[2365] | 1 | !> @file vertical_nesting_mod.f90 |
---|
| 2 | !------------------------------------------------------------------------------! |
---|
[2696] | 3 | ! This file is part of the PALM model system. |
---|
[2365] | 4 | ! |
---|
| 5 | ! PALM is free software: you can redistribute it and/or modify it under the |
---|
| 6 | ! terms of the GNU General Public License as published by the Free Software |
---|
| 7 | ! Foundation, either version 3 of the License, or (at your option) any later |
---|
| 8 | ! version. |
---|
| 9 | ! |
---|
| 10 | ! PALM is distributed in the hope that it will be useful, but WITHOUT ANY |
---|
| 11 | ! WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR |
---|
| 12 | ! A PARTICULAR PURPOSE. See the GNU General Public License for more details. |
---|
| 13 | ! |
---|
| 14 | ! You should have received a copy of the GNU General Public License along with |
---|
| 15 | ! PALM. If not, see <http://www.gnu.org/licenses/>. |
---|
| 16 | ! |
---|
[3655] | 17 | ! Copyright 1997-2019 Leibniz Universitaet Hannover |
---|
[2718] | 18 | ! Copyright 2017-2018 Karlsruhe Institute of Technology |
---|
[2365] | 19 | !------------------------------------------------------------------------------! |
---|
| 20 | ! |
---|
| 21 | ! Current revisions: |
---|
| 22 | ! ----------------- |
---|
| 23 | ! |
---|
[3049] | 24 | ! |
---|
[2365] | 25 | ! Former revisions: |
---|
| 26 | ! ----------------- |
---|
| 27 | ! $Id: vertical_nesting_mod.f90 3802 2019-03-17 13:33:42Z schwenkel $ |
---|
[3802] | 28 | ! unused subroutines commented out |
---|
| 29 | ! |
---|
| 30 | ! 3655 2019-01-07 16:51:22Z knoop |
---|
[3241] | 31 | ! unused variables removed |
---|
| 32 | ! |
---|
| 33 | ! 3232 2018-09-07 12:21:44Z raasch |
---|
[3232] | 34 | ! references to mrun replaced by palmrun, and updated |
---|
| 35 | ! |
---|
| 36 | ! 3083 2018-06-19 14:03:12Z gronemeier |
---|
[3066] | 37 | ! Error messages revised |
---|
| 38 | ! |
---|
| 39 | ! 3065 2018-06-12 07:03:02Z Giersch |
---|
[3065] | 40 | ! dz was replaced by dz(1), error messages related to vertical grid stretching |
---|
| 41 | ! have been added |
---|
| 42 | ! |
---|
| 43 | ! 3049 2018-05-29 13:52:36Z Giersch |
---|
[3049] | 44 | ! Error messages revised |
---|
| 45 | ! |
---|
| 46 | ! 3045 2018-05-28 07:55:41Z Giersch |
---|
[3045] | 47 | ! Error message revised |
---|
| 48 | ! |
---|
| 49 | ! 2718 2018-01-02 08:49:38Z maronga |
---|
[2716] | 50 | ! Corrected "Former revisions" section |
---|
| 51 | ! |
---|
| 52 | ! 2712 2017-12-20 17:32:50Z kanani |
---|
[2712] | 53 | ! Formatting and clean-up (SadiqHuq) |
---|
| 54 | ! |
---|
| 55 | ! 2696 2017-12-14 17:12:51Z kanani |
---|
[2716] | 56 | ! Change in file header (GPL part) |
---|
| 57 | ! Renamed diffusivities to tcm_diffusivities (TG) |
---|
[2696] | 58 | ! |
---|
| 59 | ! 2516 2017-10-04 11:03:04Z suehring |
---|
[2516] | 60 | ! Remove tabs |
---|
| 61 | ! |
---|
| 62 | ! 2514 2017-10-04 09:52:37Z suehring |
---|
[2696] | 63 | ! Remove tabs |
---|
| 64 | ! |
---|
| 65 | ! 2514 2017-10-04 09:52:37Z suehring |
---|
[2374] | 66 | ! Added todo list |
---|
| 67 | ! |
---|
| 68 | ! 2365 2017-08-21 14:59:59Z kanani |
---|
[2365] | 69 | ! Initial revision (SadiqHuq) |
---|
| 70 | ! |
---|
| 71 | ! |
---|
| 72 | ! |
---|
| 73 | ! |
---|
| 74 | ! Description: |
---|
| 75 | ! ------------ |
---|
[2374] | 76 | !> Module for vertical nesting. |
---|
| 77 | !> |
---|
| 78 | !> Definition of parameters and variables for vertical nesting |
---|
[2712] | 79 | !> The horizontal extent of the parent (Coarse Grid) and the child (Fine Grid) |
---|
| 80 | !> have to be identical. The vertical extent of the FG should be smaller than CG. |
---|
| 81 | !> Only integer nesting ratio supported. Odd nesting ratio preferred |
---|
| 82 | !> The code follows MPI-1 standards. The available processors are split into |
---|
| 83 | !> two groups using MPI_COMM_SPLIT. Exchange of data from CG to FG is called |
---|
| 84 | !> interpolation. FG initialization by interpolation is done once at the start. |
---|
| 85 | !> FG boundary conditions are set by interpolated at every timestep. |
---|
| 86 | !> Exchange of data from CG to FG is called anterpolation, the two-way interaction |
---|
| 87 | !> occurs at every timestep. |
---|
| 88 | !> vnest_start_time set in PARIN allows delayed start of the coupling |
---|
| 89 | !> after spin-up of the CG |
---|
[2374] | 90 | !> |
---|
[3065] | 91 | !> @todo Replace dz(1) appropriatly to account for grid stretching |
---|
[2374] | 92 | !> @todo Ensure that code can be compiled for serial and parallel mode. Please |
---|
| 93 | !> check the placement of the directive "__parallel". |
---|
| 94 | !> @todo Add descriptions for all declared variables/parameters, one declaration |
---|
| 95 | !> statement per variable |
---|
| 96 | !> @todo Add a descriptive header above each subroutine (see land_surface_model) |
---|
| 97 | !> @todo FORTRAN language statements must not be used as names for variables |
---|
| 98 | !> (e.g. if). Please rename it. |
---|
| 99 | !> @todo Revise code according to PALM Coding Standard |
---|
[2365] | 100 | !------------------------------------------------------------------------------! |
---|
| 101 | MODULE vertical_nesting_mod |
---|
| 102 | |
---|
| 103 | USE kinds |
---|
| 104 | |
---|
| 105 | IMPLICIT NONE |
---|
| 106 | |
---|
[3232] | 107 | LOGICAL :: vnested = .FALSE. !> set to true if palmrun |
---|
| 108 | !> provides specific information via stdin |
---|
[2712] | 109 | LOGICAL :: vnest_init = .FALSE. !> set to true when FG is initialized |
---|
| 110 | REAL(wp) :: vnest_start_time = 9999999.9 !> simulated time when FG should be |
---|
| 111 | !> initialized. Should be |
---|
| 112 | !> identical in PARIN & PARIN_N |
---|
[2365] | 113 | |
---|
| 114 | |
---|
| 115 | |
---|
[2712] | 116 | INTEGER(iwp),DIMENSION(3,2) :: bdims = 0 !> sub-domain grid topology of current PE |
---|
| 117 | INTEGER(iwp),DIMENSION(3,2) :: bdims_rem = 0 !> sub-domain grid topology of partner PE |
---|
[3232] | 118 | INTEGER(iwp) :: cg_nprocs !> no. of PE in CG. Set by palmrun -Y |
---|
| 119 | INTEGER(iwp) :: fg_nprocs !> no. of PE in FG. Set by palmrun -Y |
---|
[2712] | 120 | INTEGER(iwp) :: TYPE_VNEST_BC !> derived contiguous data type for interpolation |
---|
| 121 | INTEGER(iwp) :: TYPE_VNEST_ANTER !> derived contiguous data type for anterpolation |
---|
| 122 | INTEGER(iwp),DIMENSION(:,:,:),ALLOCATABLE :: c2f_dims_cg !> One CG PE sends data to multiple FG PEs |
---|
| 123 | !> list of grid-topology of partners |
---|
| 124 | INTEGER(iwp),DIMENSION(:,:,:),ALLOCATABLE :: f2c_dims_cg !> One CG PE receives data from multiple FG PEs |
---|
| 125 | !> list of grid-topology of partners |
---|
| 126 | INTEGER(iwp),DIMENSION(:),ALLOCATABLE :: c2f_dims_fg !> One FG PE sends data to multiple CG PE |
---|
| 127 | !> list of grid-topology of partner |
---|
| 128 | INTEGER(iwp),DIMENSION(:),ALLOCATABLE :: f2c_dims_fg !> One FG PE sends data to only one CG PE |
---|
| 129 | !> list of grid-topology of partner |
---|
[2365] | 130 | |
---|
[2712] | 131 | INTEGER(iwp),DIMENSION(:,:),ALLOCATABLE :: f_rnk_lst !> list storing rank of FG PE denoted by pdims |
---|
| 132 | INTEGER(iwp),DIMENSION(:,:),ALLOCATABLE :: c_rnk_lst !> list storing rank of CG PE denoted by pdims |
---|
| 133 | INTEGER(iwp),DIMENSION(3) :: cfratio !> Nesting ratio in x,y and z-directions |
---|
[2365] | 134 | |
---|
[2712] | 135 | INTEGER(iwp) :: nxc !> no. of CG grid points in x-direction |
---|
| 136 | INTEGER(iwp) :: nxf !> no. of FG grid points in x-direction |
---|
| 137 | INTEGER(iwp) :: nyc !> no. of CG grid points in y-direction |
---|
| 138 | INTEGER(iwp) :: nyf !> no. of FG grid points in y-direction |
---|
| 139 | INTEGER(iwp) :: nzc !> no. of CG grid points in z-direction |
---|
| 140 | INTEGER(iwp) :: nzf !> no. of FG grid points in z-direction |
---|
| 141 | INTEGER(iwp) :: ngp_c !> no. of CG grid points in one vertical level |
---|
| 142 | INTEGER(iwp) :: ngp_f !> no. of FG grid points in one vertical level |
---|
[2365] | 143 | |
---|
[2712] | 144 | INTEGER(iwp) :: n_cell_c !> total no. of CG grid points in a PE |
---|
| 145 | INTEGER(iwp),DIMENSION(2) :: pdims_partner !> processor topology of partner PE |
---|
| 146 | INTEGER(iwp) :: target_idex !> temporary variable |
---|
| 147 | INTEGER(iwp),DIMENSION(2) :: offset !> temporary variable |
---|
| 148 | INTEGER(iwp),DIMENSION(2) :: map_coord !> temporary variable |
---|
[2365] | 149 | |
---|
[2712] | 150 | REAL(wp) :: dxc !> CG grid pacing in x-direction |
---|
| 151 | REAL(wp) :: dyc !> FG grid pacing in x-direction |
---|
| 152 | REAL(wp) :: dxf !> CG grid pacing in y-direction |
---|
| 153 | REAL(wp) :: dyf !> FG grid pacing in y-direction |
---|
| 154 | REAL(wp) :: dzc !> CG grid pacing in z-direction |
---|
| 155 | REAL(wp) :: dzf !> FG grid pacing in z-direction |
---|
| 156 | REAL(wp) :: dtc !> dt calculated for CG |
---|
| 157 | REAL(wp) :: dtf !> dt calculated for FG |
---|
[2365] | 158 | |
---|
[2712] | 159 | REAL(wp), DIMENSION(:), ALLOCATABLE :: zuc !> CG vertical u-levels |
---|
| 160 | REAL(wp), DIMENSION(:), ALLOCATABLE :: zuf !> FG vertical u-levels |
---|
| 161 | REAL(wp), DIMENSION(:), ALLOCATABLE :: zwc !> CG vertical w-levels |
---|
| 162 | REAL(wp), DIMENSION(:), ALLOCATABLE :: zwf !> FG vertical w-levels |
---|
| 163 | REAL(wp), DIMENSION(:,:,:), POINTER :: interpol3d !> pointers to simplify function calls |
---|
| 164 | REAL(wp), DIMENSION(:,:,:), POINTER :: anterpol3d !> pointers to simplify function calls |
---|
[2365] | 165 | |
---|
| 166 | |
---|
[2712] | 167 | REAL(wp),DIMENSION(:,:,:), ALLOCATABLE :: work3d !> temporary array for exchange of 3D data |
---|
| 168 | REAL(wp),DIMENSION(:,:), ALLOCATABLE :: work2dusws !> temporary array for exchange of 2D data |
---|
| 169 | REAL(wp),DIMENSION(:,:), ALLOCATABLE :: work2dvsws !> temporary array for exchange of 2D data |
---|
| 170 | REAL(wp),DIMENSION(:,:), ALLOCATABLE :: work2dts !> temporary array for exchange of 2D data |
---|
| 171 | REAL(wp),DIMENSION(:,:), ALLOCATABLE :: work2dus !> temporary array for exchange of 2D data |
---|
| 172 | |
---|
[2365] | 173 | SAVE |
---|
| 174 | |
---|
| 175 | !-- Public functions |
---|
| 176 | PUBLIC vnest_init_fine, vnest_boundary_conds, vnest_anterpolate, & |
---|
[2514] | 177 | vnest_boundary_conds_khkm, vnest_anterpolate_e, & |
---|
| 178 | vnest_init_pegrid_rank, vnest_init_pegrid_domain, vnest_init_grid, & |
---|
| 179 | vnest_timestep_sync, vnest_deallocate |
---|
[2365] | 180 | |
---|
| 181 | !-- Public constants and variables |
---|
[2712] | 182 | PUBLIC vnested, vnest_init, vnest_start_time |
---|
[2365] | 183 | |
---|
| 184 | PRIVATE bdims, bdims_rem, & |
---|
[2712] | 185 | work3d, work2dusws, work2dvsws, work2dts, work2dus, & |
---|
[2365] | 186 | dxc, dyc, dxf, dyf, dzc, dzf, dtc, dtf, & |
---|
| 187 | zuc, zuf, zwc, zwf, interpol3d, anterpol3d, & |
---|
| 188 | cg_nprocs, fg_nprocs, & |
---|
| 189 | c2f_dims_cg, c2f_dims_fg, f2c_dims_cg, f2c_dims_fg, & |
---|
| 190 | f_rnk_lst, c_rnk_lst, cfratio, pdims_partner, & |
---|
| 191 | nxc, nxf, nyc, nyf, nzc, nzf, & |
---|
[3241] | 192 | ngp_c, ngp_f, target_idex, n_cell_c, & |
---|
[2514] | 193 | offset, map_coord, TYPE_VNEST_BC, TYPE_VNEST_ANTER |
---|
[2365] | 194 | |
---|
| 195 | INTERFACE vnest_anterpolate |
---|
| 196 | MODULE PROCEDURE vnest_anterpolate |
---|
| 197 | END INTERFACE vnest_anterpolate |
---|
| 198 | |
---|
| 199 | INTERFACE vnest_anterpolate_e |
---|
| 200 | MODULE PROCEDURE vnest_anterpolate_e |
---|
| 201 | END INTERFACE vnest_anterpolate_e |
---|
| 202 | |
---|
| 203 | INTERFACE vnest_boundary_conds |
---|
| 204 | MODULE PROCEDURE vnest_boundary_conds |
---|
| 205 | END INTERFACE vnest_boundary_conds |
---|
| 206 | |
---|
| 207 | INTERFACE vnest_boundary_conds_khkm |
---|
| 208 | MODULE PROCEDURE vnest_boundary_conds_khkm |
---|
| 209 | END INTERFACE vnest_boundary_conds_khkm |
---|
| 210 | |
---|
| 211 | INTERFACE vnest_check_parameters |
---|
| 212 | MODULE PROCEDURE vnest_check_parameters |
---|
| 213 | END INTERFACE vnest_check_parameters |
---|
| 214 | |
---|
| 215 | INTERFACE vnest_deallocate |
---|
| 216 | MODULE PROCEDURE vnest_deallocate |
---|
| 217 | END INTERFACE vnest_deallocate |
---|
| 218 | |
---|
| 219 | INTERFACE vnest_init_fine |
---|
| 220 | MODULE PROCEDURE vnest_init_fine |
---|
| 221 | END INTERFACE vnest_init_fine |
---|
| 222 | |
---|
| 223 | INTERFACE vnest_init_grid |
---|
| 224 | MODULE PROCEDURE vnest_init_grid |
---|
| 225 | END INTERFACE vnest_init_grid |
---|
| 226 | |
---|
| 227 | INTERFACE vnest_init_pegrid_domain |
---|
| 228 | MODULE PROCEDURE vnest_init_pegrid_domain |
---|
| 229 | END INTERFACE vnest_init_pegrid_domain |
---|
| 230 | |
---|
| 231 | INTERFACE vnest_init_pegrid_rank |
---|
| 232 | MODULE PROCEDURE vnest_init_pegrid_rank |
---|
| 233 | END INTERFACE vnest_init_pegrid_rank |
---|
| 234 | |
---|
| 235 | INTERFACE vnest_timestep_sync |
---|
| 236 | MODULE PROCEDURE vnest_timestep_sync |
---|
| 237 | END INTERFACE vnest_timestep_sync |
---|
| 238 | |
---|
| 239 | CONTAINS |
---|
| 240 | |
---|
| 241 | |
---|
| 242 | |
---|
| 243 | SUBROUTINE vnest_init_fine |
---|
[2712] | 244 | #if defined( __parallel ) |
---|
[2365] | 245 | |
---|
| 246 | !--------------------------------------------------------------------------------! |
---|
| 247 | ! Description: |
---|
| 248 | ! ------------ |
---|
| 249 | ! At the specified vnest_start_time initialize the Fine Grid based on the coarse |
---|
| 250 | ! grid values |
---|
| 251 | !------------------------------------------------------------------------------! |
---|
| 252 | |
---|
| 253 | |
---|
| 254 | USE arrays_3d |
---|
| 255 | USE control_parameters |
---|
| 256 | USE grid_variables |
---|
| 257 | USE indices |
---|
| 258 | USE interfaces |
---|
| 259 | USE pegrid |
---|
[2712] | 260 | USE turbulence_closure_mod, & |
---|
[2696] | 261 | ONLY : tcm_diffusivities |
---|
[2712] | 262 | |
---|
[2365] | 263 | |
---|
| 264 | IMPLICIT NONE |
---|
| 265 | |
---|
[2712] | 266 | REAL(wp) :: time_since_reference_point_rem |
---|
| 267 | INTEGER(iwp) :: i |
---|
| 268 | INTEGER(iwp) :: j |
---|
| 269 | INTEGER(iwp) :: iif |
---|
| 270 | INTEGER(iwp) :: jjf |
---|
| 271 | INTEGER(iwp) :: kkf |
---|
[2365] | 272 | |
---|
| 273 | |
---|
[2712] | 274 | if (myid ==0 ) print *, ' TIME TO INIT FINE from COARSE', simulated_time |
---|
[2365] | 275 | |
---|
| 276 | ! |
---|
| 277 | !-- In case of model termination initiated by the remote model |
---|
| 278 | !-- (terminate_coupled_remote > 0), initiate termination of the local model. |
---|
| 279 | !-- The rest of the coupler must then be skipped because it would cause an MPI |
---|
| 280 | !-- intercomminucation hang. |
---|
| 281 | !-- If necessary, the coupler will be called at the beginning of the next |
---|
| 282 | !-- restart run. |
---|
| 283 | |
---|
| 284 | IF ( myid == 0) THEN |
---|
[3045] | 285 | CALL MPI_SENDRECV( terminate_coupled, 1, MPI_INTEGER, & |
---|
| 286 | target_id, 0, & |
---|
| 287 | terminate_coupled_remote, 1, MPI_INTEGER, & |
---|
| 288 | target_id, 0, & |
---|
[2365] | 289 | comm_inter, status, ierr ) |
---|
| 290 | ENDIF |
---|
| 291 | CALL MPI_BCAST( terminate_coupled_remote, 1, MPI_INTEGER, 0, comm2d, & |
---|
| 292 | ierr ) |
---|
| 293 | |
---|
| 294 | IF ( terminate_coupled_remote > 0 ) THEN |
---|
[3045] | 295 | WRITE( message_string, * ) 'remote model "', & |
---|
| 296 | TRIM( coupling_mode_remote ), & |
---|
| 297 | '" terminated', & |
---|
[3046] | 298 | '&with terminate_coupled_remote = ', & |
---|
[3045] | 299 | terminate_coupled_remote, & |
---|
[3046] | 300 | '&local model "', TRIM( coupling_mode ), & |
---|
[3045] | 301 | '" has', & |
---|
[3046] | 302 | '&terminate_coupled = ', & |
---|
[2365] | 303 | terminate_coupled |
---|
| 304 | CALL message( 'vnest_init_fine', 'PA0310', 1, 2, 0, 6, 0 ) |
---|
| 305 | RETURN |
---|
| 306 | ENDIF |
---|
| 307 | |
---|
| 308 | |
---|
| 309 | ! |
---|
| 310 | !-- Exchange the current simulated time between the models, |
---|
| 311 | !-- currently just for total_2ding |
---|
| 312 | IF ( myid == 0 ) THEN |
---|
| 313 | |
---|
| 314 | CALL MPI_SEND( time_since_reference_point, 1, MPI_REAL, target_id, & |
---|
| 315 | 11, comm_inter, ierr ) |
---|
| 316 | CALL MPI_RECV( time_since_reference_point_rem, 1, MPI_REAL, & |
---|
| 317 | target_id, 11, comm_inter, status, ierr ) |
---|
| 318 | |
---|
| 319 | ENDIF |
---|
| 320 | |
---|
| 321 | CALL MPI_BCAST( time_since_reference_point_rem, 1, MPI_REAL, 0, comm2d, & |
---|
| 322 | ierr ) |
---|
| 323 | |
---|
| 324 | |
---|
| 325 | IF ( coupling_mode == 'vnested_crse' ) THEN |
---|
| 326 | !-- Send data to fine grid for initialization |
---|
| 327 | |
---|
| 328 | offset(1) = ( pdims_partner(1) / pdims(1) ) * pcoord(1) |
---|
| 329 | offset(2) = ( pdims_partner(2) / pdims(2) ) * pcoord(2) |
---|
| 330 | |
---|
| 331 | do j = 0, ( pdims_partner(2) / pdims(2) ) - 1 |
---|
| 332 | do i = 0, ( pdims_partner(1) / pdims(1) ) - 1 |
---|
| 333 | map_coord(1) = i+offset(1) |
---|
| 334 | map_coord(2) = j+offset(2) |
---|
| 335 | |
---|
| 336 | target_idex = f_rnk_lst(map_coord(1),map_coord(2)) + numprocs |
---|
| 337 | |
---|
| 338 | CALL MPI_RECV( bdims_rem, 6, MPI_INTEGER, target_idex, 10, & |
---|
| 339 | comm_inter,status, ierr ) |
---|
| 340 | |
---|
| 341 | bdims (1,1) = bdims_rem (1,1) / cfratio(1) |
---|
| 342 | bdims (1,2) = bdims_rem (1,2) / cfratio(1) |
---|
| 343 | bdims (2,1) = bdims_rem (2,1) / cfratio(2) |
---|
| 344 | bdims (2,2) = bdims_rem (2,2) / cfratio(2) |
---|
| 345 | bdims (3,1) = bdims_rem (3,1) |
---|
| 346 | bdims (3,2) = bdims_rem (3,2) / cfratio(3) |
---|
| 347 | |
---|
| 348 | |
---|
| 349 | CALL MPI_SEND( bdims, 6, MPI_INTEGER, target_idex, 9, & |
---|
| 350 | comm_inter, ierr ) |
---|
| 351 | |
---|
| 352 | |
---|
| 353 | n_cell_c = (bdims(1,2)-bdims(1,1)+3) * & |
---|
| 354 | (bdims(2,2)-bdims(2,1)+3) * & |
---|
| 355 | (bdims(3,2)-bdims(3,1)+3) |
---|
| 356 | |
---|
| 357 | CALL MPI_SEND( u( bdims(3,1):bdims(3,2)+2, & |
---|
| 358 | bdims(2,1)-1:bdims(2,2)+1, & |
---|
| 359 | bdims(1,1)-1:bdims(1,2)+1),& |
---|
| 360 | n_cell_c, MPI_REAL, target_idex, & |
---|
[2514] | 361 | 101, comm_inter, ierr) |
---|
[2365] | 362 | |
---|
| 363 | CALL MPI_SEND( v( bdims(3,1):bdims(3,2)+2, & |
---|
| 364 | bdims(2,1)-1:bdims(2,2)+1, & |
---|
| 365 | bdims(1,1)-1:bdims(1,2)+1),& |
---|
| 366 | n_cell_c, MPI_REAL, target_idex, & |
---|
[2514] | 367 | 102, comm_inter, ierr) |
---|
[2365] | 368 | |
---|
| 369 | CALL MPI_SEND( w( bdims(3,1):bdims(3,2)+2, & |
---|
| 370 | bdims(2,1)-1:bdims(2,2)+1, & |
---|
| 371 | bdims(1,1)-1:bdims(1,2)+1),& |
---|
| 372 | n_cell_c, MPI_REAL, target_idex, & |
---|
[2514] | 373 | 103, comm_inter, ierr) |
---|
[2365] | 374 | |
---|
| 375 | CALL MPI_SEND( pt(bdims(3,1):bdims(3,2)+2, & |
---|
| 376 | bdims(2,1)-1:bdims(2,2)+1, & |
---|
| 377 | bdims(1,1)-1:bdims(1,2)+1),& |
---|
| 378 | n_cell_c, MPI_REAL, target_idex, & |
---|
[2514] | 379 | 105, comm_inter, ierr) |
---|
[2365] | 380 | |
---|
| 381 | IF ( humidity ) THEN |
---|
| 382 | CALL MPI_SEND( q(bdims(3,1):bdims(3,2)+2, & |
---|
| 383 | bdims(2,1)-1:bdims(2,2)+1, & |
---|
| 384 | bdims(1,1)-1:bdims(1,2)+1),& |
---|
| 385 | n_cell_c, MPI_REAL, target_idex, & |
---|
[2514] | 386 | 116, comm_inter, ierr) |
---|
[2365] | 387 | ENDIF |
---|
| 388 | |
---|
| 389 | CALL MPI_SEND( e( bdims(3,1):bdims(3,2)+2, & |
---|
| 390 | bdims(2,1)-1:bdims(2,2)+1, & |
---|
| 391 | bdims(1,1)-1:bdims(1,2)+1),& |
---|
| 392 | n_cell_c, MPI_REAL, target_idex, & |
---|
[2514] | 393 | 104, comm_inter, ierr) |
---|
[2365] | 394 | |
---|
| 395 | CALL MPI_SEND(kh( bdims(3,1):bdims(3,2)+2, & |
---|
| 396 | bdims(2,1)-1:bdims(2,2)+1, & |
---|
| 397 | bdims(1,1)-1:bdims(1,2)+1),& |
---|
| 398 | n_cell_c, MPI_REAL, target_idex, & |
---|
[2514] | 399 | 106, comm_inter, ierr) |
---|
[2365] | 400 | |
---|
| 401 | CALL MPI_SEND(km( bdims(3,1):bdims(3,2)+2, & |
---|
| 402 | bdims(2,1)-1:bdims(2,2)+1, & |
---|
| 403 | bdims(1,1)-1:bdims(1,2)+1),& |
---|
| 404 | n_cell_c, MPI_REAL, target_idex, & |
---|
[2514] | 405 | 107, comm_inter, ierr) |
---|
[2365] | 406 | |
---|
