = bdims_rem(3,1), bdims_rem(3,2) |
---|
| 2454 | ! |
---|
| 2455 | ! DO j = bdims_rem(2,1)-1, bdims_rem(2,2)+1 |
---|
| 2456 | ! |
---|
| 2457 | ! DO i = bdims_rem(1,1), bdims_rem(1,2) |
---|
| 2458 | ! |
---|
| 2459 | ! bottomx = (nxf+1)/(nxc+1) * i |
---|
| 2460 | ! topx = (nxf+1)/(nxc+1) *(i+1) - 1 |
---|
| 2461 | ! |
---|
| 2462 | ! DO iif = bottomx, topx |
---|
| 2463 | ! |
---|
| 2464 | ! eps = (iif * dxf + 0.5 * dxf - i * dxc - 0.5 * dxc) / dxc |
---|
| 2465 | ! |
---|
| 2466 | ! alpha = ( (dxf/dxc)**2.0 - 1.0) / 24.0 |
---|
| 2467 | ! |
---|
| 2468 | ! eminus = eps * (eps - 1.0 ) / 2.0 + alpha |
---|
| 2469 | ! |
---|
| 2470 | ! edot = ( 1.0 - eps**2.0 ) - 2.0 * alpha |
---|
| 2471 | ! |
---|
| 2472 | ! eplus = eps * ( eps + 1.0 ) / 2.0 + alpha |
---|
| 2473 | ! |
---|
| 2474 | ! ptprf(k,j,iif) = eminus * work3d(k,j,i-1) & |
---|
| 2475 | ! + edot * work3d(k,j,i) & |
---|
| 2476 | ! + eplus * work3d(k,j,i+1) |
---|
| 2477 | ! END DO |
---|
| 2478 | ! |
---|
| 2479 | ! END DO |
---|
| 2480 | ! |
---|
| 2481 | ! END DO |
---|
| 2482 | ! |
---|
| 2483 | ! END DO |
---|
| 2484 | ! |
---|
| 2485 | ! ! |
---|
| 2486 | ! !-- Interpolation in y-direction |
---|
| 2487 | ! |
---|
| 2488 | ! DO k = bdims_rem(3,1), bdims_rem(3,2) |
---|
| 2489 | ! |
---|
| 2490 | ! DO j = bdims_rem(2,1), bdims_rem(2,2) |
---|
| 2491 | ! |
---|
| 2492 | ! bottomy = (nyf+1)/(nyc+1) * j |
---|
| 2493 | ! topy = (nyf+1)/(nyc+1) * (j+1) - 1 |
---|
| 2494 | ! |
---|
| 2495 | ! DO iif = nxl, nxr |
---|
| 2496 | ! |
---|
| 2497 | ! DO jjf = bottomy, topy |
---|
| 2498 | ! |
---|
| 2499 | ! eps = (jjf * dyf + 0.5 * dyf - j * dyc - 0.5 * dyc) / dyc |
---|
| 2500 | ! |
---|
| 2501 | ! alpha = ( (dyf/dyc)**2.0 - 1.0) / 24.0 |
---|
| 2502 | ! |
---|
| 2503 | ! eminus = eps * (eps - 1.0) / 2.0 + alpha |
---|
| 2504 | ! |
---|
| 2505 | ! edot = ( 1.0 - eps**2.0 ) - 2.0 * alpha |
---|
| 2506 | ! |
---|
| 2507 | ! eplus = eps * ( eps + 1.0 ) / 2.0 + alpha |
---|
| 2508 | ! |
---|
| 2509 | ! ptprs(k,jjf,iif) = eminus * ptprf(k,j-1,iif) & |
---|
| 2510 | ! + edot * ptprf(k,j,iif) & |
---|
| 2511 | ! + eplus * ptprf(k,j+1,iif) |
---|
| 2512 | ! END DO |
---|
| 2513 | ! |
---|
| 2514 | ! END DO |
---|
| 2515 | ! |
---|
| 2516 | ! END DO |
---|
| 2517 | ! |
---|
| 2518 | ! END DO |
---|
| 2519 | ! |
---|
| 2520 | ! ! |
---|
| 2521 | ! !-- Interpolation in z-direction |
---|
| 2522 | ! |
---|
| 2523 | ! DO jjf = nys, nyn |
---|
| 2524 | ! DO iif = nxl, nxr |
---|
| 2525 | ! |
---|
| 2526 | ! eps = ( zuf(nzt+1) - zuc(bdims_rem(3,1)+1) ) / dzc |
---|
| 2527 | ! |
---|
| 2528 | ! alpha = ( (dzf/dzc)**2.0 - 1.0) / 24.0 |
---|
| 2529 | ! |
---|
| 2530 | ! eminus = eps * ( eps - 1.0 ) / 2.0 + alpha |
---|
| 2531 | ! |
---|
| 2532 | ! edot = ( 1.0 - eps**2.0 ) - 2.0 * alpha |
---|
| 2533 | ! |
---|
| 2534 | ! eplus = eps * ( eps + 1.0 ) / 2.0 + alpha |
---|
| 2535 | ! |
---|
| 2536 | ! kh (nzt+1,jjf,iif) = eminus * ptprs(bdims_rem(3,1),jjf,iif) & |
---|
| 2537 | ! + edot * ptprs(bdims_rem(3,1)+1,jjf,iif) & |
---|
| 2538 | ! + eplus * ptprs(bdims_rem(3,1)+2,jjf,iif) |
---|
| 2539 | ! |
---|
| 2540 | ! END DO |
---|
| 2541 | ! END DO |
---|
| 2542 | ! |
---|
| 2543 | ! DEALLOCATE ( ptprf, ptprs ) |
---|
| 2544 | ! |
---|
| 2545 | ! |
---|
| 2546 | ! |
---|
| 2547 | ! END SUBROUTINE vnest_set_topbc_kh |
---|
[2365] | 2548 | |
---|
[3802] | 2549 | ! SUBROUTINE vnest_set_topbc_km |
---|
| 2550 | ! |
---|
| 2551 | ! |
---|
| 2552 | ! USE arrays_3d |
---|
| 2553 | ! USE control_parameters |
---|
| 2554 | ! USE grid_variables |
---|
| 2555 | ! USE indices |
---|
| 2556 | ! USE pegrid |
---|
| 2557 | ! |
---|
| 2558 | ! |
---|
| 2559 | ! IMPLICIT NONE |
---|
| 2560 | ! |
---|
| 2561 | ! INTEGER(iwp) :: i |
---|
| 2562 | ! INTEGER(iwp) :: j |
---|
| 2563 | ! INTEGER(iwp) :: k |
---|
| 2564 | ! INTEGER(iwp) :: iif |
---|
| 2565 | ! INTEGER(iwp) :: jjf |
---|
| 2566 | ! INTEGER(iwp) :: bottomx |
---|
| 2567 | ! INTEGER(iwp) :: bottomy |
---|
| 2568 | ! INTEGER(iwp) :: topx |
---|
| 2569 | ! INTEGER(iwp) :: topy |
---|
| 2570 | ! REAL(wp) :: eps |
---|
| 2571 | ! REAL(wp) :: alpha |
---|
| 2572 | ! REAL(wp) :: eminus |
---|
| 2573 | ! REAL(wp) :: edot |
---|
| 2574 | ! REAL(wp) :: eplus |
---|
| 2575 | ! REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: ptprf |
---|
| 2576 | ! REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: ptprs |
---|
| 2577 | ! |
---|
| 2578 | ! |
---|
| 2579 | ! |
---|
| 2580 | ! ALLOCATE( ptprf(bdims_rem(3,1):bdims_rem(3,2),bdims_rem(2,1)-1:bdims_rem(2,2)+1,nxl:nxr) ) |
---|
| 2581 | ! ALLOCATE( ptprs(bdims_rem(3,1):bdims_rem(3,2),nys:nyn,nxl:nxr) ) |
---|
| 2582 | ! |
---|
| 2583 | ! ! |
---|
| 2584 | ! !-- Determination of a boundary condition for the potential temperature pt: |
---|
| 2585 | ! !-- The scheme derived by Clark and Farley can be used in all three dimensions. |
---|
| 2586 | ! |
---|
| 2587 | ! ! |
---|
| 2588 | ! !-- Interpolation in x-direction |
---|
| 2589 | ! |
---|
| 2590 | ! DO k = bdims_rem(3,1), bdims_rem(3,2) |
---|
| 2591 | ! |
---|
| 2592 | ! DO j = bdims_rem(2,1)-1, bdims_rem(2,2)+1 |
---|
| 2593 | ! |
---|
| 2594 | ! DO i = bdims_rem(1,1), bdims_rem(1,2) |
---|
| 2595 | ! |
---|
| 2596 | ! bottomx = (nxf+1)/(nxc+1) * i |
---|
| 2597 | ! topx = (nxf+1)/(nxc+1) *(i+1) - 1 |
---|
| 2598 | ! |
---|
| 2599 | ! DO iif = bottomx, topx |
---|
| 2600 | ! |
---|
| 2601 | ! eps = (iif * dxf + 0.5 * dxf - i * dxc - 0.5 * dxc) / dxc |
---|
| 2602 | ! |
---|
| 2603 | ! alpha = ( (dxf/dxc)**2.0 - 1.0) / 24.0 |
---|
| 2604 | ! |
---|
| 2605 | ! eminus = eps * (eps - 1.0 ) / 2.0 + alpha |
---|
| 2606 | ! |
---|
| 2607 | ! edot = ( 1.0 - eps**2.0 ) - 2.0 * alpha |
---|
| 2608 | ! |
---|
| 2609 | ! eplus = eps * ( eps + 1.0 ) / 2.0 + alpha |
---|
| 2610 | ! |
---|
| 2611 | ! ptprf(k,j,iif) = eminus * work3d(k,j,i-1) & |
---|
| 2612 | ! + edot * work3d(k,j,i) & |
---|
| 2613 | ! + eplus * work3d(k,j,i+1) |
---|
| 2614 | ! END DO |
---|
| 2615 | ! |
---|
| 2616 | ! END DO |
---|
| 2617 | ! |
---|
| 2618 | ! END DO |
---|
| 2619 | ! |
---|
| 2620 | ! END DO |
---|
| 2621 | ! |
---|
| 2622 | ! ! |
---|
| 2623 | ! !-- Interpolation in y-direction |
---|
| 2624 | ! |
---|
| 2625 | ! DO k = bdims_rem(3,1), bdims_rem(3,2) |
---|
| 2626 | ! |
---|
| 2627 | ! DO j = bdims_rem(2,1), bdims_rem(2,2) |
---|
| 2628 | ! |
---|
| 2629 | ! bottomy = (nyf+1)/(nyc+1) * j |
---|
| 2630 | ! topy = (nyf+1)/(nyc+1) * (j+1) - 1 |
---|
| 2631 | ! |
---|
| 2632 | ! DO iif = nxl, nxr |
---|
| 2633 | ! |
---|
| 2634 | ! DO jjf = bottomy, topy |
---|
| 2635 | ! |
---|
| 2636 | ! eps = (jjf * dyf + 0.5 * dyf - j * dyc - 0.5 * dyc) / dyc |
---|
| 2637 | ! |
---|
| 2638 | ! alpha = ( (dyf/dyc)**2.0 - 1.0) / 24.0 |
---|
| 2639 | ! |
---|
| 2640 | ! eminus = eps * (eps - 1.0) / 2.0 + alpha |
---|
| 2641 | ! |
---|
| 2642 | ! edot = ( 1.0 - eps**2.0 ) - 2.0 * alpha |
---|
| 2643 | ! |
---|
| 2644 | ! eplus = eps * ( eps + 1.0 ) / 2.0 + alpha |
---|
| 2645 | ! |
---|
| 2646 | ! ptprs(k,jjf,iif) = eminus * ptprf(k,j-1,iif) & |
---|
| 2647 | ! + edot * ptprf(k,j,iif) & |
---|
| 2648 | ! + eplus * ptprf(k,j+1,iif) |
---|
| 2649 | ! END DO |
---|
| 2650 | ! |
---|
| 2651 | ! END DO |
---|
| 2652 | ! |
---|
| 2653 | ! END DO |
---|
| 2654 | ! |
---|
| 2655 | ! END DO |
---|
| 2656 | ! |
---|
| 2657 | ! ! |
---|
| 2658 | ! !-- Interpolation in z-direction |
---|
| 2659 | ! |
---|
| 2660 | ! DO jjf = nys, nyn |
---|
| 2661 | ! DO iif = nxl, nxr |
---|
| 2662 | ! |
---|
| 2663 | ! eps = ( zuf(nzt+1) - zuc(bdims_rem(3,1)+1) ) / dzc |
---|
| 2664 | ! |
---|
| 2665 | ! alpha = ( (dzf/dzc)**2.0 - 1.0) / 24.0 |
---|
| 2666 | ! |
---|
| 2667 | ! eminus = eps * ( eps - 1.0 ) / 2.0 + alpha |
---|
| 2668 | ! |
---|
| 2669 | ! edot = ( 1.0 - eps**2.0 ) - 2.0 * alpha |
---|
| 2670 | ! |
---|
| 2671 | ! eplus = eps * ( eps + 1.0 ) / 2.0 + alpha |
