[2365] | 1 | !> @file vertical_nesting_mod.f90 |
---|
| 2 | !------------------------------------------------------------------------------! |
---|
[2696] | 3 | ! This file is part of the PALM model system. |
---|
[2365] | 4 | ! |
---|
| 5 | ! PALM is free software: you can redistribute it and/or modify it under the |
---|
| 6 | ! terms of the GNU General Public License as published by the Free Software |
---|
| 7 | ! Foundation, either version 3 of the License, or (at your option) any later |
---|
| 8 | ! version. |
---|
| 9 | ! |
---|
| 10 | ! PALM is distributed in the hope that it will be useful, but WITHOUT ANY |
---|
| 11 | ! WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR |
---|
| 12 | ! A PARTICULAR PURPOSE. See the GNU General Public License for more details. |
---|
| 13 | ! |
---|
| 14 | ! You should have received a copy of the GNU General Public License along with |
---|
| 15 | ! PALM. If not, see <http://www.gnu.org/licenses/>. |
---|
| 16 | ! |
---|
[2718] | 17 | ! Copyright 1997-2018 Leibniz Universitaet Hannover |
---|
| 18 | ! Copyright 2017-2018 Karlsruhe Institute of Technology |
---|
[2365] | 19 | !------------------------------------------------------------------------------! |
---|
| 20 | ! |
---|
| 21 | ! Current revisions: |
---|
| 22 | ! ----------------- |
---|
| 23 | ! |
---|
[3049] | 24 | ! |
---|
[2365] | 25 | ! Former revisions: |
---|
| 26 | ! ----------------- |
---|
| 27 | ! $Id: vertical_nesting_mod.f90 3467 2018-10-30 19:05:21Z raasch $ |
---|
[3241] | 28 | ! unused variables removed |
---|
| 29 | ! |
---|
| 30 | ! 3232 2018-09-07 12:21:44Z raasch |
---|
[3232] | 31 | ! references to mrun replaced by palmrun, and updated |
---|
| 32 | ! |
---|
| 33 | ! 3083 2018-06-19 14:03:12Z gronemeier |
---|
[3066] | 34 | ! Error messages revised |
---|
| 35 | ! |
---|
| 36 | ! 3065 2018-06-12 07:03:02Z Giersch |
---|
[3065] | 37 | ! dz was replaced by dz(1), error messages related to vertical grid stretching |
---|
| 38 | ! have been added |
---|
| 39 | ! |
---|
| 40 | ! 3049 2018-05-29 13:52:36Z Giersch |
---|
[3049] | 41 | ! Error messages revised |
---|
| 42 | ! |
---|
| 43 | ! 3045 2018-05-28 07:55:41Z Giersch |
---|
[3045] | 44 | ! Error message revised |
---|
| 45 | ! |
---|
| 46 | ! 2718 2018-01-02 08:49:38Z maronga |
---|
[2716] | 47 | ! Corrected "Former revisions" section |
---|
| 48 | ! |
---|
| 49 | ! 2712 2017-12-20 17:32:50Z kanani |
---|
[2712] | 50 | ! Formatting and clean-up (SadiqHuq) |
---|
| 51 | ! |
---|
| 52 | ! 2696 2017-12-14 17:12:51Z kanani |
---|
[2716] | 53 | ! Change in file header (GPL part) |
---|
| 54 | ! Renamed diffusivities to tcm_diffusivities (TG) |
---|
[2696] | 55 | ! |
---|
| 56 | ! 2516 2017-10-04 11:03:04Z suehring |
---|
[2516] | 57 | ! Remove tabs |
---|
| 58 | ! |
---|
| 59 | ! 2514 2017-10-04 09:52:37Z suehring |
---|
[2696] | 60 | ! Remove tabs |
---|
| 61 | ! |
---|
| 62 | ! 2514 2017-10-04 09:52:37Z suehring |
---|
[2374] | 63 | ! Added todo list |
---|
| 64 | ! |
---|
| 65 | ! 2365 2017-08-21 14:59:59Z kanani |
---|
[2365] | 66 | ! Initial revision (SadiqHuq) |
---|
| 67 | ! |
---|
| 68 | ! |
---|
| 69 | ! |
---|
| 70 | ! |
---|
| 71 | ! Description: |
---|
| 72 | ! ------------ |
---|
[2374] | 73 | !> Module for vertical nesting. |
---|
| 74 | !> |
---|
| 75 | !> Definition of parameters and variables for vertical nesting |
---|
[2712] | 76 | !> The horizontal extent of the parent (Coarse Grid) and the child (Fine Grid) |
---|
| 77 | !> have to be identical. The vertical extent of the FG should be smaller than CG. |
---|
| 78 | !> Only integer nesting ratio supported. Odd nesting ratio preferred |
---|
| 79 | !> The code follows MPI-1 standards. The available processors are split into |
---|
| 80 | !> two groups using MPI_COMM_SPLIT. Exchange of data from CG to FG is called |
---|
| 81 | !> interpolation. FG initialization by interpolation is done once at the start. |
---|
| 82 | !> FG boundary conditions are set by interpolated at every timestep. |
---|
| 83 | !> Exchange of data from CG to FG is called anterpolation, the two-way interaction |
---|
| 84 | !> occurs at every timestep. |
---|
| 85 | !> vnest_start_time set in PARIN allows delayed start of the coupling |
---|
| 86 | !> after spin-up of the CG |
---|
[2374] | 87 | !> |
---|
[3065] | 88 | !> @todo Replace dz(1) appropriatly to account for grid stretching |
---|
[2374] | 89 | !> @todo Ensure that code can be compiled for serial and parallel mode. Please |
---|
| 90 | !> check the placement of the directive "__parallel". |
---|
| 91 | !> @todo Add descriptions for all declared variables/parameters, one declaration |
---|
| 92 | !> statement per variable |
---|
| 93 | !> @todo Add a descriptive header above each subroutine (see land_surface_model) |
---|
| 94 | !> @todo FORTRAN language statements must not be used as names for variables |
---|
| 95 | !> (e.g. if). Please rename it. |
---|
| 96 | !> @todo Revise code according to PALM Coding Standard |
---|
[2365] | 97 | !------------------------------------------------------------------------------! |
---|
| 98 | MODULE vertical_nesting_mod |
---|
| 99 | |
---|
| 100 | USE kinds |
---|
| 101 | |
---|
| 102 | IMPLICIT NONE |
---|
| 103 | |
---|
[3232] | 104 | LOGICAL :: vnested = .FALSE. !> set to true if palmrun |
---|
| 105 | !> provides specific information via stdin |
---|
[2712] | 106 | LOGICAL :: vnest_init = .FALSE. !> set to true when FG is initialized |
---|
| 107 | REAL(wp) :: vnest_start_time = 9999999.9 !> simulated time when FG should be |
---|
| 108 | !> initialized. Should be |
---|
| 109 | !> identical in PARIN & PARIN_N |
---|
[2365] | 110 | |
---|
| 111 | |
---|
| 112 | |
---|
[2712] | 113 | INTEGER(iwp),DIMENSION(3,2) :: bdims = 0 !> sub-domain grid topology of current PE |
---|
| 114 | INTEGER(iwp),DIMENSION(3,2) :: bdims_rem = 0 !> sub-domain grid topology of partner PE |
---|
[3232] | 115 | INTEGER(iwp) :: cg_nprocs !> no. of PE in CG. Set by palmrun -Y |
---|
| 116 | INTEGER(iwp) :: fg_nprocs !> no. of PE in FG. Set by palmrun -Y |
---|
[2712] | 117 | INTEGER(iwp) :: TYPE_VNEST_BC !> derived contiguous data type for interpolation |
---|
| 118 | INTEGER(iwp) :: TYPE_VNEST_ANTER !> derived contiguous data type for anterpolation |
---|
| 119 | INTEGER(iwp),DIMENSION(:,:,:),ALLOCATABLE :: c2f_dims_cg !> One CG PE sends data to multiple FG PEs |
---|
| 120 | !> list of grid-topology of partners |
---|
| 121 | INTEGER(iwp),DIMENSION(:,:,:),ALLOCATABLE :: f2c_dims_cg !> One CG PE receives data from multiple FG PEs |
---|
| 122 | !> list of grid-topology of partners |
---|
| 123 | INTEGER(iwp),DIMENSION(:),ALLOCATABLE :: c2f_dims_fg !> One FG PE sends data to multiple CG PE |
---|
| 124 | !> list of grid-topology of partner |
---|
| 125 | INTEGER(iwp),DIMENSION(:),ALLOCATABLE :: f2c_dims_fg !> One FG PE sends data to only one CG PE |
---|
| 126 | !> list of grid-topology of partner |
---|
[2365] | 127 | |
---|
[2712] | 128 | INTEGER(iwp),DIMENSION(:,:),ALLOCATABLE :: f_rnk_lst !> list storing rank of FG PE denoted by pdims |
---|
| 129 | INTEGER(iwp),DIMENSION(:,:),ALLOCATABLE :: c_rnk_lst !> list storing rank of CG PE denoted by pdims |
---|
| 130 | INTEGER(iwp),DIMENSION(3) :: cfratio !> Nesting ratio in x,y and z-directions |
---|
[2365] | 131 | |
---|
[2712] | 132 | INTEGER(iwp) :: nxc !> no. of CG grid points in x-direction |
---|
| 133 | INTEGER(iwp) :: nxf !> no. of FG grid points in x-direction |
---|
| 134 | INTEGER(iwp) :: nyc !> no. of CG grid points in y-direction |
---|
| 135 | INTEGER(iwp) :: nyf !> no. of FG grid points in y-direction |
---|
| 136 | INTEGER(iwp) :: nzc !> no. of CG grid points in z-direction |
---|
| 137 | INTEGER(iwp) :: nzf !> no. of FG grid points in z-direction |
---|
| 138 | INTEGER(iwp) :: ngp_c !> no. of CG grid points in one vertical level |
---|
| 139 | INTEGER(iwp) :: ngp_f !> no. of FG grid points in one vertical level |
---|
[2365] | 140 | |
---|
[2712] | 141 | INTEGER(iwp) :: n_cell_c !> total no. of CG grid points in a PE |
---|
| 142 | INTEGER(iwp),DIMENSION(2) :: pdims_partner !> processor topology of partner PE |
---|
| 143 | INTEGER(iwp) :: target_idex !> temporary variable |
---|
| 144 | INTEGER(iwp),DIMENSION(2) :: offset !> temporary variable |
---|
| 145 | INTEGER(iwp),DIMENSION(2) :: map_coord !> temporary variable |
---|
[2365] | 146 | |
---|
[2712] | 147 | REAL(wp) :: dxc !> CG grid pacing in x-direction |
---|
| 148 | REAL(wp) :: dyc !> FG grid pacing in x-direction |
---|
| 149 | REAL(wp) :: dxf !> CG grid pacing in y-direction |
---|
| 150 | REAL(wp) :: dyf !> FG grid pacing in y-direction |
---|
| 151 | REAL(wp) :: dzc !> CG grid pacing in z-direction |
---|
| 152 | REAL(wp) :: dzf !> FG grid pacing in z-direction |
---|
| 153 | REAL(wp) :: dtc !> dt calculated for CG |
---|
| 154 | REAL(wp) :: dtf !> dt calculated for FG |
---|
[2365] | 155 | |
---|
[2712] | 156 | REAL(wp), DIMENSION(:), ALLOCATABLE :: zuc !> CG vertical u-levels |
---|
| 157 | REAL(wp), DIMENSION(:), ALLOCATABLE :: zuf !> FG vertical u-levels |
---|
| 158 | REAL(wp), DIMENSION(:), ALLOCATABLE :: zwc !> CG vertical w-levels |
---|
| 159 | REAL(wp), DIMENSION(:), ALLOCATABLE :: zwf !> FG vertical w-levels |
---|
| 160 | REAL(wp), DIMENSION(:,:,:), POINTER :: interpol3d !> pointers to simplify function calls |
---|
| 161 | REAL(wp), DIMENSION(:,:,:), POINTER :: anterpol3d !> pointers to simplify function calls |
---|