| 407 | !-- Send Surface fluxes |
---|
| 408 | IF ( use_surface_fluxes ) THEN |
---|
| 409 | |
---|
| 410 | n_cell_c = (bdims(1,2)-bdims(1,1)+3) * & |
---|
| 411 | (bdims(2,2)-bdims(2,1)+3) |
---|
| 412 | |
---|
[2712] | 413 | ! |
---|
| 414 | !-- shf and z0 for CG / FG need to initialized in input file or user_code |
---|
| 415 | !-- TODO |
---|
| 416 | !-- initialization of usws, vsws, ts and us not vital to vnest FG |
---|
| 417 | !-- variables are not compatible with the new surface layer module |
---|
| 418 | ! |
---|
| 419 | ! CALL MPI_SEND(surf_def_h(0)%usws( bdims(2,1)-1:bdims(2,2)+1, & |
---|
| 420 | ! bdims(1,1)-1:bdims(1,2)+1),& |
---|
| 421 | ! n_cell_c, MPI_REAL, target_idex, & |
---|
| 422 | ! 110, comm_inter, ierr ) |
---|
| 423 | ! |
---|
| 424 | ! CALL MPI_SEND(surf_def_h(0)%vsws( bdims(2,1)-1:bdims(2,2)+1, & |
---|
| 425 | ! bdims(1,1)-1:bdims(1,2)+1),& |
---|
| 426 | ! n_cell_c, MPI_REAL, target_idex, & |
---|
| 427 | ! 111, comm_inter, ierr ) |
---|
| 428 | ! |
---|
| 429 | ! CALL MPI_SEND(ts ( bdims(2,1)-1:bdims(2,2)+1, & |
---|
| 430 | ! bdims(1,1)-1:bdims(1,2)+1),& |
---|
| 431 | ! n_cell_c, MPI_REAL, target_idex, & |
---|
| 432 | ! 112, comm_inter, ierr ) |
---|
| 433 | ! |
---|
| 434 | ! CALL MPI_SEND(us ( bdims(2,1)-1:bdims(2,2)+1, & |
---|
| 435 | ! bdims(1,1)-1:bdims(1,2)+1),& |
---|
| 436 | ! n_cell_c, MPI_REAL, target_idex, & |
---|
| 437 | ! 113, comm_inter, ierr ) |
---|
| 438 | ! |
---|
[2365] | 439 | ENDIF |
---|
| 440 | |
---|
| 441 | |
---|
| 442 | |
---|
| 443 | |
---|
| 444 | end do |
---|
| 445 | end do |
---|
| 446 | |
---|
| 447 | ELSEIF ( coupling_mode == 'vnested_fine' ) THEN |
---|
| 448 | !-- Receive data from coarse grid for initialization |
---|
| 449 | |
---|
| 450 | offset(1) = pcoord(1) / ( pdims(1)/pdims_partner(1) ) |
---|
| 451 | offset(2) = pcoord(2) / ( pdims(2)/pdims_partner(2) ) |
---|
| 452 | map_coord(1) = offset(1) |
---|
| 453 | map_coord(2) = offset(2) |
---|
| 454 | target_idex = c_rnk_lst(map_coord(1),map_coord(2)) |
---|
| 455 | |
---|
| 456 | bdims (1,1) = nxl |
---|
| 457 | bdims (1,2) = nxr |
---|
| 458 | bdims (2,1) = nys |
---|
| 459 | bdims (2,2) = nyn |
---|
| 460 | bdims (3,1) = nzb |
---|
| 461 | bdims (3,2) = nzt |
---|
| 462 | |
---|
| 463 | CALL MPI_SEND( bdims, 6, MPI_INTEGER, target_idex, 10, & |
---|
| 464 | comm_inter, ierr ) |
---|
| 465 | |
---|
| 466 | CALL MPI_RECV( bdims_rem, 6, MPI_INTEGER, target_idex, 9, & |
---|
| 467 | comm_inter,status, ierr ) |
---|
| 468 | |
---|
| 469 | n_cell_c = (bdims_rem(1,2)-bdims_rem(1,1)+3) * & |
---|
| 470 | (bdims_rem(2,2)-bdims_rem(2,1)+3) * & |
---|
| 471 | (bdims_rem(3,2)-bdims_rem(3,1)+3) |
---|
| 472 | |
---|
| 473 | ALLOCATE( work3d ( bdims_rem(3,1) :bdims_rem(3,2)+2, & |
---|
| 474 | bdims_rem(2,1)-1:bdims_rem(2,2)+1, & |
---|
| 475 | bdims_rem(1,1)-1:bdims_rem(1,2)+1)) |
---|
| 476 | |
---|
| 477 | |
---|
| 478 | CALL MPI_RECV( work3d,n_cell_c, MPI_REAL, target_idex, 101, & |
---|
| 479 | comm_inter,status, ierr ) |
---|
| 480 | interpol3d => u |
---|
[3241] | 481 | call interpolate_to_fine_u |
---|
[2365] | 482 | |
---|
| 483 | CALL MPI_RECV( work3d,n_cell_c, MPI_REAL, target_idex, 102, & |
---|
| 484 | comm_inter,status, ierr ) |
---|
| 485 | interpol3d => v |
---|
[3241] | 486 | call interpolate_to_fine_v |
---|
[2365] | 487 | |
---|
| 488 | CALL MPI_RECV( work3d,n_cell_c, MPI_REAL, target_idex, 103, & |
---|
| 489 | comm_inter,status, ierr ) |
---|
| 490 | interpol3d => w |
---|
[3241] | 491 | call interpolate_to_fine_w |
---|
[2365] | 492 | |
---|
| 493 | CALL MPI_RECV( work3d,n_cell_c, MPI_REAL, target_idex, 105, & |
---|
| 494 | comm_inter,status, ierr ) |
---|
| 495 | interpol3d => pt |
---|
[3241] | 496 | call interpolate_to_fine_s |
---|
[2365] | 497 | |
---|
| 498 | IF ( humidity ) THEN |
---|
| 499 | CALL MPI_RECV( work3d,n_cell_c, MPI_REAL, target_idex, 116, & |
---|
| 500 | comm_inter,status, ierr ) |
---|
| 501 | interpol3d => q |
---|
[3241] | 502 | call interpolate_to_fine_s |
---|
[2365] | 503 | ENDIF |
---|
| 504 | |
---|
| 505 | CALL MPI_RECV( work3d,n_cell_c, MPI_REAL, target_idex, 104, & |
---|
| 506 | comm_inter,status, ierr ) |
---|
| 507 | interpol3d => e |
---|
[3241] | 508 | call interpolate_to_fine_s |
---|
[2365] | 509 | |
---|
| 510 | !-- kh,km no target attribute, use of pointer not possible |
---|
| 511 | CALL MPI_RECV( work3d,n_cell_c, MPI_REAL, target_idex, 106, & |
---|
| 512 | comm_inter,status, ierr ) |
---|
[3241] | 513 | call interpolate_to_fine_kh |
---|
[2365] | 514 | |
---|
| 515 | CALL MPI_RECV( work3d,n_cell_c, MPI_REAL, target_idex, 107, & |
---|
| 516 | comm_inter,status, ierr ) |
---|
[3241] | 517 | call interpolate_to_fine_km |
---|
[2365] | 518 | |
---|
| 519 | DEALLOCATE( work3d ) |
---|
| 520 | NULLIFY ( interpol3d ) |
---|
| 521 | |
---|
[2514] | 522 | !-- Recv Surface Fluxes |
---|
[2365] | 523 | IF ( use_surface_fluxes ) THEN |
---|
| 524 | n_cell_c = (bdims_rem(1,2)-bdims_rem(1,1)+3) * & |
---|
| 525 | (bdims_rem(2,2)-bdims_rem(2,1)+3) |
---|
| 526 | |
---|
| 527 | ALLOCATE( work2dusws ( bdims_rem(2,1)-1:bdims_rem(2,2)+1, & |
---|
| 528 | bdims_rem(1,1)-1:bdims_rem(1,2)+1) ) |
---|
| 529 | ALLOCATE( work2dvsws ( bdims_rem(2,1)-1:bdims_rem(2,2)+1, & |
---|
| 530 | bdims_rem(1,1)-1:bdims_rem(1,2)+1) ) |
---|
| 531 | ALLOCATE( work2dts ( bdims_rem(2,1)-1:bdims_rem(2,2)+1, & |
---|
| 532 | bdims_rem(1,1)-1:bdims_rem(1,2)+1) ) |
---|
| 533 | ALLOCATE( work2dus ( bdims_rem(2,1)-1:bdims_rem(2,2)+1, & |
---|
| 534 | bdims_rem(1,1)-1:bdims_rem(1,2)+1) ) |
---|
| 535 | |
---|
[2712] | 536 | ! |
---|
| 537 | !-- shf and z0 for CG / FG need to initialized in input file or user_code |
---|
| 538 | !-- TODO |
---|
| 539 | !-- initialization of usws, vsws, ts and us not vital to vnest FG |
---|
| 540 | !-- variables are not compatible with the new surface layer module |
---|
| 541 | ! |
---|
| 542 | ! CALL MPI_RECV( work2dusws,n_cell_c, MPI_REAL, target_idex, 110, & |
---|
| 543 | ! comm_inter,status, ierr ) |
---|
| 544 | ! |
---|
| 545 | ! CALL MPI_RECV( work2dvsws,n_cell_c, MPI_REAL, target_idex, 111, & |
---|
| 546 | ! comm_inter,status, ierr ) |
---|
| 547 | ! |
---|
| 548 | ! CALL MPI_RECV( work2dts ,n_cell_c, MPI_REAL, target_idex, 112, & |
---|
| 549 | ! comm_inter,status, ierr ) |
---|
| 550 | ! |
---|
| 551 | ! CALL MPI_RECV( work2dus ,n_cell_c, MPI_REAL, target_idex, 113, & |
---|
| 552 | ! comm_inter,status, ierr ) |
---|
| 553 | ! |
---|
| 554 | ! CALL interpolate_to_fine_flux ( 108 ) |
---|
[2365] | 555 | |
---|
| 556 | DEALLOCATE( work2dusws ) |
---|
| 557 | DEALLOCATE( work2dvsws ) |
---|
| 558 | DEALLOCATE( work2dts ) |
---|
| 559 | DEALLOCATE( work2dus ) |
---|
| 560 | ENDIF |
---|
| 561 | |
---|
| 562 | IF ( .NOT. constant_diffusion ) THEN |
---|
[2712] | 563 | DO kkf = bdims(3,1)+1,bdims(3,2)+1 |
---|
| 564 | DO jjf = bdims(2,1),bdims(2,2) |
---|
| 565 | DO iif = bdims(1,1),bdims(1,2) |
---|
[2365] | 566 | |
---|
[2712] | 567 | IF ( e(kkf,jjf,iif) < 0.0 ) THEN |
---|
| 568 | e(kkf,jjf,iif) = 1E-15_wp |
---|
[2365] | 569 | END IF |
---|
| 570 | |
---|
| 571 | END DO |
---|
| 572 | END DO |
---|
| 573 | END DO |
---|
| 574 | ENDIF |
---|
| 575 | |
---|
| 576 | w(nzt+1,:,:) = w(nzt,:,:) |
---|
| 577 | |
---|
| 578 | CALL exchange_horiz( u, nbgp ) |
---|
| 579 | CALL exchange_horiz( v, nbgp ) |
---|
| 580 | CALL exchange_horiz( w, nbgp ) |
---|
| 581 | CALL exchange_horiz( pt, nbgp ) |
---|
| 582 | IF ( .NOT. constant_diffusion ) CALL exchange_horiz( e, nbgp ) |
---|
| 583 | IF ( humidity ) CALL exchange_horiz( q, nbgp ) |
---|
| 584 | |
---|
| 585 | ! |
---|
| 586 | !-- Velocity boundary conditions at the bottom boundary |
---|
| 587 | IF ( ibc_uv_b == 0 ) THEN |
---|
| 588 | u(nzb,:,:) = 0.0_wp |
---|
| 589 | v(nzb,:,:) = 0.0_wp |
---|
| 590 | ELSE |
---|
| 591 | u(nzb,:,:) = u(nzb+1,:,:) |
---|
| 592 | v(nzb,:,:) = v(nzb+1,:,:) |
---|
| 593 | END IF |
---|
| 594 | |
---|
| 595 | |
---|
| 596 | w(nzb,:,:) = 0.0_wp |
---|
| 597 | |
---|
[2514] | 598 | ! |
---|
| 599 | !-- Temperature boundary conditions at the bottom boundary |
---|
[2365] | 600 | IF ( ibc_pt_b /= 0 ) THEN |
---|
| 601 | pt(nzb,:,:) = pt(nzb+1,:,:) |
---|
| 602 | END IF |
---|
| 603 | |
---|
| 604 | ! |
---|
| 605 | !-- Bottom boundary condition for the turbulent kinetic energy |
---|
| 606 | !-- Generally a Neumann condition with de/dz=0 is assumed |
---|
| 607 | IF ( .NOT. constant_diffusion ) THEN |
---|
| 608 | e(nzb,:,:) = e(nzb+1,:,:) |
---|
| 609 | END IF |
---|
| 610 | |
---|
| 611 | ! |
---|
| 612 | !-- Bottom boundary condition for turbulent diffusion coefficients |
---|
| 613 | km(nzb,:,:) = km(nzb+1,:,:) |
---|
| 614 | kh(nzb,:,:) = kh(nzb+1,:,:) |
---|
| 615 | |
---|
| 616 | !diffusivities required |
---|
| 617 | IF ( .NOT. humidity ) THEN |
---|
[2696] | 618 | CALL tcm_diffusivities( pt, pt_reference ) |
---|
[2365] | 619 | ELSE |
---|
[2696] | 620 | CALL tcm_diffusivities( vpt, pt_reference ) |
---|
[2365] | 621 | ENDIF |
---|
| 622 | |
---|
| 623 | |
---|
| 624 | ! |
---|
| 625 | !-- Reset Fine Grid top Boundary Condition |
---|
| 626 | !-- At the top of the FG, the scalars always follow Dirichlet condition |
---|
| 627 | |
---|
| 628 | ibc_pt_t = 0 |
---|
| 629 | |
---|
| 630 | !-- Initialize old time levels |
---|
| 631 | pt_p = pt; u_p = u; v_p = v; w_p = w |
---|
| 632 | IF ( .NOT. constant_diffusion ) e_p = e |
---|
| 633 | IF ( humidity ) THEN |
---|
| 634 | ibc_q_t = 0 |
---|
| 635 | q_p = q |
---|
| 636 | ENDIF |
---|
| 637 | |
---|
| 638 | ENDIF |
---|
| 639 | |
---|
| 640 | |
---|
| 641 | if (myid==0) print *, '** Fine Initalized ** simulated_time:', simulated_time |
---|
[2712] | 642 | |
---|
[2365] | 643 | CONTAINS |
---|
| 644 | |
---|
[3241] | 645 | SUBROUTINE interpolate_to_fine_w |
---|
[2365] | 646 | |
---|
| 647 | USE arrays_3d |
---|
| 648 | USE control_parameters |
---|
| 649 | USE grid_variables |
---|
| 650 | USE indices |
---|
| 651 | USE pegrid |
---|
| 652 | |
---|
| 653 | |
---|
| 654 | IMPLICIT NONE |
---|
| 655 | |
---|
[2712] | 656 | INTEGER(iwp) :: i |
---|
| 657 | INTEGER(iwp) :: j |
---|
| 658 | INTEGER(iwp) :: k |
---|
| 659 | INTEGER(iwp) :: iif |
---|
| 660 | INTEGER(iwp) :: jjf |
---|
| 661 | INTEGER(iwp) :: kkf |
---|
| 662 | INTEGER(iwp) :: nzbottom |
---|
| 663 | INTEGER(iwp) :: nztop |
---|
| 664 | INTEGER(iwp) :: bottomx |
---|
| 665 | INTEGER(iwp) :: bottomy |
---|
| 666 | INTEGER(iwp) :: bottomz |
---|
| 667 | INTEGER(iwp) :: topx |
---|
| 668 | INTEGER(iwp) :: topy |
---|
| 669 | INTEGER(iwp) :: topz |
---|
| 670 | REAL(wp) :: eps |
---|
| 671 | REAL(wp) :: alpha |
---|
| 672 | REAL(wp) :: eminus |
---|
| 673 | REAL(wp) :: edot |
---|
| 674 | REAL(wp) :: eplus |
---|
| 675 | REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: wprs |
---|
| 676 | REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: wprf |
---|
[2365] | 677 | |
---|
| 678 | |
---|
| 679 | nzbottom = bdims_rem (3,1) |
---|
| 680 | nztop = bdims_rem (3,2) |
---|
| 681 | |
---|
| 682 | ALLOCATE( wprf(nzbottom:nztop, bdims_rem(2,1)-1: bdims_rem(2,2)+1,nxl:nxr) ) |
---|
| 683 | ALLOCATE( wprs(nzbottom:nztop,nys:nyn,nxl:nxr) ) |
---|
| 684 | |
---|
| 685 | |
---|
| 686 | ! |
---|
| 687 | !-- Initialisation of the velocity component w |
---|
| 688 | ! |
---|
| 689 | !-- Interpolation in x-direction |
---|
| 690 | DO k = nzbottom, nztop |
---|
| 691 | DO j = bdims_rem(2,1)-1, bdims_rem(2,2)+1 |
---|
| 692 | DO i = bdims_rem(1,1),bdims_rem(1,2) |
---|
| 693 | |
---|
| 694 | bottomx = (nxf+1)/(nxc+1) * i |
---|
| 695 | topx = (nxf+1)/(nxc+1) * (i+1) - 1 |
---|
| 696 | |
---|
[2712] | 697 | DO iif = bottomx, topx |
---|
[2365] | 698 | |
---|
[2712] | 699 | eps = ( iif * dxf + 0.5 * dxf - i * dxc - 0.5 * dxc ) / dxc |
---|
[2365] | 700 | alpha = ( ( dxf / dxc )**2.0 - 1.0 ) / 24.0 |
---|
| 701 | eminus = eps * ( eps - 1.0 ) / 2.0 + alpha |
---|
| 702 | edot = ( 1.0 - eps**2.0 ) - 2.0 * alpha |
---|
| 703 | eplus = eps * ( eps + 1.0 ) / 2.0 + alpha |
---|
| 704 | |
---|
[2712] | 705 | wprf(k,j,iif) = eminus * work3d(k,j,i-1) & |
---|
[2365] | 706 | + edot * work3d(k,j,i) & |
---|
| 707 | + eplus * work3d(k,j,i+1) |
---|
| 708 | END DO |
---|
| 709 | |
---|
| 710 | END DO |
---|
| 711 | END DO |
---|
| 712 | END DO |
---|
| 713 | |
---|
| 714 | ! |
---|
| 715 | !-- Interpolation in y-direction (quadratic, Clark and Farley) |
---|
| 716 | DO k = nzbottom, nztop |
---|
| 717 | DO j = bdims_rem(2,1), bdims_rem(2,2) |
---|
| 718 | |
---|
| 719 | bottomy = (nyf+1)/(nyc+1) * j |
---|
| 720 | topy = (nyf+1)/(nyc+1) * (j+1) - 1 |
---|
| 721 | |
---|
[2712] | 722 | DO iif = nxl, nxr |
---|
| 723 | DO jjf = bottomy, topy |
---|
[2365] | 724 | |
---|
[2712] | 725 | eps = ( jjf * dyf + 0.5 * dyf - j * dyc - 0.5 * dyc ) / dyc |
---|
[2365] | 726 | alpha = ( ( dyf / dyc )**2.0 - 1.0 ) / 24.0 |
---|
| 727 | eminus = eps * ( eps - 1.0 ) / 2.0 + alpha |
---|
| 728 | edot = ( 1.0 - eps**2.0 ) - 2.0 * alpha |
---|
| 729 | eplus = eps * ( eps + 1.0 ) / 2.0 + alpha |
---|
| 730 | |
---|
[2712] | 731 | wprs(k,jjf,iif) = eminus * wprf(k,j-1,iif) & |
---|
| 732 | + edot * wprf(k,j,iif) & |
---|
| 733 | + eplus * wprf(k,j+1,iif) |
---|
[2365] | 734 | |
---|
| 735 | END DO |
---|
| 736 | END DO |
---|
| 737 | |
---|
| 738 | END DO |
---|
| 739 | END DO |
---|
| 740 | |
---|
| 741 | ! |
---|
| 742 | !-- Interpolation in z-direction (linear) |
---|
| 743 | |
---|
| 744 | DO k = nzbottom, nztop-1 |
---|
| 745 | |
---|
| 746 | bottomz = (dzc/dzf) * k |
---|
| 747 | topz = (dzc/dzf) * (k+1) - 1 |
---|
| 748 | |
---|
[2712] | 749 | DO jjf = nys, nyn |
---|
| 750 | DO iif = nxl, nxr |
---|
| 751 | DO kkf = bottomz, topz |
---|
[2365] | 752 | |
---|
[2712] | 753 | w(kkf,jjf,iif) = wprs(k,jjf,iif) + ( zwf(kkf) - zwc(k) ) & |
---|
| 754 | * ( wprs(k+1,jjf,iif) - wprs(k,jjf,iif) ) / dzc |
---|
[2365] | 755 | |
---|
| 756 | END DO |
---|
| 757 | END DO |
---|
| 758 | END DO |
---|
| 759 | |
---|
| 760 | END DO |
---|
| 761 | |
---|
[2712] | 762 | DO jjf = nys, nyn |
---|
| 763 | DO iif = nxl, nxr |
---|
[2365] | 764 | |
---|
[2712] | 765 | w(nzt,jjf,iif) = wprs(nztop,jjf,iif) |
---|
[2365] | 766 | |
---|
| 767 | END DO |
---|
| 768 | END DO |
---|
| 769 | ! |
---|
| 770 | ! w(nzb:nzt+1,nys:nyn,nxl:nxr) = 0 |
---|
| 771 | |
---|
| 772 | DEALLOCATE( wprf, wprs ) |
---|
| 773 | |
---|
| 774 | END SUBROUTINE interpolate_to_fine_w |
---|
| 775 | |
---|
[3241] | 776 | SUBROUTINE interpolate_to_fine_u |
---|
[2365] | 777 | |
---|
| 778 | |
---|
| 779 | USE arrays_3d |
---|
| 780 | USE control_parameters |
---|
| 781 | USE grid_variables |
---|
| 782 | USE indices |
---|
| 783 | USE pegrid |
---|
| 784 | |
---|
| 785 | |
---|
| 786 | IMPLICIT NONE |
---|
| 787 | |
---|
[2712] | 788 | INTEGER(iwp) :: i |
---|
| 789 | INTEGER(iwp) :: j |
---|
| 790 | INTEGER(iwp) :: k |
---|
| 791 | INTEGER(iwp) :: iif |
---|
| 792 | INTEGER(iwp) :: jjf |
---|
| 793 | INTEGER(iwp) :: kkf |
---|
| 794 | INTEGER(iwp) :: nzbottom |
---|
| 795 | INTEGER(iwp) :: nztop |
---|
| 796 | INTEGER(iwp) :: bottomx |
---|
| 797 | INTEGER(iwp) :: bottomy |
---|
| 798 | INTEGER(iwp) :: bottomz |
---|
| 799 | INTEGER(iwp) :: topx |
---|
| 800 | INTEGER(iwp) :: topy |
---|
| 801 | INTEGER(iwp) :: topz |
---|
| 802 | REAL(wp) :: eps |
---|
| 803 | REAL(wp) :: alpha |
---|
| 804 | REAL(wp) :: eminus |
---|
| 805 | REAL(wp) :: edot |
---|
| 806 | REAL(wp) :: eplus |
---|
| 807 | REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: uprf |
---|
| 808 | REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: uprs |
---|
[2365] | 809 | |
---|
| 810 | |
---|
| 811 | |
---|
| 812 | nzbottom = bdims_rem (3,1) |
---|
| 813 | nztop = bdims_rem (3,2) |
---|
| 814 | |
---|
| 815 | ALLOCATE( uprf(nzbottom:nztop+2,nys:nyn,bdims_rem(1,1)-1:bdims_rem(1,2)+1) ) |
---|
| 816 | ALLOCATE( uprs(nzb+1:nzt+1,nys:nyn,bdims_rem(1,1)-1:bdims_rem(1,2)+1) ) |
---|
| 817 | |
---|
| 818 | ! |
---|
| 819 | !-- Initialisation of the velocity component uf |
---|
| 820 | |
---|
| 821 | ! |
---|
| 822 | !-- Interpolation in y-direction (quadratic, Clark and Farley) |
---|
| 823 | |
---|
| 824 | DO k = nzbottom, nztop+2 |
---|
| 825 | DO j = bdims_rem(2,1), bdims_rem(2,2) |
---|
| 826 | |
---|
| 827 | bottomy = (nyf+1)/(nyc+1) * j |
---|
| 828 | topy = (nyf+1)/(nyc+1) * (j+1) - 1 |
---|
| 829 | |
---|
| 830 | DO i = bdims_rem(1,1)-1, bdims_rem(1,2)+1 |
---|
[2712] | 831 | DO jjf = bottomy, topy |
---|
[2365] | 832 | |
---|
[2712] | 833 | eps = ( jjf * dyf + 0.5 * dyf - j * dyc - 0.5 * dyc ) / dyc |
---|
[2365] | 834 | alpha = ( ( dyf / dyc )**2.0 - 1.0 ) / 24.0 |
---|
| 835 | eminus = eps * ( eps - 1.0 ) / 2.0 + alpha |
---|
| 836 | edot = ( 1.0 - eps**2.0 ) - 2.0 * alpha |
---|
| 837 | eplus = eps * ( eps + 1.0 ) / 2.0 + alpha |
---|
| 838 | |
---|
[2712] | 839 | uprf(k,jjf,i) = eminus * work3d(k,j-1,i) & |
---|
[2365] | 840 | + edot * work3d(k,j,i) & |
---|
| 841 | + eplus * work3d(k,j+1,i) |
---|
| 842 | |
---|
| 843 | END DO |
---|
| 844 | END DO |
---|
| 845 | |
---|
| 846 | END DO |
---|
| 847 | END DO |
---|
| 848 | |
---|
| 849 | ! |
---|
| 850 | !-- Interpolation in z-direction (quadratic, Clark and Farley) |
---|
| 851 | |
---|
| 852 | DO k = nzbottom+1, nztop |
---|
| 853 | |
---|
| 854 | bottomz = (dzc/dzf) * (k-1) + 1 |
---|
| 855 | topz = (dzc/dzf) * k |
---|
| 856 | |
---|
[2712] | 857 | DO jjf = nys, nyn |
---|
[2365] | 858 | DO i = bdims_rem(1,1)-1, bdims_rem(1,2)+1 |
---|
[2712] | 859 | DO kkf = bottomz, topz |
---|
[2365] | 860 | |
---|
[2712] | 861 | eps = ( zuf(kkf) - zuc(k) ) / dzc |
---|
[2365] | 862 | alpha = ( ( dzf / dzc )**2.0 - 1.0 ) / 24.0 |
---|
| 863 | eminus = eps * ( eps - 1.0 ) / 2.0 + alpha |
---|
| 864 | edot = ( 1.0 - eps**2.0 ) - 2.0 * alpha |
---|
| 865 | eplus = eps * ( eps + 1.0 ) / 2.0 + alpha |
---|
| 866 | |
---|
[2712] | 867 | uprs(kkf,jjf,i) = eminus * uprf(k-1,jjf,i) & |
---|
| 868 | + edot * uprf(k,jjf,i) & |
---|
| 869 | + eplus * uprf(k+1,jjf,i) |
---|
[2365] | 870 | |
---|
| 871 | END DO |
---|
| 872 | END DO |
---|
| 873 | END DO |
---|
| 874 | |
---|
| 875 | END DO |
---|
| 876 | |
---|
[2712] | 877 | DO jjf = nys, nyn |
---|
[2365] | 878 | DO i = bdims_rem(1,1)-1, bdims_rem(1,2)+1 |
---|
| 879 | |
---|
| 880 | eps = ( zuf(nzt+1) - zuc(nztop+1) ) / dzc |
---|
| 881 | alpha = ( ( dzf / dzc )**2.0 - 1.0 ) / 24.0 |
---|
| 882 | eminus = eps * ( eps - 1.0 ) / 2.0 + alpha |
---|
| 883 | edot = ( 1.0 - eps**2.0 ) - 2.0 * alpha |
---|
| 884 | eplus = eps * ( eps + 1.0 ) / 2.0 + alpha |
---|
| 885 | |
---|
[2712] | 886 | uprs(nzt+1,jjf,i) = eminus * uprf(nztop,jjf,i) & |
---|
| 887 | + edot * uprf(nztop+1,jjf,i) & |
---|
| 888 | + eplus * uprf(nztop+2,jjf,i) |
---|
[2365] | 889 | |
---|
| 890 | END DO |
---|
| 891 | END DO |
---|
| 892 | |
---|
| 893 | ! |
---|
| 894 | !-- Interpolation in x-direction (linear) |
---|
| 895 | |
---|
[2712] | 896 | DO kkf = nzb+1, nzt+1 |
---|
| 897 | DO jjf = nys, nyn |
---|
[2365] | 898 | DO i = bdims_rem(1,1), bdims_rem(1,2) |
---|
| 899 | |
---|
| 900 | bottomx = (nxf+1)/(nxc+1) * i |
---|
| 901 | topx = (nxf+1)/(nxc+1) * (i+1) - 1 |
---|
| 902 | |
---|
[2712] | 903 | DO iif = bottomx, topx |
---|
| 904 | u(kkf,jjf,iif) = uprs(kkf,jjf,i) + ( iif * dxf - i * dxc ) & |
---|
| 905 | * ( uprs(kkf,jjf,i+1) - uprs(kkf,jjf,i) ) / dxc |
---|
[2365] | 906 | END DO |
---|
| 907 | |
---|
| 908 | END DO |
---|
| 909 | END DO |
---|
| 910 | END DO |
---|
| 911 | ! |
---|
| 912 | !-- Determination of uf at the bottom boundary |
---|
| 913 | |
---|
| 914 | |
---|
| 915 | |
---|
| 916 | DEALLOCATE( uprf, uprs ) |
---|
| 917 | |
---|
| 918 | END SUBROUTINE interpolate_to_fine_u |
---|
| 919 | |
---|
| 920 | |
---|
[3241] | 921 | SUBROUTINE interpolate_to_fine_v |
---|
[2365] | 922 | |
---|
| 923 | |
---|
| 924 | USE arrays_3d |
---|
| 925 | USE control_parameters |
---|
| 926 | USE grid_variables |
---|
| 927 | USE indices |
---|
| 928 | USE pegrid |
---|
| 929 | |
---|
| 930 | |
---|
| 931 | IMPLICIT NONE |
---|
[2712] | 932 | |
---|
| 933 | INTEGER(iwp) :: i |
---|
| 934 | INTEGER(iwp) :: j |
---|
| 935 | INTEGER(iwp) :: k |
---|
| 936 | INTEGER(iwp) :: iif |
---|
| 937 | INTEGER(iwp) :: jjf |
---|
| 938 | INTEGER(iwp) :: kkf |
---|
| 939 | INTEGER(iwp) :: nzbottom |
---|
| 940 | INTEGER(iwp) :: nztop |