---|
| 2672 | ! |
---|
| 2673 | ! km (nzt+1,jjf,iif) = eminus * ptprs(bdims_rem(3,1),jjf,iif) & |
---|
| 2674 | ! + edot * ptprs(bdims_rem(3,1)+1,jjf,iif) & |
---|
| 2675 | ! + eplus * ptprs(bdims_rem(3,1)+2,jjf,iif) |
---|
| 2676 | ! |
---|
| 2677 | ! END DO |
---|
| 2678 | ! END DO |
---|
| 2679 | ! |
---|
| 2680 | ! DEALLOCATE ( ptprf, ptprs ) |
---|
| 2681 | ! |
---|
| 2682 | ! |
---|
| 2683 | ! |
---|
| 2684 | ! END SUBROUTINE vnest_set_topbc_km |
---|
[2365] | 2685 | |
---|
| 2686 | |
---|
[2712] | 2687 | #endif |
---|
[2365] | 2688 | END SUBROUTINE vnest_boundary_conds_khkm |
---|
| 2689 | |
---|
| 2690 | |
---|
| 2691 | |
---|
| 2692 | SUBROUTINE vnest_anterpolate |
---|
[2712] | 2693 | |
---|
| 2694 | #if defined( __parallel ) |
---|
[2365] | 2695 | |
---|
| 2696 | !--------------------------------------------------------------------------------! |
---|
| 2697 | ! Description: |
---|
| 2698 | ! ------------ |
---|
| 2699 | ! Anterpolate data from fine grid to coarse grid. |
---|
| 2700 | !------------------------------------------------------------------------------! |
---|
| 2701 | |
---|
| 2702 | USE arrays_3d |
---|
| 2703 | USE control_parameters |
---|
| 2704 | USE grid_variables |
---|
| 2705 | USE indices |
---|
| 2706 | USE interfaces |
---|
| 2707 | USE pegrid |
---|
| 2708 | USE surface_mod, & |
---|
| 2709 | ONLY : bc_h |
---|
| 2710 | |
---|
| 2711 | |
---|
| 2712 | IMPLICIT NONE |
---|
| 2713 | |
---|
[2712] | 2714 | REAL(wp) :: time_since_reference_point_rem |
---|
| 2715 | INTEGER(iwp) :: i |
---|
| 2716 | INTEGER(iwp) :: j |
---|
[4102] | 2717 | INTEGER(iwp) :: k |
---|
[2712] | 2718 | INTEGER(iwp) :: l !< running index boundary type, for up- and downward-facing walls |
---|
| 2719 | INTEGER(iwp) :: m !< running index surface elements |
---|
[2365] | 2720 | |
---|
| 2721 | |
---|
| 2722 | |
---|
| 2723 | ! |
---|
| 2724 | !-- In case of model termination initiated by the remote model |
---|
| 2725 | !-- (terminate_coupled_remote > 0), initiate termination of the local model. |
---|
| 2726 | !-- The rest of the coupler must then be skipped because it would cause an MPI |
---|
| 2727 | !-- intercomminucation hang. |
---|
| 2728 | !-- If necessary, the coupler will be called at the beginning of the next |
---|
| 2729 | !-- restart run. |
---|
| 2730 | |
---|
| 2731 | IF ( myid == 0) THEN |
---|
| 2732 | CALL MPI_SENDRECV( terminate_coupled, 1, MPI_INTEGER, & |
---|
| 2733 | target_id, 0, & |
---|
| 2734 | terminate_coupled_remote, 1, MPI_INTEGER, & |
---|
| 2735 | target_id, 0, & |
---|
| 2736 | comm_inter, status, ierr ) |
---|
| 2737 | ENDIF |
---|
| 2738 | CALL MPI_BCAST( terminate_coupled_remote, 1, MPI_INTEGER, 0, comm2d, & |
---|
| 2739 | ierr ) |
---|
| 2740 | |
---|
| 2741 | IF ( terminate_coupled_remote > 0 ) THEN |
---|
[3045] | 2742 | WRITE( message_string, * ) 'remote model "', & |
---|
| 2743 | TRIM( coupling_mode_remote ), & |
---|
| 2744 | '" terminated', & |
---|
[3046] | 2745 | '&with terminate_coupled_remote = ', & |
---|
[3045] | 2746 | terminate_coupled_remote, & |
---|
[3046] | 2747 | '&local model "', TRIM( coupling_mode ), & |
---|
[3045] | 2748 | '" has', & |
---|
[3046] | 2749 | '&terminate_coupled = ', & |
---|
[2365] | 2750 | terminate_coupled |
---|
| 2751 | CALL message( 'vnest_anterpolate', 'PA0310', 1, 2, 0, 6, 0 ) |
---|
| 2752 | RETURN |
---|
| 2753 | ENDIF |
---|
| 2754 | |
---|
| 2755 | |
---|
| 2756 | ! |
---|
| 2757 | !-- Exchange the current simulated time between the models |
---|
| 2758 | |
---|
| 2759 | IF ( myid == 0 ) THEN |
---|
| 2760 | |
---|
| 2761 | CALL MPI_SEND( time_since_reference_point, 1, MPI_REAL, target_id, & |
---|
| 2762 | 11, comm_inter, ierr ) |
---|
| 2763 | CALL MPI_RECV( time_since_reference_point_rem, 1, MPI_REAL, & |
---|
| 2764 | target_id, 11, comm_inter, status, ierr ) |
---|
| 2765 | |
---|
| 2766 | ENDIF |
---|
| 2767 | |
---|
| 2768 | CALL MPI_BCAST( time_since_reference_point_rem, 1, MPI_REAL, 0, comm2d, & |
---|
| 2769 | ierr ) |
---|
| 2770 | |
---|
| 2771 | IF ( coupling_mode == 'vnested_crse' ) THEN |
---|
| 2772 | ! Receive data from fine grid for anterpolation |
---|
| 2773 | |
---|
| 2774 | offset(1) = ( pdims_partner(1) / pdims(1) ) * pcoord(1) |
---|
| 2775 | offset(2) = ( pdims_partner(2) / pdims(2) ) * pcoord(2) |
---|
| 2776 | |
---|
| 2777 | do j = 0, ( pdims_partner(2) / pdims(2) ) - 1 |
---|
| 2778 | do i = 0, ( pdims_partner(1) / pdims(1) ) - 1 |
---|
| 2779 | map_coord(1) = i+offset(1) |
---|
| 2780 | map_coord(2) = j+offset(2) |
---|
| 2781 | |
---|
| 2782 | target_idex = f_rnk_lst(map_coord(1),map_coord(2)) + numprocs |
---|
| 2783 | |
---|
| 2784 | CALL MPI_RECV( bdims_rem, 6, MPI_INTEGER, target_idex, 10, & |
---|
| 2785 | comm_inter,status, ierr ) |
---|
| 2786 | |
---|
| 2787 | bdims (1,1) = bdims_rem (1,1) / cfratio(1) |
---|
| 2788 | bdims (1,2) = bdims_rem (1,2) / cfratio(1) |
---|
| 2789 | bdims (2,1) = bdims_rem (2,1) / cfratio(2) |
---|
| 2790 | bdims (2,2) = bdims_rem (2,2) / cfratio(2) |
---|
| 2791 | bdims (3,1) = bdims_rem (3,1) |
---|
| 2792 | bdims (3,2) = bdims_rem (3,2) / cfratio(3) |
---|
| 2793 | |
---|
| 2794 | CALL MPI_SEND( bdims, 6, MPI_INTEGER, target_idex, 9, & |
---|
| 2795 | comm_inter, ierr ) |
---|
| 2796 | |
---|
| 2797 | n_cell_c = & |
---|
| 2798 | (bdims(1,2)-bdims(1,1)+1) * & |
---|
| 2799 | (bdims(2,2)-bdims(2,1)+1) * & |
---|
| 2800 | (bdims(3,2)-bdims(3,1)+0) |
---|
| 2801 | |
---|
| 2802 | CALL MPI_RECV( u( & |
---|
| 2803 | bdims(3,1)+1:bdims(3,2), & |
---|
| 2804 | bdims(2,1) :bdims(2,2), & |
---|
| 2805 | bdims(1,1) :bdims(1,2)),& |
---|
| 2806 | n_cell_c, MPI_REAL, target_idex, 101, & |
---|
| 2807 | comm_inter,status, ierr ) |
---|
| 2808 | |
---|
| 2809 | CALL MPI_RECV( v( & |
---|
| 2810 | bdims(3,1)+1:bdims(3,2), & |
---|
| 2811 | bdims(2,1) :bdims(2,2), & |
---|
| 2812 | bdims(1,1) :bdims(1,2)),& |
---|
| 2813 | n_cell_c, MPI_REAL, target_idex, 102, & |
---|
| 2814 | comm_inter,status, ierr ) |
---|
| 2815 | |
---|
| 2816 | CALL MPI_RECV(pt( & |
---|
| 2817 | bdims(3,1)+1:bdims(3,2), & |
---|
| 2818 | bdims(2,1) :bdims(2,2), & |
---|
| 2819 | bdims(1,1) :bdims(1,2)),& |
---|
| 2820 | n_cell_c, MPI_REAL, target_idex, 105, & |
---|
| 2821 | comm_inter,status, ierr ) |
---|
| 2822 | |
---|
[2514] | 2823 | IF ( humidity ) THEN |
---|
[2365] | 2824 | CALL MPI_RECV(q( & |
---|
| 2825 | bdims(3,1)+1:bdims(3,2), & |
---|
| 2826 | bdims(2,1) :bdims(2,2), & |
---|
| 2827 | bdims(1,1) :bdims(1,2)),& |
---|
| 2828 | n_cell_c, MPI_REAL, target_idex, 106, & |
---|
| 2829 | comm_inter,status, ierr ) |
---|
[2514] | 2830 | ENDIF |
---|
[2365] | 2831 | |
---|
| 2832 | CALL MPI_RECV( w( & |
---|
| 2833 | bdims(3,1) :bdims(3,2)-1, & |
---|
| 2834 | bdims(2,1) :bdims(2,2), & |
---|
| 2835 | bdims(1,1) :bdims(1,2)), & |
---|
| 2836 | n_cell_c, MPI_REAL, target_idex, 103, & |
---|
| 2837 | comm_inter,status, ierr ) |
---|
| 2838 | |
---|
| 2839 | end do |
---|
| 2840 | end do |
---|
| 2841 | |
---|
| 2842 | |
---|
| 2843 | |
---|
| 2844 | ! |
---|
| 2845 | !-- Boundary conditions for the velocity components u and v |
---|
| 2846 | |
---|
| 2847 | |
---|
| 2848 | IF ( ibc_uv_b == 0 ) THEN |
---|
| 2849 | u(nzb,:,:) = 0.0_wp |
---|
| 2850 | v(nzb,:,:) = 0.0_wp |
---|
| 2851 | ELSE |
---|
| 2852 | u(nzb,:,:) = u(nzb+1,:,:) |
---|
| 2853 | v(nzb,:,:) = v(nzb+1,:,:) |
---|
| 2854 | END IF |
---|
| 2855 | ! |
---|
| 2856 | !-- Boundary conditions for the velocity components w |
---|
| 2857 | |
---|
| 2858 | w(nzb,:,:) = 0.0_wp |
---|
| 2859 | |
---|
| 2860 | ! |
---|
| 2861 | !-- Temperature at bottom boundary. |
---|
| 2862 | !-- Neumann, zero-gradient |
---|
| 2863 | IF ( ibc_pt_b == 1 ) THEN |
---|
| 2864 | DO l = 0, 1 |
---|
[4102] | 2865 | DO m = 1, bc_h(l)%ns |
---|
| 2866 | i = bc_h(l)%i(m) |
---|
| 2867 | j = bc_h(l)%j(m) |