[2365] | 162 | |
---|
| 163 | |
---|
[2712] | 164 | REAL(wp),DIMENSION(:,:,:), ALLOCATABLE :: work3d !> temporary array for exchange of 3D data |
---|
| 165 | REAL(wp),DIMENSION(:,:), ALLOCATABLE :: work2dusws !> temporary array for exchange of 2D data |
---|
| 166 | REAL(wp),DIMENSION(:,:), ALLOCATABLE :: work2dvsws !> temporary array for exchange of 2D data |
---|
| 167 | REAL(wp),DIMENSION(:,:), ALLOCATABLE :: work2dts !> temporary array for exchange of 2D data |
---|
| 168 | REAL(wp),DIMENSION(:,:), ALLOCATABLE :: work2dus !> temporary array for exchange of 2D data |
---|
| 169 | |
---|
[2365] | 170 | SAVE |
---|
| 171 | |
---|
| 172 | !-- Public functions |
---|
| 173 | PUBLIC vnest_init_fine, vnest_boundary_conds, vnest_anterpolate, & |
---|
[2514] | 174 | vnest_boundary_conds_khkm, vnest_anterpolate_e, & |
---|
| 175 | vnest_init_pegrid_rank, vnest_init_pegrid_domain, vnest_init_grid, & |
---|
| 176 | vnest_timestep_sync, vnest_deallocate |
---|
[2365] | 177 | |
---|
| 178 | !-- Public constants and variables |
---|
[2712] | 179 | PUBLIC vnested, vnest_init, vnest_start_time |
---|
[2365] | 180 | |
---|
| 181 | PRIVATE bdims, bdims_rem, & |
---|
[2712] | 182 | work3d, work2dusws, work2dvsws, work2dts, work2dus, & |
---|
[2365] | 183 | dxc, dyc, dxf, dyf, dzc, dzf, dtc, dtf, & |
---|
| 184 | zuc, zuf, zwc, zwf, interpol3d, anterpol3d, & |
---|
| 185 | cg_nprocs, fg_nprocs, & |
---|
| 186 | c2f_dims_cg, c2f_dims_fg, f2c_dims_cg, f2c_dims_fg, & |
---|
| 187 | f_rnk_lst, c_rnk_lst, cfratio, pdims_partner, & |
---|
| 188 | nxc, nxf, nyc, nyf, nzc, nzf, & |
---|
[3241] | 189 | ngp_c, ngp_f, target_idex, n_cell_c, & |
---|
[2514] | 190 | offset, map_coord, TYPE_VNEST_BC, TYPE_VNEST_ANTER |
---|
[2365] | 191 | |
---|
| 192 | INTERFACE vnest_anterpolate |
---|
| 193 | MODULE PROCEDURE vnest_anterpolate |
---|
| 194 | END INTERFACE vnest_anterpolate |
---|
| 195 | |
---|
| 196 | INTERFACE vnest_anterpolate_e |
---|
| 197 | MODULE PROCEDURE vnest_anterpolate_e |
---|
| 198 | END INTERFACE vnest_anterpolate_e |
---|
| 199 | |
---|
| 200 | INTERFACE vnest_boundary_conds |
---|
| 201 | MODULE PROCEDURE vnest_boundary_conds |
---|
| 202 | END INTERFACE vnest_boundary_conds |
---|
| 203 | |
---|
| 204 | INTERFACE vnest_boundary_conds_khkm |
---|
| 205 | MODULE PROCEDURE vnest_boundary_conds_khkm |
---|
| 206 | END INTERFACE vnest_boundary_conds_khkm |
---|
| 207 | |
---|
| 208 | INTERFACE vnest_check_parameters |
---|
| 209 | MODULE PROCEDURE vnest_check_parameters |
---|
| 210 | END INTERFACE vnest_check_parameters |
---|
| 211 | |
---|
| 212 | INTERFACE vnest_deallocate |
---|
| 213 | MODULE PROCEDURE vnest_deallocate |
---|
| 214 | END INTERFACE vnest_deallocate |
---|
| 215 | |
---|
| 216 | INTERFACE vnest_init_fine |
---|
| 217 | MODULE PROCEDURE vnest_init_fine |
---|
| 218 | END INTERFACE vnest_init_fine |
---|
| 219 | |
---|
| 220 | INTERFACE vnest_init_grid |
---|
| 221 | MODULE PROCEDURE vnest_init_grid |
---|
| 222 | END INTERFACE vnest_init_grid |
---|
| 223 | |
---|
| 224 | INTERFACE vnest_init_pegrid_domain |
---|
| 225 | MODULE PROCEDURE vnest_init_pegrid_domain |
---|
| 226 | END INTERFACE vnest_init_pegrid_domain |
---|
| 227 | |
---|
| 228 | INTERFACE vnest_init_pegrid_rank |
---|
| 229 | MODULE PROCEDURE vnest_init_pegrid_rank |
---|
| 230 | END INTERFACE vnest_init_pegrid_rank |
---|
| 231 | |
---|
| 232 | INTERFACE vnest_timestep_sync |
---|
| 233 | MODULE PROCEDURE vnest_timestep_sync |
---|
| 234 | END INTERFACE vnest_timestep_sync |
---|
| 235 | |
---|
| 236 | CONTAINS |
---|
| 237 | |
---|
| 238 | |
---|
| 239 | |
---|
| 240 | SUBROUTINE vnest_init_fine |
---|
[2712] | 241 | #if defined( __parallel ) |
---|
[2365] | 242 | |
---|
| 243 | !--------------------------------------------------------------------------------! |
---|
| 244 | ! Description: |
---|
| 245 | ! ------------ |
---|
| 246 | ! At the specified vnest_start_time initialize the Fine Grid based on the coarse |
---|
| 247 | ! grid values |
---|
| 248 | !------------------------------------------------------------------------------! |
---|
| 249 | |
---|
| 250 | |
---|
| 251 | USE arrays_3d |
---|
| 252 | USE control_parameters |
---|
| 253 | USE grid_variables |
---|
| 254 | USE indices |
---|
| 255 | USE interfaces |
---|
| 256 | USE pegrid |
---|
[2712] | 257 | USE turbulence_closure_mod, & |
---|
[2696] | 258 | ONLY : tcm_diffusivities |
---|
[2712] | 259 | |
---|
[2365] | 260 | |
---|
| 261 | IMPLICIT NONE |
---|
| 262 | |
---|
[2712] | 263 | REAL(wp) :: time_since_reference_point_rem |
---|
| 264 | INTEGER(iwp) :: i |
---|
| 265 | INTEGER(iwp) :: j |
---|
| 266 | INTEGER(iwp) :: iif |
---|
| 267 | INTEGER(iwp) :: jjf |
---|
| 268 | INTEGER(iwp) :: kkf |
---|
[2365] | 269 | |
---|
| 270 | |
---|
[2712] | 271 | if (myid ==0 ) print *, ' TIME TO INIT FINE from COARSE', simulated_time |
---|
[2365] | 272 | |
---|
| 273 | ! |
---|
| 274 | !-- In case of model termination initiated by the remote model |
---|
| 275 | !-- (terminate_coupled_remote > 0), initiate termination of the local model. |
---|
| 276 | !-- The rest of the coupler must then be skipped because it would cause an MPI |
---|
| 277 | !-- intercomminucation hang. |
---|
| 278 | !-- If necessary, the coupler will be called at the beginning of the next |
---|
| 279 | !-- restart run. |
---|
| 280 | |
---|
| 281 | IF ( myid == 0) THEN |
---|
[3045] | 282 | CALL MPI_SENDRECV( terminate_coupled, 1, MPI_INTEGER, & |
---|
| 283 | target_id, 0, & |
---|
| 284 | terminate_coupled_remote, 1, MPI_INTEGER, & |
---|
| 285 | target_id, 0, & |
---|
[2365] | 286 | comm_inter, status, ierr ) |
---|
| 287 | ENDIF |
---|
| 288 | CALL MPI_BCAST( terminate_coupled_remote, 1, MPI_INTEGER, 0, comm2d, & |
---|
| 289 | ierr ) |
---|
| 290 | |
---|
| 291 | IF ( terminate_coupled_remote > 0 ) THEN |
---|
[3045] | 292 | WRITE( message_string, * ) 'remote model "', & |
---|
| 293 | TRIM( coupling_mode_remote ), & |
---|
| 294 | '" terminated', & |
---|
[3046] | 295 | '&with terminate_coupled_remote = ', & |
---|
[3045] | 296 | terminate_coupled_remote, & |
---|
[3046] | 297 | '&local model "', TRIM( coupling_mode ), & |
---|
[3045] | 298 | '" has', & |
---|
[3046] | 299 | '&terminate_coupled = ', & |
---|
[2365] | 300 | terminate_coupled |
---|
| 301 | CALL message( 'vnest_init_fine', 'PA0310', 1, 2, 0, 6, 0 ) |
---|
| 302 | RETURN |
---|
| 303 | ENDIF |
---|
| 304 | |
---|
| 305 | |
---|
| 306 | ! |
---|
| 307 | !-- Exchange the current simulated time between the models, |
---|
| 308 | !-- currently just for total_2ding |
---|
| 309 | IF ( myid == 0 ) THEN |
---|
| 310 | |
---|
| 311 | CALL MPI_SEND( time_since_reference_point, 1, MPI_REAL, target_id, & |
---|
| 312 | 11, comm_inter, ierr ) |
---|
| 313 | CALL MPI_RECV( time_since_reference_point_rem, 1, MPI_REAL, & |
---|
| 314 | target_id, 11, comm_inter, status, ierr ) |
---|
| 315 | |
---|
| 316 | ENDIF |
---|
| 317 | |
---|
| 318 | CALL MPI_BCAST( time_since_reference_point_rem, 1, MPI_REAL, 0, comm2d, & |
---|
| 319 | ierr ) |
---|
| 320 | |
---|
| 321 | |
---|
| 322 | IF ( coupling_mode == 'vnested_crse' ) THEN |
---|
| 323 | !-- Send data to fine grid for initialization |
---|
| 324 | |
---|
| 325 | offset(1) = ( pdims_partner(1) / pdims(1) ) * pcoord(1) |
---|
| 326 | offset(2) = ( pdims_partner(2) / pdims(2) ) * pcoord(2) |
---|
| 327 | |
---|
| 328 | do j = 0, ( pdims_partner(2) / pdims(2) ) - 1 |
---|
| 329 | do i = 0, ( pdims_partner(1) / pdims(1) ) - 1 |
---|
| 330 | map_coord(1) = i+offset(1) |
---|
| 331 | map_coord(2) = j+offset(2) |
---|
| 332 | |
---|
| 333 | target_idex = f_rnk_lst(map_coord(1),map_coord(2)) + numprocs |
---|
| 334 | |
---|
| 335 | CALL MPI_RECV( bdims_rem, 6, MPI_INTEGER, target_idex, 10, & |
---|
| 336 | comm_inter,status, ierr ) |
---|
| 337 | |
---|
| 338 | bdims (1,1) = bdims_rem (1,1) / cfratio(1) |
---|
| 339 | bdims (1,2) = bdims_rem (1,2) / cfratio(1) |
---|
| 340 | bdims (2,1) = bdims_rem (2,1) / cfratio(2) |
---|
| 341 | bdims (2,2) = bdims_rem (2,2) / cfratio(2) |
---|
| 342 | bdims (3,1) = bdims_rem (3,1) |
---|
| 343 | bdims (3,2) = bdims_rem (3,2) / cfratio(3) |
---|
| 344 | |
---|
| 345 | |
---|
| 346 | CALL MPI_SEND( bdims, 6, MPI_INTEGER, target_idex, 9, & |
---|
| 347 | comm_inter, ierr ) |
---|
| 348 | |
---|
| 349 | |
---|
| 350 | n_cell_c = (bdims(1,2)-bdims(1,1)+3) * & |
---|
| 351 | (bdims(2,2)-bdims(2,1)+3) * & |
---|
| 352 | (bdims(3,2)-bdims(3,1)+3) |
---|
| 353 | |
---|
| 354 | CALL MPI_SEND( u( bdims(3,1):bdims(3,2)+2, & |
---|
| 355 | bdims(2,1)-1:bdims(2,2)+1, & |
---|
| 356 | bdims(1,1)-1:bdims(1,2)+1),& |
---|
| 357 | n_cell_c, MPI_REAL, target_idex, & |
---|
[2514] | 358 | 101, comm_inter, ierr) |
---|
[2365] | 359 | |
---|
| 360 | CALL MPI_SEND( v( bdims(3,1):bdims(3,2)+2, & |
---|
| 361 | bdims(2,1)-1:bdims(2,2)+1, & |
---|
| 362 | bdims(1,1)-1:bdims(1,2)+1),& |
---|
| 363 | n_cell_c, MPI_REAL, target_idex, & |
---|
[2514] | 364 | 102, comm_inter, ierr) |
---|
[2365] | 365 | |
---|
| 366 | CALL MPI_SEND( w( bdims(3,1):bdims(3,2)+2, & |
---|
| 367 | bdims(2,1)-1:bdims(2,2)+1, & |
---|
| 368 | bdims(1,1)-1:bdims(1,2)+1),& |
---|
| 369 | n_cell_c, MPI_REAL, target_idex, & |
---|
[2514] | 370 | 103, comm_inter, ierr) |
---|
[2365] | 371 | |
---|
| 372 | CALL MPI_SEND( pt(bdims(3,1):bdims(3,2)+2, & |
---|
| 373 | bdims(2,1)-1:bdims(2,2)+1, & |
---|
| 374 | bdims(1,1)-1:bdims(1,2)+1),& |
---|
| 375 | n_cell_c, MPI_REAL, target_idex, & |