---|
| 941 | INTEGER(iwp) :: bottomx |
---|
| 942 | INTEGER(iwp) :: bottomy |
---|
| 943 | INTEGER(iwp) :: bottomz |
---|
| 944 | INTEGER(iwp) :: topx |
---|
| 945 | INTEGER(iwp) :: topy |
---|
| 946 | INTEGER(iwp) :: topz |
---|
| 947 | REAL(wp) :: eps |
---|
| 948 | REAL(wp) :: alpha |
---|
| 949 | REAL(wp) :: eminus |
---|
| 950 | REAL(wp) :: edot |
---|
| 951 | REAL(wp) :: eplus |
---|
| 952 | REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: vprs |
---|
| 953 | REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: vprf |
---|
[2365] | 954 | |
---|
| 955 | |
---|
| 956 | nzbottom = bdims_rem (3,1) |
---|
| 957 | nztop = bdims_rem (3,2) |
---|
| 958 | |
---|
| 959 | ALLOCATE( vprf(nzbottom:nztop+2,bdims_rem(2,1)-1:bdims_rem(2,2)+1,nxl:nxr) ) |
---|
| 960 | ALLOCATE( vprs(nzb+1:nzt+1, bdims_rem(2,1)-1:bdims_rem(2,2)+1,nxl:nxr) ) |
---|
| 961 | ! |
---|
| 962 | !-- Initialisation of the velocity component vf |
---|
| 963 | |
---|
| 964 | ! |
---|
| 965 | !-- Interpolation in x-direction (quadratic, Clark and Farley) |
---|
| 966 | |
---|
| 967 | DO k = nzbottom, nztop+2 |
---|
| 968 | DO j = bdims_rem(2,1)-1, bdims_rem(2,2)+1 |
---|
| 969 | DO i = bdims_rem(1,1), bdims_rem(1,2) |
---|
| 970 | |
---|
| 971 | bottomx = (nxf+1)/(nxc+1) * i |
---|
| 972 | topx = (nxf+1)/(nxc+1) * (i+1) - 1 |
---|
| 973 | |
---|
[2712] | 974 | DO iif = bottomx, topx |
---|
[2365] | 975 | |
---|
[2712] | 976 | eps = ( iif * dxf + 0.5 * dxf - i * dxc - 0.5 * dxc ) / dxc |
---|
[2365] | 977 | alpha = ( ( dxf / dxc )**2.0 - 1.0 ) / 24.0 |
---|
| 978 | eminus = eps * ( eps - 1.0 ) / 2.0 + alpha |
---|
| 979 | edot = ( 1.0 - eps**2.0 ) - 2.0 * alpha |
---|
| 980 | eplus = eps * ( eps + 1.0 ) / 2.0 + alpha |
---|
| 981 | |
---|
[2712] | 982 | vprf(k,j,iif) = eminus * work3d(k,j,i-1) & |
---|
[2365] | 983 | + edot * work3d(k,j,i) & |
---|
| 984 | + eplus * work3d(k,j,i+1) |
---|
| 985 | |
---|
| 986 | END DO |
---|
| 987 | |
---|
| 988 | END DO |
---|
| 989 | END DO |
---|
| 990 | END DO |
---|
| 991 | |
---|
| 992 | ! |
---|
| 993 | !-- Interpolation in z-direction (quadratic, Clark and Farley) |
---|
| 994 | |
---|
| 995 | DO k = nzbottom+1, nztop |
---|
| 996 | |
---|
| 997 | bottomz = (dzc/dzf) * (k-1) + 1 |
---|
| 998 | topz = (dzc/dzf) * k |
---|
| 999 | |
---|
| 1000 | DO j = bdims_rem(2,1)-1, bdims_rem(2,2)+1 |
---|
[2712] | 1001 | DO iif = nxl, nxr |
---|
| 1002 | DO kkf = bottomz, topz |
---|
[2365] | 1003 | |
---|
[2712] | 1004 | eps = ( zuf(kkf) - zuc(k) ) / dzc |
---|
[2365] | 1005 | alpha = ( ( dzf / dzc )**2.0 - 1.0 ) / 24.0 |
---|
| 1006 | eminus = eps * ( eps - 1.0 ) / 2.0 + alpha |
---|
| 1007 | edot = ( 1.0 - eps**2.0 ) - 2.0 * alpha |
---|
| 1008 | eplus = eps * ( eps + 1.0 ) / 2.0 + alpha |
---|
| 1009 | |
---|
[2712] | 1010 | vprs(kkf,j,iif) = eminus * vprf(k-1,j,iif) & |
---|
| 1011 | + edot * vprf(k,j,iif) & |
---|
| 1012 | + eplus * vprf(k+1,j,iif) |
---|
[2365] | 1013 | |
---|
| 1014 | END DO |
---|
| 1015 | END DO |
---|
| 1016 | END DO |
---|
| 1017 | |
---|
| 1018 | END DO |
---|
| 1019 | |
---|
| 1020 | DO j = bdims_rem(2,1)-1, bdims_rem(2,2)+1 |
---|
[2712] | 1021 | DO iif = nxl, nxr |
---|
[2365] | 1022 | |
---|
| 1023 | eps = ( zuf(nzt+1) - zuc(nztop+1) ) / dzc |
---|
| 1024 | alpha = ( ( dzf / dzc )**2.0 - 1.0 ) / 24.0 |
---|
| 1025 | eminus = eps * ( eps - 1.0 ) / 2.0 + alpha |
---|
| 1026 | edot = ( 1.0 - eps**2.0 ) - 2.0 * alpha |
---|
| 1027 | eplus = eps * ( eps + 1.0 ) / 2.0 + alpha |
---|
| 1028 | |
---|
[2712] | 1029 | vprs(nzt+1,j,iif) = eminus * vprf(nztop,j,iif) & |
---|
| 1030 | + edot * vprf(nztop+1,j,iif) & |
---|
| 1031 | + eplus * vprf(nztop+2,j,iif) |
---|
[2365] | 1032 | |
---|
| 1033 | END DO |
---|
| 1034 | END DO |
---|
| 1035 | |
---|
| 1036 | ! |
---|
| 1037 | !-- Interpolation in y-direction (linear) |
---|
| 1038 | |
---|
[2712] | 1039 | DO kkf = nzb+1, nzt+1 |
---|
[2365] | 1040 | DO j = bdims_rem(2,1), bdims_rem(2,2) |
---|
| 1041 | |
---|
| 1042 | bottomy = (nyf+1)/(nyc+1) * j |
---|
| 1043 | topy = (nyf+1)/(nyc+1) * (j+1) - 1 |
---|
| 1044 | |
---|
[2712] | 1045 | DO iif = nxl, nxr |
---|
| 1046 | DO jjf = bottomy, topy |
---|
| 1047 | v (kkf,jjf,iif) = vprs(kkf,j,iif) + ( jjf * dyf - j * dyc ) & |
---|
| 1048 | * ( vprs(kkf,j+1,iif) - vprs(kkf,j,iif) ) / dyc |
---|
[2365] | 1049 | END DO |
---|
| 1050 | END DO |
---|
| 1051 | |
---|
| 1052 | END DO |
---|
| 1053 | END DO |
---|
| 1054 | |
---|
| 1055 | ! |
---|
| 1056 | !-- Determination of vf at the bottom boundary |
---|
| 1057 | |
---|
| 1058 | |
---|
| 1059 | DEALLOCATE( vprf, vprs ) |
---|
| 1060 | |
---|
| 1061 | END SUBROUTINE interpolate_to_fine_v |
---|
| 1062 | |
---|
| 1063 | |
---|
[3241] | 1064 | SUBROUTINE interpolate_to_fine_s |
---|
[2365] | 1065 | |
---|
| 1066 | |
---|
| 1067 | USE arrays_3d |
---|
| 1068 | USE control_parameters |
---|
| 1069 | USE grid_variables |
---|
| 1070 | USE indices |
---|
| 1071 | USE pegrid |
---|
| 1072 | |
---|
| 1073 | |
---|
| 1074 | IMPLICIT NONE |
---|
[2712] | 1075 | |
---|
| 1076 | INTEGER(iwp) :: i |
---|
| 1077 | INTEGER(iwp) :: j |
---|
| 1078 | INTEGER(iwp) :: k |
---|
| 1079 | INTEGER(iwp) :: iif |
---|
| 1080 | INTEGER(iwp) :: jjf |
---|
| 1081 | INTEGER(iwp) :: kkf |
---|
| 1082 | INTEGER(iwp) :: nzbottom |
---|
| 1083 | INTEGER(iwp) :: nztop |
---|
| 1084 | INTEGER(iwp) :: bottomx |
---|
| 1085 | INTEGER(iwp) :: bottomy |
---|
| 1086 | INTEGER(iwp) :: bottomz |
---|
| 1087 | INTEGER(iwp) :: topx |
---|
| 1088 | INTEGER(iwp) :: topy |
---|
| 1089 | INTEGER(iwp) :: topz |
---|
| 1090 | REAL(wp) :: eps |
---|
| 1091 | REAL(wp) :: alpha |
---|
| 1092 | REAL(wp) :: eminus |
---|
| 1093 | REAL(wp) :: edot |
---|
| 1094 | REAL(wp) :: eplus |
---|
| 1095 | REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: ptprs |
---|
| 1096 | REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: ptprf |
---|
[2365] | 1097 | |
---|
| 1098 | |
---|
| 1099 | nzbottom = bdims_rem (3,1) |
---|
| 1100 | nztop = bdims_rem (3,2) |
---|
| 1101 | |
---|
| 1102 | ALLOCATE( ptprf(nzbottom:nztop+2,bdims_rem(2,1)-1:bdims_rem(2,2)+1,nxl:nxr) ) |
---|
| 1103 | ALLOCATE( ptprs(nzbottom:nztop+2,nys:nyn,nxl:nxr) ) |
---|
| 1104 | |
---|
| 1105 | ! |
---|
| 1106 | !-- Initialisation of scalar variables |
---|
| 1107 | |
---|
| 1108 | ! |
---|
| 1109 | !-- Interpolation in x-direction (quadratic, Clark and Farley) |
---|
| 1110 | |
---|
| 1111 | DO k = nzbottom, nztop+2 |
---|
| 1112 | DO j = bdims_rem(2,1)-1, bdims_rem(2,2)+1 |
---|
| 1113 | DO i = bdims_rem(1,1), bdims_rem(1,2) |
---|
| 1114 | |
---|
| 1115 | bottomx = (nxf+1)/(nxc+1) * i |
---|
| 1116 | topx = (nxf+1)/(nxc+1) * (i+1) - 1 |
---|
| 1117 | |
---|
[2712] | 1118 | DO iif = bottomx, topx |
---|
[2365] | 1119 | |
---|
[2712] | 1120 | eps = ( iif * dxf + 0.5 * dxf - i * dxc - 0.5 * dxc ) / dxc |
---|
[2365] | 1121 | alpha = ( ( dxf / dxc )**2.0 - 1.0 ) / 24.0 |
---|
| 1122 | eminus = eps * ( eps - 1.0 ) / 2.0 + alpha |
---|
| 1123 | edot = ( 1.0 - eps**2.0 ) - 2.0 * alpha |
---|
| 1124 | eplus = eps * ( eps + 1.0 ) / 2.0 + alpha |
---|
| 1125 | |
---|
[2712] | 1126 | ptprf(k,j,iif) = eminus * work3d(k,j,i-1) & |
---|
[2365] | 1127 | + edot * work3d(k,j,i) & |
---|
| 1128 | + eplus * work3d(k,j,i+1) |
---|
| 1129 | END DO |
---|
| 1130 | |
---|
| 1131 | END DO |
---|
| 1132 | END DO |
---|
| 1133 | END DO |
---|
| 1134 | |
---|
| 1135 | ! |
---|
| 1136 | !-- Interpolation in y-direction (quadratic, Clark and Farley) |
---|
| 1137 | |
---|
| 1138 | DO k = nzbottom, nztop+2 |
---|
| 1139 | DO j = bdims_rem(2,1), bdims_rem(2,2) |
---|
| 1140 | |
---|
| 1141 | bottomy = (nyf+1)/(nyc+1) * j |
---|
| 1142 | topy = (nyf+1)/(nyc+1) * (j+1) - 1 |
---|
| 1143 | |
---|
[2712] | 1144 | DO iif = nxl, nxr |
---|
| 1145 | DO jjf = bottomy, topy |
---|
[2365] | 1146 | |
---|
[2712] | 1147 | eps = ( jjf * dyf + 0.5 * dyf - j * dyc - 0.5 * dyc ) / dyc |
---|
[2365] | 1148 | alpha = ( ( dyf / dyc )**2.0 - 1.0 ) / 24.0 |
---|
| 1149 | eminus = eps * ( eps - 1.0 ) / 2.0 + alpha |
---|
| 1150 | edot = ( 1.0 - eps**2.0 ) - 2.0 * alpha |
---|
| 1151 | eplus = eps * ( eps + 1.0 ) / 2.0 + alpha |
---|
| 1152 | |
---|
[2712] | 1153 | ptprs(k,jjf,iif) = eminus * ptprf(k,j-1,iif) & |
---|
| 1154 | + edot * ptprf(k,j,iif) & |
---|
| 1155 | + eplus * ptprf(k,j+1,iif) |
---|
[2365] | 1156 | |
---|
| 1157 | END DO |
---|
| 1158 | END DO |
---|
| 1159 | |
---|
| 1160 | END DO |
---|
| 1161 | END DO |
---|
| 1162 | |
---|
| 1163 | ! |
---|
| 1164 | !-- Interpolation in z-direction (quadratic, Clark and Farley) |
---|
| 1165 | |
---|
| 1166 | DO k = nzbottom+1, nztop |
---|
| 1167 | |
---|
| 1168 | bottomz = (dzc/dzf) * (k-1) + 1 |
---|
| 1169 | topz = (dzc/dzf) * k |
---|
| 1170 | |
---|
[2712] | 1171 | DO jjf = nys, nyn |
---|
| 1172 | DO iif = nxl, nxr |
---|
| 1173 | DO kkf = bottomz, topz |
---|
[2365] | 1174 | |
---|
[2712] | 1175 | eps = ( zuf(kkf) - zuc(k) ) / dzc |
---|
[2365] | 1176 | alpha = ( ( dzf / dzc )**2.0 - 1.0 ) / 24.0 |
---|
| 1177 | eminus = eps * ( eps - 1.0 ) / 2.0 + alpha |
---|
| 1178 | edot = ( 1.0 - eps**2.0 ) - 2.0 * alpha |
---|
| 1179 | eplus = eps * ( eps + 1.0 ) / 2.0 + alpha |
---|
| 1180 | |
---|
[2712] | 1181 | interpol3d(kkf,jjf,iif) = eminus * ptprs(k-1,jjf,iif) & |
---|
| 1182 | + edot * ptprs(k,jjf,iif) & |
---|
| 1183 | + eplus * ptprs(k+1,jjf,iif) |
---|
[2365] | 1184 | |
---|
| 1185 | END DO |
---|
| 1186 | END DO |
---|
| 1187 | END DO |
---|
| 1188 | |
---|
| 1189 | END DO |
---|
| 1190 | |
---|
[2712] | 1191 | DO jjf = nys, nyn |
---|
| 1192 | DO iif = nxl, nxr |
---|
[2365] | 1193 | |
---|
| 1194 | eps = ( zuf(nzt+1) - zuc(nztop+1) ) / dzc |
---|
| 1195 | alpha = ( ( dzf / dzc )**2.0 - 1.0 ) / 24.0 |
---|
| 1196 | eminus = eps * ( eps - 1.0 ) / 2.0 + alpha |
---|
| 1197 | edot = ( 1.0 - eps**2.0 ) - 2.0 * alpha |
---|
| 1198 | eplus = eps * ( eps + 1.0 ) / 2.0 + alpha |
---|
| 1199 | |
---|
[2712] | 1200 | interpol3d(nzt+1,jjf,iif) = eminus * ptprs(nztop,jjf,iif) & |
---|
| 1201 | + edot * ptprs(nztop+1,jjf,iif) & |
---|
| 1202 | + eplus * ptprs(nztop+2,jjf,iif) |
---|
[2365] | 1203 | |
---|
| 1204 | END DO |
---|
| 1205 | END DO |
---|
| 1206 | |
---|
| 1207 | |
---|
| 1208 | DEALLOCATE( ptprf, ptprs ) |
---|
| 1209 | |
---|
| 1210 | END SUBROUTINE interpolate_to_fine_s |
---|
| 1211 | |
---|
| 1212 | |
---|
[3241] | 1213 | SUBROUTINE interpolate_to_fine_kh |
---|
[2365] | 1214 | |
---|
| 1215 | |
---|
| 1216 | USE arrays_3d |
---|
| 1217 | USE control_parameters |
---|
| 1218 | USE grid_variables |
---|
| 1219 | USE indices |
---|
| 1220 | USE pegrid |
---|
| 1221 | |
---|
| 1222 | |
---|
| 1223 | IMPLICIT NONE |
---|
[2712] | 1224 | |
---|
| 1225 | INTEGER(iwp) :: i |
---|
| 1226 | INTEGER(iwp) :: j |
---|
| 1227 | INTEGER(iwp) :: k |
---|
| 1228 | INTEGER(iwp) :: iif |
---|
| 1229 | INTEGER(iwp) :: jjf |
---|
| 1230 | INTEGER(iwp) :: kkf |
---|
| 1231 | INTEGER(iwp) :: nzbottom |
---|
| 1232 | INTEGER(iwp) :: nztop |
---|
| 1233 | INTEGER(iwp) :: bottomx |
---|
| 1234 | INTEGER(iwp) :: bottomy |
---|
| 1235 | INTEGER(iwp) :: bottomz |
---|
| 1236 | INTEGER(iwp) :: topx |
---|
| 1237 | INTEGER(iwp) :: topy |
---|
| 1238 | INTEGER(iwp) :: topz |
---|
| 1239 | REAL(wp) :: eps |
---|
| 1240 | REAL(wp) :: alpha |
---|
| 1241 | REAL(wp) :: eminus |
---|
| 1242 | REAL(wp) :: edot |
---|
| 1243 | REAL(wp) :: eplus |
---|
| 1244 | REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: ptprs |
---|
| 1245 | REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: ptprf |
---|
[2365] | 1246 | |
---|
| 1247 | |
---|
| 1248 | nzbottom = bdims_rem (3,1) |
---|
| 1249 | nztop = bdims_rem (3,2) |
---|
| 1250 | ! nztop = blk_dim_rem (3,2)+1 |
---|
| 1251 | |
---|
| 1252 | |
---|
| 1253 | ALLOCATE( ptprf(nzbottom:nztop+2,bdims_rem(2,1)-1:bdims_rem(2,2)+1,nxl:nxr) ) |
---|
| 1254 | ALLOCATE( ptprs(nzbottom:nztop+2,nys:nyn,nxl:nxr) ) |
---|
| 1255 | |
---|
| 1256 | |
---|
| 1257 | ! |
---|
| 1258 | !-- Initialisation of scalar variables |
---|
| 1259 | |
---|
| 1260 | ! |
---|
| 1261 | !-- Interpolation in x-direction (quadratic, Clark and Farley) |
---|
| 1262 | |
---|
| 1263 | DO k = nzbottom, nztop+2 |
---|
| 1264 | DO j = bdims_rem(2,1)-1, bdims_rem(2,2)+1 |
---|
| 1265 | DO i = bdims_rem(1,1), bdims_rem(1,2) |
---|
| 1266 | |
---|
| 1267 | bottomx = (nxf+1)/(nxc+1) * i |
---|
| 1268 | topx = (nxf+1)/(nxc+1) * (i+1) - 1 |
---|
| 1269 | |
---|
[2712] | 1270 | DO iif = bottomx, topx |
---|
[2365] | 1271 | |
---|
[2712] | 1272 | eps = ( iif * dxf + 0.5 * dxf - i * dxc - 0.5 * dxc ) / dxc |
---|
[2365] | 1273 | alpha = ( ( dxf / dxc )**2.0 - 1.0 ) / 24.0 |
---|
| 1274 | eminus = eps * ( eps - 1.0 ) / 2.0 + alpha |
---|
| 1275 | edot = ( 1.0 - eps**2.0 ) - 2.0 * alpha |
---|
| 1276 | eplus = eps * ( eps + 1.0 ) / 2.0 + alpha |
---|
| 1277 | |
---|
[2712] | 1278 | ptprf(k,j,iif) = eminus * work3d(k,j,i-1) & |
---|
[2365] | 1279 | + edot * work3d(k,j,i) & |
---|
| 1280 | + eplus * work3d(k,j,i+1) |
---|
| 1281 | END DO |
---|
| 1282 | |
---|
| 1283 | END DO |
---|
| 1284 | END DO |
---|
| 1285 | END DO |
---|
| 1286 | |
---|
| 1287 | ! |
---|
| 1288 | !-- Interpolation in y-direction (quadratic, Clark and Farley) |
---|
| 1289 | |
---|
| 1290 | DO k = nzbottom, nztop+2 |
---|
| 1291 | DO j = bdims_rem(2,1), bdims_rem(2,2) |
---|
| 1292 | |
---|
| 1293 | bottomy = (nyf+1)/(nyc+1) * j |
---|
| 1294 | topy = (nyf+1)/(nyc+1) * (j+1) - 1 |
---|
| 1295 | |
---|
[2712] | 1296 | DO iif = nxl, nxr |
---|
| 1297 | DO jjf = bottomy, topy |
---|
[2365] | 1298 | |
---|
[2712] | 1299 | eps = ( jjf * dyf + 0.5 * dyf - j * dyc - 0.5 * dyc ) / dyc |
---|
[2365] | 1300 | alpha = ( ( dyf / dyc )**2.0 - 1.0 ) / 24.0 |
---|
| 1301 | eminus = eps * ( eps - 1.0 ) / 2.0 + alpha |
---|
| 1302 | edot = ( 1.0 - eps**2.0 ) - 2.0 * alpha |
---|
| 1303 | eplus = eps * ( eps + 1.0 ) / 2.0 + alpha |
---|
| 1304 | |
---|
[2712] | 1305 | ptprs(k,jjf,iif) = eminus * ptprf(k,j-1,iif) & |
---|
| 1306 | + edot * ptprf(k,j,iif) & |
---|
| 1307 | + eplus * ptprf(k,j+1,iif) |
---|
[2365] | 1308 | |
---|
| 1309 | END DO |
---|
| 1310 | END DO |
---|
| 1311 | |
---|
| 1312 | END DO |
---|
| 1313 | END DO |
---|
| 1314 | |
---|
| 1315 | ! |
---|
| 1316 | !-- Interpolation in z-direction (quadratic, Clark and Farley) |
---|
| 1317 | |
---|
| 1318 | DO k = nzbottom+1, nztop |
---|
| 1319 | |
---|
| 1320 | bottomz = (dzc/dzf) * (k-1) + 1 |
---|
| 1321 | topz = (dzc/dzf) * k |
---|
| 1322 | |
---|
[2712] | 1323 | DO jjf = nys, nyn |
---|
| 1324 | DO iif = nxl, nxr |
---|
| 1325 | DO kkf = bottomz, topz |
---|
[2365] | 1326 | |
---|
[2712] | 1327 | eps = ( zuf(kkf) - zuc(k) ) / dzc |
---|
[2365] | 1328 | alpha = ( ( dzf / dzc )**2.0 - 1.0 ) / 24.0 |
---|
| 1329 | eminus = eps * ( eps - 1.0 ) / 2.0 + alpha |
---|
| 1330 | edot = ( 1.0 - eps**2.0 ) - 2.0 * alpha |
---|
| 1331 | eplus = eps * ( eps + 1.0 ) / 2.0 + alpha |
---|
| 1332 | |
---|
[2712] | 1333 | kh(kkf,jjf,iif) = eminus * ptprs(k-1,jjf,iif) & |
---|
| 1334 | + edot * ptprs(k,jjf,iif) & |
---|
| 1335 | + eplus * ptprs(k+1,jjf,iif) |
---|
[2365] | 1336 | |
---|
| 1337 | END DO |
---|
| 1338 | END DO |
---|
| 1339 | END DO |
---|
| 1340 | |
---|
| 1341 | END DO |
---|
| 1342 | |
---|
[2712] | 1343 | DO jjf = nys, nyn |
---|
| 1344 | DO iif = nxl, nxr |
---|
[2365] | 1345 | |
---|
| 1346 | eps = ( zuf(nzt+1) - zuc(nztop+1) ) / dzc |
---|
| 1347 | alpha = ( ( dzf / dzc )**2.0 - 1.0 ) / 24.0 |
---|
| 1348 | eminus = eps * ( eps - 1.0 ) / 2.0 + alpha |
---|
| 1349 | edot = ( 1.0 - eps**2.0 ) - 2.0 * alpha |
---|
| 1350 | eplus = eps * ( eps + 1.0 ) / 2.0 + alpha |
---|
| 1351 | |
---|
[2712] | 1352 | kh(nzt+1,jjf,iif) = eminus * ptprs(nztop,jjf,iif) & |
---|
| 1353 | + edot * ptprs(nztop+1,jjf,iif) & |
---|
| 1354 | + eplus * ptprs(nztop+2,jjf,iif) |
---|
[2365] | 1355 | |
---|
| 1356 | END DO |
---|
| 1357 | END DO |
---|
| 1358 | |
---|
| 1359 | |
---|
| 1360 | DEALLOCATE( ptprf, ptprs ) |
---|
| 1361 | |
---|
| 1362 | END SUBROUTINE interpolate_to_fine_kh |
---|
| 1363 | |
---|
[3241] | 1364 | SUBROUTINE interpolate_to_fine_km |
---|
[2365] | 1365 | |
---|
| 1366 | |
---|
| 1367 | USE arrays_3d |
---|
| 1368 | USE control_parameters |
---|
| 1369 | USE grid_variables |
---|
| 1370 | USE indices |
---|
| 1371 | USE pegrid |
---|
| 1372 | |
---|
| 1373 | |
---|
| 1374 | IMPLICIT NONE |
---|
[2712] | 1375 | |
---|
| 1376 | INTEGER(iwp) :: i |
---|
| 1377 | INTEGER(iwp) :: j |
---|
| 1378 | INTEGER(iwp) :: k |
---|
| 1379 | INTEGER(iwp) :: iif |
---|
| 1380 | INTEGER(iwp) :: jjf |
---|
| 1381 | INTEGER(iwp) :: kkf |
---|
| 1382 | INTEGER(iwp) :: nzbottom |
---|
| 1383 | INTEGER(iwp) :: nztop |
---|
| 1384 | INTEGER(iwp) :: bottomx |
---|
| 1385 | INTEGER(iwp) :: bottomy |
---|
| 1386 | INTEGER(iwp) :: bottomz |
---|
| 1387 | INTEGER(iwp) :: topx |
---|
| 1388 | INTEGER(iwp) :: topy |
---|
| 1389 | INTEGER(iwp) :: topz |
---|
| 1390 | REAL(wp) :: eps |
---|
| 1391 | REAL(wp) :: alpha |
---|
| 1392 | REAL(wp) :: eminus |
---|
| 1393 | REAL(wp) :: edot |
---|
| 1394 | REAL(wp) :: eplus |
---|
| 1395 | REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: ptprs |
---|
| 1396 | REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: ptprf |
---|
[2365] | 1397 | |
---|
| 1398 | |
---|
| 1399 | nzbottom = bdims_rem (3,1) |
---|
| 1400 | nztop = bdims_rem (3,2) |
---|
| 1401 | ! nztop = blk_dim_rem (3,2)+1 |
---|
| 1402 | |
---|
| 1403 | |
---|
| 1404 | ALLOCATE( ptprf(nzbottom:nztop+2,bdims_rem(2,1)-1:bdims_rem(2,2)+1,nxl:nxr) ) |
---|
| 1405 | ALLOCATE( ptprs(nzbottom:nztop+2,nys:nyn,nxl:nxr) ) |
---|
| 1406 | |
---|
| 1407 | |
---|
| 1408 | ! |
---|
| 1409 | !-- Initialisation of scalar variables |
---|
| 1410 | |
---|
| 1411 | ! |
---|
| 1412 | !-- Interpolation in x-direction (quadratic, Clark and Farley) |
---|
| 1413 | |
---|
| 1414 | DO k = nzbottom, nztop+2 |
---|
| 1415 | DO j = bdims_rem(2,1)-1, bdims_rem(2,2)+1 |
---|
| 1416 | DO i = bdims_rem(1,1), bdims_rem(1,2) |
---|
| 1417 | |
---|
| 1418 | bottomx = (nxf+1)/(nxc+1) * i |
---|
| 1419 | topx = (nxf+1)/(nxc+1) * (i+1) - 1 |
---|
| 1420 | |
---|
[2712] | 1421 | DO iif = bottomx, topx |
---|
[2365] | 1422 | |
---|
[2712] | 1423 | eps = ( iif * dxf + 0.5 * dxf - i * dxc - 0.5 * dxc ) / dxc |
---|
[2365] | 1424 | alpha = ( ( dxf / dxc )**2.0 - 1.0 ) / 24.0 |
---|
| 1425 | eminus = eps * ( eps - 1.0 ) / 2.0 + alpha |
---|
| 1426 | edot = ( 1.0 - eps**2.0 ) - 2.0 * alpha |
---|
| 1427 | eplus = eps * ( eps + 1.0 ) / 2.0 + alpha |
---|
| 1428 | |
---|
[2712] | 1429 | ptprf(k,j,iif) = eminus * work3d(k,j,i-1) & |
---|
[2365] | 1430 | + edot * work3d(k,j,i) & |
---|
| 1431 | + eplus * work3d(k,j,i+1) |
---|
| 1432 | END DO |
---|
| 1433 | |
---|
| 1434 | END DO |
---|
| 1435 | END DO |
---|
| 1436 | END DO |
---|
| 1437 | |
---|
| 1438 | ! |
---|
| 1439 | !-- Interpolation in y-direction (quadratic, Clark and Farley) |
---|
| 1440 | |
---|
| 1441 | DO k = nzbottom, nztop+2 |
---|
| 1442 | DO j = bdims_rem(2,1), bdims_rem(2,2) |
---|
| 1443 | |
---|
| 1444 | bottomy = (nyf+1)/(nyc+1) * j |
---|
| 1445 | topy = (nyf+1)/(nyc+1) * (j+1) - 1 |
---|
| 1446 | |
---|
[2712] | 1447 | DO iif = nxl, nxr |
---|
| 1448 | DO jjf = bottomy, topy |
---|
[2365] | 1449 | |
---|
[2712] | 1450 | eps = ( jjf * dyf + 0.5 * dyf - j * dyc - 0.5 * dyc ) / dyc |
---|
[2365] | 1451 | alpha = ( ( dyf / dyc )**2.0 - 1.0 ) / 24.0 |
---|
| 1452 | eminus = eps * ( eps - 1.0 ) / 2.0 + alpha |
---|
| 1453 | edot = ( 1.0 - eps**2.0 ) - 2.0 * alpha |
---|
| 1454 | eplus = eps * ( eps + 1.0 ) / 2.0 + alpha |
---|
| 1455 | |
---|
[2712] | 1456 | ptprs(k,jjf,iif) = eminus * ptprf(k,j-1,iif) & |
---|
| 1457 | + edot * ptprf(k,j,iif) & |
---|
| 1458 | + eplus * ptprf(k,j+1,iif) |
---|
[2365] | 1459 | |
---|
| 1460 | END DO |
---|
| 1461 | END DO |
---|
| 1462 | |
---|
| 1463 | END DO |
---|
| 1464 | END DO |
---|
| 1465 | |
---|
| 1466 | ! |
---|
| 1467 | !-- Interpolation in z-direction (quadratic, Clark and Farley) |
---|
| 1468 | |
---|
| 1469 | DO k = nzbottom+1, nztop |
---|
| 1470 | |
---|
| 1471 | bottomz = (dzc/dzf) * (k-1) + 1 |
---|
| 1472 | topz = (dzc/dzf) * k |
---|
| 1473 | |
---|
[2712] | 1474 | DO jjf = nys, nyn |
---|
| 1475 | DO iif = nxl, nxr |
---|
| 1476 | DO kkf = bottomz, topz |
---|