---|
| 2868 | k = bc_h(l)%k(m) |
---|
| 2869 | pt(k+bc_h(l)%koff,j,i) = pt(k,j,i) |
---|
| 2870 | ENDDO |
---|
| 2871 | ENDDO |
---|
[2365] | 2872 | ENDIF |
---|
| 2873 | |
---|
| 2874 | |
---|
| 2875 | CALL exchange_horiz( u, nbgp ) |
---|
| 2876 | CALL exchange_horiz( v, nbgp ) |
---|
| 2877 | CALL exchange_horiz( w, nbgp ) |
---|
| 2878 | CALL exchange_horiz( pt, nbgp ) |
---|
| 2879 | |
---|
| 2880 | |
---|
| 2881 | ELSEIF ( coupling_mode == 'vnested_fine' ) THEN |
---|
| 2882 | ! Send data to coarse grid for anterpolation |
---|
| 2883 | |
---|
| 2884 | offset(1) = pcoord(1) / ( pdims(1)/pdims_partner(1) ) |
---|
| 2885 | offset(2) = pcoord(2) / ( pdims(2)/pdims_partner(2) ) |
---|
| 2886 | map_coord(1) = offset(1) |
---|
| 2887 | map_coord(2) = offset(2) |
---|
| 2888 | target_idex = c_rnk_lst(map_coord(1),map_coord(2)) |
---|
| 2889 | |
---|
| 2890 | !-- Limit anterpolation level to nzt - z nesting ratio (a pseudo-buffer layer) |
---|
| 2891 | bdims (1,1) = nxl |
---|
| 2892 | bdims (1,2) = nxr |
---|
| 2893 | bdims (2,1) = nys |
---|
| 2894 | bdims (2,2) = nyn |
---|
| 2895 | bdims (3,1) = nzb |
---|
| 2896 | bdims (3,2) = nzt-cfratio(3) |
---|
| 2897 | |
---|
| 2898 | CALL MPI_SEND( bdims, 6, MPI_INTEGER, target_idex, 10, & |
---|
| 2899 | comm_inter, ierr ) |
---|
| 2900 | |
---|
| 2901 | CALL MPI_RECV( bdims_rem, 6, MPI_INTEGER, target_idex, 9, & |
---|
| 2902 | comm_inter,status, ierr ) |
---|
| 2903 | |
---|
| 2904 | |
---|
| 2905 | ALLOCATE( work3d ( & |
---|
| 2906 | bdims_rem(3,1)+1:bdims_rem(3,2), & |
---|
| 2907 | bdims_rem(2,1) :bdims_rem(2,2), & |
---|
| 2908 | bdims_rem(1,1) :bdims_rem(1,2))) |
---|
| 2909 | |
---|
| 2910 | |
---|
| 2911 | anterpol3d => u |
---|
[2514] | 2912 | |
---|
[3241] | 2913 | CALL anterpolate_to_crse_u |
---|
[2365] | 2914 | CALL MPI_SEND( work3d, 1, TYPE_VNEST_ANTER, target_idex, & |
---|
[2514] | 2915 | 101, comm_inter, ierr) |
---|
[2365] | 2916 | |
---|
| 2917 | anterpol3d => v |
---|
| 2918 | |
---|
[3241] | 2919 | CALL anterpolate_to_crse_v |
---|
[2365] | 2920 | CALL MPI_SEND( work3d, 1, TYPE_VNEST_ANTER, target_idex, & |
---|
[2514] | 2921 | 102, comm_inter, ierr) |
---|
[2365] | 2922 | |
---|
| 2923 | anterpol3d => pt |
---|
| 2924 | |
---|
[3241] | 2925 | CALL anterpolate_to_crse_s |
---|
[2365] | 2926 | CALL MPI_SEND( work3d, 1, TYPE_VNEST_ANTER, target_idex, & |
---|
[2514] | 2927 | 105, comm_inter, ierr) |
---|
[2365] | 2928 | |
---|
| 2929 | |
---|
| 2930 | IF ( humidity ) THEN |
---|
| 2931 | |
---|
| 2932 | anterpol3d => q |
---|
| 2933 | |
---|
[3241] | 2934 | CALL anterpolate_to_crse_s |
---|
[2365] | 2935 | CALL MPI_SEND( work3d, 1, TYPE_VNEST_ANTER, target_idex, & |
---|
[2514] | 2936 | 106, comm_inter, ierr) |
---|
[2365] | 2937 | ENDIF |
---|
| 2938 | |
---|
| 2939 | |
---|
| 2940 | DEALLOCATE( work3d ) |
---|
| 2941 | ALLOCATE( work3d ( bdims_rem(3,1) :bdims_rem(3,2)-1, & |
---|
| 2942 | bdims_rem(2,1) :bdims_rem(2,2), & |
---|
| 2943 | bdims_rem(1,1) :bdims_rem(1,2))) |
---|
| 2944 | anterpol3d => w |
---|
[3241] | 2945 | CALL anterpolate_to_crse_w |
---|
[2365] | 2946 | CALL MPI_SEND( work3d, 1, TYPE_VNEST_ANTER, target_idex, & |
---|
[2514] | 2947 | 103, comm_inter, ierr) |
---|
[2365] | 2948 | |
---|
| 2949 | NULLIFY ( anterpol3d ) |
---|
| 2950 | DEALLOCATE( work3d ) |
---|
| 2951 | |
---|
| 2952 | ENDIF |
---|
| 2953 | |
---|
| 2954 | |
---|
| 2955 | |
---|
| 2956 | CONTAINS |
---|
[3241] | 2957 | SUBROUTINE anterpolate_to_crse_u |
---|
[2365] | 2958 | |
---|
| 2959 | |
---|
| 2960 | USE arrays_3d |
---|
| 2961 | USE control_parameters |
---|
| 2962 | USE grid_variables |
---|
| 2963 | USE indices |
---|
| 2964 | USE pegrid |
---|
| 2965 | |
---|
| 2966 | |
---|
| 2967 | IMPLICIT NONE |
---|
[2712] | 2968 | |
---|
| 2969 | INTEGER(iwp) :: i |
---|
| 2970 | INTEGER(iwp) :: j |
---|
| 2971 | INTEGER(iwp) :: k |
---|
| 2972 | INTEGER(iwp) :: iif |
---|
| 2973 | INTEGER(iwp) :: jjf |
---|
| 2974 | INTEGER(iwp) :: kkf |
---|
| 2975 | INTEGER(iwp) :: bottomy |
---|
| 2976 | INTEGER(iwp) :: bottomz |
---|
| 2977 | INTEGER(iwp) :: topy |
---|
| 2978 | INTEGER(iwp) :: topz |
---|
| 2979 | REAL(wp) :: aweight |
---|
[2365] | 2980 | |
---|
| 2981 | ! |
---|
| 2982 | !-- Anterpolation of the velocity components u |
---|
| 2983 | !-- only values in yz-planes that coincide in the fine and |
---|
| 2984 | !-- the coarse grid are considered |
---|
| 2985 | |
---|
| 2986 | DO k = bdims_rem(3,1)+1, bdims_rem(3,2) |
---|
| 2987 | |
---|
| 2988 | bottomz = (dzc/dzf) * (k-1) + 1 |
---|
| 2989 | topz = (dzc/dzf) * k |
---|
| 2990 | |
---|
| 2991 | DO j = bdims_rem(2,1),bdims_rem(2,2) |
---|
| 2992 | |
---|
| 2993 | bottomy = (nyf+1) / (nyc+1) * j |
---|
| 2994 | topy = (nyf+1) / (nyc+1) * (j+1) - 1 |
---|
| 2995 | |
---|
| 2996 | DO i = bdims_rem(1,1),bdims_rem(1,2) |
---|
| 2997 | |
---|
[2712] | 2998 | iif = (nxf+1) / (nxc+1) * i |
---|
[2365] | 2999 | |
---|
| 3000 | aweight = 0.0 |
---|
| 3001 | |
---|
[2712] | 3002 | DO kkf = bottomz, topz |
---|
| 3003 | DO jjf = bottomy, topy |
---|
[2365] | 3004 | |
---|
[2712] | 3005 | aweight = aweight + anterpol3d(kkf,jjf,iif) * & |
---|
[2365] | 3006 | (dzf/dzc) * (dyf/dyc) |
---|
| 3007 | |
---|
| 3008 | END DO |
---|
| 3009 | END DO |
---|
| 3010 | |
---|
| 3011 | work3d(k,j,i) = aweight |
---|
| 3012 | |
---|
| 3013 | END DO |
---|
| 3014 | |
---|
| 3015 | END DO |
---|
| 3016 | |
---|
| 3017 | END DO |
---|
| 3018 | |
---|
| 3019 | |
---|
| 3020 | |
---|
| 3021 | END SUBROUTINE anterpolate_to_crse_u |
---|
| 3022 | |
---|
| 3023 | |
---|
[3241] | 3024 | SUBROUTINE anterpolate_to_crse_v |
---|
[2365] | 3025 | |
---|
| 3026 | |
---|
| 3027 | USE arrays_3d |
---|
| 3028 | USE control_parameters |
---|
| 3029 | USE grid_variables |
---|
| 3030 | USE indices |
---|
| 3031 | USE pegrid |
---|
| 3032 | |
---|
| 3033 | |
---|
| 3034 | IMPLICIT NONE |
---|
[2712] | 3035 | |
---|
| 3036 | INTEGER(iwp) :: i |
---|
| 3037 | INTEGER(iwp) :: j |
---|
| 3038 | INTEGER(iwp) :: k |
---|
| 3039 | INTEGER(iwp) :: iif |
---|
| 3040 | INTEGER(iwp) :: jjf |
---|
| 3041 | INTEGER(iwp) :: kkf |
---|
| 3042 | INTEGER(iwp) :: bottomx |
---|
| 3043 | INTEGER(iwp) :: bottomz |
---|
| 3044 | INTEGER(iwp) :: topx |
---|
| 3045 | INTEGER(iwp) :: topz |
---|
| 3046 | REAL(wp) :: aweight |
---|
| 3047 | |
---|
[2365] | 3048 | ! |
---|
| 3049 | !-- Anterpolation of the velocity components v |
---|
| 3050 | !-- only values in xz-planes that coincide in the fine and |
---|
| 3051 | !-- the coarse grid are considered |
---|
| 3052 | |
---|
| 3053 | DO k = bdims_rem(3,1)+1, bdims_rem(3,2) |
---|
| 3054 | |
---|
| 3055 | bottomz = (dzc/dzf) * (k-1) + 1 |
---|
| 3056 | topz = (dzc/dzf) * k |
---|
| 3057 | |
---|
| 3058 | DO j = bdims_rem(2,1), bdims_rem(2,2) |
---|
| 3059 | |
---|
[2712] | 3060 | jjf = (nyf+1) / (nyc+1) * j |
---|
[2365] | 3061 | |
---|
| 3062 | DO i = bdims_rem(1,1), bdims_rem(1,2) |
---|
| 3063 | |
---|
| 3064 | bottomx = (nxf+1) / (nxc+1) * i |
---|
| 3065 | topx = (nxf+1) / (nxc+1) * (i+1) - 1 |
---|
| 3066 | |
---|
| 3067 | aweight = 0.0 |
---|
| 3068 | |
---|
[2712] | 3069 | DO kkf = bottomz, topz |
---|
| 3070 | DO iif = bottomx, topx |
---|
[2365] | 3071 | |
---|
[2712] | 3072 | aweight = aweight + anterpol3d(kkf,jjf,iif) * & |
---|
[2365] | 3073 | (dzf/dzc) * (dxf/dxc) |
---|
| 3074 | |
---|
| 3075 | |
---|
| 3076 | END DO |
---|
| 3077 | END DO |
---|
| 3078 | |
---|
| 3079 | work3d(k,j,i) = aweight |
---|
| 3080 | |
---|
| 3081 | END DO |
---|
| 3082 | END DO |
---|
| 3083 | END DO |
---|
| 3084 | |
---|
| 3085 | |
---|
| 3086 | |
---|
| 3087 | END SUBROUTINE anterpolate_to_crse_v |
---|
| 3088 | |
---|
| 3089 | |
---|
[3241] | 3090 | SUBROUTINE anterpolate_to_crse_w |
---|
[2365] | 3091 | |
---|
| 3092 | |
---|
| 3093 | USE arrays_3d |
---|
| 3094 | USE control_parameters |