---|
[2514] | 376 | 105, comm_inter, ierr) |
---|
[2365] | 377 | |
---|
| 378 | IF ( humidity ) THEN |
---|
| 379 | CALL MPI_SEND( q(bdims(3,1):bdims(3,2)+2, & |
---|
| 380 | bdims(2,1)-1:bdims(2,2)+1, & |
---|
| 381 | bdims(1,1)-1:bdims(1,2)+1),& |
---|
| 382 | n_cell_c, MPI_REAL, target_idex, & |
---|
[2514] | 383 | 116, comm_inter, ierr) |
---|
[2365] | 384 | ENDIF |
---|
| 385 | |
---|
| 386 | CALL MPI_SEND( e( bdims(3,1):bdims(3,2)+2, & |
---|
| 387 | bdims(2,1)-1:bdims(2,2)+1, & |
---|
| 388 | bdims(1,1)-1:bdims(1,2)+1),& |
---|
| 389 | n_cell_c, MPI_REAL, target_idex, & |
---|
[2514] | 390 | 104, comm_inter, ierr) |
---|
[2365] | 391 | |
---|
| 392 | CALL MPI_SEND(kh( bdims(3,1):bdims(3,2)+2, & |
---|
| 393 | bdims(2,1)-1:bdims(2,2)+1, & |
---|
| 394 | bdims(1,1)-1:bdims(1,2)+1),& |
---|
| 395 | n_cell_c, MPI_REAL, target_idex, & |
---|
[2514] | 396 | 106, comm_inter, ierr) |
---|
[2365] | 397 | |
---|
| 398 | CALL MPI_SEND(km( bdims(3,1):bdims(3,2)+2, & |
---|
| 399 | bdims(2,1)-1:bdims(2,2)+1, & |
---|
| 400 | bdims(1,1)-1:bdims(1,2)+1),& |
---|
| 401 | n_cell_c, MPI_REAL, target_idex, & |
---|
[2514] | 402 | 107, comm_inter, ierr) |
---|
[2365] | 403 | |
---|
| 404 | !-- Send Surface fluxes |
---|
| 405 | IF ( use_surface_fluxes ) THEN |
---|
| 406 | |
---|
| 407 | n_cell_c = (bdims(1,2)-bdims(1,1)+3) * & |
---|
| 408 | (bdims(2,2)-bdims(2,1)+3) |
---|
| 409 | |
---|
[2712] | 410 | ! |
---|
| 411 | !-- shf and z0 for CG / FG need to initialized in input file or user_code |
---|
| 412 | !-- TODO |
---|
| 413 | !-- initialization of usws, vsws, ts and us not vital to vnest FG |
---|
| 414 | !-- variables are not compatible with the new surface layer module |
---|
| 415 | ! |
---|
| 416 | ! CALL MPI_SEND(surf_def_h(0)%usws( bdims(2,1)-1:bdims(2,2)+1, & |
---|
| 417 | ! bdims(1,1)-1:bdims(1,2)+1),& |
---|
| 418 | ! n_cell_c, MPI_REAL, target_idex, & |
---|
| 419 | ! 110, comm_inter, ierr ) |
---|
| 420 | ! |
---|
| 421 | ! CALL MPI_SEND(surf_def_h(0)%vsws( bdims(2,1)-1:bdims(2,2)+1, & |
---|
| 422 | ! bdims(1,1)-1:bdims(1,2)+1),& |
---|
| 423 | ! n_cell_c, MPI_REAL, target_idex, & |
---|
| 424 | ! 111, comm_inter, ierr ) |
---|
| 425 | ! |
---|
| 426 | ! CALL MPI_SEND(ts ( bdims(2,1)-1:bdims(2,2)+1, & |
---|
| 427 | ! bdims(1,1)-1:bdims(1,2)+1),& |
---|
| 428 | ! n_cell_c, MPI_REAL, target_idex, & |
---|
| 429 | ! 112, comm_inter, ierr ) |
---|
| 430 | ! |
---|
| 431 | ! CALL MPI_SEND(us ( bdims(2,1)-1:bdims(2,2)+1, & |
---|
| 432 | ! bdims(1,1)-1:bdims(1,2)+1),& |
---|
| 433 | ! n_cell_c, MPI_REAL, target_idex, & |
---|
| 434 | ! 113, comm_inter, ierr ) |
---|
| 435 | ! |
---|
[2365] | 436 | ENDIF |
---|
| 437 | |
---|
| 438 | |
---|
| 439 | |
---|
| 440 | |
---|
| 441 | end do |
---|
| 442 | end do |
---|
| 443 | |
---|
| 444 | ELSEIF ( coupling_mode == 'vnested_fine' ) THEN |
---|
| 445 | !-- Receive data from coarse grid for initialization |
---|
| 446 | |
---|
| 447 | offset(1) = pcoord(1) / ( pdims(1)/pdims_partner(1) ) |
---|
| 448 | offset(2) = pcoord(2) / ( pdims(2)/pdims_partner(2) ) |
---|
| 449 | map_coord(1) = offset(1) |
---|
| 450 | map_coord(2) = offset(2) |
---|
| 451 | target_idex = c_rnk_lst(map_coord(1),map_coord(2)) |
---|
| 452 | |
---|
| 453 | bdims (1,1) = nxl |
---|
| 454 | bdims (1,2) = nxr |
---|
| 455 | bdims (2,1) = nys |
---|
| 456 | bdims (2,2) = nyn |
---|
| 457 | bdims (3,1) = nzb |
---|
| 458 | bdims (3,2) = nzt |
---|
| 459 | |
---|
| 460 | CALL MPI_SEND( bdims, 6, MPI_INTEGER, target_idex, 10, & |
---|
| 461 | comm_inter, ierr ) |
---|
| 462 | |
---|
| 463 | CALL MPI_RECV( bdims_rem, 6, MPI_INTEGER, target_idex, 9, & |
---|
| 464 | comm_inter,status, ierr ) |
---|
| 465 | |
---|
| 466 | n_cell_c = (bdims_rem(1,2)-bdims_rem(1,1)+3) * & |
---|
| 467 | (bdims_rem(2,2)-bdims_rem(2,1)+3) * & |
---|
| 468 | (bdims_rem(3,2)-bdims_rem(3,1)+3) |
---|
| 469 | |
---|
| 470 | ALLOCATE( work3d ( bdims_rem(3,1) :bdims_rem(3,2)+2, & |
---|
| 471 | bdims_rem(2,1)-1:bdims_rem(2,2)+1, & |
---|
| 472 | bdims_rem(1,1)-1:bdims_rem(1,2)+1)) |
---|
| 473 | |
---|
| 474 | |
---|
| 475 | CALL MPI_RECV( work3d,n_cell_c, MPI_REAL, target_idex, 101, & |
---|
| 476 | comm_inter,status, ierr ) |
---|
| 477 | interpol3d => u |
---|
[3241] | 478 | call interpolate_to_fine_u |
---|
[2365] | 479 | |
---|
| 480 | CALL MPI_RECV( work3d,n_cell_c, MPI_REAL, target_idex, 102, & |
---|
| 481 | comm_inter,status, ierr ) |
---|
| 482 | interpol3d => v |
---|
[3241] | 483 | call interpolate_to_fine_v |
---|
[2365] | 484 | |
---|
| 485 | CALL MPI_RECV( work3d,n_cell_c, MPI_REAL, target_idex, 103, & |
---|
| 486 | comm_inter,status, ierr ) |
---|
| 487 | interpol3d => w |
---|
[3241] | 488 | call interpolate_to_fine_w |
---|
[2365] | 489 | |
---|
| 490 | CALL MPI_RECV( work3d,n_cell_c, MPI_REAL, target_idex, 105, & |
---|
| 491 | comm_inter,status, ierr ) |
---|
| 492 | interpol3d => pt |
---|
[3241] | 493 | call interpolate_to_fine_s |
---|
[2365] | 494 | |
---|
| 495 | IF ( humidity ) THEN |
---|
| 496 | CALL MPI_RECV( work3d,n_cell_c, MPI_REAL, target_idex, 116, & |
---|
| 497 | comm_inter,status, ierr ) |
---|
| 498 | interpol3d => q |
---|
[3241] | 499 | call interpolate_to_fine_s |
---|
[2365] | 500 | ENDIF |
---|
| 501 | |
---|
| 502 | CALL MPI_RECV( work3d,n_cell_c, MPI_REAL, target_idex, 104, & |
---|
| 503 | comm_inter,status, ierr ) |
---|
| 504 | interpol3d => e |
---|
[3241] | 505 | call interpolate_to_fine_s |
---|
[2365] | 506 | |
---|
| 507 | !-- kh,km no target attribute, use of pointer not possible |
---|
| 508 | CALL MPI_RECV( work3d,n_cell_c, MPI_REAL, target_idex, 106, & |
---|
| 509 | comm_inter,status, ierr ) |
---|
[3241] | 510 | call interpolate_to_fine_kh |
---|
[2365] | 511 | |
---|
| 512 | CALL MPI_RECV( work3d,n_cell_c, MPI_REAL, target_idex, 107, & |
---|
| 513 | comm_inter,status, ierr ) |
---|
[3241] | 514 | call interpolate_to_fine_km |
---|
[2365] | 515 | |
---|
| 516 | DEALLOCATE( work3d ) |
---|
| 517 | NULLIFY ( interpol3d ) |
---|
| 518 | |
---|
[2514] | 519 | !-- Recv Surface Fluxes |
---|
[2365] | 520 | IF ( use_surface_fluxes ) THEN |
---|
| 521 | n_cell_c = (bdims_rem(1,2)-bdims_rem(1,1)+3) * & |
---|
| 522 | (bdims_rem(2,2)-bdims_rem(2,1)+3) |
---|
| 523 | |
---|
| 524 | ALLOCATE( work2dusws ( bdims_rem(2,1)-1:bdims_rem(2,2)+1, & |
---|
| 525 | bdims_rem(1,1)-1:bdims_rem(1,2)+1) ) |
---|
| 526 | ALLOCATE( work2dvsws ( bdims_rem(2,1)-1:bdims_rem(2,2)+1, & |
---|
| 527 | bdims_rem(1,1)-1:bdims_rem(1,2)+1) ) |
---|
| 528 | ALLOCATE( work2dts ( bdims_rem(2,1)-1:bdims_rem(2,2)+1, & |
---|
| 529 | bdims_rem(1,1)-1:bdims_rem(1,2)+1) ) |
---|
| 530 | ALLOCATE( work2dus ( bdims_rem(2,1)-1:bdims_rem(2,2)+1, & |
---|
| 531 | bdims_rem(1,1)-1:bdims_rem(1,2)+1) ) |
---|
| 532 | |
---|
[2712] | 533 | ! |
---|
| 534 | !-- shf and z0 for CG / FG need to initialized in input file or user_code |
---|
| 535 | !-- TODO |
---|
| 536 | !-- initialization of usws, vsws, ts and us not vital to vnest FG |
---|
| 537 | !-- variables are not compatible with the new surface layer module |
---|
| 538 | ! |
---|
| 539 | ! CALL MPI_RECV( work2dusws,n_cell_c, MPI_REAL, target_idex, 110, & |
---|
| 540 | ! comm_inter,status, ierr ) |
---|
| 541 | ! |
---|
| 542 | ! CALL MPI_RECV( work2dvsws,n_cell_c, MPI_REAL, target_idex, 111, & |
---|
| 543 | ! comm_inter,status, ierr ) |
---|
| 544 | ! |
---|
| 545 | ! CALL MPI_RECV( work2dts ,n_cell_c, MPI_REAL, target_idex, 112, & |
---|
| 546 | ! comm_inter,status, ierr ) |
---|
| 547 | ! |
---|
| 548 | ! CALL MPI_RECV( work2dus ,n_cell_c, MPI_REAL, target_idex, 113, & |
---|
| 549 | ! comm_inter,status, ierr ) |
---|
| 550 | ! |
---|
| 551 | ! CALL interpolate_to_fine_flux ( 108 ) |
---|
[2365] | 552 | |
---|
| 553 | DEALLOCATE( work2dusws ) |
---|
| 554 | DEALLOCATE( work2dvsws ) |
---|
| 555 | DEALLOCATE( work2dts ) |
---|
| 556 | DEALLOCATE( work2dus ) |
---|
| 557 | ENDIF |
---|
| 558 | |
---|
| 559 | IF ( .NOT. constant_diffusion ) THEN |
---|
[2712] | 560 | DO kkf = bdims(3,1)+1,bdims(3,2)+1 |
---|
| 561 | DO jjf = bdims(2,1),bdims(2,2) |
---|
| 562 | DO iif = bdims(1,1),bdims(1,2) |
---|
[2365] | 563 | |
---|
[2712] | 564 | IF ( e(kkf,jjf,iif) < 0.0 ) THEN |
---|
| 565 | e(kkf,jjf,iif) = 1E-15_wp |
---|
[2365] | 566 | END IF |
---|
| 567 | |
---|
| 568 | END DO |
---|
| 569 | END DO |
---|
| 570 | END DO |
---|
| 571 | ENDIF |
---|
| 572 | |
---|
| 573 | w(nzt+1,:,:) = w(nzt,:,:) |
---|
| 574 | |
---|
| 575 | CALL exchange_horiz( u, nbgp ) |
---|
| 576 | CALL exchange_horiz( v, nbgp ) |
---|
| 577 | CALL exchange_horiz( w, nbgp ) |
---|
| 578 | CALL exchange_horiz( pt, nbgp ) |
---|
| 579 | IF ( .NOT. constant_diffusion ) CALL exchange_horiz( e, nbgp ) |
---|
| 580 | IF ( humidity ) CALL exchange_horiz( q, nbgp ) |
---|
| 581 | |
---|
| 582 | ! |
---|
| 583 | !-- Velocity boundary conditions at the bottom boundary |
---|
| 584 | IF ( ibc_uv_b == 0 ) THEN |
---|
| 585 | u(nzb,:,:) = 0.0_wp |
---|
| 586 | v(nzb,:,:) = 0.0_wp |
---|
| 587 | ELSE |
---|
| 588 | u(nzb,:,:) = u(nzb+1,:,:) |
---|
| 589 | v(nzb,:,:) = v(nzb+1,:,:) |
---|
| 590 | END IF |
---|
| 591 | |
---|
| 592 | |
---|
| 593 | w(nzb,:,:) = 0.0_wp |
---|
| 594 | |
---|
[2514] | 595 | ! |
---|
| 596 | !-- Temperature boundary conditions at the bottom boundary |
---|
[2365] | 597 | IF ( ibc_pt_b /= 0 ) THEN |
---|
| 598 | pt(nzb,:,:) = pt(nzb+1,:,:) |
---|
| 599 | END IF |
---|
| 600 | |
---|
| 601 | ! |
---|