[2365] | 1477 | |
---|
[2712] | 1478 | eps = ( zuf(kkf) - zuc(k) ) / dzc |
---|
[2365] | 1479 | alpha = ( ( dzf / dzc )**2.0 - 1.0 ) / 24.0 |
---|
| 1480 | eminus = eps * ( eps - 1.0 ) / 2.0 + alpha |
---|
| 1481 | edot = ( 1.0 - eps**2.0 ) - 2.0 * alpha |
---|
| 1482 | eplus = eps * ( eps + 1.0 ) / 2.0 + alpha |
---|
| 1483 | |
---|
[2712] | 1484 | km(kkf,jjf,iif) = eminus * ptprs(k-1,jjf,iif) & |
---|
| 1485 | + edot * ptprs(k,jjf,iif) & |
---|
| 1486 | + eplus * ptprs(k+1,jjf,iif) |
---|
[2365] | 1487 | |
---|
| 1488 | END DO |
---|
| 1489 | END DO |
---|
| 1490 | END DO |
---|
| 1491 | |
---|
| 1492 | END DO |
---|
| 1493 | |
---|
[2712] | 1494 | DO jjf = nys, nyn |
---|
| 1495 | DO iif = nxl, nxr |
---|
[2365] | 1496 | |
---|
| 1497 | eps = ( zuf(nzt+1) - zuc(nztop+1) ) / dzc |
---|
| 1498 | alpha = ( ( dzf / dzc )**2.0 - 1.0 ) / 24.0 |
---|
| 1499 | eminus = eps * ( eps - 1.0 ) / 2.0 + alpha |
---|
| 1500 | edot = ( 1.0 - eps**2.0 ) - 2.0 * alpha |
---|
| 1501 | eplus = eps * ( eps + 1.0 ) / 2.0 + alpha |
---|
| 1502 | |
---|
[2712] | 1503 | km(nzt+1,jjf,iif) = eminus * ptprs(nztop,jjf,iif) & |
---|
| 1504 | + edot * ptprs(nztop+1,jjf,iif) & |
---|
| 1505 | + eplus * ptprs(nztop+2,jjf,iif) |
---|
[2365] | 1506 | |
---|
| 1507 | END DO |
---|
| 1508 | END DO |
---|
| 1509 | |
---|
| 1510 | |
---|
| 1511 | DEALLOCATE( ptprf, ptprs ) |
---|
| 1512 | |
---|
| 1513 | END SUBROUTINE interpolate_to_fine_km |
---|
| 1514 | |
---|
| 1515 | |
---|
| 1516 | |
---|
| 1517 | |
---|
[3802] | 1518 | ! SUBROUTINE interpolate_to_fine_flux |
---|
| 1519 | ! |
---|
| 1520 | ! |
---|
| 1521 | ! USE arrays_3d |
---|
| 1522 | ! USE control_parameters |
---|
| 1523 | ! USE grid_variables |
---|
| 1524 | ! USE indices |
---|
| 1525 | ! USE pegrid |
---|
| 1526 | ! |
---|
| 1527 | ! |
---|
| 1528 | ! IMPLICIT NONE |
---|
| 1529 | ! |
---|
| 1530 | ! INTEGER(iwp) :: i |
---|
| 1531 | ! INTEGER(iwp) :: j |
---|
| 1532 | ! INTEGER(iwp) :: iif |
---|
| 1533 | ! INTEGER(iwp) :: jjf |
---|
| 1534 | ! INTEGER(iwp) :: bottomx |
---|
| 1535 | ! INTEGER(iwp) :: bottomy |
---|
| 1536 | ! INTEGER(iwp) :: topx |
---|
| 1537 | ! INTEGER(iwp) :: topy |
---|
| 1538 | ! REAL(wp) :: eps |
---|
| 1539 | ! REAL(wp) :: alpha |
---|
| 1540 | ! REAL(wp) :: eminus |
---|
| 1541 | ! REAL(wp) :: edot |
---|
| 1542 | ! REAL(wp) :: eplus |
---|
| 1543 | ! REAL(wp), DIMENSION(:,:), ALLOCATABLE :: uswspr |
---|
| 1544 | ! REAL(wp), DIMENSION(:,:), ALLOCATABLE :: vswspr |
---|
| 1545 | ! REAL(wp), DIMENSION(:,:), ALLOCATABLE :: tspr |
---|
| 1546 | ! REAL(wp), DIMENSION(:,:), ALLOCATABLE :: uspr |
---|
| 1547 | ! |
---|
| 1548 | ! ALLOCATE( uswspr(bdims_rem(2,1)-1:bdims_rem(2,2)+1,nxl:nxr) ) |
---|
| 1549 | ! ALLOCATE( vswspr(bdims_rem(2,1)-1:bdims_rem(2,2)+1,nxl:nxr) ) |
---|
| 1550 | ! ALLOCATE( tspr (bdims_rem(2,1)-1:bdims_rem(2,2)+1,nxl:nxr) ) |
---|
| 1551 | ! ALLOCATE( uspr (bdims_rem(2,1)-1:bdims_rem(2,2)+1,nxl:nxr) ) |
---|
| 1552 | ! |
---|
| 1553 | ! ! |
---|
| 1554 | ! !-- Initialisation of scalar variables (2D) |
---|
| 1555 | ! |
---|
| 1556 | ! ! |
---|
| 1557 | ! !-- Interpolation in x-direction (quadratic, Clark and Farley) |
---|
| 1558 | ! |
---|
| 1559 | ! DO j = bdims_rem(2,1)-1, bdims_rem(2,2)+1 |
---|
| 1560 | ! DO i = bdims_rem(1,1), bdims_rem(1,2) |
---|
| 1561 | ! |
---|
| 1562 | ! bottomx = (nxf+1)/(nxc+1) * i |
---|
| 1563 | ! topx = (nxf+1)/(nxc+1) * (i+1) - 1 |
---|
| 1564 | ! |
---|
| 1565 | ! DO iif = bottomx, topx |
---|
| 1566 | ! |
---|
| 1567 | ! eps = ( iif * dxf + 0.5 * dxf - i * dxc - 0.5 * dxc ) / dxc |
---|
| 1568 | ! alpha = ( ( dxf / dxc )**2.0 - 1.0 ) / 24.0 |
---|
| 1569 | ! eminus = eps * ( eps - 1.0 ) / 2.0 + alpha |
---|
| 1570 | ! edot = ( 1.0 - eps**2.0 ) - 2.0 * alpha |
---|
| 1571 | ! eplus = eps * ( eps + 1.0 ) / 2.0 + alpha |
---|
| 1572 | ! |
---|
| 1573 | ! uswspr(j,iif) = eminus * work2dusws(j,i-1) & |
---|
| 1574 | ! + edot * work2dusws(j,i) & |
---|
| 1575 | ! + eplus * work2dusws(j,i+1) |
---|
| 1576 | ! |
---|
| 1577 | ! vswspr(j,iif) = eminus * work2dvsws(j,i-1) & |
---|
| 1578 | ! + edot * work2dvsws(j,i) & |
---|
| 1579 | ! + eplus * work2dvsws(j,i+1) |
---|
| 1580 | ! |
---|
| 1581 | ! tspr(j,iif) = eminus * work2dts(j,i-1) & |
---|
| 1582 | ! + edot * work2dts(j,i) & |
---|
| 1583 | ! + eplus * work2dts(j,i+1) |
---|
| 1584 | ! |
---|
| 1585 | ! uspr(j,iif) = eminus * work2dus(j,i-1) & |
---|
| 1586 | ! + edot * work2dus(j,i) & |
---|
| 1587 | ! + eplus * work2dus(j,i+1) |
---|
| 1588 | ! |
---|
| 1589 | ! END DO |
---|
| 1590 | ! |
---|
| 1591 | ! END DO |
---|
| 1592 | ! END DO |
---|
| 1593 | ! |
---|
| 1594 | ! ! |
---|
| 1595 | ! !-- Interpolation in y-direction (quadratic, Clark and Farley) |
---|
| 1596 | ! |
---|
| 1597 | ! DO j = bdims_rem(2,1), bdims_rem(2,2) |
---|
| 1598 | ! |
---|
| 1599 | ! bottomy = (nyf+1)/(nyc+1) * j |
---|
| 1600 | ! topy = (nyf+1)/(nyc+1) * (j+1) - 1 |
---|
| 1601 | ! |
---|
| 1602 | ! DO iif = nxl, nxr |
---|
| 1603 | ! DO jjf = bottomy, topy |
---|
| 1604 | ! |
---|
| 1605 | ! eps = ( jjf * dyf + 0.5 * dyf - j * dyc - 0.5 * dyc ) / dyc |
---|
| 1606 | ! alpha = ( ( dyf / dyc )**2.0 - 1.0 ) / 24.0 |
---|
| 1607 | ! eminus = eps * ( eps - 1.0 ) / 2.0 + alpha |
---|
| 1608 | ! edot = ( 1.0 - eps**2.0 ) - 2.0 * alpha |
---|
| 1609 | ! eplus = eps * ( eps + 1.0 ) / 2.0 + alpha |
---|
| 1610 | ! |
---|
[2712] | 1611 | !! |
---|
| 1612 | !!-- TODO |
---|
| 1613 | !-- variables are not compatible with the new surface layer module |
---|
| 1614 | ! |
---|
| 1615 | ! surf_def_h(0)%usws(jjf,iif) = eminus * uswspr(j-1,if) & |
---|
| 1616 | ! + edot * uswspr(j,iif) & |
---|
| 1617 | ! + eplus * uswspr(j+1,iif) |
---|
| 1618 | ! |
---|
| 1619 | ! surf_def_h(0)%vsws(jjf,iif) = eminus * vswspr(j-1,if) & |
---|
| 1620 | ! + edot * vswspr(j,iif) & |
---|
| 1621 | ! + eplus * vswspr(j+1,iif) |
---|
| 1622 | ! |
---|
| 1623 | ! ts(jjf,iif) = eminus * tspr(j-1,if) & |
---|
| 1624 | ! + edot * tspr(j,iif) & |
---|
| 1625 | ! + eplus * tspr(j+1,iif) |
---|
| 1626 | ! |
---|
| 1627 | ! us(jjf,iif) = eminus * uspr(j-1,if) & |
---|
| 1628 | ! + edot * uspr(j,iif) & |
---|
| 1629 | ! + eplus * uspr(j+1,iif) |
---|
[3802] | 1630 | ! |
---|
| 1631 | ! END DO |
---|
| 1632 | ! END DO |
---|
| 1633 | ! |
---|
| 1634 | ! END DO |
---|
| 1635 | ! |
---|
| 1636 | ! |
---|
| 1637 | ! DEALLOCATE( uswspr, vswspr ) |
---|
| 1638 | ! DEALLOCATE( tspr, uspr ) |
---|
| 1639 | ! |
---|
| 1640 | ! |
---|
| 1641 | ! END SUBROUTINE interpolate_to_fine_flux |
---|
[2365] | 1642 | |
---|
| 1643 | |
---|
[2712] | 1644 | #endif |
---|
[2365] | 1645 | END SUBROUTINE vnest_init_fine |
---|
| 1646 | |
---|
| 1647 | SUBROUTINE vnest_boundary_conds |
---|
[2712] | 1648 | #if defined( __parallel ) |
---|
[2365] | 1649 | !------------------------------------------------------------------------------! |
---|
| 1650 | ! Description: |
---|
| 1651 | ! ------------ |
---|
| 1652 | ! Boundary conditions for the prognostic quantities. |
---|
| 1653 | ! One additional bottom boundary condition is applied for the TKE (=(u*)**2) |
---|
| 1654 | ! in prandtl_fluxes. The cyclic lateral boundary conditions are implicitly |
---|
| 1655 | ! handled in routine exchange_horiz. Pressure boundary conditions are |
---|
| 1656 | ! explicitly set in routines pres, poisfft, poismg and sor. |
---|
| 1657 | !------------------------------------------------------------------------------! |
---|
| 1658 | |
---|
| 1659 | USE arrays_3d |
---|
| 1660 | USE control_parameters |
---|
| 1661 | USE grid_variables |
---|
| 1662 | USE indices |
---|
| 1663 | USE pegrid |
---|
| 1664 | |
---|
| 1665 | |
---|
| 1666 | IMPLICIT NONE |
---|
| 1667 | |
---|
[2712] | 1668 | INTEGER(iwp) :: i |
---|
| 1669 | INTEGER(iwp) :: j |
---|
| 1670 | INTEGER(iwp) :: iif |
---|
| 1671 | INTEGER(iwp) :: jjf |
---|
[2365] | 1672 | |
---|
| 1673 | |
---|
| 1674 | ! |
---|
| 1675 | !-- vnest: top boundary conditions |
---|
| 1676 | |
---|
| 1677 | IF ( coupling_mode == 'vnested_crse' ) THEN |
---|
| 1678 | !-- Send data to fine grid for TOP BC |
---|
| 1679 | |
---|
| 1680 | offset(1) = ( pdims_partner(1) / pdims(1) ) * pcoord(1) |
---|
| 1681 | offset(2) = ( pdims_partner(2) / pdims(2) ) * pcoord(2) |
---|
| 1682 | |
---|
| 1683 | do j = 0, ( pdims_partner(2) / pdims(2) ) - 1 |
---|
| 1684 | do i = 0, ( pdims_partner(1) / pdims(1) ) - 1 |
---|
| 1685 | map_coord(1) = i+offset(1) |
---|
| 1686 | map_coord(2) = j+offset(2) |
---|
| 1687 | |
---|
| 1688 | target_idex = f_rnk_lst(map_coord(1),map_coord(2)) + numprocs |
---|
| 1689 | |
---|
| 1690 | bdims (1,1) = c2f_dims_cg (0,map_coord(1),map_coord(2)) |
---|
| 1691 | bdims (1,2) = c2f_dims_cg (1,map_coord(1),map_coord(2)) |
---|
| 1692 | bdims (2,1) = c2f_dims_cg (2,map_coord(1),map_coord(2)) |
---|
| 1693 | bdims (2,2) = c2f_dims_cg (3,map_coord(1),map_coord(2)) |
---|
| 1694 | bdims (3,1) = c2f_dims_cg (4,map_coord(1),map_coord(2)) |
---|
| 1695 | bdims (3,2) = c2f_dims_cg (5,map_coord(1),map_coord(2)) |
---|
| 1696 | |
---|
| 1697 | n_cell_c = ( (bdims(1,2)-bdims(1,1)) + 3 ) * & |
---|
| 1698 | ( (bdims(2,2)-bdims(2,1)) + 3 ) * & |
---|
| 1699 | ( (bdims(3,2)-bdims(3,1)) + 1 ) |
---|
| 1700 | |
---|
| 1701 | CALL MPI_SEND(u (bdims(3,1), bdims(2,1)-1, bdims(1,1)-1), & |
---|
| 1702 | 1, TYPE_VNEST_BC, target_idex, & |
---|
| 1703 | 201, comm_inter, ierr) |
---|
| 1704 | |
---|
| 1705 | CALL MPI_SEND(v(bdims(3,1), bdims(2,1)-1, bdims(1,1)-1),& |
---|
| 1706 | 1, TYPE_VNEST_BC, target_idex, & |
---|
| 1707 | 202, comm_inter, ierr) |
---|
| 1708 | |
---|
| 1709 | CALL MPI_SEND(w(bdims(3,1), bdims(2,1)-1, bdims(1,1)-1),& |
---|
| 1710 | 1, TYPE_VNEST_BC, target_idex, & |
---|
| 1711 | 203, comm_inter, ierr) |
---|
| 1712 | |
---|
| 1713 | CALL MPI_SEND(pt(bdims(3,1), bdims(2,1)-1, bdims(1,1)-1),& |
---|
| 1714 | 1, TYPE_VNEST_BC, target_idex, & |
---|
| 1715 | 205, comm_inter, ierr) |
---|
| 1716 | |
---|
| 1717 | IF ( humidity ) THEN |
---|
| 1718 | CALL MPI_SEND(q(bdims(3,1), bdims(2,1)-1, bdims(1,1)-1),& |
---|
| 1719 | 1, TYPE_VNEST_BC, target_idex, & |
---|
| 1720 | 209, comm_inter, ierr) |
---|
| 1721 | ENDIF |
---|
| 1722 | |
---|
| 1723 | end do |
---|
| 1724 | end do |
---|
| 1725 | |
---|
| 1726 | ELSEIF ( coupling_mode == 'vnested_fine' ) THEN |
---|
| 1727 | !-- Receive data from coarse grid for TOP BC |
---|
| 1728 | |
---|
| 1729 | offset(1) = pcoord(1) / ( pdims(1)/pdims_partner(1) ) |
---|
| 1730 | offset(2) = pcoord(2) / ( pdims(2)/pdims_partner(2) ) |
---|
| 1731 | map_coord(1) = offset(1) |
---|
| 1732 | map_coord(2) = offset(2) |
---|
| 1733 | target_idex = c_rnk_lst(map_coord(1),map_coord(2)) |
---|
| 1734 | |
---|
| 1735 | bdims_rem (1,1) = c2f_dims_fg(0) |
---|
| 1736 | bdims_rem (1,2) = c2f_dims_fg(1) |
---|
| 1737 | bdims_rem (2,1) = c2f_dims_fg(2) |
---|
| 1738 | bdims_rem (2,2) = c2f_dims_fg(3) |
---|
| 1739 | bdims_rem (3,1) = c2f_dims_fg(4) |
---|
| 1740 | bdims_rem (3,2) = c2f_dims_fg(5) |
---|
| 1741 | |
---|
| 1742 | n_cell_c = & |
---|
| 1743 | ( (bdims_rem(1,2)-bdims_rem(1,1)) + 3 ) * & |
---|
| 1744 | ( (bdims_rem(2,2)-bdims_rem(2,1)) + 3 ) * & |
---|
| 1745 | ( (bdims_rem(3,2)-bdims_rem(3,1)) + 1 ) |
---|
| 1746 | |
---|
| 1747 | ALLOCATE( work3d ( & |
---|
| 1748 | bdims_rem(3,1) :bdims_rem(3,2) , & |
---|
| 1749 | bdims_rem(2,1)-1:bdims_rem(2,2)+1, & |
---|
| 1750 | bdims_rem(1,1)-1:bdims_rem(1,2)+1)) |
---|
| 1751 | |
---|
| 1752 | |
---|
| 1753 | CALL MPI_RECV( work3d ,n_cell_c, MPI_REAL, target_idex, 201, & |
---|
| 1754 | comm_inter,status, ierr ) |
---|
| 1755 | interpol3d => u |
---|
| 1756 | call vnest_set_topbc_u |
---|
| 1757 | |
---|
| 1758 | CALL MPI_RECV( work3d ,n_cell_c, MPI_REAL, target_idex, 202, & |
---|
| 1759 | comm_inter,status, ierr ) |
---|
| 1760 | interpol3d => v |
---|
| 1761 | call vnest_set_topbc_v |
---|
| 1762 | |
---|
| 1763 | CALL MPI_RECV( work3d ,n_cell_c, MPI_REAL, target_idex, 203, & |
---|
| 1764 | comm_inter,status, ierr ) |
---|
| 1765 | interpol3d => w |
---|
| 1766 | call vnest_set_topbc_w |
---|
| 1767 | |
---|
| 1768 | CALL MPI_RECV( work3d,n_cell_c, MPI_REAL, target_idex, 205, & |
---|
| 1769 | comm_inter,status, ierr ) |
---|
| 1770 | interpol3d => pt |
---|
| 1771 | call vnest_set_topbc_s |
---|
| 1772 | |
---|
| 1773 | IF ( humidity ) THEN |
---|
[2514] | 1774 | CALL MPI_RECV( work3d,n_cell_c, MPI_REAL, target_idex, 209, & |
---|
[2365] | 1775 | comm_inter,status, ierr ) |
---|
| 1776 | interpol3d => q |
---|
| 1777 | call vnest_set_topbc_s |
---|
| 1778 | |
---|
| 1779 | CALL exchange_horiz_2d(q (nzt+1,:,:) ) |
---|
| 1780 | ENDIF |
---|
| 1781 | |
---|
| 1782 | !-- TKE Neumann BC for FG top |
---|
[2712] | 1783 | DO jjf = nys, nyn |
---|
| 1784 | DO iif = nxl, nxr |
---|
| 1785 | e(nzt+1,jjf,iif) = e(nzt,jjf,iif) |
---|
[2365] | 1786 | END DO |
---|
| 1787 | END DO |
---|
| 1788 | |
---|
| 1789 | ! |
---|
| 1790 | !-- w level nzt+1 does not impact results. Only to avoid jumps while |
---|
| 1791 | !-- plotting profiles |
---|
| 1792 | w(nzt+1,:,:) = w(nzt,:,:) |
---|
| 1793 | |
---|
| 1794 | CALL exchange_horiz_2d(u (nzt+1,:,:) ) |
---|
| 1795 | CALL exchange_horiz_2d(v (nzt+1,:,:) ) |
---|
| 1796 | CALL exchange_horiz_2d(pt(nzt+1,:,:) ) |
---|
| 1797 | CALL exchange_horiz_2d(e (nzt+1,:,:) ) |
---|
| 1798 | CALL exchange_horiz_2d(w (nzt+1,:,:) ) |
---|
| 1799 | CALL exchange_horiz_2d(w (nzt ,:,:) ) |
---|
| 1800 | |
---|
| 1801 | NULLIFY ( interpol3d ) |
---|
| 1802 | DEALLOCATE ( work3d ) |
---|
| 1803 | |
---|
| 1804 | ENDIF |
---|
| 1805 | |
---|
| 1806 | |
---|
| 1807 | CONTAINS |
---|
| 1808 | |
---|
| 1809 | SUBROUTINE vnest_set_topbc_w |
---|
| 1810 | |
---|
| 1811 | |
---|
| 1812 | USE arrays_3d |
---|
| 1813 | USE control_parameters |
---|
| 1814 | USE grid_variables |
---|
| 1815 | USE indices |
---|
| 1816 | USE pegrid |
---|
| 1817 | |
---|
| 1818 | |
---|
| 1819 | IMPLICIT NONE |
---|
[2712] | 1820 | |
---|
| 1821 | INTEGER(iwp) :: i |
---|
| 1822 | INTEGER(iwp) :: j |
---|
| 1823 | INTEGER(iwp) :: iif |
---|
| 1824 | INTEGER(iwp) :: jjf |
---|
| 1825 | INTEGER(iwp) :: bottomx |
---|
| 1826 | INTEGER(iwp) :: bottomy |
---|
| 1827 | INTEGER(iwp) :: topx |
---|
| 1828 | INTEGER(iwp) :: topy |
---|
| 1829 | REAL(wp) :: eps |
---|
| 1830 | REAL(wp) :: alpha |
---|
| 1831 | REAL(wp) :: eminus |
---|
| 1832 | REAL(wp) :: edot |
---|
| 1833 | REAL(wp) :: eplus |
---|
| 1834 | REAL(wp), DIMENSION(:,:), ALLOCATABLE :: wprf |
---|
[2365] | 1835 | |
---|
| 1836 | |
---|
| 1837 | ALLOCATE( wprf(bdims_rem(2,1)-1:bdims_rem(2,2)+1,nxl:nxr) ) |
---|
| 1838 | |
---|
| 1839 | ! |
---|
| 1840 | !-- Determination of a boundary condition for the vertical velocity component w: |
---|
| 1841 | !-- In this case only interpolation in x- and y- direction is necessary, as the |
---|
| 1842 | !-- boundary w-node of the fine grid coincides with a w-node in the coarse grid. |
---|
| 1843 | !-- For both interpolations the scheme of Clark and Farley is used. |
---|
| 1844 | |
---|
| 1845 | ! |
---|
| 1846 | !-- Interpolation in x-direction |
---|
| 1847 | |
---|
| 1848 | DO j = bdims_rem(2,1)-1, bdims_rem(2,2)+1 |
---|
| 1849 | |
---|
| 1850 | DO i = bdims_rem(1,1), bdims_rem(1,2) |
---|
| 1851 | |
---|
| 1852 | bottomx = (nxf+1)/(nxc+1) * i |
---|
| 1853 | topx = (nxf+1)/(nxc+1) * (i+1) - 1 |
---|
| 1854 | |
---|
[2712] | 1855 | DO iif = bottomx, topx |
---|
[2365] | 1856 | |
---|
[2712] | 1857 | eps = (iif * dxf + 0.5 * dxf - i * dxc - 0.5 * dxc) / dxc |
---|
[2365] | 1858 | alpha = ( (dxf/dxc)**2.0 - 1.0) / 24.0 |
---|
| 1859 | eminus = eps * ( eps - 1.0 ) / 2.0 + alpha |
---|
| 1860 | edot = ( 1.0 - eps**2.0 ) - 2.0 * alpha |
---|
| 1861 | eplus = eps * ( eps + 1.0 ) / 2.0 + alpha |
---|
[2712] | 1862 | wprf(j,iif) = eminus * work3d(bdims_rem(3,1),j,i-1) & |
---|
[2365] | 1863 | + edot * work3d(bdims_rem(3,1),j,i) & |
---|
| 1864 | + eplus * work3d(bdims_rem(3,1),j,i+1) |
---|
| 1865 | |
---|
| 1866 | END DO |
---|
| 1867 | |
---|
| 1868 | END DO |
---|
| 1869 | |
---|
| 1870 | END DO |
---|
| 1871 | |
---|
| 1872 | ! |
---|
| 1873 | !-- Interpolation in y-direction |
---|
| 1874 | |
---|
| 1875 | DO j = bdims_rem(2,1), bdims_rem(2,2) |
---|
| 1876 | |
---|
| 1877 | bottomy = (nyf+1)/(nyc+1) * j |
---|
| 1878 | topy = (nyf+1)/(nyc+1) * (j+1) - 1 |
---|
| 1879 | |
---|
[2712] | 1880 | DO iif = nxl, nxr |
---|
[2365] | 1881 | |
---|
[2712] | 1882 | DO jjf = bottomy, topy |
---|
[2365] | 1883 | |
---|
[2712] | 1884 | eps = (jjf * dyf + 0.5 * dyf - j * dyc - 0.5 * dyc) / dyc |
---|
[2365] | 1885 | |
---|
| 1886 | alpha = ( (dyf/dyc)**2.0 - 1.0) / 24.0 |
---|
| 1887 | |
---|
| 1888 | eminus = eps * ( eps - 1.0 ) / 2.0 + alpha |
---|
| 1889 | |
---|
| 1890 | edot = ( 1.0 - eps**2.0 ) - 2.0 * alpha |
---|
| 1891 | |
---|
| 1892 | eplus = eps * ( eps + 1.0 ) / 2.0 + alpha |
---|
| 1893 | |
---|
[2712] | 1894 | w(nzt,jjf,iif) = eminus * wprf(j-1,iif) & |
---|
| 1895 | + edot * wprf(j,iif) & |
---|
| 1896 | + eplus * wprf(j+1,iif) |
---|
[2365] | 1897 | |
---|
| 1898 | END DO |
---|
| 1899 | |
---|
| 1900 | END DO |
---|
| 1901 | |
---|
| 1902 | END DO |
---|
| 1903 | |
---|
| 1904 | DEALLOCATE( wprf ) |
---|
| 1905 | |
---|
| 1906 | END SUBROUTINE vnest_set_topbc_w |
---|
| 1907 | |
---|
| 1908 | |
---|
| 1909 | SUBROUTINE vnest_set_topbc_u |
---|
| 1910 | |
---|
| 1911 | |
---|
| 1912 | USE arrays_3d |
---|
| 1913 | USE control_parameters |
---|
| 1914 | USE grid_variables |
---|
| 1915 | USE indices |
---|
| 1916 | USE pegrid |
---|
| 1917 | |
---|
| 1918 | |
---|
| 1919 | IMPLICIT NONE |
---|
[2712] | 1920 | |
---|
| 1921 | INTEGER(iwp) :: i |
---|
| 1922 | INTEGER(iwp) :: j |
---|
| 1923 | INTEGER(iwp) :: k |
---|
| 1924 | INTEGER(iwp) :: iif |
---|
| 1925 | INTEGER(iwp) :: jjf |
---|
| 1926 | INTEGER(iwp) :: bottomx |
---|
| 1927 | INTEGER(iwp) :: bottomy |
---|
| 1928 | INTEGER(iwp) :: topx |
---|
| 1929 | INTEGER(iwp) :: topy |
---|
| 1930 | REAL(wp) :: eps |
---|
| 1931 | REAL(wp) :: alpha |
---|
| 1932 | REAL(wp) :: eminus |
---|
| 1933 | REAL(wp) :: edot |
---|
| 1934 | REAL(wp) :: eplus |
---|
| 1935 | REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: uprf |
---|
| 1936 | REAL(wp), DIMENSION(:,:), ALLOCATABLE :: uprs |
---|
[2365] | 1937 | |
---|
| 1938 | ALLOCATE( uprf(bdims_rem(3,1):bdims_rem(3,2),nys:nyn,bdims_rem(1,1)-1:bdims_rem(1,2)+1) ) |
---|
| 1939 | ALLOCATE( uprs(nys:nyn,bdims_rem(1,1)-1:bdims_rem(1,2)+1) ) |
---|
| 1940 | |
---|
| 1941 | |
---|
| 1942 | ! |
---|
| 1943 | !-- Interpolation in y-direction |
---|
| 1944 | |
---|
| 1945 | DO k = bdims_rem(3,1), bdims_rem(3,2) |
---|
| 1946 | DO j = bdims_rem(2,1), bdims_rem(2,2) |
---|
| 1947 | |
---|
| 1948 | bottomy = (nyf+1)/(nyc+1) * j |
---|
| 1949 | topy = (nyf+1)/(nyc+1) * (j+1) - 1 |
---|
| 1950 | |
---|
| 1951 | DO i = bdims_rem(1,1)-1, bdims_rem(1,2)+1 |
---|
[2712] | 1952 | DO jjf = bottomy, topy |
---|
[2365] | 1953 | |
---|
[2712] | 1954 | eps = (jjf * dyf + 0.5 * dyf - j * dyc - 0.5 * dyc) / dyc |
---|
[2365] | 1955 | alpha = ( (dyf/dyc)**2.0 - 1.0) / 24.0 |
---|
| 1956 | eminus = eps * ( eps - 1.0 ) / 2.0 + alpha |
---|
| 1957 | edot = ( 1.0 - eps**2.0 ) - 2.0 * alpha |
---|
| 1958 | eplus = eps * ( eps + 1.0 ) / 2.0 + alpha |
---|
| 1959 | |
---|
[2712] | 1960 | uprf(k,jjf,i) = eminus * work3d(k,j-1,i) & |
---|
[2365] | 1961 | + edot * work3d(k,j,i) & |
---|
| 1962 | + eplus * work3d(k,j+1,i) |
---|
| 1963 | END DO |
---|
| 1964 | END DO |
---|
| 1965 | |
---|
| 1966 | END DO |
---|
| 1967 | END DO |
---|
| 1968 | |
---|
| 1969 | ! |
---|
| 1970 | !-- Interpolation in z-direction |
---|
| 1971 | |
---|
[2712] | 1972 | DO jjf = nys, nyn |
---|
[2365] | 1973 | DO i = bdims_rem(1,1)-1, bdims_rem(1,2)+1 |
---|
| 1974 | eps = ( zuf(nzt+1) - zuc(bdims_rem(3,1)+1) ) / dzc |
---|
| 1975 | alpha = ( (dzf/dzc)**2.0 - 1.0) / 24.0 |
---|
| 1976 | eminus = eps * ( eps - 1.0 ) / 2.0 + alpha |
---|
| 1977 | edot = ( 1.0 - eps**2.0 ) - 2.0 * alpha |
---|
| 1978 | eplus = eps * ( eps + 1.0 ) / 2.0 + alpha |
---|
[2712] | 1979 | uprs(jjf,i) = eminus * uprf(bdims_rem(3,1),jjf,i) & |
---|
| 1980 | + edot * uprf(bdims_rem(3,1)+1,jjf,i) & |
---|
| 1981 | + eplus * uprf(bdims_rem(3,1)+2,jjf,i) |
---|
[2365] | 1982 | END DO |
---|
| 1983 | END DO |
---|
| 1984 | |
---|
| 1985 | ! |
---|