---|
| 3095 | USE grid_variables |
---|
| 3096 | USE indices |
---|
| 3097 | USE pegrid |
---|
| 3098 | |
---|
| 3099 | |
---|
| 3100 | IMPLICIT NONE |
---|
[2712] | 3101 | |
---|
| 3102 | INTEGER(iwp) :: i |
---|
| 3103 | INTEGER(iwp) :: j |
---|
| 3104 | INTEGER(iwp) :: k |
---|
| 3105 | INTEGER(iwp) :: iif |
---|
| 3106 | INTEGER(iwp) :: jjf |
---|
| 3107 | INTEGER(iwp) :: kkf |
---|
| 3108 | INTEGER(iwp) :: bottomx |
---|
| 3109 | INTEGER(iwp) :: bottomy |
---|
| 3110 | INTEGER(iwp) :: topx |
---|
| 3111 | INTEGER(iwp) :: topy |
---|
| 3112 | REAL(wp) :: aweight |
---|
| 3113 | |
---|
[2365] | 3114 | ! |
---|
| 3115 | !-- Anterpolation of the velocity components w |
---|
| 3116 | !-- only values in xy-planes that coincide in the fine and |
---|
| 3117 | !-- the coarse grid are considered |
---|
| 3118 | |
---|
| 3119 | DO k = bdims_rem(3,1), bdims_rem(3,2)-1 |
---|
| 3120 | |
---|
[2712] | 3121 | kkf = cfratio(3) * k |
---|
[2365] | 3122 | |
---|
| 3123 | DO j = bdims_rem(2,1), bdims_rem(2,2) |
---|
| 3124 | |
---|
| 3125 | bottomy = (nyf+1) / (nyc+1) * j |
---|
| 3126 | topy = (nyf+1) / (nyc+1) * (j+1) - 1 |
---|
| 3127 | |
---|
| 3128 | DO i = bdims_rem(1,1), bdims_rem(1,2) |
---|
| 3129 | |
---|
| 3130 | bottomx = (nxf+1) / (nxc+1) * i |
---|
| 3131 | topx = (nxf+1) / (nxc+1) * (i+1) - 1 |
---|
| 3132 | |
---|
| 3133 | aweight = 0.0 |
---|
| 3134 | |
---|
[2712] | 3135 | DO jjf = bottomy, topy |
---|
| 3136 | DO iif = bottomx, topx |
---|
[2365] | 3137 | |
---|
[2712] | 3138 | aweight = aweight + anterpol3d (kkf,jjf,iif) * & |
---|
[2365] | 3139 | (dxf/dxc) * (dyf/dyc) |
---|
| 3140 | |
---|
| 3141 | END DO |
---|
| 3142 | END DO |
---|
| 3143 | |
---|
| 3144 | work3d(k,j,i) = aweight |
---|
| 3145 | |
---|
| 3146 | END DO |
---|
| 3147 | |
---|
| 3148 | END DO |
---|
| 3149 | |
---|
| 3150 | END DO |
---|
| 3151 | |
---|
| 3152 | |
---|
| 3153 | END SUBROUTINE anterpolate_to_crse_w |
---|
| 3154 | |
---|
| 3155 | |
---|
[3241] | 3156 | SUBROUTINE anterpolate_to_crse_s |
---|
[2365] | 3157 | |
---|
| 3158 | |
---|
| 3159 | USE arrays_3d |
---|
| 3160 | USE control_parameters |
---|
| 3161 | USE grid_variables |
---|
| 3162 | USE indices |
---|
| 3163 | USE pegrid |
---|
| 3164 | |
---|
| 3165 | |
---|
| 3166 | IMPLICIT NONE |
---|
[2712] | 3167 | |
---|
| 3168 | INTEGER(iwp) :: i |
---|
| 3169 | INTEGER(iwp) :: j |
---|
| 3170 | INTEGER(iwp) :: k |
---|
| 3171 | INTEGER(iwp) :: iif |
---|
| 3172 | INTEGER(iwp) :: jjf |
---|
| 3173 | INTEGER(iwp) :: kkf |
---|
| 3174 | INTEGER(iwp) :: bottomx |
---|
| 3175 | INTEGER(iwp) :: bottomy |
---|
| 3176 | INTEGER(iwp) :: bottomz |
---|
| 3177 | INTEGER(iwp) :: topx |
---|
| 3178 | INTEGER(iwp) :: topy |
---|
| 3179 | INTEGER(iwp) :: topz |
---|
| 3180 | REAL(wp) :: aweight |
---|
[2365] | 3181 | |
---|
| 3182 | ! |
---|
| 3183 | !-- Anterpolation of the potential temperature pt |
---|
| 3184 | !-- all fine grid values are considered |
---|
| 3185 | |
---|
| 3186 | DO k = bdims_rem(3,1)+1, bdims_rem(3,2) |
---|
| 3187 | |
---|
| 3188 | bottomz = (dzc/dzf) * (k-1) + 1 |
---|
| 3189 | topz = (dzc/dzf) * k |
---|
| 3190 | |
---|
| 3191 | DO j = bdims_rem(2,1), bdims_rem(2,2) |
---|
| 3192 | |
---|
| 3193 | bottomy = (nyf+1) / (nyc+1) * j |
---|
| 3194 | topy = (nyf+1) / (nyc+1) * (j+1) - 1 |
---|
| 3195 | |
---|
| 3196 | DO i = bdims_rem(1,1), bdims_rem(1,2) |
---|
| 3197 | |
---|
| 3198 | bottomx = (nxf+1) / (nxc+1) * i |
---|
| 3199 | topx = (nxf+1) / (nxc+1) * (i+1) - 1 |
---|
| 3200 | |
---|
| 3201 | aweight = 0.0 |
---|
| 3202 | |
---|
[2712] | 3203 | DO kkf = bottomz, topz |
---|
| 3204 | DO jjf = bottomy, topy |
---|
| 3205 | DO iif = bottomx, topx |
---|
[2365] | 3206 | |
---|
[2712] | 3207 | aweight = aweight + anterpol3d(kkf,jjf,iif) * & |
---|
[2365] | 3208 | (dzf/dzc) * (dyf/dyc) * (dxf/dxc) |
---|
| 3209 | |
---|
| 3210 | END DO |
---|
| 3211 | END DO |
---|
| 3212 | END DO |
---|
| 3213 | |
---|
| 3214 | work3d(k,j,i) = aweight |
---|
| 3215 | |
---|
| 3216 | END DO |
---|
| 3217 | |
---|
| 3218 | END DO |
---|
| 3219 | |
---|
| 3220 | END DO |
---|
| 3221 | |
---|
| 3222 | |
---|
| 3223 | END SUBROUTINE anterpolate_to_crse_s |
---|
[2712] | 3224 | #endif |
---|
[2365] | 3225 | END SUBROUTINE vnest_anterpolate |
---|
| 3226 | |
---|
| 3227 | |
---|
| 3228 | |
---|
| 3229 | SUBROUTINE vnest_anterpolate_e |
---|
[2712] | 3230 | #if defined( __parallel ) |
---|
[2365] | 3231 | |
---|
| 3232 | !--------------------------------------------------------------------------------! |
---|
| 3233 | ! Description: |
---|
| 3234 | ! ------------ |
---|
| 3235 | ! Anterpolate TKE from fine grid to coarse grid. |
---|
| 3236 | !------------------------------------------------------------------------------! |
---|
| 3237 | |
---|
| 3238 | USE arrays_3d |
---|
| 3239 | USE control_parameters |
---|
| 3240 | USE grid_variables |
---|
| 3241 | USE indices |
---|
| 3242 | USE interfaces |
---|
| 3243 | USE pegrid |
---|
| 3244 | |
---|
| 3245 | |
---|
| 3246 | IMPLICIT NONE |
---|
| 3247 | |
---|
[2712] | 3248 | REAL(wp) :: time_since_reference_point_rem |
---|
| 3249 | INTEGER(iwp) :: i |
---|
| 3250 | INTEGER(iwp) :: j |
---|
[2365] | 3251 | |
---|
| 3252 | ! |
---|
| 3253 | !-- In case of model termination initiated by the remote model |
---|
| 3254 | !-- (terminate_coupled_remote > 0), initiate termination of the local model. |
---|
| 3255 | !-- The rest of the coupler must then be skipped because it would cause an MPI |
---|
| 3256 | !-- intercomminucation hang. |
---|
| 3257 | !-- If necessary, the coupler will be called at the beginning of the next |
---|
| 3258 | !-- restart run. |
---|
| 3259 | |
---|
| 3260 | IF ( myid == 0) THEN |
---|
[3045] | 3261 | CALL MPI_SENDRECV( terminate_coupled, 1, MPI_INTEGER, & |
---|
| 3262 | target_id, 0, & |
---|
| 3263 | terminate_coupled_remote, 1, MPI_INTEGER, & |
---|
| 3264 | target_id, 0, & |
---|
[2365] | 3265 | comm_inter, status, ierr ) |
---|
| 3266 | ENDIF |
---|
[3045] | 3267 | CALL MPI_BCAST( terminate_coupled_remote, 1, MPI_INTEGER, 0, comm2d, & |
---|
[2365] | 3268 | ierr ) |
---|
| 3269 | |
---|
| 3270 | IF ( terminate_coupled_remote > 0 ) THEN |
---|
[3045] | 3271 | WRITE( message_string, * ) 'remote model "', & |
---|
| 3272 | TRIM( coupling_mode_remote ), & |
---|
| 3273 | '" terminated', & |
---|
[3046] | 3274 | '&with terminate_coupled_remote = ', & |
---|
[3045] | 3275 | terminate_coupled_remote, & |
---|
[3046] | 3276 | '&local model "', TRIM( coupling_mode ), & |
---|
[3045] | 3277 | '" has', & |
---|
[3046] | 3278 | '&terminate_coupled = ', & |
---|
[2365] | 3279 | terminate_coupled |
---|
| 3280 | CALL message( 'vnest_anterpolate_e', 'PA0310', 1, 2, 0, 6, 0 ) |
---|
| 3281 | RETURN |
---|
| 3282 | ENDIF |
---|
| 3283 | |
---|
| 3284 | |
---|
| 3285 | ! |
---|
| 3286 | !-- Exchange the current simulated time between the models |
---|
| 3287 | IF ( myid == 0 ) THEN |
---|
| 3288 | |
---|
| 3289 | CALL MPI_SEND( time_since_reference_point, 1, MPI_REAL, target_id, & |
---|
| 3290 | 11, comm_inter, ierr ) |
---|
| 3291 | CALL MPI_RECV( time_since_reference_point_rem, 1, MPI_REAL, & |
---|
| 3292 | target_id, 11, comm_inter, status, ierr ) |
---|
| 3293 | |
---|
| 3294 | ENDIF |
---|
| 3295 | |
---|
| 3296 | CALL MPI_BCAST( time_since_reference_point_rem, 1, MPI_REAL, 0, comm2d, & |
---|
| 3297 | ierr ) |
---|
| 3298 | |
---|
| 3299 | IF ( coupling_mode == 'vnested_crse' ) THEN |
---|
| 3300 | ! Receive data from fine grid for anterpolation |
---|
| 3301 | |
---|
| 3302 | offset(1) = ( pdims_partner(1) / pdims(1) ) * pcoord(1) |
---|
| 3303 | offset(2) = ( pdims_partner(2) / pdims(2) ) * pcoord(2) |
---|
| 3304 | |
---|
| 3305 | do j = 0, ( pdims_partner(2) / pdims(2) ) - 1 |
---|
| 3306 | do i = 0, ( pdims_partner(1) / pdims(1) ) - 1 |
---|
| 3307 | map_coord(1) = i+offset(1) |