| 602 | !-- Bottom boundary condition for the turbulent kinetic energy |
---|
| 603 | !-- Generally a Neumann condition with de/dz=0 is assumed |
---|
| 604 | IF ( .NOT. constant_diffusion ) THEN |
---|
| 605 | e(nzb,:,:) = e(nzb+1,:,:) |
---|
| 606 | END IF |
---|
| 607 | |
---|
| 608 | ! |
---|
| 609 | !-- Bottom boundary condition for turbulent diffusion coefficients |
---|
| 610 | km(nzb,:,:) = km(nzb+1,:,:) |
---|
| 611 | kh(nzb,:,:) = kh(nzb+1,:,:) |
---|
| 612 | |
---|
| 613 | !diffusivities required |
---|
| 614 | IF ( .NOT. humidity ) THEN |
---|
[2696] | 615 | CALL tcm_diffusivities( pt, pt_reference ) |
---|
[2365] | 616 | ELSE |
---|
[2696] | 617 | CALL tcm_diffusivities( vpt, pt_reference ) |
---|
[2365] | 618 | ENDIF |
---|
| 619 | |
---|
| 620 | |
---|
| 621 | ! |
---|
| 622 | !-- Reset Fine Grid top Boundary Condition |
---|
| 623 | !-- At the top of the FG, the scalars always follow Dirichlet condition |
---|
| 624 | |
---|
| 625 | ibc_pt_t = 0 |
---|
| 626 | |
---|
| 627 | !-- Initialize old time levels |
---|
| 628 | pt_p = pt; u_p = u; v_p = v; w_p = w |
---|
| 629 | IF ( .NOT. constant_diffusion ) e_p = e |
---|
| 630 | IF ( humidity ) THEN |
---|
| 631 | ibc_q_t = 0 |
---|
| 632 | q_p = q |
---|
| 633 | ENDIF |
---|
| 634 | |
---|
| 635 | ENDIF |
---|
| 636 | |
---|
| 637 | |
---|
| 638 | if (myid==0) print *, '** Fine Initalized ** simulated_time:', simulated_time |
---|
[2712] | 639 | |
---|
[2365] | 640 | CONTAINS |
---|
| 641 | |
---|
[3241] | 642 | SUBROUTINE interpolate_to_fine_w |
---|
[2365] | 643 | |
---|
| 644 | USE arrays_3d |
---|
| 645 | USE control_parameters |
---|
| 646 | USE grid_variables |
---|
| 647 | USE indices |
---|
| 648 | USE pegrid |
---|
| 649 | |
---|
| 650 | |
---|
| 651 | IMPLICIT NONE |
---|
| 652 | |
---|
[2712] | 653 | INTEGER(iwp) :: i |
---|
| 654 | INTEGER(iwp) :: j |
---|
| 655 | INTEGER(iwp) :: k |
---|
| 656 | INTEGER(iwp) :: iif |
---|
| 657 | INTEGER(iwp) :: jjf |
---|
| 658 | INTEGER(iwp) :: kkf |
---|
| 659 | INTEGER(iwp) :: nzbottom |
---|
| 660 | INTEGER(iwp) :: nztop |
---|
| 661 | INTEGER(iwp) :: bottomx |
---|
| 662 | INTEGER(iwp) :: bottomy |
---|
| 663 | INTEGER(iwp) :: bottomz |
---|
| 664 | INTEGER(iwp) :: topx |
---|
| 665 | INTEGER(iwp) :: topy |
---|
| 666 | INTEGER(iwp) :: topz |
---|
| 667 | REAL(wp) :: eps |
---|
| 668 | REAL(wp) :: alpha |
---|
| 669 | REAL(wp) :: eminus |
---|
| 670 | REAL(wp) :: edot |
---|
| 671 | REAL(wp) :: eplus |
---|
| 672 | REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: wprs |
---|
| 673 | REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: wprf |
---|
[2365] | 674 | |
---|
| 675 | |
---|
| 676 | nzbottom = bdims_rem (3,1) |
---|
| 677 | nztop = bdims_rem (3,2) |
---|
| 678 | |
---|
| 679 | ALLOCATE( wprf(nzbottom:nztop, bdims_rem(2,1)-1: bdims_rem(2,2)+1,nxl:nxr) ) |
---|
| 680 | ALLOCATE( wprs(nzbottom:nztop,nys:nyn,nxl:nxr) ) |
---|
| 681 | |
---|
| 682 | |
---|
| 683 | ! |
---|
| 684 | !-- Initialisation of the velocity component w |
---|
| 685 | ! |
---|
| 686 | !-- Interpolation in x-direction |
---|
| 687 | DO k = nzbottom, nztop |
---|
| 688 | DO j = bdims_rem(2,1)-1, bdims_rem(2,2)+1 |
---|
| 689 | DO i = bdims_rem(1,1),bdims_rem(1,2) |
---|
| 690 | |
---|
| 691 | bottomx = (nxf+1)/(nxc+1) * i |
---|
| 692 | topx = (nxf+1)/(nxc+1) * (i+1) - 1 |
---|
| 693 | |
---|
[2712] | 694 | DO iif = bottomx, topx |
---|
[2365] | 695 | |
---|
[2712] | 696 | eps = ( iif * dxf + 0.5 * dxf - i * dxc - 0.5 * dxc ) / dxc |
---|
[2365] | 697 | alpha = ( ( dxf / dxc )**2.0 - 1.0 ) / 24.0 |
---|
| 698 | eminus = eps * ( eps - 1.0 ) / 2.0 + alpha |
---|
| 699 | edot = ( 1.0 - eps**2.0 ) - 2.0 * alpha |
---|
| 700 | eplus = eps * ( eps + 1.0 ) / 2.0 + alpha |
---|
| 701 | |
---|
[2712] | 702 | wprf(k,j,iif) = eminus * work3d(k,j,i-1) & |
---|
[2365] | 703 | + edot * work3d(k,j,i) & |
---|
| 704 | + eplus * work3d(k,j,i+1) |
---|
| 705 | END DO |
---|
| 706 | |
---|
| 707 | END DO |
---|
| 708 | END DO |
---|
| 709 | END DO |
---|
| 710 | |
---|
| 711 | ! |
---|
| 712 | !-- Interpolation in y-direction (quadratic, Clark and Farley) |
---|
| 713 | DO k = nzbottom, nztop |
---|
| 714 | DO j = bdims_rem(2,1), bdims_rem(2,2) |
---|
| 715 | |
---|
| 716 | bottomy = (nyf+1)/(nyc+1) * j |
---|
| 717 | topy = (nyf+1)/(nyc+1) * (j+1) - 1 |
---|
| 718 | |
---|
[2712] | 719 | DO iif = nxl, nxr |
---|
| 720 | DO jjf = bottomy, topy |
---|
[2365] | 721 | |
---|
[2712] | 722 | eps = ( jjf * dyf + 0.5 * dyf - j * dyc - 0.5 * dyc ) / dyc |
---|
[2365] | 723 | alpha = ( ( dyf / dyc )**2.0 - 1.0 ) / 24.0 |
---|
| 724 | eminus = eps * ( eps - 1.0 ) / 2.0 + alpha |
---|
| 725 | edot = ( 1.0 - eps**2.0 ) - 2.0 * alpha |
---|
| 726 | eplus = eps * ( eps + 1.0 ) / 2.0 + alpha |
---|
| 727 | |
---|
[2712] | 728 | wprs(k,jjf,iif) = eminus * wprf(k,j-1,iif) & |
---|
| 729 | + edot * wprf(k,j,iif) & |
---|
| 730 | + eplus * wprf(k,j+1,iif) |
---|
[2365] | 731 | |
---|
| 732 | END DO |
---|
| 733 | END DO |
---|
| 734 | |
---|
| 735 | END DO |
---|
| 736 | END DO |
---|
| 737 | |
---|
| 738 | ! |
---|
| 739 | !-- Interpolation in z-direction (linear) |
---|
| 740 | |
---|
| 741 | DO k = nzbottom, nztop-1 |
---|
| 742 | |
---|
| 743 | bottomz = (dzc/dzf) * k |
---|
| 744 | topz = (dzc/dzf) * (k+1) - 1 |
---|
| 745 | |
---|
[2712] | 746 | DO jjf = nys, nyn |
---|
| 747 | DO iif = nxl, nxr |
---|
| 748 | DO kkf = bottomz, topz |
---|
[2365] | 749 | |
---|
[2712] | 750 | w(kkf,jjf,iif) = wprs(k,jjf,iif) + ( zwf(kkf) - zwc(k) ) & |
---|
| 751 | * ( wprs(k+1,jjf,iif) - wprs(k,jjf,iif) ) / dzc |
---|
[2365] | 752 | |
---|
| 753 | END DO |
---|
| 754 | END DO |
---|
| 755 | END DO |
---|
| 756 | |
---|
| 757 | END DO |
---|
| 758 | |
---|
[2712] | 759 | DO jjf = nys, nyn |
---|
| 760 | DO iif = nxl, nxr |
---|
[2365] | 761 | |
---|
[2712] | 762 | w(nzt,jjf,iif) = wprs(nztop,jjf,iif) |
---|
[2365] | 763 | |
---|
| 764 | END DO |
---|
| 765 | END DO |
---|
| 766 | ! |
---|
| 767 | ! w(nzb:nzt+1,nys:nyn,nxl:nxr) = 0 |
---|
| 768 | |
---|
| 769 | DEALLOCATE( wprf, wprs ) |
---|
| 770 | |
---|
| 771 | END SUBROUTINE interpolate_to_fine_w |
---|
| 772 | |
---|
[3241] | 773 | SUBROUTINE interpolate_to_fine_u |
---|
[2365] | 774 | |
---|
| 775 | |
---|
| 776 | USE arrays_3d |
---|
| 777 | USE control_parameters |
---|
| 778 | USE grid_variables |
---|
| 779 | USE indices |
---|
| 780 | USE pegrid |
---|
| 781 | |
---|
| 782 | |
---|
| 783 | IMPLICIT NONE |
---|
| 784 | |
---|
[2712] | 785 | INTEGER(iwp) :: i |
---|
| 786 | INTEGER(iwp) :: j |
---|
| 787 | INTEGER(iwp) :: k |
---|
| 788 | INTEGER(iwp) :: iif |
---|
| 789 | INTEGER(iwp) :: jjf |
---|
| 790 | INTEGER(iwp) :: kkf |
---|
| 791 | INTEGER(iwp) :: nzbottom |
---|
| 792 | INTEGER(iwp) :: nztop |
---|
| 793 | INTEGER(iwp) :: bottomx |
---|
| 794 | INTEGER(iwp) :: bottomy |
---|
| 795 | INTEGER(iwp) :: bottomz |
---|
| 796 | INTEGER(iwp) :: topx |
---|
| 797 | INTEGER(iwp) :: topy |
---|
| 798 | INTEGER(iwp) :: topz |
---|
| 799 | REAL(wp) :: eps |
---|
| 800 | REAL(wp) :: alpha |
---|
| 801 | REAL(wp) :: eminus |
---|
| 802 | REAL(wp) :: edot |
---|
| 803 | REAL(wp) :: eplus |
---|
| 804 | REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: uprf |
---|
| 805 | REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: uprs |
---|
[2365] | 806 | |
---|
| 807 | |
---|
| 808 | |
---|
| 809 | nzbottom = bdims_rem (3,1) |
---|
| 810 | nztop = bdims_rem (3,2) |
---|
| 811 | |
---|
| 812 | ALLOCATE( uprf(nzbottom:nztop+2,nys:nyn,bdims_rem(1,1)-1:bdims_rem(1,2)+1) ) |
---|
| 813 | ALLOCATE( uprs(nzb+1:nzt+1,nys:nyn,bdims_rem(1,1)-1:bdims_rem(1,2)+1) ) |
---|
| 814 | |
---|
| 815 | ! |
---|
| 816 | !-- Initialisation of the velocity component uf |
---|
| 817 | |
---|
| 818 | ! |
---|
| 819 | !-- Interpolation in y-direction (quadratic, Clark and Farley) |
---|
| 820 | |
---|
| 821 | DO k = nzbottom, nztop+2 |
---|
| 822 | DO j = bdims_rem(2,1), bdims_rem(2,2) |
---|
| 823 | |
---|
| 824 | bottomy = (nyf+1)/(nyc+1) * j |
---|
| 825 | topy = (nyf+1)/(nyc+1) * (j+1) - 1 |
---|
| 826 | |
---|
| 827 | DO i = bdims_rem(1,1)-1, bdims_rem(1,2)+1 |
---|
[2712] | 828 | DO jjf = bottomy, topy |
---|
[2365] | 829 | |
---|
[2712] | 830 | eps = ( jjf * dyf + 0.5 * dyf - j * dyc - 0.5 * dyc ) / dyc |
---|
[2365] | 831 | alpha = ( ( dyf / dyc )**2.0 - 1.0 ) / 24.0 |
---|
| 832 | eminus = eps * ( eps - 1.0 ) / 2.0 + alpha |
---|
| 833 | edot = ( 1.0 - eps**2.0 ) - 2.0 * alpha |
---|
| 834 | eplus = eps * ( eps + 1.0 ) / 2.0 + alpha |
---|
| 835 | |
---|
[2712] | 836 | uprf(k,jjf,i) = eminus * work3d(k,j-1,i) & |
---|
[2365] | 837 | + edot * work3d(k,j,i) & |
---|
| 838 | + eplus * work3d(k,j+1,i) |
---|
| 839 | |
---|
| 840 | END DO |
---|
| 841 | END DO |
---|
| 842 | |
---|
| 843 | END DO |
---|
| 844 | END DO |
---|
| 845 | |
---|
| 846 | ! |
---|
| 847 | !-- Interpolation in z-direction (quadratic, Clark and Farley) |
---|
| 848 | |
---|
| 849 | DO k = nzbottom+1, nztop |
---|
| 850 | |
---|
| 851 | bottomz = (dzc/dzf) * (k-1) + 1 |
---|
| 852 | topz = (dzc/dzf) * k |
---|
| 853 | |
---|
[2712] | 854 | DO jjf = nys, nyn |
---|
[2365] | 855 | DO i = bdims_rem(1,1)-1, bdims_rem(1,2)+1 |
---|
[2712] | 856 | DO kkf = bottomz, topz |
---|
[2365] | 857 | |
---|
[2712] | 858 | eps = ( zuf(kkf) - zuc(k) ) / dzc |
---|
[2365] | 859 | alpha = ( ( dzf / dzc )**2.0 - 1.0 ) / 24.0 |
---|
| 860 | eminus = eps * ( eps - 1.0 ) / 2.0 + alpha |
---|