| 1986 | !-- Interpolation in x-direction |
---|
| 1987 | |
---|
[2712] | 1988 | DO jjf = nys, nyn |
---|
[2365] | 1989 | DO i = bdims_rem(1,1), bdims_rem(1,2) |
---|
| 1990 | |
---|
| 1991 | bottomx = (nxf+1)/(nxc+1) * i |
---|
| 1992 | topx = (nxf+1)/(nxc+1) * (i+1) - 1 |
---|
| 1993 | |
---|
[2712] | 1994 | DO iif = bottomx, topx |
---|
| 1995 | u(nzt+1,jjf,iif) = uprs(jjf,i) + ( iif * dxf - i * dxc ) * ( uprs(jjf,i+1) - uprs(jjf,i) ) / dxc |
---|
[2365] | 1996 | END DO |
---|
| 1997 | |
---|
| 1998 | END DO |
---|
| 1999 | END DO |
---|
| 2000 | |
---|
| 2001 | |
---|
| 2002 | |
---|
| 2003 | DEALLOCATE ( uprf, uprs ) |
---|
| 2004 | |
---|
| 2005 | END SUBROUTINE vnest_set_topbc_u |
---|
| 2006 | |
---|
| 2007 | |
---|
| 2008 | SUBROUTINE vnest_set_topbc_v |
---|
| 2009 | |
---|
| 2010 | |
---|
| 2011 | USE arrays_3d |
---|
| 2012 | USE control_parameters |
---|
| 2013 | USE grid_variables |
---|
| 2014 | USE indices |
---|
| 2015 | USE pegrid |
---|
| 2016 | |
---|
| 2017 | |
---|
| 2018 | IMPLICIT NONE |
---|
[2712] | 2019 | |
---|
| 2020 | INTEGER(iwp) :: i |
---|
| 2021 | INTEGER(iwp) :: j |
---|
| 2022 | INTEGER(iwp) :: k |
---|
| 2023 | INTEGER(iwp) :: iif |
---|
| 2024 | INTEGER(iwp) :: jjf |
---|
| 2025 | INTEGER(iwp) :: bottomx |
---|
| 2026 | INTEGER(iwp) :: bottomy |
---|
| 2027 | INTEGER(iwp) :: topx |
---|
| 2028 | INTEGER(iwp) :: topy |
---|
| 2029 | REAL(wp) :: eps |
---|
| 2030 | REAL(wp) :: alpha |
---|
| 2031 | REAL(wp) :: eminus |
---|
| 2032 | REAL(wp) :: edot |
---|
| 2033 | REAL(wp) :: eplus |
---|
| 2034 | REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: vprf |
---|
| 2035 | REAL(wp), DIMENSION(:,:), ALLOCATABLE :: vprs |
---|
[2365] | 2036 | |
---|
| 2037 | |
---|
| 2038 | |
---|
| 2039 | ALLOCATE( vprf(bdims_rem(3,1):bdims_rem(3,2),bdims_rem(2,1)-1:bdims_rem(2,2)+1,nxl:nxr) ) |
---|
| 2040 | ALLOCATE( vprs(bdims_rem(2,1)-1:bdims_rem(2,2)+1,nxl:nxr) ) |
---|
| 2041 | ! |
---|
| 2042 | !-- Determination of a boundary condition for the horizontal velocity component v: |
---|
| 2043 | !-- Interpolation in x- and z-direction is carried out by using the scheme, |
---|
| 2044 | !-- which was derived by Clark and Farley (1984). In y-direction a |
---|
| 2045 | !-- linear interpolation is carried out. |
---|
| 2046 | |
---|
| 2047 | ! |
---|
| 2048 | !-- Interpolation in x-direction |
---|
| 2049 | |
---|
| 2050 | DO k = bdims_rem(3,1), bdims_rem(3,2) |
---|
| 2051 | DO j = bdims_rem(2,1)-1, bdims_rem(2,2)+1 |
---|
| 2052 | DO i = bdims_rem(1,1), bdims_rem(1,2) |
---|
| 2053 | |
---|
| 2054 | bottomx = (nxf+1)/(nxc+1) * i |
---|
| 2055 | topx = (nxf+1)/(nxc+1) * (i+1) - 1 |
---|
| 2056 | |
---|
[2712] | 2057 | DO iif = bottomx, topx |
---|
[2365] | 2058 | |
---|
[2712] | 2059 | eps = (iif * dxf + 0.5 * dxf - i * dxc - 0.5 * dxc) / dxc |
---|
[2365] | 2060 | alpha = ( (dxf/dxc)**2.0 - 1.0) / 24.0 |
---|
| 2061 | eminus = eps * ( eps - 1.0 ) / 2.0 + alpha |
---|
| 2062 | edot = ( 1.0 - eps**2.0 ) - 2.0 * alpha |
---|
| 2063 | eplus = eps * ( eps + 1.0 ) / 2.0 + alpha |
---|
[2712] | 2064 | vprf(k,j,iif) = eminus * work3d(k,j,i-1) & |
---|
[2365] | 2065 | + edot * work3d(k,j,i) & |
---|
| 2066 | + eplus * work3d(k,j,i+1) |
---|
| 2067 | END DO |
---|
| 2068 | |
---|
| 2069 | END DO |
---|
| 2070 | END DO |
---|
| 2071 | END DO |
---|
| 2072 | |
---|
| 2073 | ! |
---|
| 2074 | !-- Interpolation in z-direction |
---|
| 2075 | |
---|
| 2076 | DO j = bdims_rem(2,1)-1, bdims_rem(2,2)+1 |
---|
[2712] | 2077 | DO iif = nxl, nxr |
---|
[2365] | 2078 | |
---|
| 2079 | eps = ( zuf(nzt+1) - zuc(bdims_rem(3,1)+1) ) / dzc |
---|
| 2080 | alpha = ( (dzf/dzc)**2.0 - 1.0) / 24.0 |
---|
| 2081 | eminus = eps * ( eps - 1.0 ) / 2.0 + alpha |
---|
| 2082 | edot = ( 1.0 - eps**2.0 ) - 2.0 * alpha |
---|
| 2083 | eplus = eps * ( eps + 1.0 ) / 2.0 + alpha |
---|
[2712] | 2084 | vprs(j,iif) = eminus * vprf(bdims_rem(3,1),j,iif) & |
---|
| 2085 | + edot * vprf(bdims_rem(3,1)+1,j,iif) & |
---|
| 2086 | + eplus * vprf(bdims_rem(3,1)+2,j,iif) |
---|
[2365] | 2087 | |
---|
| 2088 | END DO |
---|
| 2089 | END DO |
---|
| 2090 | |
---|
| 2091 | ! |
---|
| 2092 | !-- Interpolation in y-direction |
---|
| 2093 | |
---|
| 2094 | DO j = bdims_rem(2,1), bdims_rem(2,2) |
---|
[2712] | 2095 | DO iif = nxl, nxr |
---|
[2365] | 2096 | |
---|
| 2097 | bottomy = (nyf+1)/(nyc+1) * j |
---|
| 2098 | topy = (nyf+1)/(nyc+1) * (j+1) - 1 |
---|
| 2099 | |
---|
[2712] | 2100 | DO jjf = bottomy, topy |
---|
[2365] | 2101 | |
---|
[2712] | 2102 | v(nzt+1,jjf,iif) = vprs(j,iif) + ( jjf * dyf - j * dyc ) * ( vprs(j+1,iif) - vprs(j,iif) ) / dyc |
---|
[2365] | 2103 | |
---|
| 2104 | END DO |
---|
| 2105 | END DO |
---|
| 2106 | END DO |
---|
| 2107 | |
---|
| 2108 | |
---|
| 2109 | DEALLOCATE ( vprf, vprs) |
---|
| 2110 | |
---|
| 2111 | |
---|
| 2112 | |
---|
| 2113 | END SUBROUTINE vnest_set_topbc_v |
---|
| 2114 | |
---|
| 2115 | |
---|
| 2116 | SUBROUTINE vnest_set_topbc_s |
---|
| 2117 | |
---|
| 2118 | |
---|
| 2119 | USE arrays_3d |
---|
| 2120 | USE control_parameters |
---|
| 2121 | USE grid_variables |
---|
| 2122 | USE indices |
---|
| 2123 | USE pegrid |
---|
| 2124 | |
---|
| 2125 | |
---|
| 2126 | IMPLICIT NONE |
---|
[2712] | 2127 | |
---|
| 2128 | INTEGER(iwp) :: i |
---|
| 2129 | INTEGER(iwp) :: j |
---|
| 2130 | INTEGER(iwp) :: k |
---|
| 2131 | INTEGER(iwp) :: iif |
---|
| 2132 | INTEGER(iwp) :: jjf |
---|
| 2133 | INTEGER(iwp) :: bottomx |
---|
| 2134 | INTEGER(iwp) :: bottomy |
---|
| 2135 | INTEGER(iwp) :: topx |
---|
| 2136 | INTEGER(iwp) :: topy |
---|
| 2137 | REAL(wp) :: eps |
---|
| 2138 | REAL(wp) :: alpha |
---|
| 2139 | REAL(wp) :: eminus |
---|
| 2140 | REAL(wp) :: edot |
---|
| 2141 | REAL(wp) :: eplus |
---|
| 2142 | REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: ptprf |
---|
| 2143 | REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: ptprs |
---|
[2365] | 2144 | |
---|
| 2145 | |
---|
| 2146 | |
---|
| 2147 | ALLOCATE( ptprf(bdims_rem(3,1):bdims_rem(3,2),bdims_rem(2,1)-1:bdims_rem(2,2)+1,nxl:nxr) ) |
---|
| 2148 | ALLOCATE( ptprs(bdims_rem(3,1):bdims_rem(3,2),nys:nyn,nxl:nxr) ) |
---|
| 2149 | |
---|
| 2150 | ! |
---|
| 2151 | !-- Determination of a boundary condition for the potential temperature pt: |
---|
| 2152 | !-- The scheme derived by Clark and Farley can be used in all three dimensions. |
---|
| 2153 | |
---|
| 2154 | ! |
---|
| 2155 | !-- Interpolation in x-direction |
---|
| 2156 | |
---|
| 2157 | DO k = bdims_rem(3,1), bdims_rem(3,2) |
---|
| 2158 | |
---|
| 2159 | DO j = bdims_rem(2,1)-1, bdims_rem(2,2)+1 |
---|
| 2160 | |
---|
| 2161 | DO i = bdims_rem(1,1), bdims_rem(1,2) |
---|
| 2162 | |
---|
| 2163 | bottomx = (nxf+1)/(nxc+1) * i |
---|
| 2164 | topx = (nxf+1)/(nxc+1) *(i+1) - 1 |
---|
| 2165 | |
---|
[2712] | 2166 | DO iif = bottomx, topx |
---|
[2365] | 2167 | |
---|
[2712] | 2168 | eps = (iif * dxf + 0.5 * dxf - i * dxc - 0.5 * dxc) / dxc |
---|
[2365] | 2169 | |
---|
| 2170 | alpha = ( (dxf/dxc)**2.0 - 1.0) / 24.0 |
---|
| 2171 | |
---|
| 2172 | eminus = eps * (eps - 1.0 ) / 2.0 + alpha |
---|
| 2173 | |
---|
| 2174 | edot = ( 1.0 - eps**2.0 ) - 2.0 * alpha |
---|
| 2175 | |
---|
| 2176 | eplus = eps * ( eps + 1.0 ) / 2.0 + alpha |
---|
| 2177 | |
---|
[2712] | 2178 | ptprf(k,j,iif) = eminus * work3d(k,j,i-1) & |
---|
[2365] | 2179 | + edot * work3d(k,j,i) & |
---|
| 2180 | + eplus * work3d(k,j,i+1) |
---|
| 2181 | END DO |
---|
| 2182 | |
---|
| 2183 | END DO |
---|
| 2184 | |
---|
| 2185 | END DO |
---|
| 2186 | |
---|
| 2187 | END DO |
---|
| 2188 | |
---|
| 2189 | ! |
---|
| 2190 | !-- Interpolation in y-direction |
---|
| 2191 | |
---|
| 2192 | DO k = bdims_rem(3,1), bdims_rem(3,2) |
---|
| 2193 | |
---|
| 2194 | DO j = bdims_rem(2,1), bdims_rem(2,2) |
---|
| 2195 | |
---|
| 2196 | bottomy = (nyf+1)/(nyc+1) * j |
---|
| 2197 | topy = (nyf+1)/(nyc+1) * (j+1) - 1 |
---|
| 2198 | |
---|
[2712] | 2199 | DO iif = nxl, nxr |
---|
[2365] | 2200 | |
---|
[2712] | 2201 | DO jjf = bottomy, topy |
---|
[2365] | 2202 | |
---|
[2712] | 2203 | eps = (jjf * dyf + 0.5 * dyf - j * dyc - 0.5 * dyc) / dyc |
---|
[2365] | 2204 | |
---|
| 2205 | alpha = ( (dyf/dyc)**2.0 - 1.0) / 24.0 |
---|
| 2206 | |
---|
| 2207 | eminus = eps * (eps - 1.0) / 2.0 + alpha |
---|
| 2208 | |
---|
| 2209 | edot = ( 1.0 - eps**2.0 ) - 2.0 * alpha |
---|
| 2210 | |
---|
| 2211 | eplus = eps * ( eps + 1.0 ) / 2.0 + alpha |
---|
| 2212 | |
---|
[2712] | 2213 | ptprs(k,jjf,iif) = eminus * ptprf(k,j-1,iif) & |
---|
| 2214 | + edot * ptprf(k,j,iif) & |
---|
| 2215 | + eplus * ptprf(k,j+1,iif) |
---|
[2365] | 2216 | END DO |
---|
| 2217 | |
---|
| 2218 | END DO |
---|
| 2219 | |
---|
| 2220 | END DO |
---|
| 2221 | |
---|
| 2222 | END DO |
---|
| 2223 | |
---|
| 2224 | ! |
---|
| 2225 | !-- Interpolation in z-direction |
---|
| 2226 | |
---|
[2712] | 2227 | DO jjf = nys, nyn |
---|
| 2228 | DO iif = nxl, nxr |
---|
[2365] | 2229 | |
---|
| 2230 | eps = ( zuf(nzt+1) - zuc(bdims_rem(3,1)+1) ) / dzc |
---|
| 2231 | |
---|
| 2232 | alpha = ( (dzf/dzc)**2.0 - 1.0) / 24.0 |
---|
| 2233 | |
---|
| 2234 | eminus = eps * ( eps - 1.0 ) / 2.0 + alpha |
---|
| 2235 | |
---|
| 2236 | edot = ( 1.0 - eps**2.0 ) - 2.0 * alpha |
---|
| 2237 | |
---|
| 2238 | eplus = eps * ( eps + 1.0 ) / 2.0 + alpha |
---|
| 2239 | |
---|
[2712] | 2240 | interpol3d (nzt+1,jjf,iif) = eminus * ptprs(bdims_rem(3,1),jjf,iif) & |
---|
| 2241 | + edot * ptprs(bdims_rem(3,1)+1,jjf,iif) & |
---|
| 2242 | + eplus * ptprs(bdims_rem(3,1)+2,jjf,iif) |
---|
[2365] | 2243 | |
---|
| 2244 | END DO |
---|
| 2245 | END DO |
---|
| 2246 | |
---|
| 2247 | DEALLOCATE ( ptprf, ptprs ) |
---|
| 2248 | |
---|
| 2249 | |
---|
| 2250 | |
---|
| 2251 | END SUBROUTINE vnest_set_topbc_s |
---|
[2712] | 2252 | #endif |
---|
[2365] | 2253 | END SUBROUTINE vnest_boundary_conds |
---|
| 2254 | |
---|
| 2255 | |
---|
| 2256 | SUBROUTINE vnest_boundary_conds_khkm |
---|
[2712] | 2257 | #if defined( __parallel ) |
---|
[2365] | 2258 | |
---|
| 2259 | !--------------------------------------------------------------------------------! |
---|
| 2260 | ! Description: |
---|
| 2261 | ! ------------ |
---|
| 2262 | ! Boundary conditions for the prognostic quantities. |
---|
| 2263 | ! One additional bottom boundary condition is applied for the TKE (=(u*)**2) |
---|
| 2264 | ! in prandtl_fluxes. The cyclic lateral boundary conditions are implicitly |
---|
| 2265 | ! handled in routine exchange_horiz. Pressure boundary conditions are |
---|
| 2266 | ! explicitly set in routines pres, poisfft, poismg and sor. |
---|
| 2267 | !------------------------------------------------------------------------------! |
---|
| 2268 | |
---|
| 2269 | USE arrays_3d |
---|
| 2270 | USE control_parameters |
---|
| 2271 | USE grid_variables |
---|
| 2272 | USE indices |
---|
| 2273 | USE pegrid |
---|
| 2274 | |
---|
| 2275 | |
---|
| 2276 | IMPLICIT NONE |
---|
| 2277 | |
---|
[2712] | 2278 | INTEGER(iwp) :: i |
---|
| 2279 | INTEGER(iwp) :: j |
---|
| 2280 | INTEGER(iwp) :: iif |
---|
| 2281 | INTEGER(iwp) :: jjf |
---|
[2365] | 2282 | |
---|
| 2283 | |
---|
| 2284 | IF ( coupling_mode == 'vnested_crse' ) THEN |
---|
| 2285 | ! Send data to fine grid for TOP BC |
---|
| 2286 | |
---|
| 2287 | offset(1) = ( pdims_partner(1) / pdims(1) ) * pcoord(1) |
---|
| 2288 | offset(2) = ( pdims_partner(2) / pdims(2) ) * pcoord(2) |
---|
| 2289 | |
---|
| 2290 | do j = 0, ( pdims_partner(2) / pdims(2) ) - 1 |
---|
| 2291 | do i = 0, ( pdims_partner(1) / pdims(1) ) - 1 |
---|
| 2292 | map_coord(1) = i+offset(1) |
---|
| 2293 | map_coord(2) = j+offset(2) |
---|
| 2294 | |
---|
| 2295 | target_idex = f_rnk_lst(map_coord(1),map_coord(2)) + numprocs |
---|
| 2296 | |
---|
| 2297 | CALL MPI_RECV( bdims_rem, 6, MPI_INTEGER, target_idex, 10, & |
---|
| 2298 | comm_inter,status, ierr ) |
---|
| 2299 | |
---|
| 2300 | bdims (1,1) = bdims_rem (1,1) / cfratio(1) |
---|
| 2301 | bdims (1,2) = bdims_rem (1,2) / cfratio(1) |
---|
| 2302 | bdims (2,1) = bdims_rem (2,1) / cfratio(2) |
---|
| 2303 | bdims (2,2) = bdims_rem (2,2) / cfratio(2) |
---|
| 2304 | bdims (3,1) = bdims_rem (3,2) / cfratio(3) |
---|
| 2305 | bdims (3,2) = bdims (3,1) + 2 |
---|
| 2306 | |
---|
| 2307 | CALL MPI_SEND( bdims, 6, MPI_INTEGER, target_idex, 9, & |
---|
| 2308 | comm_inter, ierr ) |
---|
| 2309 | |
---|
| 2310 | |
---|
| 2311 | n_cell_c = ( (bdims(1,2)-bdims(1,1)) + 3 ) * & |
---|
| 2312 | ( (bdims(2,2)-bdims(2,1)) + 3 ) * & |
---|
| 2313 | ( (bdims(3,2)-bdims(3,1)) + 1 ) |
---|
| 2314 | |
---|
| 2315 | CALL MPI_SEND(kh(bdims(3,1) :bdims(3,2) , & |
---|
| 2316 | bdims(2,1)-1:bdims(2,2)+1, & |
---|
| 2317 | bdims(1,1)-1:bdims(1,2)+1),& |
---|
| 2318 | n_cell_c, MPI_REAL, target_idex, & |
---|
[2514] | 2319 | 207, comm_inter, ierr) |
---|
[2365] | 2320 | |
---|
| 2321 | CALL MPI_SEND(km(bdims(3,1) :bdims(3,2) , & |
---|
| 2322 | bdims(2,1)-1:bdims(2,2)+1, & |
---|
| 2323 | bdims(1,1)-1:bdims(1,2)+1),& |
---|
| 2324 | n_cell_c, MPI_REAL, target_idex, & |
---|
[2514] | 2325 | 208, comm_inter, ierr) |
---|
[2365] | 2326 | |
---|
| 2327 | |
---|
| 2328 | |
---|
| 2329 | end do |
---|
| 2330 | end do |
---|
| 2331 | |
---|
| 2332 | ELSEIF ( coupling_mode == 'vnested_fine' ) THEN |
---|
| 2333 | ! Receive data from coarse grid for TOP BC |
---|
| 2334 | |
---|
| 2335 | offset(1) = pcoord(1) / ( pdims(1)/pdims_partner(1) ) |
---|
| 2336 | offset(2) = pcoord(2) / ( pdims(2)/pdims_partner(2) ) |
---|
| 2337 | map_coord(1) = offset(1) |
---|
| 2338 | map_coord(2) = offset(2) |
---|
| 2339 | target_idex = c_rnk_lst(map_coord(1),map_coord(2)) |
---|
| 2340 | |
---|
| 2341 | bdims (1,1) = nxl |
---|
| 2342 | bdims (1,2) = nxr |
---|
| 2343 | bdims (2,1) = nys |
---|
| 2344 | bdims (2,2) = nyn |
---|
| 2345 | bdims (3,1) = nzb |
---|
| 2346 | bdims (3,2) = nzt |
---|
| 2347 | |
---|
| 2348 | CALL MPI_SEND( bdims, 6, MPI_INTEGER, target_idex, 10, & |
---|
| 2349 | comm_inter, ierr ) |
---|
| 2350 | |
---|
| 2351 | CALL MPI_RECV( bdims_rem, 6, MPI_INTEGER, target_idex, 9, & |
---|
| 2352 | comm_inter,status, ierr ) |
---|
| 2353 | |
---|
| 2354 | n_cell_c = ( (bdims_rem(1,2)-bdims_rem(1,1)) + 3 ) * & |
---|
| 2355 | ( (bdims_rem(2,2)-bdims_rem(2,1)) + 3 ) * & |
---|
| 2356 | ( (bdims_rem(3,2)-bdims_rem(3,1)) + 1 ) |
---|
| 2357 | |
---|
| 2358 | ALLOCATE( work3d ( bdims_rem(3,1) :bdims_rem(3,2) , & |
---|
| 2359 | bdims_rem(2,1)-1:bdims_rem(2,2)+1, & |
---|
| 2360 | bdims_rem(1,1)-1:bdims_rem(1,2)+1)) |
---|
| 2361 | |
---|
| 2362 | |
---|
| 2363 | CALL MPI_RECV( work3d,n_cell_c, MPI_REAL, target_idex, 207, & |
---|
| 2364 | comm_inter,status, ierr ) |
---|
| 2365 | |
---|
| 2366 | ! Neumann BC for FG kh |
---|
[2712] | 2367 | DO jjf = nys, nyn |
---|
| 2368 | DO iif = nxl, nxr |
---|
| 2369 | kh(nzt+1,jjf,iif) = kh(nzt,jjf,iif) |
---|
[2365] | 2370 | END DO |
---|
| 2371 | END DO |
---|
| 2372 | |
---|
| 2373 | CALL MPI_RECV( work3d,n_cell_c, MPI_REAL, target_idex, 208, & |
---|
| 2374 | comm_inter,status, ierr ) |
---|
| 2375 | |
---|
| 2376 | ! Neumann BC for FG kh |
---|
[2712] | 2377 | DO jjf = nys, nyn |
---|
| 2378 | DO iif = nxl, nxr |
---|
| 2379 | km(nzt+1,jjf,iif) = km(nzt,jjf,iif) |
---|
[2365] | 2380 | END DO |
---|
| 2381 | END DO |
---|
| 2382 | |
---|
| 2383 | |
---|
| 2384 | ! |
---|
| 2385 | !-- The following evaluation can only be performed, if the fine grid is situated below the inversion |
---|
[2712] | 2386 | !! DO jjf = nys-1, nyn+1 |
---|
| 2387 | !! DO iif = nxl-1, nxr+1 |
---|
[2365] | 2388 | !! |
---|
[2712] | 2389 | !! km(nzt+1,jjf,iif) = 0.1 * l_grid(nzt+1) * SQRT( e(nzt+1,jjf,iif) ) |
---|
| 2390 | !! kh(nzt+1,jjf,iif) = 3.0 * km(nzt+1,jjf,iif) |
---|
[2365] | 2391 | !! |
---|
| 2392 | !! END DO |
---|
| 2393 | !! END DO |
---|
| 2394 | |
---|
| 2395 | CALL exchange_horiz_2d(km(nzt+1,:,:) ) |
---|
| 2396 | CALL exchange_horiz_2d(kh(nzt+1,:,:) ) |
---|
| 2397 | |
---|
| 2398 | DEALLOCATE ( work3d ) |
---|
| 2399 | |
---|
| 2400 | ENDIF |
---|
| 2401 | |
---|
| 2402 | |
---|
[3802] | 2403 | ! CONTAINS |
---|
| 2404 | ! |
---|
| 2405 | ! SUBROUTINE vnest_set_topbc_kh |
---|
| 2406 | ! |
---|
| 2407 | ! |
---|
| 2408 | ! USE arrays_3d |
---|
| 2409 | ! USE control_parameters |
---|
| 2410 | ! USE grid_variables |
---|
| 2411 | ! USE indices |
---|
| 2412 | ! USE pegrid |
---|
| 2413 | ! |
---|
| 2414 | ! |
---|
| 2415 | ! IMPLICIT NONE |
---|
| 2416 | ! |
---|
| 2417 | ! INTEGER(iwp) :: i |
---|
| 2418 | ! INTEGER(iwp) :: j |
---|
| 2419 | ! INTEGER(iwp) :: k |
---|
| 2420 | ! INTEGER(iwp) :: iif |
---|
| 2421 | ! INTEGER(iwp) :: jjf |
---|
| 2422 | ! INTEGER(iwp) :: bottomx |
---|
| 2423 | ! INTEGER(iwp) :: bottomy |
---|
| 2424 | ! INTEGER(iwp) :: topx |
---|
| 2425 | ! INTEGER(iwp) :: topy |
---|
| 2426 | ! REAL(wp) :: eps |
---|
| 2427 | ! REAL(wp) :: alpha |
---|
| 2428 | ! REAL(wp) :: eminus |
---|
| 2429 | ! REAL(wp) :: edot |
---|
| 2430 | ! REAL(wp) :: eplus |
---|
| 2431 | ! REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: ptprf |
---|
| 2432 | ! REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: ptprs |
---|
| 2433 | ! |
---|
| 2434 | ! |
---|
| 2435 | ! |
---|
| 2436 | ! ALLOCATE( ptprf(bdims_rem(3,1):bdims_rem(3,2),bdims_rem(2,1)-1:bdims_rem(2,2)+1,nxl:nxr) ) |
---|
| 2437 | ! ALLOCATE( ptprs(bdims_rem(3,1):bdims_rem(3,2),nys:nyn,nxl:nxr) ) |
---|
| 2438 | ! |
---|
| 2439 | ! ! |
---|
| 2440 | ! !-- Determination of a boundary condition for the potential temperature pt: |
---|
| 2441 | ! !-- The scheme derived by Clark and Farley can be used in all three dimensions. |
---|
| 2442 | ! |
---|
| 2443 | ! ! |
---|
| 2444 | ! !-- Interpolation in x-direction |
---|
| 2445 | ! |
---|
| 2446 | ! DO k = bdims_rem(3,1), bdims_rem(3,2) |
---|
| 2447 | ! |
---|
| 2448 | ! DO j = bdims_rem(2,1)-1, bdims_rem(2,2)+1 |
---|
| 2449 | ! |
---|
| 2450 | ! DO i = bdims_rem(1,1), bdims_rem(1,2) |
---|
| 2451 | ! |
---|
| 2452 | ! bottomx = (nxf+1)/(nxc+1) * i |
---|
| 2453 | ! topx = (nxf+1)/(nxc+1) *(i+1) - 1 |
---|
| 2454 | ! |
---|
| 2455 | ! DO iif = bottomx, topx |
---|
| 2456 | ! |
---|
| 2457 | ! eps = (iif * dxf + 0.5 * dxf - i * dxc - 0.5 * dxc) / dxc |
---|
| 2458 | ! |
---|
| 2459 | ! alpha = ( (dxf/dxc)**2.0 - 1.0) / 24.0 |
---|
| 2460 | ! |
---|
| 2461 | ! eminus = eps * (eps - 1.0 ) / 2.0 + alpha |
---|
| 2462 | ! |
---|
| 2463 | ! edot = ( 1.0 - eps**2.0 ) - 2.0 * alpha |
---|
| 2464 | ! |
---|
| 2465 | ! eplus = eps * ( eps + 1.0 ) / 2.0 + alpha |
---|
| 2466 | ! |
---|
| 2467 | ! ptprf(k,j,iif) = eminus * work3d(k,j,i-1) & |
---|
| 2468 | ! + edot * work3d(k,j,i) & |
---|
| 2469 | ! + eplus * work3d(k,j,i+1) |
---|
| 2470 | ! END DO |
---|
| 2471 | ! |
---|
| 2472 | ! END DO |
---|
| 2473 | ! |
---|
| 2474 | ! END DO |
---|
| 2475 | ! |
---|
| 2476 | ! END DO |
---|
| 2477 | ! |
---|
| 2478 | ! ! |
---|
| 2479 | ! !-- Interpolation in y-direction |
---|
| 2480 | ! |
---|
| 2481 | ! DO k = bdims_rem(3,1), bdims_rem(3,2) |
---|
| 2482 | ! |
---|
| 2483 | ! DO j = bdims_rem(2,1), bdims_rem(2,2) |
---|
| 2484 | ! |
---|
| 2485 | ! bottomy = (nyf+1)/(nyc+1) * j |
---|
| 2486 | ! topy = (nyf+1)/(nyc+1) * (j+1) - 1 |
---|
| 2487 | ! |
---|
| 2488 | ! DO iif = nxl, nxr |
---|
| 2489 | ! |
---|
| 2490 | ! DO jjf = bottomy, topy |
---|
| 2491 | ! |
---|
| 2492 | ! eps = (jjf * dyf + 0.5 * dyf - j * dyc - 0.5 * dyc) / dyc |
---|
| 2493 | ! |
---|
| 2494 | ! alpha = ( (dyf/dyc)**2.0 - 1.0) / 24.0 |
---|
| 2495 | ! |
---|
| 2496 | ! eminus = eps * (eps - 1.0) / 2.0 + alpha |
---|
| 2497 | ! |
---|
| 2498 | ! edot = ( 1.0 - eps**2.0 ) - 2.0 * alpha |
---|
| 2499 | ! |
---|
| 2500 | ! eplus = eps * ( eps + 1.0 ) / 2.0 + alpha |
---|
| 2501 | ! |
---|
| 2502 | ! ptprs(k,jjf,iif) = eminus * ptprf(k,j-1,iif) & |
---|
| 2503 | ! + edot * ptprf(k,j,iif) & |
---|
| 2504 | ! + eplus * ptprf(k,j+1,iif) |
---|
| 2505 | ! END DO |
---|
| 2506 | ! |
---|
| 2507 | ! END DO |
---|
| 2508 | ! |
---|
| 2509 | ! END DO |
---|
| 2510 | ! |
---|
| 2511 | ! END DO |
---|
| 2512 | ! |
---|
| 2513 | ! ! |
---|
| 2514 | ! !-- Interpolation in z-direction |
---|
| 2515 | ! |
---|
| 2516 | ! DO jjf = nys, nyn |
---|
| 2517 | ! DO iif = nxl, nxr |
---|
| 2518 | ! |
---|
| 2519 | ! eps = ( zuf(nzt+1) - zuc(bdims_rem(3,1)+1) ) / dzc |
---|
| 2520 | ! |
---|