---|
| 3308 | map_coord(2) = j+offset(2) |
---|
| 3309 | |
---|
| 3310 | target_idex = f_rnk_lst(map_coord(1),map_coord(2)) + numprocs |
---|
| 3311 | |
---|
| 3312 | bdims (1,1) = f2c_dims_cg (0,map_coord(1),map_coord(2)) |
---|
| 3313 | bdims (1,2) = f2c_dims_cg (1,map_coord(1),map_coord(2)) |
---|
| 3314 | bdims (2,1) = f2c_dims_cg (2,map_coord(1),map_coord(2)) |
---|
| 3315 | bdims (2,2) = f2c_dims_cg (3,map_coord(1),map_coord(2)) |
---|
| 3316 | bdims (3,1) = f2c_dims_cg (4,map_coord(1),map_coord(2)) |
---|
| 3317 | bdims (3,2) = f2c_dims_cg (5,map_coord(1),map_coord(2)) |
---|
| 3318 | |
---|
| 3319 | |
---|
| 3320 | n_cell_c = (bdims(1,2)-bdims(1,1)+1) * & |
---|
| 3321 | (bdims(2,2)-bdims(2,1)+1) * & |
---|
| 3322 | (bdims(3,2)-bdims(3,1)+0) |
---|
| 3323 | |
---|
| 3324 | |
---|
| 3325 | CALL MPI_RECV( e( bdims(3,1)+1:bdims(3,2), & |
---|
| 3326 | bdims(2,1) :bdims(2,2), & |
---|
| 3327 | bdims(1,1) :bdims(1,2)),& |
---|
| 3328 | n_cell_c, MPI_REAL, target_idex, 104, & |
---|
| 3329 | comm_inter,status, ierr ) |
---|
| 3330 | end do |
---|
| 3331 | end do |
---|
| 3332 | |
---|
| 3333 | |
---|
| 3334 | ! |
---|
| 3335 | !-- Boundary conditions |
---|
| 3336 | |
---|
| 3337 | IF ( .NOT. constant_diffusion ) THEN |
---|
| 3338 | e(nzb,:,:) = e(nzb+1,:,:) |
---|
| 3339 | END IF |
---|
| 3340 | |
---|
| 3341 | IF ( .NOT. constant_diffusion ) CALL exchange_horiz( e, nbgp ) |
---|
| 3342 | |
---|
| 3343 | ELSEIF ( coupling_mode == 'vnested_fine' ) THEN |
---|
| 3344 | ! Send data to coarse grid for anterpolation |
---|
| 3345 | |
---|
| 3346 | offset(1) = pcoord(1) / ( pdims(1)/pdims_partner(1) ) |
---|
| 3347 | offset(2) = pcoord(2) / ( pdims(2)/pdims_partner(2) ) |
---|
| 3348 | map_coord(1) = offset(1) |
---|
| 3349 | map_coord(2) = offset(2) |
---|
| 3350 | target_idex = c_rnk_lst(map_coord(1),map_coord(2)) |
---|
| 3351 | |
---|
| 3352 | bdims_rem (1,1) = f2c_dims_fg (0) |
---|
| 3353 | bdims_rem (1,2) = f2c_dims_fg (1) |
---|
| 3354 | bdims_rem (2,1) = f2c_dims_fg (2) |
---|
| 3355 | bdims_rem (2,2) = f2c_dims_fg (3) |
---|
| 3356 | bdims_rem (3,1) = f2c_dims_fg (4) |
---|
| 3357 | bdims_rem (3,2) = f2c_dims_fg (5) |
---|
| 3358 | |
---|
| 3359 | ALLOCATE( work3d ( & |
---|
| 3360 | bdims_rem(3,1)+1:bdims_rem(3,2), & |
---|
| 3361 | bdims_rem(2,1) :bdims_rem(2,2), & |
---|
| 3362 | bdims_rem(1,1) :bdims_rem(1,2))) |
---|
| 3363 | |
---|
| 3364 | anterpol3d => e |
---|
| 3365 | |
---|
[3241] | 3366 | CALL anterpolate_to_crse_e |
---|
[2365] | 3367 | |
---|
| 3368 | CALL MPI_SEND( work3d, 1, TYPE_VNEST_ANTER, target_idex, & |
---|
[2514] | 3369 | 104, comm_inter, ierr) |
---|
[2365] | 3370 | |
---|
| 3371 | NULLIFY ( anterpol3d ) |
---|
| 3372 | DEALLOCATE( work3d ) |
---|
| 3373 | ENDIF |
---|
| 3374 | |
---|
| 3375 | |
---|
| 3376 | CONTAINS |
---|
| 3377 | |
---|
| 3378 | |
---|
| 3379 | |
---|
| 3380 | |
---|
| 3381 | |
---|
[3241] | 3382 | SUBROUTINE anterpolate_to_crse_e |
---|
[2365] | 3383 | |
---|
| 3384 | |
---|
| 3385 | USE arrays_3d |
---|
| 3386 | USE control_parameters |
---|
| 3387 | USE grid_variables |
---|
| 3388 | USE indices |
---|
| 3389 | USE pegrid |
---|
| 3390 | |
---|
| 3391 | |
---|
| 3392 | IMPLICIT NONE |
---|
[2712] | 3393 | |
---|
| 3394 | INTEGER(iwp) :: i |
---|
| 3395 | INTEGER(iwp) :: j |
---|
| 3396 | INTEGER(iwp) :: k |
---|
| 3397 | INTEGER(iwp) :: iif |
---|
| 3398 | INTEGER(iwp) :: jjf |
---|
| 3399 | INTEGER(iwp) :: kkf |
---|
| 3400 | INTEGER(iwp) :: bottomx |
---|
| 3401 | INTEGER(iwp) :: bottomy |
---|
| 3402 | INTEGER(iwp) :: bottomz |
---|
| 3403 | INTEGER(iwp) :: topx |
---|
| 3404 | INTEGER(iwp) :: topy |
---|
| 3405 | INTEGER(iwp) :: topz |
---|
| 3406 | REAL(wp) :: aweight_a |
---|
| 3407 | REAL(wp) :: aweight_b |
---|
| 3408 | REAL(wp) :: aweight_c |
---|
| 3409 | REAL(wp) :: aweight_d |
---|
| 3410 | REAL(wp) :: aweight_e |
---|
| 3411 | REAL(wp) :: energ |
---|
[2365] | 3412 | |
---|
| 3413 | DO k = bdims_rem(3,1)+1, bdims_rem(3,2) |
---|
| 3414 | |
---|
| 3415 | bottomz = (dzc/dzf) * (k-1) + 1 |
---|
| 3416 | topz = (dzc/dzf) * k |
---|
| 3417 | |
---|
| 3418 | DO j = bdims_rem(2,1), bdims_rem(2,2) |
---|
| 3419 | |
---|
| 3420 | bottomy = (nyf+1) / (nyc+1) * j |
---|
| 3421 | topy = (nyf+1) / (nyc+1) * (j+1) - 1 |
---|
| 3422 | |
---|
| 3423 | DO i = bdims_rem(1,1), bdims_rem(1,2) |
---|
| 3424 | |
---|
| 3425 | bottomx = (nxf+1) / (nxc+1) * i |
---|
| 3426 | topx = (nxf+1) / (nxc+1) * (i+1) - 1 |
---|
| 3427 | |
---|
| 3428 | aweight_a = 0.0 |
---|
| 3429 | aweight_b = 0.0 |
---|
| 3430 | aweight_c = 0.0 |
---|
| 3431 | aweight_d = 0.0 |
---|
| 3432 | aweight_e = 0.0 |
---|
| 3433 | |
---|
[2712] | 3434 | DO kkf = bottomz, topz |
---|
| 3435 | DO jjf = bottomy, topy |
---|
| 3436 | DO iif = bottomx, topx |
---|
[2365] | 3437 | |
---|
[2712] | 3438 | aweight_a = aweight_a + anterpol3d(kkf,jjf,iif) * & |
---|
[2365] | 3439 | (dzf/dzc) * (dyf/dyc) * (dxf/dxc) |
---|
| 3440 | |
---|
| 3441 | |
---|
[2712] | 3442 | energ = ( 0.5 * ( u(kkf,jjf,iif) + u(kkf,jjf,iif+1) ) )**2.0 + & |
---|
| 3443 | ( 0.5 * ( v(kkf,jjf,iif) + v(kkf,jjf+1,iif) ) )**2.0 + & |
---|
| 3444 | ( 0.5 * ( w(kkf-1,jjf,iif) + w(kkf,jjf,iif) ) )**2.0 |
---|
[2365] | 3445 | |
---|
| 3446 | aweight_b = aweight_b + energ * & |
---|
| 3447 | (dzf/dzc) * (dyf/dyc) * (dxf/dxc) |
---|
| 3448 | |
---|
[2712] | 3449 | aweight_c = aweight_c + 0.5 * ( u(kkf,jjf,iif) + u(kkf,jjf,iif+1) ) * & |
---|
[2365] | 3450 | (dzf/dzc) * (dyf/dyc) * (dxf/dxc) |
---|
| 3451 | |
---|
[2712] | 3452 | aweight_d = aweight_d + 0.5 * ( v(kkf,jjf,iif) + v(kkf,jjf+1,iif) ) * & |
---|
[2365] | 3453 | (dzf/dzc) * (dyf/dyc) * (dxf/dxc) |
---|
| 3454 | |
---|
[2712] | 3455 | aweight_e = aweight_e + 0.5 * ( w(kkf-1,jjf,iif) + w(kkf,jjf,iif) ) * & |
---|
[2365] | 3456 | (dzf/dzc) * (dyf/dyc) * (dxf/dxc) |
---|
| 3457 | |
---|
| 3458 | |
---|
| 3459 | END DO |
---|
| 3460 | END DO |
---|
| 3461 | END DO |
---|
| 3462 | |
---|
| 3463 | work3d(k,j,i) = aweight_a + 0.5 * ( aweight_b - & |
---|
| 3464 | aweight_c**2.0 - & |
---|
| 3465 | aweight_d**2.0 - & |
---|
| 3466 | aweight_e**2.0 ) |
---|
| 3467 | |
---|
| 3468 | END DO |
---|
| 3469 | |
---|
| 3470 | END DO |
---|
| 3471 | |
---|
| 3472 | END DO |
---|
| 3473 | |
---|
| 3474 | |
---|
| 3475 | |
---|
| 3476 | END SUBROUTINE anterpolate_to_crse_e |
---|
[2712] | 3477 | #endif |
---|
[2365] | 3478 | END SUBROUTINE vnest_anterpolate_e |
---|
| 3479 | |
---|
| 3480 | SUBROUTINE vnest_init_pegrid_rank |
---|
[2712] | 3481 | #if defined( __parallel ) |
---|
[2365] | 3482 | ! Domain decomposition and exchange of grid variables between coarse and fine |
---|
| 3483 | ! Given processor coordinates as index f_rnk_lst(pcoord(1), pcoord(2)) |
---|
| 3484 | ! returns the rank. A single coarse block will have to send data to multiple |
---|
| 3485 | ! fine blocks. In the coarse grid the pcoords of the remote block is first found and then using |
---|
| 3486 | ! f_rnk_lst the target_idex is identified. |
---|
| 3487 | ! blk_dim stores the index limits of a given block. blk_dim_remote is received |
---|
| 3488 | ! from the asscoiated nest partner. |
---|
| 3489 | ! cf_ratio(1:3) is the ratio between fine and coarse grid: nxc/nxf, nyc/nyf and |
---|
| 3490 | ! ceiling(dxc/dxf) |
---|
| 3491 | |
---|
| 3492 | |
---|
[3241] | 3493 | USE control_parameters, & |
---|
| 3494 | ONLY: coupling_mode |
---|
[2365] | 3495 | |
---|
| 3496 | USE kinds |
---|
| 3497 | |
---|
| 3498 | USE pegrid |
---|
| 3499 | |
---|
| 3500 | |
---|
| 3501 | IMPLICIT NONE |
---|
| 3502 | |
---|
[2712] | 3503 | INTEGER(iwp) :: dest_rnk |
---|
| 3504 | INTEGER(iwp) :: i !< |
---|
[2365] | 3505 | |
---|
| 3506 | IF (myid == 0) THEN |
---|
| 3507 | IF ( coupling_mode == 'vnested_crse') THEN |
---|
| 3508 | CALL MPI_SEND( pdims, 2, MPI_INTEGER, numprocs, 33, comm_inter, & |