| 861 | edot = ( 1.0 - eps**2.0 ) - 2.0 * alpha |
---|
| 862 | eplus = eps * ( eps + 1.0 ) / 2.0 + alpha |
---|
| 863 | |
---|
[2712] | 864 | uprs(kkf,jjf,i) = eminus * uprf(k-1,jjf,i) & |
---|
| 865 | + edot * uprf(k,jjf,i) & |
---|
| 866 | + eplus * uprf(k+1,jjf,i) |
---|
[2365] | 867 | |
---|
| 868 | END DO |
---|
| 869 | END DO |
---|
| 870 | END DO |
---|
| 871 | |
---|
| 872 | END DO |
---|
| 873 | |
---|
[2712] | 874 | DO jjf = nys, nyn |
---|
[2365] | 875 | DO i = bdims_rem(1,1)-1, bdims_rem(1,2)+1 |
---|
| 876 | |
---|
| 877 | eps = ( zuf(nzt+1) - zuc(nztop+1) ) / dzc |
---|
| 878 | alpha = ( ( dzf / dzc )**2.0 - 1.0 ) / 24.0 |
---|
| 879 | eminus = eps * ( eps - 1.0 ) / 2.0 + alpha |
---|
| 880 | edot = ( 1.0 - eps**2.0 ) - 2.0 * alpha |
---|
| 881 | eplus = eps * ( eps + 1.0 ) / 2.0 + alpha |
---|
| 882 | |
---|
[2712] | 883 | uprs(nzt+1,jjf,i) = eminus * uprf(nztop,jjf,i) & |
---|
| 884 | + edot * uprf(nztop+1,jjf,i) & |
---|
| 885 | + eplus * uprf(nztop+2,jjf,i) |
---|
[2365] | 886 | |
---|
| 887 | END DO |
---|
| 888 | END DO |
---|
| 889 | |
---|
| 890 | ! |
---|
| 891 | !-- Interpolation in x-direction (linear) |
---|
| 892 | |
---|
[2712] | 893 | DO kkf = nzb+1, nzt+1 |
---|
| 894 | DO jjf = nys, nyn |
---|
[2365] | 895 | DO i = bdims_rem(1,1), bdims_rem(1,2) |
---|
| 896 | |
---|
| 897 | bottomx = (nxf+1)/(nxc+1) * i |
---|
| 898 | topx = (nxf+1)/(nxc+1) * (i+1) - 1 |
---|
| 899 | |
---|
[2712] | 900 | DO iif = bottomx, topx |
---|
| 901 | u(kkf,jjf,iif) = uprs(kkf,jjf,i) + ( iif * dxf - i * dxc ) & |
---|
| 902 | * ( uprs(kkf,jjf,i+1) - uprs(kkf,jjf,i) ) / dxc |
---|
[2365] | 903 | END DO |
---|
| 904 | |
---|
| 905 | END DO |
---|
| 906 | END DO |
---|
| 907 | END DO |
---|
| 908 | ! |
---|
| 909 | !-- Determination of uf at the bottom boundary |
---|
| 910 | |
---|
| 911 | |
---|
| 912 | |
---|
| 913 | DEALLOCATE( uprf, uprs ) |
---|
| 914 | |
---|
| 915 | END SUBROUTINE interpolate_to_fine_u |
---|
| 916 | |
---|
| 917 | |
---|
[3241] | 918 | SUBROUTINE interpolate_to_fine_v |
---|
[2365] | 919 | |
---|
| 920 | |
---|
| 921 | USE arrays_3d |
---|
| 922 | USE control_parameters |
---|
| 923 | USE grid_variables |
---|
| 924 | USE indices |
---|
| 925 | USE pegrid |
---|
| 926 | |
---|
| 927 | |
---|
| 928 | IMPLICIT NONE |
---|
[2712] | 929 | |
---|
| 930 | INTEGER(iwp) :: i |
---|
| 931 | INTEGER(iwp) :: j |
---|
| 932 | INTEGER(iwp) :: k |
---|
| 933 | INTEGER(iwp) :: iif |
---|
| 934 | INTEGER(iwp) :: jjf |
---|
| 935 | INTEGER(iwp) :: kkf |
---|
| 936 | INTEGER(iwp) :: nzbottom |
---|
| 937 | INTEGER(iwp) :: nztop |
---|
| 938 | INTEGER(iwp) :: bottomx |
---|
| 939 | INTEGER(iwp) :: bottomy |
---|
| 940 | INTEGER(iwp) :: bottomz |
---|
| 941 | INTEGER(iwp) :: topx |
---|
| 942 | INTEGER(iwp) :: topy |
---|
| 943 | INTEGER(iwp) :: topz |
---|
| 944 | REAL(wp) :: eps |
---|
| 945 | REAL(wp) :: alpha |
---|
| 946 | REAL(wp) :: eminus |
---|
| 947 | REAL(wp) :: edot |
---|
| 948 | REAL(wp) :: eplus |
---|
| 949 | REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: vprs |
---|
| 950 | REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: vprf |
---|
[2365] | 951 | |
---|
| 952 | |
---|
| 953 | nzbottom = bdims_rem (3,1) |
---|
| 954 | nztop = bdims_rem (3,2) |
---|
| 955 | |
---|
| 956 | ALLOCATE( vprf(nzbottom:nztop+2,bdims_rem(2,1)-1:bdims_rem(2,2)+1,nxl:nxr) ) |
---|
| 957 | ALLOCATE( vprs(nzb+1:nzt+1, bdims_rem(2,1)-1:bdims_rem(2,2)+1,nxl:nxr) ) |
---|
| 958 | ! |
---|
| 959 | !-- Initialisation of the velocity component vf |
---|
| 960 | |
---|
| 961 | ! |
---|
| 962 | !-- Interpolation in x-direction (quadratic, Clark and Farley) |
---|
| 963 | |
---|
| 964 | DO k = nzbottom, nztop+2 |
---|
| 965 | DO j = bdims_rem(2,1)-1, bdims_rem(2,2)+1 |
---|
| 966 | DO i = bdims_rem(1,1), bdims_rem(1,2) |
---|
| 967 | |
---|
| 968 | bottomx = (nxf+1)/(nxc+1) * i |
---|
| 969 | topx = (nxf+1)/(nxc+1) * (i+1) - 1 |
---|
| 970 | |
---|
[2712] | 971 | DO iif = bottomx, topx |
---|
[2365] | 972 | |
---|
[2712] | 973 | eps = ( iif * dxf + 0.5 * dxf - i * dxc - 0.5 * dxc ) / dxc |
---|
[2365] | 974 | alpha = ( ( dxf / dxc )**2.0 - 1.0 ) / 24.0 |
---|
| 975 | eminus = eps * ( eps - 1.0 ) / 2.0 + alpha |
---|
| 976 | edot = ( 1.0 - eps**2.0 ) - 2.0 * alpha |
---|
| 977 | eplus = eps * ( eps + 1.0 ) / 2.0 + alpha |
---|
| 978 | |
---|
[2712] | 979 | vprf(k,j,iif) = eminus * work3d(k,j,i-1) & |
---|
[2365] | 980 | + edot * work3d(k,j,i) & |
---|
| 981 | + eplus * work3d(k,j,i+1) |
---|
| 982 | |
---|
| 983 | END DO |
---|
| 984 | |
---|
| 985 | END DO |
---|
| 986 | END DO |
---|
| 987 | END DO |
---|
| 988 | |
---|
| 989 | ! |
---|
| 990 | !-- Interpolation in z-direction (quadratic, Clark and Farley) |
---|
| 991 | |
---|
| 992 | DO k = nzbottom+1, nztop |
---|
| 993 | |
---|
| 994 | bottomz = (dzc/dzf) * (k-1) + 1 |
---|
| 995 | topz = (dzc/dzf) * k |
---|
| 996 | |
---|
| 997 | DO j = bdims_rem(2,1)-1, bdims_rem(2,2)+1 |
---|
[2712] | 998 | DO iif = nxl, nxr |
---|
| 999 | DO kkf = bottomz, topz |
---|
[2365] | 1000 | |
---|
[2712] | 1001 | eps = ( zuf(kkf) - zuc(k) ) / dzc |
---|
[2365] | 1002 | alpha = ( ( dzf / dzc )**2.0 - 1.0 ) / 24.0 |
---|
| 1003 | eminus = eps * ( eps - 1.0 ) / 2.0 + alpha |
---|
| 1004 | edot = ( 1.0 - eps**2.0 ) - 2.0 * alpha |
---|
| 1005 | eplus = eps * ( eps + 1.0 ) / 2.0 + alpha |
---|
| 1006 | |
---|
[2712] | 1007 | vprs(kkf,j,iif) = eminus * vprf(k-1,j,iif) & |
---|
| 1008 | + edot * vprf(k,j,iif) & |
---|
| 1009 | + eplus * vprf(k+1,j,iif) |
---|
[2365] | 1010 | |
---|
| 1011 | END DO |
---|
| 1012 | END DO |
---|
| 1013 | END DO |
---|
| 1014 | |
---|
| 1015 | END DO |
---|
| 1016 | |
---|
| 1017 | DO j = bdims_rem(2,1)-1, bdims_rem(2,2)+1 |
---|
[2712] | 1018 | DO iif = nxl, nxr |
---|
[2365] | 1019 | |
---|
| 1020 | eps = ( zuf(nzt+1) - zuc(nztop+1) ) / dzc |
---|
| 1021 | alpha = ( ( dzf / dzc )**2.0 - 1.0 ) / 24.0 |
---|
| 1022 | eminus = eps * ( eps - 1.0 ) / 2.0 + alpha |
---|
| 1023 | edot = ( 1.0 - eps**2.0 ) - 2.0 * alpha |
---|
| 1024 | eplus = eps * ( eps + 1.0 ) / 2.0 + alpha |
---|
| 1025 | |
---|
[2712] | 1026 | vprs(nzt+1,j,iif) = eminus * vprf(nztop,j,iif) & |
---|
| 1027 | + edot * vprf(nztop+1,j,iif) & |
---|
| 1028 | + eplus * vprf(nztop+2,j,iif) |
---|
[2365] | 1029 | |
---|
| 1030 | END DO |
---|
| 1031 | END DO |
---|
| 1032 | |
---|
| 1033 | ! |
---|
| 1034 | !-- Interpolation in y-direction (linear) |
---|
| 1035 | |
---|
[2712] | 1036 | DO kkf = nzb+1, nzt+1 |
---|
[2365] | 1037 | DO j = bdims_rem(2,1), bdims_rem(2,2) |
---|
| 1038 | |
---|
| 1039 | bottomy = (nyf+1)/(nyc+1) * j |
---|
| 1040 | topy = (nyf+1)/(nyc+1) * (j+1) - 1 |
---|
| 1041 | |
---|
[2712] | 1042 | DO iif = nxl, nxr |
---|
| 1043 | DO jjf = bottomy, topy |
---|
| 1044 | v (kkf,jjf,iif) = vprs(kkf,j,iif) + ( jjf * dyf - j * dyc ) & |
---|
| 1045 | * ( vprs(kkf,j+1,iif) - vprs(kkf,j,iif) ) / dyc |
---|
[2365] | 1046 | END DO |
---|
| 1047 | END DO |
---|
| 1048 | |
---|
| 1049 | END DO |
---|
| 1050 | END DO |
---|
| 1051 | |
---|
| 1052 | ! |
---|
| 1053 | !-- Determination of vf at the bottom boundary |
---|
| 1054 | |
---|
| 1055 | |
---|
| 1056 | DEALLOCATE( vprf, vprs ) |
---|
| 1057 | |
---|
| 1058 | END SUBROUTINE interpolate_to_fine_v |
---|
| 1059 | |
---|
| 1060 | |
---|
[3241] | 1061 | SUBROUTINE interpolate_to_fine_s |
---|
[2365] | 1062 | |
---|
| 1063 | |
---|
| 1064 | USE arrays_3d |
---|
| 1065 | USE control_parameters |
---|
| 1066 | USE grid_variables |
---|
| 1067 | USE indices |
---|
| 1068 | USE pegrid |
---|
| 1069 | |
---|
| 1070 | |
---|
| 1071 | IMPLICIT NONE |
---|
[2712] | 1072 | |
---|
| 1073 | INTEGER(iwp) :: i |
---|
| 1074 | INTEGER(iwp) :: j |
---|
| 1075 | INTEGER(iwp) :: k |
---|
| 1076 | INTEGER(iwp) :: iif |
---|
| 1077 | INTEGER(iwp) :: jjf |
---|
| 1078 | INTEGER(iwp) :: kkf |
---|
| 1079 | INTEGER(iwp) :: nzbottom |
---|
| 1080 | INTEGER(iwp) :: nztop |
---|
| 1081 | INTEGER(iwp) :: bottomx |
---|
| 1082 | INTEGER(iwp) :: bottomy |
---|
| 1083 | INTEGER(iwp) :: bottomz |
---|
| 1084 | INTEGER(iwp) :: topx |
---|
| 1085 | INTEGER(iwp) :: topy |
---|
| 1086 | INTEGER(iwp) :: topz |
---|
| 1087 | REAL(wp) :: eps |
---|
| 1088 | REAL(wp) :: alpha |
---|
| 1089 | REAL(wp) :: eminus |
---|
| 1090 | REAL(wp) :: edot |
---|
| 1091 | REAL(wp) :: eplus |
---|
| 1092 | REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: ptprs |
---|
| 1093 | REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: ptprf |
---|
[2365] | 1094 | |
---|
| 1095 | |
---|
| 1096 | nzbottom = bdims_rem (3,1) |
---|
| 1097 | nztop = bdims_rem (3,2) |
---|
| 1098 | |
---|
| 1099 | ALLOCATE( ptprf(nzbottom:nztop+2,bdims_rem(2,1)-1:bdims_rem(2,2)+1,nxl:nxr) ) |
---|
| 1100 | ALLOCATE( ptprs(nzbottom:nztop+2,nys:nyn,nxl:nxr) ) |
---|
| 1101 | |
---|
| 1102 | ! |
---|
| 1103 | !-- Initialisation of scalar variables |
---|
| 1104 | |
---|
| 1105 | ! |
---|
| 1106 | !-- Interpolation in x-direction (quadratic, Clark and Farley) |
---|
| 1107 | |
---|
| 1108 | DO k = nzbottom, nztop+2 |
---|
| 1109 | DO j = bdims_rem(2,1)-1, bdims_rem(2,2)+1 |
---|
| 1110 | DO i = bdims_rem(1,1), bdims_rem(1,2) |
---|
| 1111 | |
---|
| 1112 | bottomx = (nxf+1)/(nxc+1) * i |
---|
| 1113 | topx = (nxf+1)/(nxc+1) * (i+1) - 1 |
---|
| 1114 | |
---|
[2712] | 1115 | DO iif = bottomx, topx |
---|
[2365] | 1116 | |
---|
[2712] | 1117 | eps = ( iif * dxf + 0.5 * dxf - i * dxc - 0.5 * dxc ) / dxc |
---|
[2365] | 1118 | alpha = ( ( dxf / dxc )**2.0 - 1.0 ) / 24.0 |