| 2521 | ! alpha = ( (dzf/dzc)**2.0 - 1.0) / 24.0 |
---|
| 2522 | ! |
---|
| 2523 | ! eminus = eps * ( eps - 1.0 ) / 2.0 + alpha |
---|
| 2524 | ! |
---|
| 2525 | ! edot = ( 1.0 - eps**2.0 ) - 2.0 * alpha |
---|
| 2526 | ! |
---|
| 2527 | ! eplus = eps * ( eps + 1.0 ) / 2.0 + alpha |
---|
| 2528 | ! |
---|
| 2529 | ! kh (nzt+1,jjf,iif) = eminus * ptprs(bdims_rem(3,1),jjf,iif) & |
---|
| 2530 | ! + edot * ptprs(bdims_rem(3,1)+1,jjf,iif) & |
---|
| 2531 | ! + eplus * ptprs(bdims_rem(3,1)+2,jjf,iif) |
---|
| 2532 | ! |
---|
| 2533 | ! END DO |
---|
| 2534 | ! END DO |
---|
| 2535 | ! |
---|
| 2536 | ! DEALLOCATE ( ptprf, ptprs ) |
---|
| 2537 | ! |
---|
| 2538 | ! |
---|
| 2539 | ! |
---|
| 2540 | ! END SUBROUTINE vnest_set_topbc_kh |
---|
[2365] | 2541 | |
---|
[3802] | 2542 | ! SUBROUTINE vnest_set_topbc_km |
---|
| 2543 | ! |
---|
| 2544 | ! |
---|
| 2545 | ! USE arrays_3d |
---|
| 2546 | ! USE control_parameters |
---|
| 2547 | ! USE grid_variables |
---|
| 2548 | ! USE indices |
---|
| 2549 | ! USE pegrid |
---|
| 2550 | ! |
---|
| 2551 | ! |
---|
| 2552 | ! IMPLICIT NONE |
---|
| 2553 | ! |
---|
| 2554 | ! INTEGER(iwp) :: i |
---|
| 2555 | ! INTEGER(iwp) :: j |
---|
| 2556 | ! INTEGER(iwp) :: k |
---|
| 2557 | ! INTEGER(iwp) :: iif |
---|
| 2558 | ! INTEGER(iwp) :: jjf |
---|
| 2559 | ! INTEGER(iwp) :: bottomx |
---|
| 2560 | ! INTEGER(iwp) :: bottomy |
---|
| 2561 | ! INTEGER(iwp) :: topx |
---|
| 2562 | ! INTEGER(iwp) :: topy |
---|
| 2563 | ! REAL(wp) :: eps |
---|
| 2564 | ! REAL(wp) :: alpha |
---|
| 2565 | ! REAL(wp) :: eminus |
---|
| 2566 | ! REAL(wp) :: edot |
---|
| 2567 | ! REAL(wp) :: eplus |
---|
| 2568 | ! REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: ptprf |
---|
| 2569 | ! REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: ptprs |
---|
| 2570 | ! |
---|
| 2571 | ! |
---|
| 2572 | ! |
---|
| 2573 | ! ALLOCATE( ptprf(bdims_rem(3,1):bdims_rem(3,2),bdims_rem(2,1)-1:bdims_rem(2,2)+1,nxl:nxr) ) |
---|
| 2574 | ! ALLOCATE( ptprs(bdims_rem(3,1):bdims_rem(3,2),nys:nyn,nxl:nxr) ) |
---|
| 2575 | ! |
---|
| 2576 | ! ! |
---|
| 2577 | ! !-- Determination of a boundary condition for the potential temperature pt: |
---|
| 2578 | ! !-- The scheme derived by Clark and Farley can be used in all three dimensions. |
---|
| 2579 | ! |
---|
| 2580 | ! ! |
---|
| 2581 | ! !-- Interpolation in x-direction |
---|
| 2582 | ! |
---|
| 2583 | ! DO k = bdims_rem(3,1), bdims_rem(3,2) |
---|
| 2584 | ! |
---|
| 2585 | ! DO j = bdims_rem(2,1)-1, bdims_rem(2,2)+1 |
---|
| 2586 | ! |
---|
| 2587 | ! DO i = bdims_rem(1,1), bdims_rem(1,2) |
---|
| 2588 | ! |
---|
| 2589 | ! bottomx = (nxf+1)/(nxc+1) * i |
---|
| 2590 | ! topx = (nxf+1)/(nxc+1) *(i+1) - 1 |
---|
| 2591 | ! |
---|
| 2592 | ! DO iif = bottomx, topx |
---|
| 2593 | ! |
---|
| 2594 | ! eps = (iif * dxf + 0.5 * dxf - i * dxc - 0.5 * dxc) / dxc |
---|
| 2595 | ! |
---|
| 2596 | ! alpha = ( (dxf/dxc)**2.0 - 1.0) / 24.0 |
---|
| 2597 | ! |
---|
| 2598 | ! eminus = eps * (eps - 1.0 ) / 2.0 + alpha |
---|
| 2599 | ! |
---|
| 2600 | ! edot = ( 1.0 - eps**2.0 ) - 2.0 * alpha |
---|
| 2601 | ! |
---|
| 2602 | ! eplus = eps * ( eps + 1.0 ) / 2.0 + alpha |
---|
| 2603 | ! |
---|
| 2604 | ! ptprf(k,j,iif) = eminus * work3d(k,j,i-1) & |
---|
| 2605 | ! + edot * work3d(k,j,i) & |
---|
| 2606 | ! + eplus * work3d(k,j,i+1) |
---|
| 2607 | ! END DO |
---|
| 2608 | ! |
---|
| 2609 | ! END DO |
---|
| 2610 | ! |
---|
| 2611 | ! END DO |
---|
| 2612 | ! |
---|
| 2613 | ! END DO |
---|
| 2614 | ! |
---|
| 2615 | ! ! |
---|
| 2616 | ! !-- Interpolation in y-direction |
---|
| 2617 | ! |
---|
| 2618 | ! DO k = bdims_rem(3,1), bdims_rem(3,2) |
---|
| 2619 | ! |
---|
| 2620 | ! DO j = bdims_rem(2,1), bdims_rem(2,2) |
---|
| 2621 | ! |
---|
| 2622 | ! bottomy = (nyf+1)/(nyc+1) * j |
---|
| 2623 | ! topy = (nyf+1)/(nyc+1) * (j+1) - 1 |
---|
| 2624 | ! |
---|
| 2625 | ! DO iif = nxl, nxr |
---|
| 2626 | ! |
---|
| 2627 | ! DO jjf = bottomy, topy |
---|
| 2628 | ! |
---|
| 2629 | ! eps = (jjf * dyf + 0.5 * dyf - j * dyc - 0.5 * dyc) / dyc |
---|
| 2630 | ! |
---|
| 2631 | ! alpha = ( (dyf/dyc)**2.0 - 1.0) / 24.0 |
---|
| 2632 | ! |
---|
| 2633 | ! eminus = eps * (eps - 1.0) / 2.0 + alpha |
---|
| 2634 | ! |
---|
| 2635 | ! edot = ( 1.0 - eps**2.0 ) - 2.0 * alpha |
---|
| 2636 | ! |
---|
| 2637 | ! eplus = eps * ( eps + 1.0 ) / 2.0 + alpha |
---|
| 2638 | ! |
---|
| 2639 | ! ptprs(k,jjf,iif) = eminus * ptprf(k,j-1,iif) & |
---|
| 2640 | ! + edot * ptprf(k,j,iif) & |
---|
| 2641 | ! + eplus * ptprf(k,j+1,iif) |
---|
| 2642 | ! END DO |
---|
| 2643 | ! |
---|
| 2644 | ! END DO |
---|
| 2645 | ! |
---|
| 2646 | ! END DO |
---|
| 2647 | ! |
---|
| 2648 | ! END DO |
---|
| 2649 | ! |
---|
| 2650 | ! ! |
---|
| 2651 | ! !-- Interpolation in z-direction |
---|
| 2652 | ! |
---|
| 2653 | ! DO jjf = nys, nyn |
---|
| 2654 | ! DO iif = nxl, nxr |
---|
| 2655 | ! |
---|
| 2656 | ! eps = ( zuf(nzt+1) - zuc(bdims_rem(3,1)+1) ) / dzc |
---|
| 2657 | ! |
---|
| 2658 | ! alpha = ( (dzf/dzc)**2.0 - 1.0) / 24.0 |
---|
| 2659 | ! |
---|
| 2660 | ! eminus = eps * ( eps - 1.0 ) / 2.0 + alpha |
---|
| 2661 | ! |
---|
| 2662 | ! edot = ( 1.0 - eps**2.0 ) - 2.0 * alpha |
---|
| 2663 | ! |
---|
| 2664 | ! eplus = eps * ( eps + 1.0 ) / 2.0 + alpha |
---|
| 2665 | ! |
---|
| 2666 | ! km (nzt+1,jjf,iif) = eminus * ptprs(bdims_rem(3,1),jjf,iif) & |
---|
| 2667 | ! + edot * ptprs(bdims_rem(3,1)+1,jjf,iif) & |
---|
| 2668 | ! + eplus * ptprs(bdims_rem(3,1)+2,jjf,iif) |
---|
| 2669 | ! |
---|
| 2670 | ! END DO |
---|
| 2671 | ! END DO |
---|
| 2672 | ! |
---|
| 2673 | ! DEALLOCATE ( ptprf, ptprs ) |
---|
| 2674 | ! |
---|
| 2675 | ! |
---|
| 2676 | ! |
---|
| 2677 | ! END SUBROUTINE vnest_set_topbc_km |
---|
[2365] | 2678 | |
---|
| 2679 | |
---|
[2712] | 2680 | #endif |
---|
[2365] | 2681 | END SUBROUTINE vnest_boundary_conds_khkm |
---|
| 2682 | |
---|
| 2683 | |
---|
| 2684 | |
---|
| 2685 | SUBROUTINE vnest_anterpolate |
---|
[2712] | 2686 | |
---|
| 2687 | #if defined( __parallel ) |
---|
[2365] | 2688 | |
---|
| 2689 | !--------------------------------------------------------------------------------! |
---|
| 2690 | ! Description: |
---|
| 2691 | ! ------------ |
---|
| 2692 | ! Anterpolate data from fine grid to coarse grid. |
---|
| 2693 | !------------------------------------------------------------------------------! |
---|
| 2694 | |
---|
| 2695 | USE arrays_3d |
---|
| 2696 | USE control_parameters |
---|
| 2697 | USE grid_variables |
---|
| 2698 | USE indices |
---|
| 2699 | USE interfaces |
---|
| 2700 | USE pegrid |
---|
| 2701 | USE surface_mod, & |
---|
| 2702 | ONLY : bc_h |
---|
| 2703 | |
---|
| 2704 | |
---|
| 2705 | IMPLICIT NONE |
---|
| 2706 | |
---|
[2712] | 2707 | REAL(wp) :: time_since_reference_point_rem |
---|
| 2708 | INTEGER(iwp) :: i |
---|
| 2709 | INTEGER(iwp) :: j |
---|
| 2710 | INTEGER(iwp) :: k |
---|
| 2711 | INTEGER(iwp) :: kb !< variable to set respective boundary value, depends on facing. |
---|
| 2712 | INTEGER(iwp) :: l !< running index boundary type, for up- and downward-facing walls |
---|
| 2713 | INTEGER(iwp) :: m !< running index surface elements |
---|
[2365] | 2714 | |
---|
| 2715 | |
---|
| 2716 | |
---|
| 2717 | ! |
---|
| 2718 | !-- In case of model termination initiated by the remote model |
---|
| 2719 | !-- (terminate_coupled_remote > 0), initiate termination of the local model. |
---|
| 2720 | !-- The rest of the coupler must then be skipped because it would cause an MPI |
---|
| 2721 | !-- intercomminucation hang. |
---|
| 2722 | !-- If necessary, the coupler will be called at the beginning of the next |
---|
| 2723 | !-- restart run. |
---|
| 2724 | |
---|
| 2725 | IF ( myid == 0) THEN |
---|
| 2726 | CALL MPI_SENDRECV( terminate_coupled, 1, MPI_INTEGER, & |
---|
| 2727 | target_id, 0, & |
---|
| 2728 | terminate_coupled_remote, 1, MPI_INTEGER, & |
---|
| 2729 | target_id, 0, & |
---|
| 2730 | comm_inter, status, ierr ) |
---|
| 2731 | ENDIF |
---|
| 2732 | CALL MPI_BCAST( terminate_coupled_remote, 1, MPI_INTEGER, 0, comm2d, & |
---|
| 2733 | ierr ) |
---|
| 2734 | |
---|
| 2735 | IF ( terminate_coupled_remote > 0 ) THEN |
---|
[3045] | 2736 | WRITE( message_string, * ) 'remote model "', & |
---|
| 2737 | TRIM( coupling_mode_remote ), & |
---|
| 2738 | '" terminated', & |
---|
[3046] | 2739 | '&with terminate_coupled_remote = ', & |
---|
[3045] | 2740 | terminate_coupled_remote, & |
---|
[3046] | 2741 | '&local model "', TRIM( coupling_mode ), & |
---|
[3045] | 2742 | '" has', & |
---|
[3046] | 2743 | '&terminate_coupled = ', & |
---|
[2365] | 2744 | terminate_coupled |
---|
| 2745 | CALL message( 'vnest_anterpolate', 'PA0310', 1, 2, 0, 6, 0 ) |
---|
| 2746 | RETURN |
---|
| 2747 | ENDIF |
---|
| 2748 | |
---|
| 2749 | |
---|
| 2750 | ! |
---|
| 2751 | !-- Exchange the current simulated time between the models |
---|
| 2752 | |
---|
| 2753 | IF ( myid == 0 ) THEN |
---|
| 2754 | |
---|
| 2755 | CALL MPI_SEND( time_since_reference_point, 1, MPI_REAL, target_id, & |
---|
| 2756 | 11, comm_inter, ierr ) |
---|
| 2757 | CALL MPI_RECV( time_since_reference_point_rem, 1, MPI_REAL, & |
---|
| 2758 | target_id, 11, comm_inter, status, ierr ) |
---|
| 2759 | |
---|
| 2760 | ENDIF |
---|
| 2761 | |
---|
| 2762 | CALL MPI_BCAST( time_since_reference_point_rem, 1, MPI_REAL, 0, comm2d, & |
---|
| 2763 | ierr ) |
---|
| 2764 | |
---|
| 2765 | IF ( coupling_mode == 'vnested_crse' ) THEN |
---|
| 2766 | ! Receive data from fine grid for anterpolation |
---|
| 2767 | |
---|
| 2768 | offset(1) = ( pdims_partner(1) / pdims(1) ) * pcoord(1) |
---|
| 2769 | offset(2) = ( pdims_partner(2) / pdims(2) ) * pcoord(2) |
---|
| 2770 | |
---|
| 2771 | do j = 0, ( pdims_partner(2) / pdims(2) ) - 1 |
---|
| 2772 | do i = 0, ( pdims_partner(1) / pdims(1) ) - 1 |
---|
| 2773 | map_coord(1) = i+offset(1) |
---|
| 2774 | map_coord(2) = j+offset(2) |
---|
| 2775 | |
---|
| 2776 | target_idex = f_rnk_lst(map_coord(1),map_coord(2)) + numprocs |
---|
| 2777 | |
---|
| 2778 | CALL MPI_RECV( bdims_rem, 6, MPI_INTEGER, target_idex, 10, & |
---|
| 2779 | comm_inter,status, ierr ) |
---|
| 2780 | |
---|
| 2781 | bdims (1,1) = bdims_rem (1,1) / cfratio(1) |
---|
| 2782 | bdims (1,2) = bdims_rem (1,2) / cfratio(1) |
---|
| 2783 | bdims (2,1) = bdims_rem (2,1) / cfratio(2) |
---|
| 2784 | bdims (2,2) = bdims_rem (2,2) / cfratio(2) |
---|
| 2785 | bdims (3,1) = bdims_rem (3,1) |
---|
| 2786 | bdims (3,2) = bdims_rem (3,2) / cfratio(3) |
---|
| 2787 | |
---|
| 2788 | CALL MPI_SEND( bdims, 6, MPI_INTEGER, target_idex, 9, & |
---|
| 2789 | comm_inter, ierr ) |
---|
| 2790 | |
---|
| 2791 | n_cell_c = & |
---|
| 2792 | (bdims(1,2)-bdims(1,1)+1) * & |
---|
| 2793 | (bdims(2,2)-bdims(2,1)+1) * & |
---|
| 2794 | (bdims(3,2)-bdims(3,1)+0) |
---|
| 2795 | |
---|
| 2796 | CALL MPI_RECV( u( & |
---|
| 2797 | bdims(3,1)+1:bdims(3,2), & |
---|
| 2798 | bdims(2,1) :bdims(2,2), & |
---|
| 2799 | bdims(1,1) :bdims(1,2)),& |
---|
| 2800 | n_cell_c, MPI_REAL, target_idex, 101, & |
---|
| 2801 | comm_inter,status, ierr ) |
---|
| 2802 | |
---|
| 2803 | CALL MPI_RECV( v( & |
---|
| 2804 | bdims(3,1)+1:bdims(3,2), & |
---|
| 2805 | bdims(2,1) :bdims(2,2), & |
---|
| 2806 | bdims(1,1) :bdims(1,2)),& |
---|
| 2807 | n_cell_c, MPI_REAL, target_idex, 102, & |
---|
| 2808 | comm_inter,status, ierr ) |
---|
| 2809 | |
---|
| 2810 | CALL MPI_RECV(pt( & |
---|
| 2811 | bdims(3,1)+1:bdims(3,2), & |
---|
| 2812 | bdims(2,1) :bdims(2,2), & |
---|
| 2813 | bdims(1,1) :bdims(1,2)),& |
---|
| 2814 | n_cell_c, MPI_REAL, target_idex, 105, & |
---|
| 2815 | comm_inter,status, ierr ) |
---|
| 2816 | |
---|
[2514] | 2817 | IF ( humidity ) THEN |
---|
[2365] | 2818 | CALL MPI_RECV(q( & |
---|
| 2819 | bdims(3,1)+1:bdims(3,2), & |
---|
| 2820 | bdims(2,1) :bdims(2,2), & |
---|
| 2821 | bdims(1,1) :bdims(1,2)),& |
---|
| 2822 | n_cell_c, MPI_REAL, target_idex, 106, & |
---|
| 2823 | comm_inter,status, ierr ) |
---|
[2514] | 2824 | ENDIF |
---|
[2365] | 2825 | |
---|
| 2826 | CALL MPI_RECV( w( & |
---|
| 2827 | bdims(3,1) :bdims(3,2)-1, & |
---|
| 2828 | bdims(2,1) :bdims(2,2), & |
---|
| 2829 | bdims(1,1) :bdims(1,2)), & |
---|
| 2830 | n_cell_c, MPI_REAL, target_idex, 103, & |
---|
| 2831 | comm_inter,status, ierr ) |
---|
| 2832 | |
---|
| 2833 | end do |
---|
| 2834 | end do |
---|
| 2835 | |
---|
| 2836 | |
---|
| 2837 | |
---|
| 2838 | ! |
---|
| 2839 | !-- Boundary conditions for the velocity components u and v |
---|
| 2840 | |
---|
| 2841 | |
---|
| 2842 | IF ( ibc_uv_b == 0 ) THEN |
---|
| 2843 | u(nzb,:,:) = 0.0_wp |
---|
| 2844 | v(nzb,:,:) = 0.0_wp |
---|
| 2845 | ELSE |
---|
| 2846 | u(nzb,:,:) = u(nzb+1,:,:) |
---|
| 2847 | v(nzb,:,:) = v(nzb+1,:,:) |
---|
| 2848 | END IF |
---|
| 2849 | ! |
---|
| 2850 | !-- Boundary conditions for the velocity components w |
---|
| 2851 | |
---|
| 2852 | w(nzb,:,:) = 0.0_wp |
---|
| 2853 | |
---|
| 2854 | ! |
---|
| 2855 | !-- Temperature at bottom boundary. |
---|
| 2856 | !-- Neumann, zero-gradient |
---|
| 2857 | IF ( ibc_pt_b == 1 ) THEN |
---|
| 2858 | DO l = 0, 1 |
---|
| 2859 | ! |
---|
| 2860 | !-- Set kb, for upward-facing surfaces value at topography top (k-1) is set, |
---|
| 2861 | !-- for downward-facing surfaces at topography bottom (k+1). |
---|
| 2862 | kb = MERGE( -1, 1, l == 0 ) |
---|
| 2863 | DO m = 1, bc_h(l)%ns |
---|
| 2864 | i = bc_h(l)%i(m) |
---|
| 2865 | j = bc_h(l)%j(m) |
---|
| 2866 | k = bc_h(l)%k(m) |
---|
| 2867 | pt(k+kb,j,i) = pt(k,j,i) |
---|
| 2868 | ENDDO |
---|
| 2869 | ENDDO |
---|
| 2870 | ENDIF |
---|
| 2871 | |
---|
| 2872 | |
---|
| 2873 | CALL exchange_horiz( u, nbgp ) |
---|
| 2874 | CALL exchange_horiz( v, nbgp ) |
---|
| 2875 | CALL exchange_horiz( w, nbgp ) |
---|
| 2876 | CALL exchange_horiz( pt, nbgp ) |
---|
| 2877 | |
---|
| 2878 | |
---|
| 2879 | ELSEIF ( coupling_mode == 'vnested_fine' ) THEN |
---|
| 2880 | ! Send data to coarse grid for anterpolation |
---|
| 2881 | |
---|
| 2882 | offset(1) = pcoord(1) / ( pdims(1)/pdims_partner(1) ) |
---|
| 2883 | offset(2) = pcoord(2) / ( pdims(2)/pdims_partner(2) ) |
---|
| 2884 | map_coord(1) = offset(1) |
---|
| 2885 | map_coord(2) = offset(2) |
---|
| 2886 | target_idex = c_rnk_lst(map_coord(1),map_coord(2)) |
---|
| 2887 | |
---|
| 2888 | !-- Limit anterpolation level to nzt - z nesting ratio (a pseudo-buffer layer) |
---|
| 2889 | bdims (1,1) = nxl |
---|
| 2890 | bdims (1,2) = nxr |
---|
| 2891 | bdims (2,1) = nys |
---|
| 2892 | bdims (2,2) = nyn |
---|
| 2893 | bdims (3,1) = nzb |
---|
| 2894 | bdims (3,2) = nzt-cfratio(3) |
---|
| 2895 | |
---|
| 2896 | CALL MPI_SEND( bdims, 6, MPI_INTEGER, target_idex, 10, & |
---|
| 2897 | comm_inter, ierr ) |
---|
| 2898 | |
---|
| 2899 | CALL MPI_RECV( bdims_rem, 6, MPI_INTEGER, target_idex, 9, & |
---|
| 2900 | comm_inter,status, ierr ) |
---|
| 2901 | |
---|
| 2902 | |
---|
| 2903 | ALLOCATE( work3d ( & |
---|
| 2904 | bdims_rem(3,1)+1:bdims_rem(3,2), & |
---|
| 2905 | bdims_rem(2,1) :bdims_rem(2,2), & |
---|
| 2906 | bdims_rem(1,1) :bdims_rem(1,2))) |
---|
| 2907 | |
---|
| 2908 | |
---|
| 2909 | anterpol3d => u |
---|
[2514] | 2910 | |
---|
[3241] | 2911 | CALL anterpolate_to_crse_u |
---|
[2365] | 2912 | CALL MPI_SEND( work3d, 1, TYPE_VNEST_ANTER, target_idex, & |
---|
[2514] | 2913 | 101, comm_inter, ierr) |
---|
[2365] | 2914 | |
---|
| 2915 | anterpol3d => v |
---|
| 2916 | |
---|
[3241] | 2917 | CALL anterpolate_to_crse_v |
---|
[2365] | 2918 | CALL MPI_SEND( work3d, 1, TYPE_VNEST_ANTER, target_idex, & |
---|
[2514] | 2919 | 102, comm_inter, ierr) |
---|
[2365] | 2920 | |
---|
| 2921 | anterpol3d => pt |
---|
| 2922 | |
---|
[3241] | 2923 | CALL anterpolate_to_crse_s |
---|
[2365] | 2924 | CALL MPI_SEND( work3d, 1, TYPE_VNEST_ANTER, target_idex, & |
---|
[2514] | 2925 | 105, comm_inter, ierr) |
---|
[2365] | 2926 | |
---|
| 2927 | |
---|
| 2928 | IF ( humidity ) THEN |
---|
| 2929 | |
---|
| 2930 | anterpol3d => q |
---|
| 2931 | |
---|
[3241] | 2932 | CALL anterpolate_to_crse_s |
---|
[2365] | 2933 | CALL MPI_SEND( work3d, 1, TYPE_VNEST_ANTER, target_idex, & |
---|
[2514] | 2934 | 106, comm_inter, ierr) |
---|
[2365] | 2935 | ENDIF |
---|
| 2936 | |
---|
| 2937 | |
---|
| 2938 | DEALLOCATE( work3d ) |
---|
| 2939 | ALLOCATE( work3d ( bdims_rem(3,1) :bdims_rem(3,2)-1, & |
---|
| 2940 | bdims_rem(2,1) :bdims_rem(2,2), & |
---|
| 2941 | bdims_rem(1,1) :bdims_rem(1,2))) |
---|
| 2942 | anterpol3d => w |
---|
[3241] | 2943 | CALL anterpolate_to_crse_w |
---|
[2365] | 2944 | CALL MPI_SEND( work3d, 1, TYPE_VNEST_ANTER, target_idex, & |
---|
[2514] | 2945 | 103, comm_inter, ierr) |
---|
[2365] | 2946 | |
---|
| 2947 | NULLIFY ( anterpol3d ) |
---|
| 2948 | DEALLOCATE( work3d ) |
---|
| 2949 | |
---|
| 2950 | ENDIF |
---|
| 2951 | |
---|
| 2952 | |
---|
| 2953 | |
---|
| 2954 | CONTAINS |
---|
[3241] | 2955 | SUBROUTINE anterpolate_to_crse_u |
---|
[2365] | 2956 | |
---|
| 2957 | |
---|
| 2958 | USE arrays_3d |
---|
| 2959 | USE control_parameters |
---|
| 2960 | USE grid_variables |
---|
| 2961 | USE indices |
---|
| 2962 | USE pegrid |
---|
| 2963 | |
---|
| 2964 | |
---|
| 2965 | IMPLICIT NONE |
---|
[2712] | 2966 | |
---|
| 2967 | INTEGER(iwp) :: i |
---|
| 2968 | INTEGER(iwp) :: j |
---|
| 2969 | INTEGER(iwp) :: k |
---|
| 2970 | INTEGER(iwp) :: iif |
---|
| 2971 | INTEGER(iwp) :: jjf |
---|
| 2972 | INTEGER(iwp) :: kkf |
---|
| 2973 | INTEGER(iwp) :: bottomy |
---|
| 2974 | INTEGER(iwp) :: bottomz |
---|
| 2975 | INTEGER(iwp) :: topy |
---|
| 2976 | INTEGER(iwp) :: topz |
---|
| 2977 | REAL(wp) :: aweight |
---|
[2365] | 2978 | |
---|
| 2979 | ! |
---|
| 2980 | !-- Anterpolation of the velocity components u |
---|
| 2981 | !-- only values in yz-planes that coincide in the fine and |
---|
| 2982 | !-- the coarse grid are considered |
---|
| 2983 | |
---|
| 2984 | DO k = bdims_rem(3,1)+1, bdims_rem(3,2) |
---|
| 2985 | |
---|
| 2986 | bottomz = (dzc/dzf) * (k-1) + 1 |
---|
| 2987 | topz = (dzc/dzf) * k |
---|
| 2988 | |
---|
| 2989 | DO j = bdims_rem(2,1),bdims_rem(2,2) |
---|
| 2990 | |
---|
| 2991 | bottomy = (nyf+1) / (nyc+1) * j |
---|
| 2992 | topy = (nyf+1) / (nyc+1) * (j+1) - 1 |
---|
| 2993 | |
---|
| 2994 | DO i = bdims_rem(1,1),bdims_rem(1,2) |
---|
| 2995 | |
---|
[2712] | 2996 | iif = (nxf+1) / (nxc+1) * i |
---|
[2365] | 2997 | |
---|
| 2998 | aweight = 0.0 |
---|
| 2999 | |
---|
[2712] | 3000 | DO kkf = bottomz, topz |
---|
| 3001 | DO jjf = bottomy, topy |
---|
[2365] | 3002 | |
---|
[2712] | 3003 | aweight = aweight + anterpol3d(kkf,jjf,iif) * & |
---|
[2365] | 3004 | (dzf/dzc) * (dyf/dyc) |
---|
| 3005 | |
---|
| 3006 | END DO |
---|
| 3007 | END DO |
---|
| 3008 | |
---|
| 3009 | work3d(k,j,i) = aweight |
---|
| 3010 | |
---|
| 3011 | END DO |
---|
| 3012 | |
---|
| 3013 | END DO |
---|
| 3014 | |
---|
| 3015 | END DO |
---|
| 3016 | |
---|
| 3017 | |
---|
| 3018 | |
---|
| 3019 | END SUBROUTINE anterpolate_to_crse_u |
---|
| 3020 | |
---|
| 3021 | |
---|
[3241] | 3022 | SUBROUTINE anterpolate_to_crse_v |
---|
[2365] | 3023 | |
---|
| 3024 | |
---|
| 3025 | USE arrays_3d |
---|
| 3026 | USE control_parameters |
---|
| 3027 | USE grid_variables |
---|
| 3028 | USE indices |
---|
| 3029 | USE pegrid |
---|
| 3030 | |
---|
| 3031 | |
---|
| 3032 | IMPLICIT NONE |
---|
[2712] | 3033 | |
---|
| 3034 | INTEGER(iwp) :: i |
---|
| 3035 | INTEGER(iwp) :: j |
---|
| 3036 | INTEGER(iwp) :: k |
---|
| 3037 | INTEGER(iwp) :: iif |
---|
| 3038 | INTEGER(iwp) :: jjf |
---|
| 3039 | INTEGER(iwp) :: kkf |
---|
| 3040 | INTEGER(iwp) :: bottomx |
---|
| 3041 | INTEGER(iwp) :: bottomz |
---|
| 3042 | INTEGER(iwp) :: topx |
---|
| 3043 | INTEGER(iwp) :: topz |
---|
| 3044 | REAL(wp) :: aweight |
---|
| 3045 | |
---|
[2365] | 3046 | ! |
---|
| 3047 | !-- Anterpolation of the velocity components v |
---|
| 3048 | !-- only values in xz-planes that coincide in the fine and |
---|
| 3049 | !-- the coarse grid are considered |
---|
| 3050 | |
---|
| 3051 | DO k = bdims_rem(3,1)+1, bdims_rem(3,2) |
---|
| 3052 | |
---|
| 3053 | bottomz = (dzc/dzf) * (k-1) + 1 |
---|
| 3054 | topz = (dzc/dzf) * k |
---|
| 3055 | |
---|
| 3056 | DO j = bdims_rem(2,1), bdims_rem(2,2) |
---|
| 3057 | |
---|
[2712] | 3058 | jjf = (nyf+1) / (nyc+1) * j |
---|
[2365] | 3059 | |
---|