---|
| 3509 | ierr ) |
---|
[3241] | 3510 | CALL MPI_RECV( pdims_partner, 2, MPI_INTEGER, numprocs, 66, & |
---|
[2365] | 3511 | comm_inter, status, ierr ) |
---|
| 3512 | ELSEIF ( coupling_mode == 'vnested_fine') THEN |
---|
| 3513 | CALL MPI_RECV( pdims_partner, 2, MPI_INTEGER, 0, 33, & |
---|
| 3514 | comm_inter, status, ierr ) |
---|
| 3515 | CALL MPI_SEND( pdims, 2, MPI_INTEGER, 0, 66, comm_inter, & |
---|
| 3516 | ierr ) |
---|
| 3517 | ENDIF |
---|
| 3518 | ENDIF |
---|
| 3519 | |
---|
| 3520 | |
---|
| 3521 | IF ( coupling_mode == 'vnested_crse') THEN |
---|
| 3522 | CALL MPI_BCAST( pdims_partner, 2, MPI_INTEGER, 0, comm2d, ierr ) |
---|
| 3523 | ALLOCATE( c_rnk_lst( 0:(pdims(1)-1) ,0:(pdims(2)-1) ) ) |
---|
| 3524 | ALLOCATE( f_rnk_lst( 0:(pdims_partner(1)-1) ,0:(pdims_partner(2)-1) ) ) |
---|
| 3525 | do i=0,numprocs-1 |
---|
| 3526 | CALL MPI_CART_COORDS( comm2d, i, ndim, pcoord, ierr ) |
---|
| 3527 | call MPI_Cart_rank(comm2d, pcoord, dest_rnk, ierr) |
---|
| 3528 | c_rnk_lst(pcoord(1),pcoord(2)) = dest_rnk |
---|
| 3529 | end do |
---|
| 3530 | ELSEIF ( coupling_mode == 'vnested_fine') THEN |
---|
| 3531 | CALL MPI_BCAST( pdims_partner, 2, MPI_INTEGER, 0, comm2d, ierr ) |
---|
| 3532 | ALLOCATE( c_rnk_lst( 0:(pdims_partner(1)-1) ,0:(pdims_partner(2)-1) ) ) |
---|
| 3533 | ALLOCATE( f_rnk_lst( 0:(pdims(1)-1) ,0:(pdims(2)-1) ) ) |
---|
| 3534 | |
---|
| 3535 | do i=0,numprocs-1 |
---|
| 3536 | CALL MPI_CART_COORDS( comm2d, i, ndim, pcoord, ierr ) |
---|
| 3537 | call MPI_Cart_rank(comm2d, pcoord, dest_rnk, ierr) |
---|
| 3538 | f_rnk_lst(pcoord(1),pcoord(2)) = dest_rnk |
---|
| 3539 | enddo |
---|
| 3540 | ENDIF |
---|
| 3541 | |
---|
| 3542 | |
---|
| 3543 | IF ( coupling_mode == 'vnested_crse') THEN |
---|
| 3544 | if (myid == 0) then |
---|
| 3545 | CALL MPI_SEND( c_rnk_lst, pdims(1)*pdims(2), MPI_INTEGER, numprocs, 0, comm_inter, ierr ) |
---|
| 3546 | CALL MPI_RECV( f_rnk_lst, pdims_partner(1)*pdims_partner(2), MPI_INTEGER, numprocs, 4, comm_inter,status, ierr ) |
---|
| 3547 | end if |
---|
| 3548 | CALL MPI_BCAST( f_rnk_lst, pdims_partner(1)*pdims_partner(2), MPI_INTEGER, 0, comm2d, ierr ) |
---|
| 3549 | ELSEIF ( coupling_mode == 'vnested_fine') THEN |
---|
| 3550 | if (myid == 0) then |
---|
| 3551 | CALL MPI_RECV( c_rnk_lst, pdims_partner(1)*pdims_partner(2), MPI_INTEGER, 0, 0, comm_inter,status, ierr ) |
---|
| 3552 | CALL MPI_SEND( f_rnk_lst, pdims(1)*pdims(2), MPI_INTEGER, 0, 4, comm_inter, ierr ) |
---|
| 3553 | end if |
---|
| 3554 | CALL MPI_BCAST( c_rnk_lst, pdims_partner(1)*pdims_partner(2), MPI_INTEGER, 0, comm2d, ierr ) |
---|
| 3555 | ENDIF |
---|
| 3556 | |
---|
| 3557 | !-- Reason for MPI error unknown; solved if three lines duplicated |
---|
| 3558 | CALL MPI_CART_COORDS( comm2d, myid, ndim, pcoord, ierr ) |
---|
| 3559 | CALL MPI_CART_SHIFT( comm2d, 0, 1, pleft, pright, ierr ) |
---|
| 3560 | CALL MPI_CART_SHIFT( comm2d, 1, 1, psouth, pnorth, ierr ) |
---|
| 3561 | |
---|
| 3562 | |
---|
[2712] | 3563 | #endif |
---|
[2365] | 3564 | |
---|
| 3565 | END SUBROUTINE vnest_init_pegrid_rank |
---|
| 3566 | |
---|
| 3567 | |
---|
| 3568 | SUBROUTINE vnest_init_pegrid_domain |
---|
[2712] | 3569 | #if defined( __parallel ) |
---|
[2365] | 3570 | |
---|
[3241] | 3571 | USE control_parameters, & |
---|
| 3572 | ONLY: coupling_mode, coupling_topology, dz, & |
---|
[3065] | 3573 | dz_stretch_level_start, message_string |
---|
[2365] | 3574 | |
---|
[3241] | 3575 | USE grid_variables, & |
---|
[2365] | 3576 | ONLY: dx, dy |
---|
| 3577 | |
---|
[3241] | 3578 | USE indices, & |
---|
| 3579 | ONLY: nbgp, nx, ny, nz, nxl, nxr, nys, nyn, nzb, nzt |
---|
[2365] | 3580 | |
---|
| 3581 | USE kinds |
---|
| 3582 | |
---|
| 3583 | USE pegrid |
---|
| 3584 | |
---|
| 3585 | IMPLICIT NONE |
---|
| 3586 | |
---|
[2712] | 3587 | INTEGER(iwp) :: i !< |
---|
| 3588 | INTEGER(iwp) :: j !< |
---|
| 3589 | INTEGER(iwp) :: tempx |
---|
| 3590 | INTEGER(iwp) :: tempy |
---|
| 3591 | INTEGER(iwp) :: TYPE_INT_YZ |
---|
| 3592 | INTEGER(iwp) :: SIZEOFREAL |
---|
| 3593 | INTEGER(iwp) :: MTV_X |
---|
| 3594 | INTEGER(iwp) :: MTV_Y |
---|
| 3595 | INTEGER(iwp) :: MTV_Z |
---|
| 3596 | INTEGER(iwp) :: MTV_RX |
---|
| 3597 | INTEGER(iwp) :: MTV_RY |
---|
| 3598 | INTEGER(iwp) :: MTV_RZ |
---|
[2365] | 3599 | |
---|
| 3600 | ! |
---|
| 3601 | !-- Pass the number of grid points of the coarse model to |
---|
| 3602 | !-- the nested model and vice versa |
---|
| 3603 | IF ( coupling_mode == 'vnested_crse' ) THEN |
---|
| 3604 | |
---|
| 3605 | nxc = nx |
---|
| 3606 | nyc = ny |
---|
| 3607 | nzc = nz |
---|
| 3608 | dxc = dx |
---|
| 3609 | dyc = dy |
---|
[3065] | 3610 | dzc = dz(1) |
---|
[2365] | 3611 | cg_nprocs = numprocs |
---|
| 3612 | |
---|
| 3613 | IF ( myid == 0 ) THEN |
---|
| 3614 | |
---|
[3065] | 3615 | CALL MPI_SEND( nxc, 1, MPI_INTEGER , numprocs, 1, comm_inter, & |
---|
[2365] | 3616 | ierr ) |
---|
[3065] | 3617 | CALL MPI_SEND( nyc, 1, MPI_INTEGER , numprocs, 2, comm_inter, & |
---|
[2365] | 3618 | ierr ) |
---|
[3065] | 3619 | CALL MPI_SEND( nzc, 1, MPI_INTEGER , numprocs, 3, comm_inter, & |
---|
[2365] | 3620 | ierr ) |
---|
[3065] | 3621 | CALL MPI_SEND( dxc, 1, MPI_REAL , numprocs, 4, comm_inter, & |
---|
[2365] | 3622 | ierr ) |
---|
[3065] | 3623 | CALL MPI_SEND( dyc, 1, MPI_REAL , numprocs, 5, comm_inter, & |
---|
[2365] | 3624 | ierr ) |
---|
[3065] | 3625 | CALL MPI_SEND( dzc, 1, MPI_REAL , numprocs, 6, comm_inter, & |
---|
[2365] | 3626 | ierr ) |
---|
[3065] | 3627 | CALL MPI_SEND( pdims, 2, MPI_INTEGER, numprocs, 7, comm_inter, & |
---|
[2365] | 3628 | ierr ) |
---|
| 3629 | CALL MPI_SEND( cg_nprocs, 1, MPI_INTEGER, numprocs, 8, comm_inter, & |
---|
| 3630 | ierr ) |
---|
[3065] | 3631 | CALL MPI_RECV( nxf, 1, MPI_INTEGER, numprocs, 21, comm_inter, & |
---|
[2365] | 3632 | status, ierr ) |
---|
[3065] | 3633 | CALL MPI_RECV( nyf, 1, MPI_INTEGER, numprocs, 22, comm_inter, & |
---|
[2365] | 3634 | status, ierr ) |
---|
[3065] | 3635 | CALL MPI_RECV( nzf, 1, MPI_INTEGER, numprocs, 23, comm_inter, & |
---|
[2365] | 3636 | status, ierr ) |
---|
[3065] | 3637 | CALL MPI_RECV( dxf, 1, MPI_REAL, numprocs, 24, comm_inter, & |
---|
[2365] | 3638 | status, ierr ) |
---|
[3065] | 3639 | CALL MPI_RECV( dyf, 1, MPI_REAL, numprocs, 25, comm_inter, & |
---|
[2365] | 3640 | status, ierr ) |
---|
[3065] | 3641 | CALL MPI_RECV( dzf, 1, MPI_REAL, numprocs, 26, comm_inter, & |
---|
[2365] | 3642 | status, ierr ) |
---|
[3065] | 3643 | CALL MPI_RECV( pdims_partner, 2, MPI_INTEGER, & |
---|
[2365] | 3644 | numprocs, 27, comm_inter, status, ierr ) |
---|
[3065] | 3645 | CALL MPI_RECV( fg_nprocs, 1, MPI_INTEGER, & |
---|
[2365] | 3646 | numprocs, 28, comm_inter, status, ierr ) |
---|
| 3647 | ENDIF |
---|
| 3648 | |
---|
| 3649 | CALL MPI_BCAST( nxf, 1, MPI_INTEGER, 0, comm2d, ierr ) |
---|
| 3650 | CALL MPI_BCAST( nyf, 1, MPI_INTEGER, 0, comm2d, ierr ) |
---|
| 3651 | CALL MPI_BCAST( nzf, 1, MPI_INTEGER, 0, comm2d, ierr ) |
---|
| 3652 | CALL MPI_BCAST( dxf, 1, MPI_REAL, 0, comm2d, ierr ) |
---|
| 3653 | CALL MPI_BCAST( dyf, 1, MPI_REAL, 0, comm2d, ierr ) |
---|
| 3654 | CALL MPI_BCAST( dzf, 1, MPI_REAL, 0, comm2d, ierr ) |
---|
| 3655 | CALL MPI_BCAST( pdims_partner, 2, MPI_INTEGER, 0, comm2d, ierr ) |
---|
| 3656 | CALL MPI_BCAST( fg_nprocs, 1, MPI_INTEGER, 0, comm2d, ierr ) |
---|
[3065] | 3657 | |
---|
| 3658 | ! |
---|
| 3659 | !-- Check if stretching is used within the nested domain. ABS(...) is |
---|
| 3660 | !-- necessary because of the default value of -9999999.9_wp (negative) |
---|
| 3661 | IF ( ABS( dz_stretch_level_start(1) ) <= (nzf+1)*dzf ) THEN |
---|
| 3662 | message_string = 'Stretching in the parent domain is '// & |
---|
| 3663 | 'only allowed above the nested domain' |
---|
[3066] | 3664 | CALL message( 'vnest_init_pegrid_domain', 'PA0497', 1, 2, 0, 6, 0 ) |