---|
| 1119 | eminus = eps * ( eps - 1.0 ) / 2.0 + alpha |
---|
| 1120 | edot = ( 1.0 - eps**2.0 ) - 2.0 * alpha |
---|
| 1121 | eplus = eps * ( eps + 1.0 ) / 2.0 + alpha |
---|
| 1122 | |
---|
[2712] | 1123 | ptprf(k,j,iif) = eminus * work3d(k,j,i-1) & |
---|
[2365] | 1124 | + edot * work3d(k,j,i) & |
---|
| 1125 | + eplus * work3d(k,j,i+1) |
---|
| 1126 | END DO |
---|
| 1127 | |
---|
| 1128 | END DO |
---|
| 1129 | END DO |
---|
| 1130 | END DO |
---|
| 1131 | |
---|
| 1132 | ! |
---|
| 1133 | !-- Interpolation in y-direction (quadratic, Clark and Farley) |
---|
| 1134 | |
---|
| 1135 | DO k = nzbottom, nztop+2 |
---|
| 1136 | DO j = bdims_rem(2,1), bdims_rem(2,2) |
---|
| 1137 | |
---|
| 1138 | bottomy = (nyf+1)/(nyc+1) * j |
---|
| 1139 | topy = (nyf+1)/(nyc+1) * (j+1) - 1 |
---|
| 1140 | |
---|
[2712] | 1141 | DO iif = nxl, nxr |
---|
| 1142 | DO jjf = bottomy, topy |
---|
[2365] | 1143 | |
---|
[2712] | 1144 | eps = ( jjf * dyf + 0.5 * dyf - j * dyc - 0.5 * dyc ) / dyc |
---|
[2365] | 1145 | alpha = ( ( dyf / dyc )**2.0 - 1.0 ) / 24.0 |
---|
| 1146 | eminus = eps * ( eps - 1.0 ) / 2.0 + alpha |
---|
| 1147 | edot = ( 1.0 - eps**2.0 ) - 2.0 * alpha |
---|
| 1148 | eplus = eps * ( eps + 1.0 ) / 2.0 + alpha |
---|
| 1149 | |
---|
[2712] | 1150 | ptprs(k,jjf,iif) = eminus * ptprf(k,j-1,iif) & |
---|
| 1151 | + edot * ptprf(k,j,iif) & |
---|
| 1152 | + eplus * ptprf(k,j+1,iif) |
---|
[2365] | 1153 | |
---|
| 1154 | END DO |
---|
| 1155 | END DO |
---|
| 1156 | |
---|
| 1157 | END DO |
---|
| 1158 | END DO |
---|
| 1159 | |
---|
| 1160 | ! |
---|
| 1161 | !-- Interpolation in z-direction (quadratic, Clark and Farley) |
---|
| 1162 | |
---|
| 1163 | DO k = nzbottom+1, nztop |
---|
| 1164 | |
---|
| 1165 | bottomz = (dzc/dzf) * (k-1) + 1 |
---|
| 1166 | topz = (dzc/dzf) * k |
---|
| 1167 | |
---|
[2712] | 1168 | DO jjf = nys, nyn |
---|
| 1169 | DO iif = nxl, nxr |
---|
| 1170 | DO kkf = bottomz, topz |
---|
[2365] | 1171 | |
---|
[2712] | 1172 | eps = ( zuf(kkf) - zuc(k) ) / dzc |
---|
[2365] | 1173 | alpha = ( ( dzf / dzc )**2.0 - 1.0 ) / 24.0 |
---|
| 1174 | eminus = eps * ( eps - 1.0 ) / 2.0 + alpha |
---|
| 1175 | edot = ( 1.0 - eps**2.0 ) - 2.0 * alpha |
---|
| 1176 | eplus = eps * ( eps + 1.0 ) / 2.0 + alpha |
---|
| 1177 | |
---|
[2712] | 1178 | interpol3d(kkf,jjf,iif) = eminus * ptprs(k-1,jjf,iif) & |
---|
| 1179 | + edot * ptprs(k,jjf,iif) & |
---|
| 1180 | + eplus * ptprs(k+1,jjf,iif) |
---|
[2365] | 1181 | |
---|
| 1182 | END DO |
---|
| 1183 | END DO |
---|
| 1184 | END DO |
---|
| 1185 | |
---|
| 1186 | END DO |
---|
| 1187 | |
---|
[2712] | 1188 | DO jjf = nys, nyn |
---|
| 1189 | DO iif = nxl, nxr |
---|
[2365] | 1190 | |
---|
| 1191 | eps = ( zuf(nzt+1) - zuc(nztop+1) ) / dzc |
---|
| 1192 | alpha = ( ( dzf / dzc )**2.0 - 1.0 ) / 24.0 |
---|
| 1193 | eminus = eps * ( eps - 1.0 ) / 2.0 + alpha |
---|
| 1194 | edot = ( 1.0 - eps**2.0 ) - 2.0 * alpha |
---|
| 1195 | eplus = eps * ( eps + 1.0 ) / 2.0 + alpha |
---|
| 1196 | |
---|
[2712] | 1197 | interpol3d(nzt+1,jjf,iif) = eminus * ptprs(nztop,jjf,iif) & |
---|
| 1198 | + edot * ptprs(nztop+1,jjf,iif) & |
---|
| 1199 | + eplus * ptprs(nztop+2,jjf,iif) |
---|
[2365] | 1200 | |
---|
| 1201 | END DO |
---|
| 1202 | END DO |
---|
| 1203 | |
---|
| 1204 | |
---|
| 1205 | DEALLOCATE( ptprf, ptprs ) |
---|
| 1206 | |
---|
| 1207 | END SUBROUTINE interpolate_to_fine_s |
---|
| 1208 | |
---|
| 1209 | |
---|
[3241] | 1210 | SUBROUTINE interpolate_to_fine_kh |
---|
[2365] | 1211 | |
---|
| 1212 | |
---|
| 1213 | USE arrays_3d |
---|
| 1214 | USE control_parameters |
---|
| 1215 | USE grid_variables |
---|
| 1216 | USE indices |
---|
| 1217 | USE pegrid |
---|
| 1218 | |
---|
| 1219 | |
---|
| 1220 | IMPLICIT NONE |
---|
[2712] | 1221 | |
---|
| 1222 | INTEGER(iwp) :: i |
---|
| 1223 | INTEGER(iwp) :: j |
---|
| 1224 | INTEGER(iwp) :: k |
---|
| 1225 | INTEGER(iwp) :: iif |
---|
| 1226 | INTEGER(iwp) :: jjf |
---|
| 1227 | INTEGER(iwp) :: kkf |
---|
| 1228 | INTEGER(iwp) :: nzbottom |
---|
| 1229 | INTEGER(iwp) :: nztop |
---|
| 1230 | INTEGER(iwp) :: bottomx |
---|
| 1231 | INTEGER(iwp) :: bottomy |
---|
| 1232 | INTEGER(iwp) :: bottomz |
---|
| 1233 | INTEGER(iwp) :: topx |
---|
| 1234 | INTEGER(iwp) :: topy |
---|
| 1235 | INTEGER(iwp) :: topz |
---|
| 1236 | REAL(wp) :: eps |
---|
| 1237 | REAL(wp) :: alpha |
---|
| 1238 | REAL(wp) :: eminus |
---|
| 1239 | REAL(wp) :: edot |
---|
| 1240 | REAL(wp) :: eplus |
---|
| 1241 | REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: ptprs |
---|
| 1242 | REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: ptprf |
---|
[2365] | 1243 | |
---|
| 1244 | |
---|
| 1245 | nzbottom = bdims_rem (3,1) |
---|
| 1246 | nztop = bdims_rem (3,2) |
---|
| 1247 | ! nztop = blk_dim_rem (3,2)+1 |
---|
| 1248 | |
---|
| 1249 | |
---|
| 1250 | ALLOCATE( ptprf(nzbottom:nztop+2,bdims_rem(2,1)-1:bdims_rem(2,2)+1,nxl:nxr) ) |
---|
| 1251 | ALLOCATE( ptprs(nzbottom:nztop+2,nys:nyn,nxl:nxr) ) |
---|
| 1252 | |
---|
| 1253 | |
---|
| 1254 | ! |
---|
| 1255 | !-- Initialisation of scalar variables |
---|
| 1256 | |
---|
| 1257 | ! |
---|
| 1258 | !-- Interpolation in x-direction (quadratic, Clark and Farley) |
---|
| 1259 | |
---|
| 1260 | DO k = nzbottom, nztop+2 |
---|
| 1261 | DO j = bdims_rem(2,1)-1, bdims_rem(2,2)+1 |
---|
| 1262 | DO i = bdims_rem(1,1), bdims_rem(1,2) |
---|
| 1263 | |
---|
| 1264 | bottomx = (nxf+1)/(nxc+1) * i |
---|
| 1265 | topx = (nxf+1)/(nxc+1) * (i+1) - 1 |
---|
| 1266 | |
---|
[2712] | 1267 | DO iif = bottomx, topx |
---|
[2365] | 1268 | |
---|
[2712] | 1269 | eps = ( iif * dxf + 0.5 * dxf - i * dxc - 0.5 * dxc ) / dxc |
---|
[2365] | 1270 | alpha = ( ( dxf / dxc )**2.0 - 1.0 ) / 24.0 |
---|
| 1271 | eminus = eps * ( eps - 1.0 ) / 2.0 + alpha |
---|
| 1272 | edot = ( 1.0 - eps**2.0 ) - 2.0 * alpha |
---|
| 1273 | eplus = eps * ( eps + 1.0 ) / 2.0 + alpha |
---|
| 1274 | |
---|
[2712] | 1275 | ptprf(k,j,iif) = eminus * work3d(k,j,i-1) & |
---|
[2365] | 1276 | + edot * work3d(k,j,i) & |
---|
| 1277 | + eplus * work3d(k,j,i+1) |
---|
| 1278 | END DO |
---|
| 1279 | |
---|
| 1280 | END DO |
---|
| 1281 | END DO |
---|
| 1282 | END DO |
---|
| 1283 | |
---|
| 1284 | ! |
---|
| 1285 | !-- Interpolation in y-direction (quadratic, Clark and Farley) |
---|
| 1286 | |
---|
| 1287 | DO k = nzbottom, nztop+2 |
---|
| 1288 | DO j = bdims_rem(2,1), bdims_rem(2,2) |
---|
| 1289 | |
---|
| 1290 | bottomy = (nyf+1)/(nyc+1) * j |
---|
| 1291 | topy = (nyf+1)/(nyc+1) * (j+1) - 1 |
---|
| 1292 | |
---|
[2712] | 1293 | DO iif = nxl, nxr |
---|
| 1294 | DO jjf = bottomy, topy |
---|
[2365] | 1295 | |
---|
[2712] | 1296 | eps = ( jjf * dyf + 0.5 * dyf - j * dyc - 0.5 * dyc ) / dyc |
---|
[2365] | 1297 | alpha = ( ( dyf / dyc )**2.0 - 1.0 ) / 24.0 |
---|
| 1298 | eminus = eps * ( eps - 1.0 ) / 2.0 + alpha |
---|
| 1299 | edot = ( 1.0 - eps**2.0 ) - 2.0 * alpha |
---|
| 1300 | eplus = eps * ( eps + 1.0 ) / 2.0 + alpha |
---|
| 1301 | |
---|
[2712] | 1302 | ptprs(k,jjf,iif) = eminus * ptprf(k,j-1,iif) & |
---|
| 1303 | + edot * ptprf(k,j,iif) & |
---|
| 1304 | + eplus * ptprf(k,j+1,iif) |
---|
[2365] | 1305 | |
---|
| 1306 | END DO |
---|
| 1307 | END DO |
---|
| 1308 | |
---|
| 1309 | END DO |
---|
| 1310 | END DO |
---|
| 1311 | |
---|
| 1312 | ! |
---|
| 1313 | !-- Interpolation in z-direction (quadratic, Clark and Farley) |
---|
| 1314 | |
---|
| 1315 | DO k = nzbottom+1, nztop |
---|
| 1316 | |
---|
| 1317 | bottomz = (dzc/dzf) * (k-1) + 1 |
---|
| 1318 | topz = (dzc/dzf) * k |
---|
| 1319 | |
---|
[2712] | 1320 | DO jjf = nys, nyn |
---|
| 1321 | DO iif = nxl, nxr |
---|
| 1322 | DO kkf = bottomz, topz |
---|
[2365] | 1323 | |
---|
[2712] | 1324 | eps = ( zuf(kkf) - zuc(k) ) / dzc |
---|
[2365] | 1325 | alpha = ( ( dzf / dzc )**2.0 - 1.0 ) / 24.0 |
---|
| 1326 | eminus = eps * ( eps - 1.0 ) / 2.0 + alpha |
---|
| 1327 | edot = ( 1.0 - eps**2.0 ) - 2.0 * alpha |
---|
| 1328 | eplus = eps * ( eps + 1.0 ) / 2.0 + alpha |
---|
| 1329 | |
---|
[2712] | 1330 | kh(kkf,jjf,iif) = eminus * ptprs(k-1,jjf,iif) & |
---|
| 1331 | + edot * ptprs(k,jjf,iif) & |
---|
| 1332 | + eplus * ptprs(k+1,jjf,iif) |
---|
[2365] | 1333 | |
---|
| 1334 | END DO |
---|
| 1335 | END DO |
---|
| 1336 | END DO |
---|
| 1337 | |
---|
| 1338 | END DO |
---|
| 1339 | |
---|
[2712] | 1340 | DO jjf = nys, nyn |
---|
| 1341 | DO iif = nxl, nxr |
---|
[2365] | 1342 | |
---|
| 1343 | eps = ( zuf(nzt+1) - zuc(nztop+1) ) / dzc |
---|
| 1344 | alpha = ( ( dzf / dzc )**2.0 - 1.0 ) / 24.0 |
---|
| 1345 | eminus = eps * ( eps - 1.0 ) / 2.0 + alpha |
---|
| 1346 | edot = ( 1.0 - eps**2.0 ) - 2.0 * alpha |
---|
| 1347 | eplus = eps * ( eps + 1.0 ) / 2.0 + alpha |
---|
| 1348 | |
---|
[2712] | 1349 | kh(nzt+1,jjf,iif) = eminus * ptprs(nztop,jjf,iif) & |
---|
| 1350 | + edot * ptprs(nztop+1,jjf,iif) & |
---|
| 1351 | + eplus * ptprs(nztop+2,jjf,iif) |
---|
[2365] | 1352 | |
---|
| 1353 | END DO |
---|
| 1354 | END DO |
---|
| 1355 | |
---|
| 1356 | |
---|
| 1357 | DEALLOCATE( ptprf, ptprs ) |
---|
| 1358 | |
---|
| 1359 | END SUBROUTINE interpolate_to_fine_kh |
---|
| 1360 | |
---|
[3241] | 1361 | SUBROUTINE interpolate_to_fine_km |
---|
[2365] | 1362 | |
---|
| 1363 | |
---|
| 1364 | USE arrays_3d |
---|
| 1365 | USE control_parameters |
---|
| 1366 | USE grid_variables |
---|
| 1367 | USE indices |
---|
| 1368 | USE pegrid |
---|
| 1369 | |
---|
| 1370 | |
---|
| 1371 | IMPLICIT NONE |
---|
[2712] | 1372 | |