| 3060 | DO i = bdims_rem(1,1), bdims_rem(1,2) |
---|
| 3061 | |
---|
| 3062 | bottomx = (nxf+1) / (nxc+1) * i |
---|
| 3063 | topx = (nxf+1) / (nxc+1) * (i+1) - 1 |
---|
| 3064 | |
---|
| 3065 | aweight = 0.0 |
---|
| 3066 | |
---|
[2712] | 3067 | DO kkf = bottomz, topz |
---|
| 3068 | DO iif = bottomx, topx |
---|
[2365] | 3069 | |
---|
[2712] | 3070 | aweight = aweight + anterpol3d(kkf,jjf,iif) * & |
---|
[2365] | 3071 | (dzf/dzc) * (dxf/dxc) |
---|
| 3072 | |
---|
| 3073 | |
---|
| 3074 | END DO |
---|
| 3075 | END DO |
---|
| 3076 | |
---|
| 3077 | work3d(k,j,i) = aweight |
---|
| 3078 | |
---|
| 3079 | END DO |
---|
| 3080 | END DO |
---|
| 3081 | END DO |
---|
| 3082 | |
---|
| 3083 | |
---|
| 3084 | |
---|
| 3085 | END SUBROUTINE anterpolate_to_crse_v |
---|
| 3086 | |
---|
| 3087 | |
---|
[3241] | 3088 | SUBROUTINE anterpolate_to_crse_w |
---|
[2365] | 3089 | |
---|
| 3090 | |
---|
| 3091 | USE arrays_3d |
---|
| 3092 | USE control_parameters |
---|
| 3093 | USE grid_variables |
---|
| 3094 | USE indices |
---|
| 3095 | USE pegrid |
---|
| 3096 | |
---|
| 3097 | |
---|
| 3098 | IMPLICIT NONE |
---|
[2712] | 3099 | |
---|
| 3100 | INTEGER(iwp) :: i |
---|
| 3101 | INTEGER(iwp) :: j |
---|
| 3102 | INTEGER(iwp) :: k |
---|
| 3103 | INTEGER(iwp) :: iif |
---|
| 3104 | INTEGER(iwp) :: jjf |
---|
| 3105 | INTEGER(iwp) :: kkf |
---|
| 3106 | INTEGER(iwp) :: bottomx |
---|
| 3107 | INTEGER(iwp) :: bottomy |
---|
| 3108 | INTEGER(iwp) :: topx |
---|
| 3109 | INTEGER(iwp) :: topy |
---|
| 3110 | REAL(wp) :: aweight |
---|
| 3111 | |
---|
[2365] | 3112 | ! |
---|
| 3113 | !-- Anterpolation of the velocity components w |
---|
| 3114 | !-- only values in xy-planes that coincide in the fine and |
---|
| 3115 | !-- the coarse grid are considered |
---|
| 3116 | |
---|
| 3117 | DO k = bdims_rem(3,1), bdims_rem(3,2)-1 |
---|
| 3118 | |
---|
[2712] | 3119 | kkf = cfratio(3) * k |
---|
[2365] | 3120 | |
---|
| 3121 | DO j = bdims_rem(2,1), bdims_rem(2,2) |
---|
| 3122 | |
---|
| 3123 | bottomy = (nyf+1) / (nyc+1) * j |
---|
| 3124 | topy = (nyf+1) / (nyc+1) * (j+1) - 1 |
---|
| 3125 | |
---|
| 3126 | DO i = bdims_rem(1,1), bdims_rem(1,2) |
---|
| 3127 | |
---|
| 3128 | bottomx = (nxf+1) / (nxc+1) * i |
---|
| 3129 | topx = (nxf+1) / (nxc+1) * (i+1) - 1 |
---|
| 3130 | |
---|
| 3131 | aweight = 0.0 |
---|
| 3132 | |
---|
[2712] | 3133 | DO jjf = bottomy, topy |
---|
| 3134 | DO iif = bottomx, topx |
---|
[2365] | 3135 | |
---|
[2712] | 3136 | aweight = aweight + anterpol3d (kkf,jjf,iif) * & |
---|
[2365] | 3137 | (dxf/dxc) * (dyf/dyc) |
---|
| 3138 | |
---|
| 3139 | END DO |
---|
| 3140 | END DO |
---|
| 3141 | |
---|
| 3142 | work3d(k,j,i) = aweight |
---|
| 3143 | |
---|
| 3144 | END DO |
---|
| 3145 | |
---|
| 3146 | END DO |
---|
| 3147 | |
---|
| 3148 | END DO |
---|
| 3149 | |
---|
| 3150 | |
---|
| 3151 | END SUBROUTINE anterpolate_to_crse_w |
---|
| 3152 | |
---|
| 3153 | |
---|
[3241] | 3154 | SUBROUTINE anterpolate_to_crse_s |
---|
[2365] | 3155 | |
---|
| 3156 | |
---|
| 3157 | USE arrays_3d |
---|
| 3158 | USE control_parameters |
---|
| 3159 | USE grid_variables |
---|
| 3160 | USE indices |
---|
| 3161 | USE pegrid |
---|
| 3162 | |
---|
| 3163 | |
---|
| 3164 | IMPLICIT NONE |
---|
[2712] | 3165 | |
---|
| 3166 | INTEGER(iwp) :: i |
---|
| 3167 | INTEGER(iwp) :: j |
---|
| 3168 | INTEGER(iwp) :: k |
---|
| 3169 | INTEGER(iwp) :: iif |
---|
| 3170 | INTEGER(iwp) :: jjf |
---|
| 3171 | INTEGER(iwp) :: kkf |
---|
| 3172 | INTEGER(iwp) :: bottomx |
---|
| 3173 | INTEGER(iwp) :: bottomy |
---|
| 3174 | INTEGER(iwp) :: bottomz |
---|
| 3175 | INTEGER(iwp) :: topx |
---|
| 3176 | INTEGER(iwp) :: topy |
---|
| 3177 | INTEGER(iwp) :: topz |
---|
| 3178 | REAL(wp) :: aweight |
---|
[2365] | 3179 | |
---|
| 3180 | ! |
---|
| 3181 | !-- Anterpolation of the potential temperature pt |
---|
| 3182 | !-- all fine grid values are considered |
---|
| 3183 | |
---|
| 3184 | DO k = bdims_rem(3,1)+1, bdims_rem(3,2) |
---|
| 3185 | |
---|
| 3186 | bottomz = (dzc/dzf) * (k-1) + 1 |
---|
| 3187 | topz = (dzc/dzf) * k |
---|
| 3188 | |
---|
| 3189 | DO j = bdims_rem(2,1), bdims_rem(2,2) |
---|
| 3190 | |
---|
| 3191 | bottomy = (nyf+1) / (nyc+1) * j |
---|
| 3192 | topy = (nyf+1) / (nyc+1) * (j+1) - 1 |
---|
| 3193 | |
---|
| 3194 | DO i = bdims_rem(1,1), bdims_rem(1,2) |
---|
| 3195 | |
---|
| 3196 | bottomx = (nxf+1) / (nxc+1) * i |
---|
| 3197 | topx = (nxf+1) / (nxc+1) * (i+1) - 1 |
---|
| 3198 | |
---|
| 3199 | aweight = 0.0 |
---|
| 3200 | |
---|
[2712] | 3201 | DO kkf = bottomz, topz |
---|
| 3202 | DO jjf = bottomy, topy |
---|
| 3203 | DO iif = bottomx, topx |
---|
[2365] | 3204 | |
---|
[2712] | 3205 | aweight = aweight + anterpol3d(kkf,jjf,iif) * & |
---|
[2365] | 3206 | (dzf/dzc) * (dyf/dyc) * (dxf/dxc) |
---|
| 3207 | |
---|
| 3208 | END DO |
---|
| 3209 | END DO |
---|
| 3210 | END DO |
---|
| 3211 | |
---|
| 3212 | work3d(k,j,i) = aweight |
---|
| 3213 | |
---|
| 3214 | END DO |
---|
| 3215 | |
---|
| 3216 | END DO |
---|
| 3217 | |
---|
| 3218 | END DO |
---|
| 3219 | |
---|
| 3220 | |
---|
| 3221 | END SUBROUTINE anterpolate_to_crse_s |
---|
[2712] | 3222 | #endif |
---|
[2365] | 3223 | END SUBROUTINE vnest_anterpolate |
---|
| 3224 | |
---|
| 3225 | |
---|
| 3226 | |
---|
| 3227 | SUBROUTINE vnest_anterpolate_e |
---|
[2712] | 3228 | #if defined( __parallel ) |
---|
[2365] | 3229 | |
---|
| 3230 | !--------------------------------------------------------------------------------! |
---|
| 3231 | ! Description: |
---|
| 3232 | ! ------------ |
---|
| 3233 | ! Anterpolate TKE from fine grid to coarse grid. |
---|
| 3234 | !------------------------------------------------------------------------------! |
---|
| 3235 | |
---|
| 3236 | USE arrays_3d |
---|
| 3237 | USE control_parameters |
---|
| 3238 | USE grid_variables |
---|
| 3239 | USE indices |
---|
| 3240 | USE interfaces |
---|
| 3241 | USE pegrid |
---|
| 3242 | |
---|
| 3243 | |
---|
| 3244 | IMPLICIT NONE |
---|
| 3245 | |
---|
[2712] | 3246 | REAL(wp) :: time_since_reference_point_rem |
---|
| 3247 | INTEGER(iwp) :: i |
---|
| 3248 | INTEGER(iwp) :: j |
---|
[2365] | 3249 | |
---|
| 3250 | ! |
---|
| 3251 | !-- In case of model termination initiated by the remote model |
---|
| 3252 | !-- (terminate_coupled_remote > 0), initiate termination of the local model. |
---|
| 3253 | !-- The rest of the coupler must then be skipped because it would cause an MPI |
---|
| 3254 | !-- intercomminucation hang. |
---|
| 3255 | !-- If necessary, the coupler will be called at the beginning of the next |
---|
| 3256 | !-- restart run. |
---|
| 3257 | |
---|
| 3258 | IF ( myid == 0) THEN |
---|
[3045] | 3259 | CALL MPI_SENDRECV( terminate_coupled, 1, MPI_INTEGER, & |
---|
| 3260 | target_id, 0, & |
---|
| 3261 | terminate_coupled_remote, 1, MPI_INTEGER, & |
---|
| 3262 | target_id, 0, & |
---|
[2365] | 3263 | comm_inter, status, ierr ) |
---|
| 3264 | ENDIF |
---|
[3045] | 3265 | CALL MPI_BCAST( terminate_coupled_remote, 1, MPI_INTEGER, 0, comm2d, & |
---|
[2365] | 3266 | ierr ) |
---|
| 3267 | |
---|
| 3268 | IF ( terminate_coupled_remote > 0 ) THEN |
---|
[3045] | 3269 | WRITE( message_string, * ) 'remote model "', & |
---|
| 3270 | TRIM( coupling_mode_remote ), & |
---|
| 3271 | '" terminated', & |
---|
[3046] | 3272 | '&with terminate_coupled_remote = ', & |
---|
[3045] | 3273 | terminate_coupled_remote, & |
---|
[3046] | 3274 | '&local model "', TRIM( coupling_mode ), & |
---|
[3045] | 3275 | '" has', & |
---|
[3046] | 3276 | '&terminate_coupled = ', & |
---|
[2365] | 3277 | terminate_coupled |
---|
| 3278 | CALL message( 'vnest_anterpolate_e', 'PA0310', 1, 2, 0, 6, 0 ) |
---|
| 3279 | RETURN |
---|
| 3280 | ENDIF |
---|
| 3281 | |
---|
| 3282 | |
---|
| 3283 | ! |
---|
| 3284 | !-- Exchange the current simulated time between the models |
---|
| 3285 | IF ( myid == 0 ) THEN |
---|
| 3286 | |
---|
| 3287 | CALL MPI_SEND( time_since_reference_point, 1, MPI_REAL, target_id, & |
---|
| 3288 | 11, comm_inter, ierr ) |
---|
| 3289 | CALL MPI_RECV( time_since_reference_point_rem, 1, MPI_REAL, & |
---|
| 3290 | target_id, 11, comm_inter, status, ierr ) |
---|
| 3291 | |
---|
| 3292 | ENDIF |
---|
| 3293 | |
---|
| 3294 | CALL MPI_BCAST( time_since_reference_point_rem, 1, MPI_REAL, 0, comm2d, & |
---|
| 3295 | ierr ) |
---|
| 3296 | |
---|
| 3297 | IF ( coupling_mode == 'vnested_crse' ) THEN |
---|
| 3298 | ! Receive data from fine grid for anterpolation |
---|
| 3299 | |
---|
| 3300 | offset(1) = ( pdims_partner(1) / pdims(1) ) * pcoord(1) |
---|
| 3301 | offset(2) = ( pdims_partner(2) / pdims(2) ) * pcoord(2) |
---|
| 3302 | |
---|
| 3303 | do j = 0, ( pdims_partner(2) / pdims(2) ) - 1 |
---|
| 3304 | do i = 0, ( pdims_partner(1) / pdims(1) ) - 1 |
---|
| 3305 | map_coord(1) = i+offset(1) |
---|
| 3306 | map_coord(2) = j+offset(2) |
---|
| 3307 | |
---|
| 3308 | target_idex = f_rnk_lst(map_coord(1),map_coord(2)) + numprocs |
---|
| 3309 | |
---|
| 3310 | bdims (1,1) = f2c_dims_cg (0,map_coord(1),map_coord(2)) |
---|
| 3311 | bdims (1,2) = f2c_dims_cg (1,map_coord(1),map_coord(2)) |
---|
| 3312 | bdims (2,1) = f2c_dims_cg (2,map_coord(1),map_coord(2)) |
---|
| 3313 | bdims (2,2) = f2c_dims_cg (3,map_coord(1),map_coord(2)) |
---|
| 3314 | bdims (3,1) = f2c_dims_cg (4,map_coord(1),map_coord(2)) |
---|
| 3315 | bdims (3,2) = f2c_dims_cg (5,map_coord(1),map_coord(2)) |
---|
| 3316 | |
---|
| 3317 | |
---|
| 3318 | n_cell_c = (bdims(1,2)-bdims(1,1)+1) * & |
---|
| 3319 | (bdims(2,2)-bdims(2,1)+1) * & |
---|
| 3320 | (bdims(3,2)-bdims(3,1)+0) |
---|
| 3321 | |
---|
| 3322 | |
---|
| 3323 | CALL MPI_RECV( e( bdims(3,1)+1:bdims(3,2), & |
---|
| 3324 | bdims(2,1) :bdims(2,2), & |
---|
| 3325 | bdims(1,1) :bdims(1,2)),& |
---|
| 3326 | n_cell_c, MPI_REAL, target_idex, 104, & |
---|
| 3327 | comm_inter,status, ierr ) |
---|
| 3328 | end do |
---|
| 3329 | end do |
---|
| 3330 | |
---|
| 3331 | |
---|
| 3332 | ! |
---|
| 3333 | !-- Boundary conditions |
---|
| 3334 | |
---|
| 3335 | IF ( .NOT. constant_diffusion ) THEN |
---|
| 3336 | e(nzb,:,:) = e(nzb+1,:,:) |
---|
| 3337 | END IF |
---|
| 3338 | |
---|
| 3339 | IF ( .NOT. constant_diffusion ) CALL exchange_horiz( e, nbgp ) |
---|
| 3340 | |
---|
| 3341 | ELSEIF ( coupling_mode == 'vnested_fine' ) THEN |
---|
| 3342 | ! Send data to coarse grid for anterpolation |
---|
| 3343 | |
---|
| 3344 | offset(1) = pcoord(1) / ( pdims(1)/pdims_partner(1) ) |
---|
| 3345 | offset(2) = pcoord(2) / ( pdims(2)/pdims_partner(2) ) |
---|
| 3346 | map_coord(1) = offset(1) |
---|
| 3347 | map_coord(2) = offset(2) |
---|
| 3348 | target_idex = c_rnk_lst(map_coord(1),map_coord(2)) |
---|
| 3349 | |
---|
| 3350 | bdims_rem (1,1) = f2c_dims_fg (0) |
---|
| 3351 | bdims_rem (1,2) = f2c_dims_fg (1) |
---|
| 3352 | bdims_rem (2,1) = f2c_dims_fg (2) |
---|
| 3353 | bdims_rem (2,2) = f2c_dims_fg (3) |
---|
| 3354 | bdims_rem (3,1) = f2c_dims_fg (4) |
---|
| 3355 | bdims_rem (3,2) = f2c_dims_fg (5) |
---|
| 3356 | |
---|
| 3357 | ALLOCATE( work3d ( & |
---|
| 3358 | bdims_rem(3,1)+1:bdims_rem(3,2), & |
---|
| 3359 | bdims_rem(2,1) :bdims_rem(2,2), & |
---|
| 3360 | bdims_rem(1,1) :bdims_rem(1,2))) |
---|
| 3361 | |
---|
| 3362 | anterpol3d => e |
---|
| 3363 | |
---|
[3241] | 3364 | CALL anterpolate_to_crse_e |
---|
[2365] | 3365 | |
---|
| 3366 | CALL MPI_SEND( work3d, 1, TYPE_VNEST_ANTER, target_idex, & |
---|
[2514] | 3367 | 104, comm_inter, ierr) |
---|
[2365] | 3368 | |
---|
| 3369 | NULLIFY ( anterpol3d ) |
---|
| 3370 | DEALLOCATE( work3d ) |
---|
| 3371 | ENDIF |
---|
| 3372 | |
---|
| 3373 | |
---|
| 3374 | CONTAINS |
---|
| 3375 | |
---|
| 3376 | |
---|
| 3377 | |
---|
| 3378 | |
---|
| 3379 | |
---|
[3241] | 3380 | SUBROUTINE anterpolate_to_crse_e |
---|
[2365] | 3381 | |
---|
| 3382 | |
---|
| 3383 | USE arrays_3d |
---|
| 3384 | USE control_parameters |
---|
| 3385 | USE grid_variables |
---|
| 3386 | USE indices |
---|
| 3387 | USE pegrid |
---|
| 3388 | |
---|
| 3389 | |
---|
| 3390 | IMPLICIT NONE |
---|
[2712] | 3391 | |
---|
| 3392 | INTEGER(iwp) :: i |
---|
| 3393 | INTEGER(iwp) :: j |
---|
| 3394 | INTEGER(iwp) :: k |
---|
| 3395 | INTEGER(iwp) :: iif |
---|
| 3396 | INTEGER(iwp) :: jjf |
---|
| 3397 | INTEGER(iwp) :: kkf |
---|
| 3398 | INTEGER(iwp) :: bottomx |
---|
| 3399 | INTEGER(iwp) :: bottomy |
---|
| 3400 | INTEGER(iwp) :: bottomz |
---|
| 3401 | INTEGER(iwp) :: topx |
---|
| 3402 | INTEGER(iwp) :: topy |
---|
| 3403 | INTEGER(iwp) :: topz |
---|
| 3404 | REAL(wp) :: aweight_a |
---|
| 3405 | REAL(wp) :: aweight_b |
---|
| 3406 | REAL(wp) :: aweight_c |
---|
| 3407 | REAL(wp) :: aweight_d |
---|
| 3408 | REAL(wp) :: aweight_e |
---|
| 3409 | REAL(wp) :: energ |
---|
[2365] | 3410 | |
---|
| 3411 | DO k = bdims_rem(3,1)+1, bdims_rem(3,2) |
---|
| 3412 | |
---|
| 3413 | bottomz = (dzc/dzf) * (k-1) + 1 |
---|
| 3414 | topz = (dzc/dzf) * k |
---|
| 3415 | |
---|
| 3416 | DO j = bdims_rem(2,1), bdims_rem(2,2) |
---|
| 3417 | |
---|
| 3418 | bottomy = (nyf+1) / (nyc+1) * j |
---|
| 3419 | topy = (nyf+1) / (nyc+1) * (j+1) - 1 |
---|
| 3420 | |
---|
| 3421 | DO i = bdims_rem(1,1), bdims_rem(1,2) |
---|
| 3422 | |
---|
| 3423 | bottomx = (nxf+1) / (nxc+1) * i |
---|
| 3424 | topx = (nxf+1) / (nxc+1) * (i+1) - 1 |
---|
| 3425 | |
---|
| 3426 | aweight_a = 0.0 |
---|
| 3427 | aweight_b = 0.0 |
---|
| 3428 | aweight_c = 0.0 |
---|
| 3429 | aweight_d = 0.0 |
---|
| 3430 | aweight_e = 0.0 |
---|
| 3431 | |
---|
[2712] | 3432 | DO kkf = bottomz, topz |
---|
| 3433 | DO jjf = bottomy, topy |
---|
| 3434 | DO iif = bottomx, topx |
---|
[2365] | 3435 | |
---|
[2712] | 3436 | aweight_a = aweight_a + anterpol3d(kkf,jjf,iif) * & |
---|
[2365] | 3437 | (dzf/dzc) * (dyf/dyc) * (dxf/dxc) |
---|
| 3438 | |
---|
| 3439 | |
---|
[2712] | 3440 | energ = ( 0.5 * ( u(kkf,jjf,iif) + u(kkf,jjf,iif+1) ) )**2.0 + & |
---|
| 3441 | ( 0.5 * ( v(kkf,jjf,iif) + v(kkf,jjf+1,iif) ) )**2.0 + & |
---|
| 3442 | ( 0.5 * ( w(kkf-1,jjf,iif) + w(kkf,jjf,iif) ) )**2.0 |
---|
[2365] | 3443 | |
---|
| 3444 | aweight_b = aweight_b + energ * & |
---|
| 3445 | (dzf/dzc) * (dyf/dyc) * (dxf/dxc) |
---|
| 3446 | |
---|
[2712] | 3447 | aweight_c = aweight_c + 0.5 * ( u(kkf,jjf,iif) + u(kkf,jjf,iif+1) ) * & |
---|
[2365] | 3448 | (dzf/dzc) * (dyf/dyc) * (dxf/dxc) |
---|
| 3449 | |
---|
[2712] | 3450 | aweight_d = aweight_d + 0.5 * ( v(kkf,jjf,iif) + v(kkf,jjf+1,iif) ) * & |
---|
[2365] | 3451 | (dzf/dzc) * (dyf/dyc) * (dxf/dxc) |
---|
| 3452 | |
---|
[2712] | 3453 | aweight_e = aweight_e + 0.5 * ( w(kkf-1,jjf,iif) + w(kkf,jjf,iif) ) * & |
---|
[2365] | 3454 | (dzf/dzc) * (dyf/dyc) * (dxf/dxc) |
---|
| 3455 | |
---|
| 3456 | |
---|
| 3457 | END DO |
---|
| 3458 | END DO |
---|
| 3459 | END DO |
---|
| 3460 | |
---|
| 3461 | work3d(k,j,i) = aweight_a + 0.5 * ( aweight_b - & |
---|
| 3462 | aweight_c**2.0 - & |
---|
| 3463 | aweight_d**2.0 - & |
---|
| 3464 | aweight_e**2.0 ) |
---|
| 3465 | |
---|
| 3466 | END DO |
---|
| 3467 | |
---|
| 3468 | END DO |
---|
| 3469 | |
---|
| 3470 | END DO |
---|
| 3471 | |
---|
| 3472 | |
---|
| 3473 | |
---|
| 3474 | END SUBROUTINE anterpolate_to_crse_e |
---|
[2712] | 3475 | #endif |
---|
[2365] | 3476 | END SUBROUTINE vnest_anterpolate_e |
---|
| 3477 | |
---|
| 3478 | SUBROUTINE vnest_init_pegrid_rank |
---|
[2712] | 3479 | #if defined( __parallel ) |
---|
[2365] | 3480 | ! Domain decomposition and exchange of grid variables between coarse and fine |
---|
| 3481 | ! Given processor coordinates as index f_rnk_lst(pcoord(1), pcoord(2)) |
---|
| 3482 | ! returns the rank. A single coarse block will have to send data to multiple |
---|
| 3483 | ! fine blocks. In the coarse grid the pcoords of the remote block is first found and then using |
---|
| 3484 | ! f_rnk_lst the target_idex is identified. |
---|
| 3485 | ! blk_dim stores the index limits of a given block. blk_dim_remote is received |
---|
| 3486 | ! from the asscoiated nest partner. |
---|
| 3487 | ! cf_ratio(1:3) is the ratio between fine and coarse grid: nxc/nxf, nyc/nyf and |
---|
| 3488 | ! ceiling(dxc/dxf) |
---|
| 3489 | |
---|
| 3490 | |
---|
[3241] | 3491 | USE control_parameters, & |
---|
| 3492 | ONLY: coupling_mode |
---|
[2365] | 3493 | |
---|
| 3494 | USE kinds |
---|
| 3495 | |
---|
| 3496 | USE pegrid |
---|
| 3497 | |
---|
| 3498 | |
---|
| 3499 | IMPLICIT NONE |
---|
| 3500 | |
---|
[2712] | 3501 | INTEGER(iwp) :: dest_rnk |
---|
| 3502 | INTEGER(iwp) :: i !< |
---|
[2365] | 3503 | |
---|
| 3504 | IF (myid == 0) THEN |
---|
| 3505 | IF ( coupling_mode == 'vnested_crse') THEN |
---|
| 3506 | CALL MPI_SEND( pdims, 2, MPI_INTEGER, numprocs, 33, comm_inter, & |
---|
| 3507 | ierr ) |
---|
[3241] | 3508 | CALL MPI_RECV( pdims_partner, 2, MPI_INTEGER, numprocs, 66, & |
---|
[2365] | 3509 | comm_inter, status, ierr ) |
---|
| 3510 | ELSEIF ( coupling_mode == 'vnested_fine') THEN |
---|
| 3511 | CALL MPI_RECV( pdims_partner, 2, MPI_INTEGER, 0, 33, & |
---|
| 3512 | comm_inter, status, ierr ) |
---|
| 3513 | CALL MPI_SEND( pdims, 2, MPI_INTEGER, 0, 66, comm_inter, & |
---|
| 3514 | ierr ) |
---|
| 3515 | ENDIF |
---|
| 3516 | ENDIF |
---|
| 3517 | |
---|
| 3518 | |
---|
| 3519 | IF ( coupling_mode == 'vnested_crse') THEN |
---|
| 3520 | CALL MPI_BCAST( pdims_partner, 2, MPI_INTEGER, 0, comm2d, ierr ) |
---|
| 3521 | ALLOCATE( c_rnk_lst( 0:(pdims(1)-1) ,0:(pdims(2)-1) ) ) |
---|
| 3522 | ALLOCATE( f_rnk_lst( 0:(pdims_partner(1)-1) ,0:(pdims_partner(2)-1) ) ) |
---|
| 3523 | do i=0,numprocs-1 |
---|
| 3524 | CALL MPI_CART_COORDS( comm2d, i, ndim, pcoord, ierr ) |
---|
| 3525 | call MPI_Cart_rank(comm2d, pcoord, dest_rnk, ierr) |
---|
| 3526 | c_rnk_lst(pcoord(1),pcoord(2)) = dest_rnk |
---|
| 3527 | end do |
---|
| 3528 | ELSEIF ( coupling_mode == 'vnested_fine') THEN |
---|
| 3529 | CALL MPI_BCAST( pdims_partner, 2, MPI_INTEGER, 0, comm2d, ierr ) |
---|
| 3530 | ALLOCATE( c_rnk_lst( 0:(pdims_partner(1)-1) ,0:(pdims_partner(2)-1) ) ) |
---|
| 3531 | ALLOCATE( f_rnk_lst( 0:(pdims(1)-1) ,0:(pdims(2)-1) ) ) |
---|
| 3532 | |
---|
| 3533 | do i=0,numprocs-1 |
---|
| 3534 | CALL MPI_CART_COORDS( comm2d, i, ndim, pcoord, ierr ) |
---|
| 3535 | call MPI_Cart_rank(comm2d, pcoord, dest_rnk, ierr) |
---|
| 3536 | f_rnk_lst(pcoord(1),pcoord(2)) = dest_rnk |
---|
| 3537 | enddo |
---|
| 3538 | ENDIF |
---|
| 3539 | |
---|
| 3540 | |
---|
| 3541 | IF ( coupling_mode == 'vnested_crse') THEN |
---|
| 3542 | if (myid == 0) then |
---|
| 3543 | CALL MPI_SEND( c_rnk_lst, pdims(1)*pdims(2), MPI_INTEGER, numprocs, 0, comm_inter, ierr ) |
---|
| 3544 | CALL MPI_RECV( f_rnk_lst, pdims_partner(1)*pdims_partner(2), MPI_INTEGER, numprocs, 4, comm_inter,status, ierr ) |
---|
| 3545 | end if |
---|
| 3546 | CALL MPI_BCAST( f_rnk_lst, pdims_partner(1)*pdims_partner(2), MPI_INTEGER, 0, comm2d, ierr ) |
---|
| 3547 | ELSEIF ( coupling_mode == 'vnested_fine') THEN |
---|
| 3548 | if (myid == 0) then |
---|
| 3549 | CALL MPI_RECV( c_rnk_lst, pdims_partner(1)*pdims_partner(2), MPI_INTEGER, 0, 0, comm_inter,status, ierr ) |
---|
| 3550 | CALL MPI_SEND( f_rnk_lst, pdims(1)*pdims(2), MPI_INTEGER, 0, 4, comm_inter, ierr ) |
---|
| 3551 | end if |
---|
| 3552 | CALL MPI_BCAST( c_rnk_lst, pdims_partner(1)*pdims_partner(2), MPI_INTEGER, 0, comm2d, ierr ) |
---|
| 3553 | ENDIF |
---|
| 3554 | |
---|
| 3555 | !-- Reason for MPI error unknown; solved if three lines duplicated |
---|
| 3556 | CALL MPI_CART_COORDS( comm2d, myid, ndim, pcoord, ierr ) |
---|
| 3557 | CALL MPI_CART_SHIFT( comm2d, 0, 1, pleft, pright, ierr ) |
---|
| 3558 | CALL MPI_CART_SHIFT( comm2d, 1, 1, psouth, pnorth, ierr ) |
---|
| 3559 | |
---|
| 3560 | |
---|
[2712] | 3561 | #endif |
---|
[2365] | 3562 | |
---|
| 3563 | END SUBROUTINE vnest_init_pegrid_rank |
---|
| 3564 | |
---|
| 3565 | |
---|
| 3566 | SUBROUTINE vnest_init_pegrid_domain |
---|
[2712] | 3567 | #if defined( __parallel ) |
---|
[2365] | 3568 | |
---|
[3241] | 3569 | USE control_parameters, & |
---|
| 3570 | ONLY: coupling_mode, coupling_topology, dz, & |
---|
[3065] | 3571 | dz_stretch_level_start, message_string |
---|
[2365] | 3572 | |
---|
[3241] | 3573 | USE grid_variables, & |
---|
[2365] | 3574 | ONLY: dx, dy |
---|
| 3575 | |
---|
[3241] | 3576 | USE indices, & |
---|