---|
[3065] | 3665 | ENDIF |
---|
[2365] | 3666 | |
---|
| 3667 | ELSEIF ( coupling_mode == 'vnested_fine' ) THEN |
---|
| 3668 | |
---|
| 3669 | nxf = nx |
---|
| 3670 | nyf = ny |
---|
| 3671 | nzf = nz |
---|
| 3672 | dxf = dx |
---|
| 3673 | dyf = dy |
---|
[3065] | 3674 | dzf = dz(1) |
---|
[2365] | 3675 | fg_nprocs = numprocs |
---|
| 3676 | |
---|
| 3677 | IF ( myid == 0 ) THEN |
---|
| 3678 | |
---|
| 3679 | CALL MPI_RECV( nxc, 1, MPI_INTEGER, 0, 1, comm_inter, status, & |
---|
| 3680 | ierr ) |
---|
| 3681 | CALL MPI_RECV( nyc, 1, MPI_INTEGER, 0, 2, comm_inter, status, & |
---|
| 3682 | ierr ) |
---|
| 3683 | CALL MPI_RECV( nzc, 1, MPI_INTEGER, 0, 3, comm_inter, status, & |
---|
| 3684 | ierr ) |
---|
| 3685 | CALL MPI_RECV( dxc, 1, MPI_REAL, 0, 4, comm_inter, status, & |
---|
| 3686 | ierr ) |
---|
| 3687 | CALL MPI_RECV( dyc, 1, MPI_REAL, 0, 5, comm_inter, status, & |
---|
| 3688 | ierr ) |
---|
| 3689 | CALL MPI_RECV( dzc, 1, MPI_REAL, 0, 6, comm_inter, status, & |
---|
| 3690 | ierr ) |
---|
| 3691 | CALL MPI_RECV( pdims_partner, 2, MPI_INTEGER, 0, 7, comm_inter, & |
---|
| 3692 | status, ierr ) |
---|
| 3693 | CALL MPI_RECV( cg_nprocs, 1, MPI_INTEGER, 0, 8, comm_inter, & |
---|
| 3694 | status, ierr ) |
---|
| 3695 | CALL MPI_SEND( nxf, 1, MPI_INTEGER, 0, 21, comm_inter, ierr ) |
---|
| 3696 | CALL MPI_SEND( nyf, 1, MPI_INTEGER, 0, 22, comm_inter, ierr ) |
---|
| 3697 | CALL MPI_SEND( nzf, 1, MPI_INTEGER, 0, 23, comm_inter, ierr ) |
---|
| 3698 | CALL MPI_SEND( dxf, 1, MPI_REAL, 0, 24, comm_inter, ierr ) |
---|
| 3699 | CALL MPI_SEND( dyf, 1, MPI_REAL, 0, 25, comm_inter, ierr ) |
---|
| 3700 | CALL MPI_SEND( dzf, 1, MPI_REAL, 0, 26, comm_inter, ierr ) |
---|
| 3701 | CALL MPI_SEND( pdims,2,MPI_INTEGER, 0, 27, comm_inter, ierr ) |
---|
| 3702 | CALL MPI_SEND( fg_nprocs,1,MPI_INTEGER, 0, 28, comm_inter, ierr ) |
---|
| 3703 | ENDIF |
---|
| 3704 | |
---|
| 3705 | CALL MPI_BCAST( nxc, 1, MPI_INTEGER, 0, comm2d, ierr) |
---|
| 3706 | CALL MPI_BCAST( nyc, 1, MPI_INTEGER, 0, comm2d, ierr) |
---|
| 3707 | CALL MPI_BCAST( nzc, 1, MPI_INTEGER, 0, comm2d, ierr) |
---|
| 3708 | CALL MPI_BCAST( dxc, 1, MPI_REAL, 0, comm2d, ierr) |
---|
| 3709 | CALL MPI_BCAST( dyc, 1, MPI_REAL, 0, comm2d, ierr) |
---|
| 3710 | CALL MPI_BCAST( dzc, 1, MPI_REAL, 0, comm2d, ierr) |
---|
| 3711 | CALL MPI_BCAST( pdims_partner, 2, MPI_INTEGER, 0, comm2d, ierr) |
---|
| 3712 | CALL MPI_BCAST( cg_nprocs, 1, MPI_INTEGER, 0, comm2d, ierr) |
---|
| 3713 | |
---|
| 3714 | ENDIF |
---|
[3065] | 3715 | |
---|
[2365] | 3716 | ngp_c = ( nxc+1 + 2 * nbgp ) * ( nyc+1 + 2 * nbgp ) |
---|
| 3717 | ngp_f = ( nxf+1 + 2 * nbgp ) * ( nyf+1 + 2 * nbgp ) |
---|
| 3718 | |
---|
| 3719 | IF ( coupling_mode(1:8) == 'vnested_') coupling_topology = 1 |
---|
| 3720 | |
---|
| 3721 | |
---|
| 3722 | !-- Nesting Ratio: For each coarse grid cell how many fine grid cells exist |
---|
| 3723 | cfratio(1) = INT ( (nxf+1) / (nxc+1) ) |
---|
| 3724 | cfratio(2) = INT ( (nyf+1) / (nyc+1) ) |
---|
| 3725 | cfratio(3) = CEILING ( dzc / dzf ) |
---|
| 3726 | |
---|
| 3727 | !-- target_id is used only for exhange of information like simulated_time |
---|
| 3728 | !-- which are then MPI_BCAST to other processors in the group |
---|
| 3729 | IF ( myid == 0 ) THEN |
---|
| 3730 | |
---|
| 3731 | IF ( TRIM( coupling_mode ) == 'vnested_crse' ) THEN |
---|
| 3732 | target_id = numprocs |
---|
| 3733 | ELSE IF ( TRIM( coupling_mode ) == 'vnested_fine' ) THEN |
---|
| 3734 | target_id = 0 |
---|
| 3735 | ENDIF |
---|
| 3736 | |
---|
| 3737 | ENDIF |
---|
| 3738 | |
---|
| 3739 | !-- Store partner grid dimenstions and create MPI derived types |
---|
| 3740 | |
---|
| 3741 | IF ( coupling_mode == 'vnested_crse' ) THEN |
---|
| 3742 | |
---|
| 3743 | offset(1) = ( pdims_partner(1) / pdims(1) ) * pcoord(1) |
---|
| 3744 | offset(2) = ( pdims_partner(2) / pdims(2) ) * pcoord(2) |
---|
| 3745 | |
---|
[2514] | 3746 | tempx = ( pdims_partner(1) / pdims(1) ) - 1 |
---|
| 3747 | tempy = ( pdims_partner(2) / pdims(2) ) - 1 |
---|
[2365] | 3748 | ALLOCATE( c2f_dims_cg (0:5,offset(1):tempx+offset(1),offset(2):tempy+offset(2) ) ) |
---|
| 3749 | ALLOCATE( f2c_dims_cg (0:5,offset(1):tempx+offset(1),offset(2):tempy+offset(2) ) ) |
---|
| 3750 | |
---|
| 3751 | do j = 0, ( pdims_partner(2) / pdims(2) ) - 1 |
---|
| 3752 | do i = 0, ( pdims_partner(1) / pdims(1) ) - 1 |
---|
| 3753 | map_coord(1) = i+offset(1) |
---|
| 3754 | map_coord(2) = j+offset(2) |
---|
| 3755 | |
---|
| 3756 | target_idex = f_rnk_lst(map_coord(1),map_coord(2)) + numprocs |
---|
| 3757 | |
---|
| 3758 | CALL MPI_RECV( bdims_rem, 6, MPI_INTEGER, target_idex, 10, & |
---|
| 3759 | comm_inter,status, ierr ) |
---|
| 3760 | |
---|
| 3761 | !-- Store the CG dimensions that correspond to the FG partner; needed for FG top BC |
---|
| 3762 | !-- One CG can have multiple FG partners. The 3D array is mapped by partner proc co-ord |
---|
| 3763 | c2f_dims_cg (0,map_coord(1),map_coord(2)) = bdims_rem (1,1) / cfratio(1) |
---|
| 3764 | c2f_dims_cg (1,map_coord(1),map_coord(2)) = bdims_rem (1,2) / cfratio(1) |
---|
| 3765 | c2f_dims_cg (2,map_coord(1),map_coord(2)) = bdims_rem (2,1) / cfratio(2) |
---|
| 3766 | c2f_dims_cg (3,map_coord(1),map_coord(2)) = bdims_rem (2,2) / cfratio(2) |
---|
| 3767 | c2f_dims_cg (4,map_coord(1),map_coord(2)) = bdims_rem (3,2) / cfratio(3) |
---|
| 3768 | c2f_dims_cg (5,map_coord(1),map_coord(2)) =(bdims_rem (3,2) / cfratio(3)) + 2 |
---|
| 3769 | |
---|
| 3770 | !-- Store the CG dimensions that correspond to the FG partner; needed for anterpolation |
---|
| 3771 | f2c_dims_cg (0,map_coord(1),map_coord(2)) = bdims_rem (1,1) / cfratio(1) |
---|
| 3772 | f2c_dims_cg (1,map_coord(1),map_coord(2)) = bdims_rem (1,2) / cfratio(1) |
---|
| 3773 | f2c_dims_cg (2,map_coord(1),map_coord(2)) = bdims_rem (2,1) / cfratio(2) |
---|
| 3774 | f2c_dims_cg (3,map_coord(1),map_coord(2)) = bdims_rem (2,2) / cfratio(2) |
---|
| 3775 | f2c_dims_cg (4,map_coord(1),map_coord(2)) = bdims_rem (3,1) |
---|
| 3776 | f2c_dims_cg (5,map_coord(1),map_coord(2)) =(bdims_rem (3,2)-cfratio(3))/ cfratio(3) |
---|
| 3777 | |
---|
| 3778 | CALL MPI_SEND( c2f_dims_cg (:,map_coord(1),map_coord(2)), 6, & |
---|
[2514] | 3779 | MPI_INTEGER, target_idex, 100, comm_inter, ierr ) |
---|
[2365] | 3780 | |
---|
| 3781 | CALL MPI_SEND( f2c_dims_cg (:,map_coord(1),map_coord(2)), 6, & |
---|
[2514] | 3782 | MPI_INTEGER, target_idex, 101, comm_inter, ierr ) |
---|
[2365] | 3783 | |
---|
| 3784 | end do |
---|
| 3785 | end do |
---|
| 3786 | |
---|
| 3787 | !-- A derived data type to pack 3 Z-levels of CG to set FG top BC |
---|
| 3788 | MTV_X = ( nxr - nxl + 1 ) + 2*nbgp |
---|
| 3789 | MTV_Y = ( nyn - nys + 1 ) + 2*nbgp |
---|
| 3790 | MTV_Z = nzt+1 - nzb +1 |
---|
| 3791 | |
---|
| 3792 | MTV_RX = ( c2f_dims_cg (1,offset(1),offset(2)) - c2f_dims_cg (0,offset(1),offset(2)) ) +1+2 |
---|
| 3793 | MTV_RY = ( c2f_dims_cg (3,offset(1),offset(2)) - c2f_dims_cg (2,offset(1),offset(2)) ) +1+2 |
---|
| 3794 | MTV_RZ = ( c2f_dims_cg (5,offset(1),offset(2)) - c2f_dims_cg (4,offset(1),offset(2)) ) +1 |
---|
| 3795 | |
---|
| 3796 | CALL MPI_TYPE_EXTENT(MPI_REAL, SIZEOFREAL, IERR) |
---|
| 3797 | |
---|
| 3798 | CALL MPI_TYPE_VECTOR ( MTV_RY, MTV_RZ, MTV_Z, MPI_REAL, TYPE_INT_YZ, IERR) |
---|
| 3799 | CALL MPI_TYPE_HVECTOR( MTV_RX, 1, MTV_Z*MTV_Y*SIZEOFREAL, & |
---|
[2514] | 3800 | TYPE_INT_YZ, TYPE_VNEST_BC, IERR) |
---|
[2365] | 3801 | CALL MPI_TYPE_FREE(TYPE_INT_YZ, IERR) |
---|
[2514] | 3802 | CALL MPI_TYPE_COMMIT(TYPE_VNEST_BC, IERR) |
---|
[2365] | 3803 | |
---|
| 3804 | |
---|
| 3805 | ELSEIF ( coupling_mode == 'vnested_fine' ) THEN |
---|
| 3806 | |
---|
| 3807 | ALLOCATE( c2f_dims_fg (0:5) ) |
---|
| 3808 | ALLOCATE( f2c_dims_fg (0:5) ) |
---|
| 3809 | |
---|