---|
| 1373 | INTEGER(iwp) :: i |
---|
| 1374 | INTEGER(iwp) :: j |
---|
| 1375 | INTEGER(iwp) :: k |
---|
| 1376 | INTEGER(iwp) :: iif |
---|
| 1377 | INTEGER(iwp) :: jjf |
---|
| 1378 | INTEGER(iwp) :: kkf |
---|
| 1379 | INTEGER(iwp) :: nzbottom |
---|
| 1380 | INTEGER(iwp) :: nztop |
---|
| 1381 | INTEGER(iwp) :: bottomx |
---|
| 1382 | INTEGER(iwp) :: bottomy |
---|
| 1383 | INTEGER(iwp) :: bottomz |
---|
| 1384 | INTEGER(iwp) :: topx |
---|
| 1385 | INTEGER(iwp) :: topy |
---|
| 1386 | INTEGER(iwp) :: topz |
---|
| 1387 | REAL(wp) :: eps |
---|
| 1388 | REAL(wp) :: alpha |
---|
| 1389 | REAL(wp) :: eminus |
---|
| 1390 | REAL(wp) :: edot |
---|
| 1391 | REAL(wp) :: eplus |
---|
| 1392 | REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: ptprs |
---|
| 1393 | REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: ptprf |
---|
[2365] | 1394 | |
---|
| 1395 | |
---|
| 1396 | nzbottom = bdims_rem (3,1) |
---|
| 1397 | nztop = bdims_rem (3,2) |
---|
| 1398 | ! nztop = blk_dim_rem (3,2)+1 |
---|
| 1399 | |
---|
| 1400 | |
---|
| 1401 | ALLOCATE( ptprf(nzbottom:nztop+2,bdims_rem(2,1)-1:bdims_rem(2,2)+1,nxl:nxr) ) |
---|
| 1402 | ALLOCATE( ptprs(nzbottom:nztop+2,nys:nyn,nxl:nxr) ) |
---|
| 1403 | |
---|
| 1404 | |
---|
| 1405 | ! |
---|
| 1406 | !-- Initialisation of scalar variables |
---|
| 1407 | |
---|
| 1408 | ! |
---|
| 1409 | !-- Interpolation in x-direction (quadratic, Clark and Farley) |
---|
| 1410 | |
---|
| 1411 | DO k = nzbottom, nztop+2 |
---|
| 1412 | DO j = bdims_rem(2,1)-1, bdims_rem(2,2)+1 |
---|
| 1413 | DO i = bdims_rem(1,1), bdims_rem(1,2) |
---|
| 1414 | |
---|
| 1415 | bottomx = (nxf+1)/(nxc+1) * i |
---|
| 1416 | topx = (nxf+1)/(nxc+1) * (i+1) - 1 |
---|
| 1417 | |
---|
[2712] | 1418 | DO iif = bottomx, topx |
---|
[2365] | 1419 | |
---|
[2712] | 1420 | eps = ( iif * dxf + 0.5 * dxf - i * dxc - 0.5 * dxc ) / dxc |
---|
[2365] | 1421 | alpha = ( ( dxf / dxc )**2.0 - 1.0 ) / 24.0 |
---|
| 1422 | eminus = eps * ( eps - 1.0 ) / 2.0 + alpha |
---|
| 1423 | edot = ( 1.0 - eps**2.0 ) - 2.0 * alpha |
---|
| 1424 | eplus = eps * ( eps + 1.0 ) / 2.0 + alpha |
---|
| 1425 | |
---|
[2712] | 1426 | ptprf(k,j,iif) = eminus * work3d(k,j,i-1) & |
---|
[2365] | 1427 | + edot * work3d(k,j,i) & |
---|
| 1428 | + eplus * work3d(k,j,i+1) |
---|
| 1429 | END DO |
---|
| 1430 | |
---|
| 1431 | END DO |
---|
| 1432 | END DO |
---|
| 1433 | END DO |
---|
| 1434 | |
---|
| 1435 | ! |
---|
| 1436 | !-- Interpolation in y-direction (quadratic, Clark and Farley) |
---|
| 1437 | |
---|
| 1438 | DO k = nzbottom, nztop+2 |
---|
| 1439 | DO j = bdims_rem(2,1), bdims_rem(2,2) |
---|
| 1440 | |
---|
| 1441 | bottomy = (nyf+1)/(nyc+1) * j |
---|
| 1442 | topy = (nyf+1)/(nyc+1) * (j+1) - 1 |
---|
| 1443 | |
---|
[2712] | 1444 | DO iif = nxl, nxr |
---|
| 1445 | DO jjf = bottomy, topy |
---|
[2365] | 1446 | |
---|
[2712] | 1447 | eps = ( jjf * dyf + 0.5 * dyf - j * dyc - 0.5 * dyc ) / dyc |
---|
[2365] | 1448 | alpha = ( ( dyf / dyc )**2.0 - 1.0 ) / 24.0 |
---|
| 1449 | eminus = eps * ( eps - 1.0 ) / 2.0 + alpha |
---|
| 1450 | edot = ( 1.0 - eps**2.0 ) - 2.0 * alpha |
---|
| 1451 | eplus = eps * ( eps + 1.0 ) / 2.0 + alpha |
---|
| 1452 | |
---|
[2712] | 1453 | ptprs(k,jjf,iif) = eminus * ptprf(k,j-1,iif) & |
---|
| 1454 | + edot * ptprf(k,j,iif) & |
---|
| 1455 | + eplus * ptprf(k,j+1,iif) |
---|
[2365] | 1456 | |
---|
| 1457 | END DO |
---|
| 1458 | END DO |
---|
| 1459 | |
---|
| 1460 | END DO |
---|
| 1461 | END DO |
---|
| 1462 | |
---|
| 1463 | ! |
---|
| 1464 | !-- Interpolation in z-direction (quadratic, Clark and Farley) |
---|
| 1465 | |
---|
| 1466 | DO k = nzbottom+1, nztop |
---|
| 1467 | |
---|
| 1468 | bottomz = (dzc/dzf) * (k-1) + 1 |
---|
| 1469 | topz = (dzc/dzf) * k |
---|
| 1470 | |
---|
[2712] | 1471 | DO jjf = nys, nyn |
---|
| 1472 | DO iif = nxl, nxr |
---|
| 1473 | DO kkf = bottomz, topz |
---|
[2365] | 1474 | |
---|
[2712] | 1475 | eps = ( zuf(kkf) - zuc(k) ) / dzc |
---|
[2365] | 1476 | alpha = ( ( dzf / dzc )**2.0 - 1.0 ) / 24.0 |
---|
| 1477 | eminus = eps * ( eps - 1.0 ) / 2.0 + alpha |
---|
| 1478 | edot = ( 1.0 - eps**2.0 ) - 2.0 * alpha |
---|
| 1479 | eplus = eps * ( eps + 1.0 ) / 2.0 + alpha |
---|
| 1480 | |
---|
[2712] | 1481 | km(kkf,jjf,iif) = eminus * ptprs(k-1,jjf,iif) & |
---|
| 1482 | + edot * ptprs(k,jjf,iif) & |
---|
| 1483 | + eplus * ptprs(k+1,jjf,iif) |
---|
[2365] | 1484 | |
---|
| 1485 | END DO |
---|
| 1486 | END DO |
---|
| 1487 | END DO |
---|
| 1488 | |
---|
| 1489 | END DO |
---|
| 1490 | |
---|
[2712] | 1491 | DO jjf = nys, nyn |
---|
| 1492 | DO iif = nxl, nxr |
---|
[2365] | 1493 | |
---|
| 1494 | eps = ( zuf(nzt+1) - zuc(nztop+1) ) / dzc |
---|
| 1495 | alpha = ( ( dzf / dzc )**2.0 - 1.0 ) / 24.0 |
---|
| 1496 | eminus = eps * ( eps - 1.0 ) / 2.0 + alpha |
---|
| 1497 | edot = ( 1.0 - eps**2.0 ) - 2.0 * alpha |
---|
| 1498 | eplus = eps * ( eps + 1.0 ) / 2.0 + alpha |
---|
| 1499 | |
---|
[2712] | 1500 | km(nzt+1,jjf,iif) = eminus * ptprs(nztop,jjf,iif) & |
---|
| 1501 | + edot * ptprs(nztop+1,jjf,iif) & |
---|
| 1502 | + eplus * ptprs(nztop+2,jjf,iif) |
---|
[2365] | 1503 | |
---|
| 1504 | END DO |
---|
| 1505 | END DO |
---|
| 1506 | |
---|
| 1507 | |
---|
| 1508 | DEALLOCATE( ptprf, ptprs ) |
---|
| 1509 | |
---|
| 1510 | END SUBROUTINE interpolate_to_fine_km |
---|
| 1511 | |
---|
| 1512 | |
---|
| 1513 | |
---|
| 1514 | |
---|
[3241] | 1515 | SUBROUTINE interpolate_to_fine_flux |
---|
[2365] | 1516 | |
---|
| 1517 | |
---|
| 1518 | USE arrays_3d |
---|
| 1519 | USE control_parameters |
---|
| 1520 | USE grid_variables |
---|
| 1521 | USE indices |
---|
| 1522 | USE pegrid |
---|
| 1523 | |
---|
| 1524 | |
---|
| 1525 | IMPLICIT NONE |
---|
[2712] | 1526 | |
---|
| 1527 | INTEGER(iwp) :: i |
---|
| 1528 | INTEGER(iwp) :: j |
---|
| 1529 | INTEGER(iwp) :: iif |
---|
| 1530 | INTEGER(iwp) :: jjf |
---|
| 1531 | INTEGER(iwp) :: bottomx |
---|
| 1532 | INTEGER(iwp) :: bottomy |
---|
| 1533 | INTEGER(iwp) :: topx |
---|
| 1534 | INTEGER(iwp) :: topy |
---|
| 1535 | REAL(wp) :: eps |
---|
| 1536 | REAL(wp) :: alpha |
---|
| 1537 | REAL(wp) :: eminus |
---|
| 1538 | REAL(wp) :: edot |
---|
| 1539 | REAL(wp) :: eplus |
---|
| 1540 | REAL(wp), DIMENSION(:,:), ALLOCATABLE :: uswspr |
---|
| 1541 | REAL(wp), DIMENSION(:,:), ALLOCATABLE :: vswspr |
---|
| 1542 | REAL(wp), DIMENSION(:,:), ALLOCATABLE :: tspr |
---|
| 1543 | REAL(wp), DIMENSION(:,:), ALLOCATABLE :: uspr |
---|
[2365] | 1544 | |
---|
| 1545 | ALLOCATE( uswspr(bdims_rem(2,1)-1:bdims_rem(2,2)+1,nxl:nxr) ) |
---|
| 1546 | ALLOCATE( vswspr(bdims_rem(2,1)-1:bdims_rem(2,2)+1,nxl:nxr) ) |
---|
| 1547 | ALLOCATE( tspr (bdims_rem(2,1)-1:bdims_rem(2,2)+1,nxl:nxr) ) |
---|
| 1548 | ALLOCATE( uspr (bdims_rem(2,1)-1:bdims_rem(2,2)+1,nxl:nxr) ) |
---|
| 1549 | |
---|
| 1550 | ! |
---|
| 1551 | !-- Initialisation of scalar variables (2D) |
---|
| 1552 | |
---|
| 1553 | ! |
---|
| 1554 | !-- Interpolation in x-direction (quadratic, Clark and Farley) |
---|
| 1555 | |
---|
| 1556 | DO j = bdims_rem(2,1)-1, bdims_rem(2,2)+1 |
---|
| 1557 | DO i = bdims_rem(1,1), bdims_rem(1,2) |
---|
| 1558 | |
---|
| 1559 | bottomx = (nxf+1)/(nxc+1) * i |
---|
| 1560 | topx = (nxf+1)/(nxc+1) * (i+1) - 1 |
---|
| 1561 | |
---|
[2712] | 1562 | DO iif = bottomx, topx |
---|
[2365] | 1563 | |
---|
[2712] | 1564 | eps = ( iif * dxf + 0.5 * dxf - i * dxc - 0.5 * dxc ) / dxc |
---|
[2365] | 1565 | alpha = ( ( dxf / dxc )**2.0 - 1.0 ) / 24.0 |
---|
| 1566 | eminus = eps * ( eps - 1.0 ) / 2.0 + alpha |
---|
| 1567 | edot = ( 1.0 - eps**2.0 ) - 2.0 * alpha |
---|
| 1568 | eplus = eps * ( eps + 1.0 ) / 2.0 + alpha |
---|
| 1569 | |
---|
[2712] | 1570 | uswspr(j,iif) = eminus * work2dusws(j,i-1) & |
---|
[2365] | 1571 | + edot * work2dusws(j,i) & |
---|
| 1572 | + eplus * work2dusws(j,i+1) |
---|
| 1573 | |
---|
[2712] | 1574 | vswspr(j,iif) = eminus * work2dvsws(j,i-1) & |
---|
[2365] | 1575 | + edot * work2dvsws(j,i) & |
---|
| 1576 | + eplus * work2dvsws(j,i+1) |
---|
| 1577 | |
---|
[2712] | 1578 | tspr(j,iif) = eminus * work2dts(j,i-1) & |
---|
[2365] | 1579 | + edot * work2dts(j,i) & |
---|
| 1580 | + eplus * work2dts(j,i+1) |
---|
| 1581 | |
---|
[2712] | 1582 | uspr(j,iif) = eminus * work2dus(j,i-1) & |
---|
[2365] | 1583 | + edot * work2dus(j,i) & |
---|
| 1584 | + eplus * work2dus(j,i+1) |
---|
| 1585 | |
---|
| 1586 | END DO |
---|
| 1587 | |
---|
| 1588 | END DO |
---|
| 1589 | END DO |
---|
| 1590 | |
---|
| 1591 | ! |
---|
| 1592 | !-- Interpolation in y-direction (quadratic, Clark and Farley) |
---|
| 1593 | |
---|
| 1594 | DO j = bdims_rem(2,1), bdims_rem(2,2) |
---|
| 1595 | |
---|
| 1596 | bottomy = (nyf+1)/(nyc+1) * j |
---|
| 1597 | topy = (nyf+1)/(nyc+1) * (j+1) - 1 |
---|
| 1598 | |
---|
[2712] | 1599 | DO iif = nxl, nxr |
---|
| 1600 | DO jjf = bottomy, topy |
---|
[2365] | 1601 | |
---|
[2712] | 1602 | eps = ( jjf * dyf + 0.5 * dyf - j * dyc - 0.5 * dyc ) / dyc |
---|
[2365] | 1603 | alpha = ( ( dyf / dyc )**2.0 - 1.0 ) / 24.0 |
---|
| 1604 | eminus = eps * ( eps - 1.0 ) / 2.0 + alpha |
---|
| 1605 | edot = ( 1.0 - eps**2.0 ) - 2.0 * alpha |
---|
| 1606 | eplus = eps * ( eps + 1.0 ) / 2.0 + alpha |
---|
[2712] | 1607 | |
---|
| 1608 | !! |
---|
| 1609 | !!-- TODO |
---|
| 1610 | !-- variables are not compatible with the new surface layer module |
---|
| 1611 | ! |
---|
| 1612 | ! surf_def_h(0)%usws(jjf,iif) = eminus * uswspr(j-1,if) & |
---|