| 3577 | ONLY: nbgp, nx, ny, nz, nxl, nxr, nys, nyn, nzb, nzt |
---|
[2365] | 3578 | |
---|
| 3579 | USE kinds |
---|
| 3580 | |
---|
| 3581 | USE pegrid |
---|
| 3582 | |
---|
| 3583 | IMPLICIT NONE |
---|
| 3584 | |
---|
[2712] | 3585 | INTEGER(iwp) :: i !< |
---|
| 3586 | INTEGER(iwp) :: j !< |
---|
| 3587 | INTEGER(iwp) :: tempx |
---|
| 3588 | INTEGER(iwp) :: tempy |
---|
| 3589 | INTEGER(iwp) :: TYPE_INT_YZ |
---|
| 3590 | INTEGER(iwp) :: SIZEOFREAL |
---|
| 3591 | INTEGER(iwp) :: MTV_X |
---|
| 3592 | INTEGER(iwp) :: MTV_Y |
---|
| 3593 | INTEGER(iwp) :: MTV_Z |
---|
| 3594 | INTEGER(iwp) :: MTV_RX |
---|
| 3595 | INTEGER(iwp) :: MTV_RY |
---|
| 3596 | INTEGER(iwp) :: MTV_RZ |
---|
[2365] | 3597 | |
---|
| 3598 | ! |
---|
| 3599 | !-- Pass the number of grid points of the coarse model to |
---|
| 3600 | !-- the nested model and vice versa |
---|
| 3601 | IF ( coupling_mode == 'vnested_crse' ) THEN |
---|
| 3602 | |
---|
| 3603 | nxc = nx |
---|
| 3604 | nyc = ny |
---|
| 3605 | nzc = nz |
---|
| 3606 | dxc = dx |
---|
| 3607 | dyc = dy |
---|
[3065] | 3608 | dzc = dz(1) |
---|
[2365] | 3609 | cg_nprocs = numprocs |
---|
| 3610 | |
---|
| 3611 | IF ( myid == 0 ) THEN |
---|
| 3612 | |
---|
[3065] | 3613 | CALL MPI_SEND( nxc, 1, MPI_INTEGER , numprocs, 1, comm_inter, & |
---|
[2365] | 3614 | ierr ) |
---|
[3065] | 3615 | CALL MPI_SEND( nyc, 1, MPI_INTEGER , numprocs, 2, comm_inter, & |
---|
[2365] | 3616 | ierr ) |
---|
[3065] | 3617 | CALL MPI_SEND( nzc, 1, MPI_INTEGER , numprocs, 3, comm_inter, & |
---|
[2365] | 3618 | ierr ) |
---|
[3065] | 3619 | CALL MPI_SEND( dxc, 1, MPI_REAL , numprocs, 4, comm_inter, & |
---|
[2365] | 3620 | ierr ) |
---|
[3065] | 3621 | CALL MPI_SEND( dyc, 1, MPI_REAL , numprocs, 5, comm_inter, & |
---|
[2365] | 3622 | ierr ) |
---|
[3065] | 3623 | CALL MPI_SEND( dzc, 1, MPI_REAL , numprocs, 6, comm_inter, & |
---|
[2365] | 3624 | ierr ) |
---|
[3065] | 3625 | CALL MPI_SEND( pdims, 2, MPI_INTEGER, numprocs, 7, comm_inter, & |
---|
[2365] | 3626 | ierr ) |
---|
| 3627 | CALL MPI_SEND( cg_nprocs, 1, MPI_INTEGER, numprocs, 8, comm_inter, & |
---|
| 3628 | ierr ) |
---|
[3065] | 3629 | CALL MPI_RECV( nxf, 1, MPI_INTEGER, numprocs, 21, comm_inter, & |
---|
[2365] | 3630 | status, ierr ) |
---|
[3065] | 3631 | CALL MPI_RECV( nyf, 1, MPI_INTEGER, numprocs, 22, comm_inter, & |
---|
[2365] | 3632 | status, ierr ) |
---|
[3065] | 3633 | CALL MPI_RECV( nzf, 1, MPI_INTEGER, numprocs, 23, comm_inter, & |
---|
[2365] | 3634 | status, ierr ) |
---|
[3065] | 3635 | CALL MPI_RECV( dxf, 1, MPI_REAL, numprocs, 24, comm_inter, & |
---|
[2365] | 3636 | status, ierr ) |
---|
[3065] | 3637 | CALL MPI_RECV( dyf, 1, MPI_REAL, numprocs, 25, comm_inter, & |
---|
[2365] | 3638 | status, ierr ) |
---|
[3065] | 3639 | CALL MPI_RECV( dzf, 1, MPI_REAL, numprocs, 26, comm_inter, & |
---|
[2365] | 3640 | status, ierr ) |
---|
[3065] | 3641 | CALL MPI_RECV( pdims_partner, 2, MPI_INTEGER, & |
---|
[2365] | 3642 | numprocs, 27, comm_inter, status, ierr ) |
---|
[3065] | 3643 | CALL MPI_RECV( fg_nprocs, 1, MPI_INTEGER, & |
---|
[2365] | 3644 | numprocs, 28, comm_inter, status, ierr ) |
---|
| 3645 | ENDIF |
---|
| 3646 | |
---|
| 3647 | CALL MPI_BCAST( nxf, 1, MPI_INTEGER, 0, comm2d, ierr ) |
---|
| 3648 | CALL MPI_BCAST( nyf, 1, MPI_INTEGER, 0, comm2d, ierr ) |
---|
| 3649 | CALL MPI_BCAST( nzf, 1, MPI_INTEGER, 0, comm2d, ierr ) |
---|
| 3650 | CALL MPI_BCAST( dxf, 1, MPI_REAL, 0, comm2d, ierr ) |
---|
| 3651 | CALL MPI_BCAST( dyf, 1, MPI_REAL, 0, comm2d, ierr ) |
---|
| 3652 | CALL MPI_BCAST( dzf, 1, MPI_REAL, 0, comm2d, ierr ) |
---|
| 3653 | CALL MPI_BCAST( pdims_partner, 2, MPI_INTEGER, 0, comm2d, ierr ) |
---|
| 3654 | CALL MPI_BCAST( fg_nprocs, 1, MPI_INTEGER, 0, comm2d, ierr ) |
---|
[3065] | 3655 | |
---|
| 3656 | ! |
---|
| 3657 | !-- Check if stretching is used within the nested domain. ABS(...) is |
---|
| 3658 | !-- necessary because of the default value of -9999999.9_wp (negative) |
---|
| 3659 | IF ( ABS( dz_stretch_level_start(1) ) <= (nzf+1)*dzf ) THEN |
---|
| 3660 | message_string = 'Stretching in the parent domain is '// & |
---|
| 3661 | 'only allowed above the nested domain' |
---|
[3066] | 3662 | CALL message( 'vnest_init_pegrid_domain', 'PA0497', 1, 2, 0, 6, 0 ) |
---|
[3065] | 3663 | ENDIF |
---|
[2365] | 3664 | |
---|
| 3665 | ELSEIF ( coupling_mode == 'vnested_fine' ) THEN |
---|
| 3666 | |
---|
| 3667 | nxf = nx |
---|
| 3668 | nyf = ny |
---|
| 3669 | nzf = nz |
---|
| 3670 | dxf = dx |
---|
| 3671 | dyf = dy |
---|
[3065] | 3672 | dzf = dz(1) |
---|
[2365] | 3673 | fg_nprocs = numprocs |
---|
| 3674 | |
---|
| 3675 | IF ( myid == 0 ) THEN |
---|
| 3676 | |
---|
| 3677 | CALL MPI_RECV( nxc, 1, MPI_INTEGER, 0, 1, comm_inter, status, & |
---|
| 3678 | ierr ) |
---|
| 3679 | CALL MPI_RECV( nyc, 1, MPI_INTEGER, 0, 2, comm_inter, status, & |
---|
| 3680 | ierr ) |
---|
| 3681 | CALL MPI_RECV( nzc, 1, MPI_INTEGER, 0, 3, comm_inter, status, & |
---|
| 3682 | ierr ) |
---|
| 3683 | CALL MPI_RECV( dxc, 1, MPI_REAL, 0, 4, comm_inter, status, & |
---|
| 3684 | ierr ) |
---|
| 3685 | CALL MPI_RECV( dyc, 1, MPI_REAL, 0, 5, comm_inter, status, & |
---|
| 3686 | ierr ) |
---|
| 3687 | CALL MPI_RECV( dzc, 1, MPI_REAL, 0, 6, comm_inter, status, & |
---|
| 3688 | ierr ) |
---|
| 3689 | CALL MPI_RECV( pdims_partner, 2, MPI_INTEGER, 0, 7, comm_inter, & |
---|
| 3690 | status, ierr ) |
---|
| 3691 | CALL MPI_RECV( cg_nprocs, 1, MPI_INTEGER, 0, 8, comm_inter, & |
---|
| 3692 | status, ierr ) |
---|
| 3693 | CALL MPI_SEND( nxf, 1, MPI_INTEGER, 0, 21, comm_inter, ierr ) |
---|
| 3694 | CALL MPI_SEND( nyf, 1, MPI_INTEGER, 0, 22, comm_inter, ierr ) |
---|
| 3695 | CALL MPI_SEND( nzf, 1, MPI_INTEGER, 0, 23, comm_inter, ierr ) |
---|
| 3696 | CALL MPI_SEND( dxf, 1, MPI_REAL, 0, 24, comm_inter, ierr ) |
---|
| 3697 | CALL MPI_SEND( dyf, 1, MPI_REAL, 0, 25, comm_inter, ierr ) |
---|
| 3698 | CALL MPI_SEND( dzf, 1, MPI_REAL, 0, 26, comm_inter, ierr ) |
---|
| 3699 | CALL MPI_SEND( pdims,2,MPI_INTEGER, 0, 27, comm_inter, ierr ) |
---|
| 3700 | CALL MPI_SEND( fg_nprocs,1,MPI_INTEGER, 0, 28, comm_inter, ierr ) |
---|
| 3701 | ENDIF |
---|
| 3702 | |
---|
| 3703 | CALL MPI_BCAST( nxc, 1, MPI_INTEGER, 0, comm2d, ierr) |
---|
| 3704 | CALL MPI_BCAST( nyc, 1, MPI_INTEGER, 0, comm2d, ierr) |
---|
| 3705 | CALL MPI_BCAST( nzc, 1, MPI_INTEGER, 0, comm2d, ierr) |
---|
| 3706 | CALL MPI_BCAST( dxc, 1, MPI_REAL, 0, comm2d, ierr) |
---|
| 3707 | CALL MPI_BCAST( dyc, 1, MPI_REAL, 0, comm2d, ierr) |
---|
| 3708 | CALL MPI_BCAST( dzc, 1, MPI_REAL, 0, comm2d, ierr) |
---|
| 3709 | CALL MPI_BCAST( pdims_partner, 2, MPI_INTEGER, 0, comm2d, ierr) |
---|
| 3710 | CALL MPI_BCAST( cg_nprocs, 1, MPI_INTEGER, 0, comm2d, ierr) |
---|
| 3711 | |
---|
| 3712 | ENDIF |
---|
[3065] | 3713 | |
---|
[2365] | 3714 | ngp_c = ( nxc+1 + 2 * nbgp ) * ( nyc+1 + 2 * nbgp ) |
---|
| 3715 | ngp_f = ( nxf+1 + 2 * nbgp ) * ( nyf+1 + 2 * nbgp ) |
---|
| 3716 | |
---|
| 3717 | IF ( coupling_mode(1:8) == 'vnested_') coupling_topology = 1 |
---|
| 3718 | |
---|
| 3719 | |
---|
| 3720 | !-- Nesting Ratio: For each coarse grid cell how many fine grid cells exist |
---|
| 3721 | cfratio(1) = INT ( (nxf+1) / (nxc+1) ) |
---|
| 3722 | cfratio(2) = INT ( (nyf+1) / (nyc+1) ) |
---|
| 3723 | cfratio(3) = CEILING ( dzc / dzf ) |
---|
| 3724 | |
---|
| 3725 | !-- target_id is used only for exhange of information like simulated_time |
---|
| 3726 | !-- which are then MPI_BCAST to other processors in the group |
---|
| 3727 | IF ( myid == 0 ) THEN |
---|
| 3728 | |
---|
| 3729 | IF ( TRIM( coupling_mode ) == 'vnested_crse' ) THEN |
---|
| 3730 | target_id = numprocs |
---|
| 3731 | ELSE IF ( TRIM( coupling_mode ) == 'vnested_fine' ) THEN |
---|
| 3732 | target_id = 0 |
---|
| 3733 | ENDIF |
---|
| 3734 | |
---|
| 3735 | ENDIF |
---|
| 3736 | |
---|
| 3737 | !-- Store partner grid dimenstions and create MPI derived types |
---|
| 3738 | |
---|
| 3739 | IF ( coupling_mode == 'vnested_crse' ) THEN |
---|
| 3740 | |
---|
| 3741 | offset(1) = ( pdims_partner(1) / pdims(1) ) * pcoord(1) |
---|
| 3742 | offset(2) = ( pdims_partner(2) / pdims(2) ) * pcoord(2) |
---|
| 3743 | |
---|
[2514] | 3744 | tempx = ( pdims_partner(1) / pdims(1) ) - 1 |
---|
| 3745 | tempy = ( pdims_partner(2) / pdims(2) ) - 1 |
---|
[2365] | 3746 | ALLOCATE( c2f_dims_cg (0:5,offset(1):tempx+offset(1),offset(2):tempy+offset(2) ) ) |
---|
| 3747 | ALLOCATE( f2c_dims_cg (0:5,offset(1):tempx+offset(1),offset(2):tempy+offset(2) ) ) |
---|
| 3748 | |
---|
| 3749 | do j = 0, ( pdims_partner(2) / pdims(2) ) - 1 |
---|
| 3750 | do i = 0, ( pdims_partner(1) / pdims(1) ) - 1 |
---|
| 3751 | map_coord(1) = i+offset(1) |
---|
| 3752 | map_coord(2) = j+offset(2) |
---|
| 3753 | |
---|
| 3754 | target_idex = f_rnk_lst(map_coord(1),map_coord(2)) + numprocs |
---|
| 3755 | |
---|
| 3756 | CALL MPI_RECV( bdims_rem, 6, MPI_INTEGER, target_idex, 10, & |
---|
| 3757 | comm_inter,status, ierr ) |
---|
| 3758 | |
---|
| 3759 | !-- Store the CG dimensions that correspond to the FG partner; needed for FG top BC |
---|
| 3760 | !-- One CG can have multiple FG partners. The 3D array is mapped by partner proc co-ord |
---|
| 3761 | c2f_dims_cg (0,map_coord(1),map_coord(2)) = bdims_rem (1,1) / cfratio(1) |
---|
| 3762 | c2f_dims_cg (1,map_coord(1),map_coord(2)) = bdims_rem (1,2) / cfratio(1) |
---|
| 3763 | c2f_dims_cg (2,map_coord(1),map_coord(2)) = bdims_rem (2,1) / cfratio(2) |
---|
| 3764 | c2f_dims_cg (3,map_coord(1),map_coord(2)) = bdims_rem (2,2) / cfratio(2) |
---|
| 3765 | c2f_dims_cg (4,map_coord(1),map_coord(2)) = bdims_rem (3,2) / cfratio(3) |
---|
| 3766 | c2f_dims_cg (5,map_coord(1),map_coord(2)) =(bdims_rem (3,2) / cfratio(3)) + 2 |
---|
| 3767 | |
---|
| 3768 | !-- Store the CG dimensions that correspond to the FG partner; needed for anterpolation |
---|
| 3769 | f2c_dims_cg (0,map_coord(1),map_coord(2)) = bdims_rem (1,1) / cfratio(1) |
---|
| 3770 | f2c_dims_cg (1,map_coord(1),map_coord(2)) = bdims_rem (1,2) / cfratio(1) |
---|
| 3771 | f2c_dims_cg (2,map_coord(1),map_coord(2)) = bdims_rem (2,1) / cfratio(2) |
---|
| 3772 | f2c_dims_cg (3,map_coord(1),map_coord(2)) = bdims_rem (2,2) / cfratio(2) |
---|
| 3773 | f2c_dims_cg (4,map_coord(1),map_coord(2)) = bdims_rem (3,1) |
---|
| 3774 | f2c_dims_cg (5,map_coord(1),map_coord(2)) =(bdims_rem (3,2)-cfratio(3))/ cfratio(3) |
---|
| 3775 | |
---|
| 3776 | CALL MPI_SEND( c2f_dims_cg (:,map_coord(1),map_coord(2)), 6, & |
---|
[2514] | 3777 | MPI_INTEGER, target_idex, 100, comm_inter, ierr ) |
---|
[2365] | 3778 | |
---|
| 3779 | CALL MPI_SEND( f2c_dims_cg (:,map_coord(1),map_coord(2)), 6, & |
---|
[2514] | 3780 | MPI_INTEGER, target_idex, 101, comm_inter, ierr ) |
---|
[2365] | 3781 | |
---|
| 3782 | end do |
---|
| 3783 | end do |
---|
| 3784 | |
---|
| 3785 | !-- A derived data type to pack 3 Z-levels of CG to set FG top BC |
---|
| 3786 | MTV_X = ( nxr - nxl + 1 ) + 2*nbgp |
---|
| 3787 | MTV_Y = ( nyn - nys + 1 ) + 2*nbgp |
---|
| 3788 | MTV_Z = nzt+1 - nzb +1 |
---|
| 3789 | |
---|
| 3790 | MTV_RX = ( c2f_dims_cg (1,offset(1),offset(2)) - c2f_dims_cg (0,offset(1),offset(2)) ) +1+2 |
---|
| 3791 | MTV_RY = ( c2f_dims_cg (3,offset(1),offset(2)) - c2f_dims_cg (2,offset(1),offset(2)) ) +1+2 |
---|
| 3792 | MTV_RZ = ( c2f_dims_cg (5,offset(1),offset(2)) - c2f_dims_cg (4,offset(1),offset(2)) ) +1 |
---|
| 3793 | |
---|
| 3794 | CALL MPI_TYPE_EXTENT(MPI_REAL, SIZEOFREAL, IERR) |
---|
| 3795 | |
---|
| 3796 | CALL MPI_TYPE_VECTOR ( MTV_RY, MTV_RZ, MTV_Z, MPI_REAL, TYPE_INT_YZ, IERR) |
---|
| 3797 | CALL MPI_TYPE_HVECTOR( MTV_RX, 1, MTV_Z*MTV_Y*SIZEOFREAL, & |
---|
[2514] | 3798 | TYPE_INT_YZ, TYPE_VNEST_BC, IERR) |
---|
[2365] | 3799 | CALL MPI_TYPE_FREE(TYPE_INT_YZ, IERR) |
---|
[2514] | 3800 | CALL MPI_TYPE_COMMIT(TYPE_VNEST_BC, IERR) |
---|
[2365] | 3801 | |
---|
| 3802 | |
---|
| 3803 | ELSEIF ( coupling_mode == 'vnested_fine' ) THEN |
---|
| 3804 | |
---|
| 3805 | ALLOCATE( c2f_dims_fg (0:5) ) |
---|
| 3806 | ALLOCATE( f2c_dims_fg (0:5) ) |
---|
| 3807 | |
---|
| 3808 | offset(1) = pcoord(1) / ( pdims(1)/pdims_partner(1) ) |
---|
| 3809 | offset(2) = pcoord(2) / ( pdims(2)/pdims_partner(2) ) |
---|
| 3810 | map_coord(1) = offset(1) |
---|
| 3811 | map_coord(2) = offset(2) |
---|
| 3812 | target_idex = c_rnk_lst(map_coord(1),map_coord(2)) |
---|
| 3813 | |
---|
| 3814 | bdims (1,1) = nxl |
---|
| 3815 | bdims (1,2) = nxr |
---|
| 3816 | bdims (2,1) = nys |
---|
| 3817 | bdims (2,2) = nyn |
---|
| 3818 | bdims (3,1) = nzb |
---|
| 3819 | bdims (3,2) = nzt |
---|
| 3820 | |
---|
| 3821 | CALL MPI_SEND( bdims, 6, MPI_INTEGER, target_idex, 10, & |
---|
| 3822 | comm_inter, ierr ) |
---|
| 3823 | |
---|
| 3824 | !-- Store the CG dimensions that correspond to the FG partner; needed for FG top BC |
---|
| 3825 | !-- One FG can have only one CG partner |
---|
| 3826 | CALL MPI_RECV( c2f_dims_fg, 6, MPI_INTEGER, target_idex, 100, & |
---|
| 3827 | comm_inter,status, ierr ) |
---|
| 3828 | |
---|
| 3829 | CALL MPI_RECV( f2c_dims_fg, 6, MPI_INTEGER, target_idex, 101, & |
---|
| 3830 | comm_inter,status, ierr ) |
---|
| 3831 | |
---|
| 3832 | !-- Store the CG dimensions that correspond to the FG partner; needed for anterpolation |
---|
| 3833 | |
---|
| 3834 | n_cell_c = (f2c_dims_fg(1)-f2c_dims_fg(0)+1) * & |
---|
| 3835 | (f2c_dims_fg(3)-f2c_dims_fg(2)+1) * & |
---|
| 3836 | (f2c_dims_fg(5)-f2c_dims_fg(4)+0) |
---|
| 3837 | |
---|
| 3838 | CALL MPI_TYPE_CONTIGUOUS(n_cell_c, MPI_REAL, TYPE_VNEST_ANTER, IERR) |
---|
| 3839 | CALL MPI_TYPE_COMMIT(TYPE_VNEST_ANTER, ierr) |
---|
| 3840 | |
---|
| 3841 | ENDIF |
---|
[2712] | 3842 | #endif |
---|
[2365] | 3843 | END SUBROUTINE vnest_init_pegrid_domain |
---|
| 3844 | |
---|
| 3845 | |
---|
| 3846 | SUBROUTINE vnest_init_grid |
---|
| 3847 | |
---|
[2712] | 3848 | #if defined( __parallel ) |
---|
[3065] | 3849 | USE arrays_3d, & |
---|
[2365] | 3850 | ONLY: zu, zw |
---|
| 3851 | |
---|
[3065] | 3852 | USE control_parameters, & |
---|
| 3853 | ONLY: coupling_mode, message_string, number_stretch_level_start |
---|
[2365] | 3854 | |
---|
[3065] | 3855 | USE indices, & |
---|
[2365] | 3856 | ONLY: nzt |
---|
| 3857 | |
---|
| 3858 | USE kinds |
---|
| 3859 | |
---|
| 3860 | USE pegrid |
---|
| 3861 | |
---|
[2514] | 3862 | IMPLICIT NONE |
---|
[2365] | 3863 | |
---|
[3065] | 3864 | ! |
---|
| 3865 | !-- Allocate and Exchange zuc and zuf, zwc and zwf |
---|
[2365] | 3866 | IF ( coupling_mode(1:8) == 'vnested_' ) THEN |
---|
| 3867 | |
---|
| 3868 | ALLOCATE( zuc(0:nzc+1), zuf(0:nzf+1) ) |
---|
| 3869 | ALLOCATE( zwc(0:nzc+1), zwf(0:nzf+1) ) |
---|
| 3870 | |
---|
| 3871 | IF ( coupling_mode == 'vnested_crse' ) THEN |
---|
[3065] | 3872 | |
---|
| 3873 | zuc = zu |
---|
| 3874 | zwc = zw |
---|
| 3875 | |
---|
[2365] | 3876 | IF ( myid == 0 ) THEN |
---|
| 3877 | |
---|
| 3878 | CALL MPI_SEND( zuc, nzt+2, MPI_REAL, numprocs, 41, comm_inter, & |
---|
| 3879 | ierr ) |
---|
| 3880 | CALL MPI_RECV( zuf, nzf+2, MPI_REAL, numprocs, 42, comm_inter, & |
---|
| 3881 | status, ierr ) |
---|
| 3882 | |
---|
| 3883 | CALL MPI_SEND( zwc, nzt+2, MPI_REAL, numprocs, 43, comm_inter, & |
---|
| 3884 | ierr ) |
---|
| 3885 | CALL MPI_RECV( zwf, nzf+2, MPI_REAL, numprocs, 44, comm_inter, & |
---|
| 3886 | status, ierr ) |
---|
| 3887 | |
---|
| 3888 | ENDIF |
---|
| 3889 | |
---|
| 3890 | CALL MPI_BCAST( zuf,nzf+2,MPI_REAL, 0, comm2d, ierr ) |
---|
| 3891 | CALL MPI_BCAST( zwf,nzf+2,MPI_REAL, 0, comm2d, ierr ) |
---|
| 3892 | |
---|
| 3893 | ELSEIF ( coupling_mode == 'vnested_fine' ) THEN |
---|
| 3894 | |
---|
[3065] | 3895 | ! |
---|
| 3896 | !-- Check if stretching is used within the nested domain |
---|
| 3897 | IF ( number_stretch_level_start > 0 ) THEN |
---|
| 3898 | message_string = 'Stretching in the nested domain is not '//& |
---|
| 3899 | 'allowed' |
---|
[3066] | 3900 | CALL message( 'vnest_init_grid', 'PA0498', 1, 2, 0, 6, 0 ) |
---|
[3065] | 3901 | ENDIF |
---|
| 3902 | |
---|
| 3903 | zuf = zu |
---|
| 3904 | zwf = zw |
---|
| 3905 | |
---|
[2365] | 3906 | IF ( myid == 0 ) THEN |
---|
| 3907 | |
---|
| 3908 | CALL MPI_RECV( zuc,nzc+2, MPI_REAL, 0, 41, comm_inter, status, & |
---|
| 3909 | ierr ) |
---|
| 3910 | CALL MPI_SEND( zuf,nzt+2, MPI_REAL, 0, 42, comm_inter, ierr ) |
---|
| 3911 | |
---|
| 3912 | CALL MPI_RECV( zwc,nzc+2, MPI_REAL, 0, 43, comm_inter, status, & |
---|
| 3913 | ierr ) |
---|
| 3914 | CALL MPI_SEND( zwf,nzt+2, MPI_REAL, 0, 44, comm_inter, ierr ) |
---|
| 3915 | ENDIF |
---|
| 3916 | |
---|
| 3917 | CALL MPI_BCAST( zuc,nzc+2,MPI_REAL, 0, comm2d, ierr ) |
---|
| 3918 | CALL MPI_BCAST( zwc,nzc+2,MPI_REAL, 0, comm2d, ierr ) |
---|
| 3919 | |
---|
| 3920 | ENDIF |
---|
| 3921 | ENDIF |
---|
| 3922 | |
---|
[2712] | 3923 | #endif |
---|
[2365] | 3924 | END SUBROUTINE vnest_init_grid |
---|
| 3925 | |
---|
| 3926 | |
---|
| 3927 | SUBROUTINE vnest_check_parameters |
---|
[2712] | 3928 | #if defined( __parallel ) |
---|
[2365] | 3929 | |
---|
[2712] | 3930 | USE pegrid, & |
---|
| 3931 | ONLY: myid |
---|
[2365] | 3932 | |
---|
[2514] | 3933 | IMPLICIT NONE |
---|
[2365] | 3934 | |
---|
[2514] | 3935 | IF (myid==0) PRINT*, '*** vnest: check parameters not implemented yet ***' |
---|
[2365] | 3936 | |
---|
[2712] | 3937 | #endif |
---|
[2365] | 3938 | END SUBROUTINE vnest_check_parameters |
---|
| 3939 | |
---|
| 3940 | |
---|
| 3941 | SUBROUTINE vnest_timestep_sync |
---|
| 3942 | |
---|
[2712] | 3943 | #if defined( __parallel ) |
---|
[2365] | 3944 | USE control_parameters, & |
---|
[2712] | 3945 | ONLY: coupling_mode, dt_3d, old_dt |
---|
[2365] | 3946 | |
---|
| 3947 | USE interfaces |
---|
| 3948 | |
---|
| 3949 | USE kinds |
---|
| 3950 | |
---|
| 3951 | USE pegrid |
---|
| 3952 | |
---|
| 3953 | IMPLICIT NONE |
---|
| 3954 | |
---|
| 3955 | IF ( coupling_mode == 'vnested_crse') THEN |
---|
[2514] | 3956 | dtc = dt_3d |
---|
| 3957 | if (myid == 0) then |
---|
[2365] | 3958 | CALL MPI_SEND( dt_3d, 1, MPI_REAL, target_id, & |
---|
| 3959 | 31, comm_inter, ierr ) |
---|
| 3960 | CALL MPI_RECV( dtf, 1, MPI_REAL, & |
---|
| 3961 | target_id, 32, comm_inter, status, ierr ) |
---|
| 3962 | |
---|
[2514] | 3963 | endif |
---|
| 3964 | CALL MPI_BCAST( dtf, 1, MPI_REAL, 0, comm2d, ierr ) |
---|
[2365] | 3965 | ELSE |
---|
[2514] | 3966 | dtf = dt_3d |
---|
| 3967 | if (myid == 0) then |
---|
[2365] | 3968 | CALL MPI_RECV( dtc, 1, MPI_REAL, & |
---|
| 3969 | target_id, 31, comm_inter, status, ierr ) |
---|
| 3970 | CALL MPI_SEND( dt_3d, 1, MPI_REAL, target_id, & |
---|
| 3971 | 32, comm_inter, ierr ) |
---|
| 3972 | |
---|
[2514] | 3973 | endif |
---|
| 3974 | CALL MPI_BCAST( dtc, 1, MPI_REAL, 0, comm2d, ierr ) |
---|
[2365] | 3975 | |
---|
| 3976 | ENDIF |
---|
| 3977 | !-- Identical timestep for coarse and fine grids |
---|
| 3978 | dt_3d = MIN( dtc, dtf ) |
---|
[3083] | 3979 | !> @fixme setting old_dt might be obsolete at this point |
---|
| 3980 | !> Due to changes in timestep routine, setting of old_dt might be |
---|
| 3981 | !> not necessary any more at this point. However, could not be |
---|
| 3982 | !> tested so far. |
---|
| 3983 | !> 2018-05-18, gronemeier |
---|
[2712] | 3984 | old_dt = dt_3d |
---|
| 3985 | #endif |
---|
[2365] | 3986 | END SUBROUTINE vnest_timestep_sync |
---|
| 3987 | |
---|
| 3988 | SUBROUTINE vnest_deallocate |
---|
[2712] | 3989 | #if defined( __parallel ) |
---|
[2365] | 3990 | USE control_parameters, & |
---|
| 3991 | ONLY: coupling_mode |
---|
| 3992 | |
---|
| 3993 | IMPLICIT NONE |
---|
| 3994 | |
---|
| 3995 | IF ( ALLOCATED(c_rnk_lst) ) DEALLOCATE (c_rnk_lst) |
---|
| 3996 | IF ( ALLOCATED(f_rnk_lst) ) DEALLOCATE (f_rnk_lst) |
---|
| 3997 | |
---|
| 3998 | IF ( coupling_mode == 'vnested_crse') THEN |
---|
| 3999 | IF ( ALLOCATED (c2f_dims_cg) ) DEALLOCATE (c2f_dims_cg) |
---|
| 4000 | IF ( ALLOCATED (f2c_dims_cg) ) DEALLOCATE (f2c_dims_cg) |
---|
| 4001 | ELSEIF( coupling_mode == 'vnested_fine' ) THEN |
---|
| 4002 | IF ( ALLOCATED (c2f_dims_fg) ) DEALLOCATE (c2f_dims_fg) |
---|
| 4003 | IF ( ALLOCATED (f2c_dims_fg) ) DEALLOCATE (f2c_dims_fg) |
---|
| 4004 | ENDIF |
---|
[2712] | 4005 | #endif |
---|
[2365] | 4006 | END SUBROUTINE vnest_deallocate |
---|
| 4007 | |
---|
[3802] | 4008 | END MODULE vertical_nesting_mod |
---|