| 3810 | offset(1) = pcoord(1) / ( pdims(1)/pdims_partner(1) ) |
---|
| 3811 | offset(2) = pcoord(2) / ( pdims(2)/pdims_partner(2) ) |
---|
| 3812 | map_coord(1) = offset(1) |
---|
| 3813 | map_coord(2) = offset(2) |
---|
| 3814 | target_idex = c_rnk_lst(map_coord(1),map_coord(2)) |
---|
| 3815 | |
---|
| 3816 | bdims (1,1) = nxl |
---|
| 3817 | bdims (1,2) = nxr |
---|
| 3818 | bdims (2,1) = nys |
---|
| 3819 | bdims (2,2) = nyn |
---|
| 3820 | bdims (3,1) = nzb |
---|
| 3821 | bdims (3,2) = nzt |
---|
| 3822 | |
---|
| 3823 | CALL MPI_SEND( bdims, 6, MPI_INTEGER, target_idex, 10, & |
---|
| 3824 | comm_inter, ierr ) |
---|
| 3825 | |
---|
| 3826 | !-- Store the CG dimensions that correspond to the FG partner; needed for FG top BC |
---|
| 3827 | !-- One FG can have only one CG partner |
---|
| 3828 | CALL MPI_RECV( c2f_dims_fg, 6, MPI_INTEGER, target_idex, 100, & |
---|
| 3829 | comm_inter,status, ierr ) |
---|
| 3830 | |
---|
| 3831 | CALL MPI_RECV( f2c_dims_fg, 6, MPI_INTEGER, target_idex, 101, & |
---|
| 3832 | comm_inter,status, ierr ) |
---|
| 3833 | |
---|
| 3834 | !-- Store the CG dimensions that correspond to the FG partner; needed for anterpolation |
---|
| 3835 | |
---|
| 3836 | n_cell_c = (f2c_dims_fg(1)-f2c_dims_fg(0)+1) * & |
---|
| 3837 | (f2c_dims_fg(3)-f2c_dims_fg(2)+1) * & |
---|
| 3838 | (f2c_dims_fg(5)-f2c_dims_fg(4)+0) |
---|
| 3839 | |
---|
| 3840 | CALL MPI_TYPE_CONTIGUOUS(n_cell_c, MPI_REAL, TYPE_VNEST_ANTER, IERR) |
---|
| 3841 | CALL MPI_TYPE_COMMIT(TYPE_VNEST_ANTER, ierr) |
---|
| 3842 | |
---|
| 3843 | ENDIF |
---|
[2712] | 3844 | #endif |
---|
[2365] | 3845 | END SUBROUTINE vnest_init_pegrid_domain |
---|
| 3846 | |
---|
| 3847 | |
---|
| 3848 | SUBROUTINE vnest_init_grid |
---|
| 3849 | |
---|
[2712] | 3850 | #if defined( __parallel ) |
---|
[3065] | 3851 | USE arrays_3d, & |
---|
[2365] | 3852 | ONLY: zu, zw |
---|
| 3853 | |
---|
[3065] | 3854 | USE control_parameters, & |
---|
| 3855 | ONLY: coupling_mode, message_string, number_stretch_level_start |
---|
[2365] | 3856 | |
---|
[3065] | 3857 | USE indices, & |
---|
[2365] | 3858 | ONLY: nzt |
---|
| 3859 | |
---|
| 3860 | USE kinds |
---|
| 3861 | |
---|
| 3862 | USE pegrid |
---|
| 3863 | |
---|
[2514] | 3864 | IMPLICIT NONE |
---|
[2365] | 3865 | |
---|
[3065] | 3866 | ! |
---|
| 3867 | !-- Allocate and Exchange zuc and zuf, zwc and zwf |
---|
[2365] | 3868 | IF ( coupling_mode(1:8) == 'vnested_' ) THEN |
---|
| 3869 | |
---|
| 3870 | ALLOCATE( zuc(0:nzc+1), zuf(0:nzf+1) ) |
---|
| 3871 | ALLOCATE( zwc(0:nzc+1), zwf(0:nzf+1) ) |
---|
| 3872 | |
---|
| 3873 | IF ( coupling_mode == 'vnested_crse' ) THEN |
---|
[3065] | 3874 | |
---|
| 3875 | zuc = zu |
---|
| 3876 | zwc = zw |
---|
| 3877 | |
---|
[2365] | 3878 | IF ( myid == 0 ) THEN |
---|
| 3879 | |
---|
| 3880 | CALL MPI_SEND( zuc, nzt+2, MPI_REAL, numprocs, 41, comm_inter, & |
---|
| 3881 | ierr ) |
---|
| 3882 | CALL MPI_RECV( zuf, nzf+2, MPI_REAL, numprocs, 42, comm_inter, & |
---|
| 3883 | status, ierr ) |
---|
| 3884 | |
---|
| 3885 | CALL MPI_SEND( zwc, nzt+2, MPI_REAL, numprocs, 43, comm_inter, & |
---|
| 3886 | ierr ) |
---|
| 3887 | CALL MPI_RECV( zwf, nzf+2, MPI_REAL, numprocs, 44, comm_inter, & |
---|
| 3888 | status, ierr ) |
---|
| 3889 | |
---|
| 3890 | ENDIF |
---|
| 3891 | |
---|
| 3892 | CALL MPI_BCAST( zuf,nzf+2,MPI_REAL, 0, comm2d, ierr ) |
---|
| 3893 | CALL MPI_BCAST( zwf,nzf+2,MPI_REAL, 0, comm2d, ierr ) |
---|
| 3894 | |
---|
| 3895 | ELSEIF ( coupling_mode == 'vnested_fine' ) THEN |
---|
| 3896 | |
---|
[3065] | 3897 | ! |
---|
| 3898 | !-- Check if stretching is used within the nested domain |
---|
| 3899 | IF ( number_stretch_level_start > 0 ) THEN |
---|
| 3900 | message_string = 'Stretching in the nested domain is not '//& |
---|
| 3901 | 'allowed' |
---|
[3066] | 3902 | CALL message( 'vnest_init_grid', 'PA0498', 1, 2, 0, 6, 0 ) |
---|
[3065] | 3903 | ENDIF |
---|
| 3904 | |
---|
| 3905 | zuf = zu |
---|
| 3906 | zwf = zw |
---|
| 3907 | |
---|
[2365] | 3908 | IF ( myid == 0 ) THEN |
---|
| 3909 | |
---|
| 3910 | CALL MPI_RECV( zuc,nzc+2, MPI_REAL, 0, 41, comm_inter, status, & |
---|
| 3911 | ierr ) |
---|
| 3912 | CALL MPI_SEND( zuf,nzt+2, MPI_REAL, 0, 42, comm_inter, ierr ) |
---|
| 3913 | |
---|
| 3914 | CALL MPI_RECV( zwc,nzc+2, MPI_REAL, 0, 43, comm_inter, status, & |
---|
| 3915 | ierr ) |
---|
| 3916 | CALL MPI_SEND( zwf,nzt+2, MPI_REAL, 0, 44, comm_inter, ierr ) |
---|
| 3917 | ENDIF |
---|
| 3918 | |
---|
| 3919 | CALL MPI_BCAST( zuc,nzc+2,MPI_REAL, 0, comm2d, ierr ) |
---|
| 3920 | CALL MPI_BCAST( zwc,nzc+2,MPI_REAL, 0, comm2d, ierr ) |
---|
| 3921 | |
---|
| 3922 | ENDIF |
---|
| 3923 | ENDIF |
---|
| 3924 | |
---|
[2712] | 3925 | #endif |
---|
[2365] | 3926 | END SUBROUTINE vnest_init_grid |
---|
| 3927 | |
---|
| 3928 | |
---|
| 3929 | SUBROUTINE vnest_check_parameters |
---|
[2712] | 3930 | #if defined( __parallel ) |
---|
[2365] | 3931 | |
---|
[2712] | 3932 | USE pegrid, & |
---|
| 3933 | ONLY: myid |
---|
[2365] | 3934 | |
---|
[2514] | 3935 | IMPLICIT NONE |
---|
[2365] | 3936 | |
---|
[2514] | 3937 | IF (myid==0) PRINT*, '*** vnest: check parameters not implemented yet ***' |
---|
[2365] | 3938 | |
---|
[2712] | 3939 | #endif |
---|
[2365] | 3940 | END SUBROUTINE vnest_check_parameters |
---|
| 3941 | |
---|
| 3942 | |
---|
| 3943 | SUBROUTINE vnest_timestep_sync |
---|
| 3944 | |
---|
[2712] | 3945 | #if defined( __parallel ) |
---|
[2365] | 3946 | USE control_parameters, & |
---|
[4101] | 3947 | ONLY: coupling_mode, dt_3d |
---|
[2365] | 3948 | |
---|
| 3949 | USE interfaces |
---|
| 3950 | |
---|
| 3951 | USE kinds |
---|
| 3952 | |
---|
| 3953 | USE pegrid |
---|
| 3954 | |
---|
| 3955 | IMPLICIT NONE |
---|
| 3956 | |
---|
| 3957 | IF ( coupling_mode == 'vnested_crse') THEN |
---|
[2514] | 3958 | dtc = dt_3d |
---|
| 3959 | if (myid == 0) then |
---|
[2365] | 3960 | CALL MPI_SEND( dt_3d, 1, MPI_REAL, target_id, & |
---|
| 3961 | 31, comm_inter, ierr ) |
---|
| 3962 | CALL MPI_RECV( dtf, 1, MPI_REAL, & |
---|
| 3963 | target_id, 32, comm_inter, status, ierr ) |
---|
| 3964 | |
---|
[2514] | 3965 | endif |
---|
| 3966 | CALL MPI_BCAST( dtf, 1, MPI_REAL, 0, comm2d, ierr ) |
---|
[2365] | 3967 | ELSE |
---|
[2514] | 3968 | dtf = dt_3d |
---|
| 3969 | if (myid == 0) then |
---|
[2365] | 3970 | CALL MPI_RECV( dtc, 1, MPI_REAL, & |
---|
| 3971 | target_id, 31, comm_inter, status, ierr ) |
---|
| 3972 | CALL MPI_SEND( dt_3d, 1, MPI_REAL, target_id, & |
---|
| 3973 | 32, comm_inter, ierr ) |
---|
| 3974 | |
---|
[2514] | 3975 | endif |
---|
| 3976 | CALL MPI_BCAST( dtc, 1, MPI_REAL, 0, comm2d, ierr ) |
---|
[2365] | 3977 | |
---|
| 3978 | ENDIF |
---|
| 3979 | !-- Identical timestep for coarse and fine grids |
---|
| 3980 | dt_3d = MIN( dtc, dtf ) |
---|
[2712] | 3981 | #endif |
---|
[2365] | 3982 | END SUBROUTINE vnest_timestep_sync |
---|
| 3983 | |
---|
| 3984 | SUBROUTINE vnest_deallocate |
---|
[2712] | 3985 | #if defined( __parallel ) |
---|
[2365] | 3986 | USE control_parameters, & |
---|
| 3987 | ONLY: coupling_mode |
---|
| 3988 | |
---|
| 3989 | IMPLICIT NONE |
---|
| 3990 | |
---|
| 3991 | IF ( ALLOCATED(c_rnk_lst) ) DEALLOCATE (c_rnk_lst) |
---|
| 3992 | IF ( ALLOCATED(f_rnk_lst) ) DEALLOCATE (f_rnk_lst) |
---|
| 3993 | |
---|
| 3994 | IF ( coupling_mode == 'vnested_crse') THEN |
---|
| 3995 | IF ( ALLOCATED (c2f_dims_cg) ) DEALLOCATE (c2f_dims_cg) |
---|
| 3996 | IF ( ALLOCATED (f2c_dims_cg) ) DEALLOCATE (f2c_dims_cg) |
---|
| 3997 | ELSEIF( coupling_mode == 'vnested_fine' ) THEN |
---|
| 3998 | IF ( ALLOCATED (c2f_dims_fg) ) DEALLOCATE (c2f_dims_fg) |
---|
| 3999 | IF ( ALLOCATED (f2c_dims_fg) ) DEALLOCATE (f2c_dims_fg) |
---|
| 4000 | ENDIF |
---|
[2712] | 4001 | #endif |
---|
[2365] | 4002 | END SUBROUTINE vnest_deallocate |
---|
| 4003 | |
---|
[3802] | 4004 | END MODULE vertical_nesting_mod |
---|