| 1613 | ! + edot * uswspr(j,iif) & |
---|
| 1614 | ! + eplus * uswspr(j+1,iif) |
---|
| 1615 | ! |
---|
| 1616 | ! surf_def_h(0)%vsws(jjf,iif) = eminus * vswspr(j-1,if) & |
---|
| 1617 | ! + edot * vswspr(j,iif) & |
---|
| 1618 | ! + eplus * vswspr(j+1,iif) |
---|
| 1619 | ! |
---|
| 1620 | ! ts(jjf,iif) = eminus * tspr(j-1,if) & |
---|
| 1621 | ! + edot * tspr(j,iif) & |
---|
| 1622 | ! + eplus * tspr(j+1,iif) |
---|
| 1623 | ! |
---|
| 1624 | ! us(jjf,iif) = eminus * uspr(j-1,if) & |
---|
| 1625 | ! + edot * uspr(j,iif) & |
---|
| 1626 | ! + eplus * uspr(j+1,iif) |
---|
[2365] | 1627 | |
---|
| 1628 | END DO |
---|
| 1629 | END DO |
---|
| 1630 | |
---|
| 1631 | END DO |
---|
| 1632 | |
---|
| 1633 | |
---|
[2712] | 1634 | DEALLOCATE( uswspr, vswspr ) |
---|
| 1635 | DEALLOCATE( tspr, uspr ) |
---|
[2365] | 1636 | |
---|
| 1637 | |
---|
| 1638 | END SUBROUTINE interpolate_to_fine_flux |
---|
| 1639 | |
---|
| 1640 | |
---|
[2712] | 1641 | #endif |
---|
[2365] | 1642 | END SUBROUTINE vnest_init_fine |
---|
| 1643 | |
---|
| 1644 | SUBROUTINE vnest_boundary_conds |
---|
[2712] | 1645 | #if defined( __parallel ) |
---|
[2365] | 1646 | !------------------------------------------------------------------------------! |
---|
| 1647 | ! Description: |
---|
| 1648 | ! ------------ |
---|
| 1649 | ! Boundary conditions for the prognostic quantities. |
---|
| 1650 | ! One additional bottom boundary condition is applied for the TKE (=(u*)**2) |
---|
| 1651 | ! in prandtl_fluxes. The cyclic lateral boundary conditions are implicitly |
---|
| 1652 | ! handled in routine exchange_horiz. Pressure boundary conditions are |
---|
| 1653 | ! explicitly set in routines pres, poisfft, poismg and sor. |
---|
| 1654 | !------------------------------------------------------------------------------! |
---|
| 1655 | |
---|
| 1656 | USE arrays_3d |
---|
| 1657 | USE control_parameters |
---|
| 1658 | USE grid_variables |
---|
| 1659 | USE indices |
---|
| 1660 | USE pegrid |
---|
| 1661 | |
---|
| 1662 | |
---|
| 1663 | IMPLICIT NONE |
---|
| 1664 | |
---|
[2712] | 1665 | INTEGER(iwp) :: i |
---|
| 1666 | INTEGER(iwp) :: j |
---|
| 1667 | INTEGER(iwp) :: iif |
---|
| 1668 | INTEGER(iwp) :: jjf |
---|
[2365] | 1669 | |
---|
| 1670 | |
---|
| 1671 | ! |
---|
| 1672 | !-- vnest: top boundary conditions |
---|
| 1673 | |
---|
| 1674 | IF ( coupling_mode == 'vnested_crse' ) THEN |
---|
| 1675 | !-- Send data to fine grid for TOP BC |
---|
| 1676 | |
---|
| 1677 | offset(1) = ( pdims_partner(1) / pdims(1) ) * pcoord(1) |
---|
| 1678 | offset(2) = ( pdims_partner(2) / pdims(2) ) * pcoord(2) |
---|
| 1679 | |
---|
| 1680 | do j = 0, ( pdims_partner(2) / pdims(2) ) - 1 |
---|
| 1681 | do i = 0, ( pdims_partner(1) / pdims(1) ) - 1 |
---|
| 1682 | map_coord(1) = i+offset(1) |
---|
| 1683 | map_coord(2) = j+offset(2) |
---|
| 1684 | |
---|
| 1685 | target_idex = f_rnk_lst(map_coord(1),map_coord(2)) + numprocs |
---|
| 1686 | |
---|
| 1687 | bdims (1,1) = c2f_dims_cg (0,map_coord(1),map_coord(2)) |
---|
| 1688 | bdims (1,2) = c2f_dims_cg (1,map_coord(1),map_coord(2)) |
---|
| 1689 | bdims (2,1) = c2f_dims_cg (2,map_coord(1),map_coord(2)) |
---|
| 1690 | bdims (2,2) = c2f_dims_cg (3,map_coord(1),map_coord(2)) |
---|
| 1691 | bdims (3,1) = c2f_dims_cg (4,map_coord(1),map_coord(2)) |
---|
| 1692 | bdims (3,2) = c2f_dims_cg (5,map_coord(1),map_coord(2)) |
---|
| 1693 | |
---|
| 1694 | n_cell_c = ( (bdims(1,2)-bdims(1,1)) + 3 ) * & |
---|
| 1695 | ( (bdims(2,2)-bdims(2,1)) + 3 ) * & |
---|
| 1696 | ( (bdims(3,2)-bdims(3,1)) + 1 ) |
---|
| 1697 | |
---|
| 1698 | CALL MPI_SEND(u (bdims(3,1), bdims(2,1)-1, bdims(1,1)-1), & |
---|
| 1699 | 1, TYPE_VNEST_BC, target_idex, & |
---|
| 1700 | 201, comm_inter, ierr) |
---|
| 1701 | |
---|
| 1702 | CALL MPI_SEND(v(bdims(3,1), bdims(2,1)-1, bdims(1,1)-1),& |
---|
| 1703 | 1, TYPE_VNEST_BC, target_idex, & |
---|
| 1704 | 202, comm_inter, ierr) |
---|
| 1705 | |
---|
| 1706 | CALL MPI_SEND(w(bdims(3,1), bdims(2,1)-1, bdims(1,1)-1),& |
---|
| 1707 | 1, TYPE_VNEST_BC, target_idex, & |
---|
| 1708 | 203, comm_inter, ierr) |
---|
| 1709 | |
---|
| 1710 | CALL MPI_SEND(pt(bdims(3,1), bdims(2,1)-1, bdims(1,1)-1),& |
---|
| 1711 | 1, TYPE_VNEST_BC, target_idex, & |
---|
| 1712 | 205, comm_inter, ierr) |
---|
| 1713 | |
---|
| 1714 | IF ( humidity ) THEN |
---|
| 1715 | CALL MPI_SEND(q(bdims(3,1), bdims(2,1)-1, bdims(1,1)-1),& |
---|
| 1716 | 1, TYPE_VNEST_BC, target_idex, & |
---|
| 1717 | 209, comm_inter, ierr) |
---|
| 1718 | ENDIF |
---|
| 1719 | |
---|
| 1720 | end do |
---|
| 1721 | end do |
---|
| 1722 | |
---|
| 1723 | ELSEIF ( coupling_mode == 'vnested_fine' ) THEN |
---|
| 1724 | !-- Receive data from coarse grid for TOP BC |
---|
| 1725 | |
---|
| 1726 | offset(1) = pcoord(1) / ( pdims(1)/pdims_partner(1) ) |
---|
| 1727 | offset(2) = pcoord(2) / ( pdims(2)/pdims_partner(2) ) |
---|
| 1728 | map_coord(1) = offset(1) |
---|
| 1729 | map_coord(2) = offset(2) |
---|
| 1730 | target_idex = c_rnk_lst(map_coord(1),map_coord(2)) |
---|
| 1731 | |
---|
| 1732 | bdims_rem (1,1) = c2f_dims_fg(0) |
---|
| 1733 | bdims_rem (1,2) = c2f_dims_fg(1) |
---|
| 1734 | bdims_rem (2,1) = c2f_dims_fg(2) |
---|
| 1735 | bdims_rem (2,2) = c2f_dims_fg(3) |
---|
| 1736 | bdims_rem (3,1) = c2f_dims_fg(4) |
---|
| 1737 | bdims_rem (3,2) = c2f_dims_fg(5) |
---|
| 1738 | |
---|
| 1739 | n_cell_c = & |
---|
| 1740 | ( (bdims_rem(1,2)-bdims_rem(1,1)) + 3 ) * & |
---|
| 1741 | ( (bdims_rem(2,2)-bdims_rem(2,1)) + 3 ) * & |
---|
| 1742 | ( (bdims_rem(3,2)-bdims_rem(3,1)) + 1 ) |
---|
| 1743 | |
---|
| 1744 | ALLOCATE( work3d ( & |
---|
| 1745 | bdims_rem(3,1) :bdims_rem(3,2) , & |
---|
| 1746 | bdims_rem(2,1)-1:bdims_rem(2,2)+1, & |
---|
| 1747 | bdims_rem(1,1)-1:bdims_rem(1,2)+1)) |
---|
| 1748 | |
---|
| 1749 | |
---|
| 1750 | CALL MPI_RECV( work3d ,n_cell_c, MPI_REAL, target_idex, 201, & |
---|
| 1751 | comm_inter,status, ierr ) |
---|
| 1752 | interpol3d => u |
---|
| 1753 | call vnest_set_topbc_u |
---|
| 1754 | |
---|
| 1755 | CALL MPI_RECV( work3d ,n_cell_c, MPI_REAL, target_idex, 202, & |
---|
| 1756 | comm_inter,status, ierr ) |
---|
| 1757 | interpol3d => v |
---|
| 1758 | call vnest_set_topbc_v |
---|
| 1759 | |
---|
| 1760 | CALL MPI_RECV( work3d ,n_cell_c, MPI_REAL, target_idex, 203, & |
---|
| 1761 | comm_inter,status, ierr ) |
---|
| 1762 | interpol3d => w |
---|
| 1763 | call vnest_set_topbc_w |
---|
| 1764 | |
---|
| 1765 | CALL MPI_RECV( work3d,n_cell_c, MPI_REAL, target_idex, 205, & |
---|
| 1766 | comm_inter,status, ierr ) |
---|
| 1767 | interpol3d => pt |
---|
| 1768 | call vnest_set_topbc_s |
---|
| 1769 | |
---|
| 1770 | IF ( humidity ) THEN |
---|
[2514] | 1771 | CALL MPI_RECV( work3d,n_cell_c, MPI_REAL, target_idex, 209, & |
---|
[2365] | 1772 | comm_inter,status, ierr ) |
---|
| 1773 | interpol3d => q |
---|
| 1774 | call vnest_set_topbc_s |
---|
| 1775 | |
---|
| 1776 | CALL exchange_horiz_2d(q (nzt+1,:,:) ) |
---|
| 1777 | ENDIF |
---|
| 1778 | |
---|
| 1779 | !-- TKE Neumann BC for FG top |
---|
[2712] | 1780 | DO jjf = nys, nyn |
---|
| 1781 | DO iif = nxl, nxr |
---|
| 1782 | e(nzt+1,jjf,iif) = e(nzt,jjf,iif) |
---|
[2365] | 1783 | END DO |
---|
| 1784 | END DO |
---|
| 1785 | |
---|
| 1786 | ! |
---|
| 1787 | !-- w level nzt+1 does not impact results. Only to avoid jumps while |
---|
| 1788 | !-- plotting profiles |
---|
| 1789 | w(nzt+1,:,:) = w(nzt,:,:) |
---|
| 1790 | |
---|
| 1791 | CALL exchange_horiz_2d(u (nzt+1,:,:) ) |
---|
| 1792 | CALL exchange_horiz_2d(v (nzt+1,:,:) ) |
---|
| 1793 | CALL exchange_horiz_2d(pt(nzt+1,:,:) ) |
---|
| 1794 | CALL exchange_horiz_2d(e (nzt+1,:,:) ) |
---|
| 1795 | CALL exchange_horiz_2d(w (nzt+1,:,:) ) |
---|
| 1796 | CALL exchange_horiz_2d(w (nzt ,:,:) ) |
---|
| 1797 | |
---|
| 1798 | NULLIFY ( interpol3d ) |
---|
| 1799 | DEALLOCATE ( work3d ) |
---|
| 1800 | |
---|
| 1801 | ENDIF |
---|
| 1802 | |
---|
| 1803 | |
---|
| 1804 | CONTAINS |
---|
| 1805 | |
---|
| 1806 | SUBROUTINE vnest_set_topbc_w |
---|
| 1807 | |
---|
| 1808 | |
---|
| 1809 | USE arrays_3d |
---|
| 1810 | USE control_parameters |
---|
| 1811 | USE grid_variables |
---|
| 1812 | USE indices |
---|
| 1813 | USE pegrid |
---|
| 1814 | |
---|
| 1815 | |
---|
| 1816 | IMPLICIT NONE |
---|
[2712] | 1817 | |
---|
| 1818 | INTEGER(iwp) :: i |
---|
| 1819 | INTEGER(iwp) :: j |
---|
| 1820 | INTEGER(iwp) :: iif |
---|
| 1821 | INTEGER(iwp) :: jjf |
---|
| 1822 | INTEGER(iwp) :: bottomx |
---|
| 1823 | INTEGER(iwp) :: bottomy |
---|
| 1824 | INTEGER(iwp) :: topx |
---|
| 1825 | INTEGER(iwp) :: topy |
---|
| 1826 | REAL(wp) :: eps |
---|
| 1827 | REAL(wp) :: alpha |
---|
| 1828 | REAL(wp) :: eminus |
---|
| 1829 | REAL(wp) :: edot |
---|
| 1830 | REAL(wp) :: eplus |
---|
| 1831 | REAL(wp), DIMENSION(:,:), ALLOCATABLE :: wprf |
---|
[2365] | 1832 | |
---|
| 1833 | |
---|
| 1834 | ALLOCATE( wprf(bdims_rem(2,1)-1:bdims_rem(2,2)+1,nxl:nxr) ) |
---|
| 1835 | |
---|
| 1836 | ! |
---|
| 1837 | !-- Determination of a boundary condition for the vertical velocity component w: |
---|
| 1838 | !-- In this case only interpolation in x- and y- direction is necessary, as the |
---|
| 1839 | !-- boundary w-node of the fine grid coincides with a w-node in the coarse grid. |
---|
| 1840 | !-- For both interpolations the scheme of Clark and Farley is used. |
---|
| 1841 | |
---|
| 1842 | ! |
---|
| 1843 | !-- Interpolation in x-direction |
---|
| 1844 | |
---|
| 1845 | DO j = bdims_rem(2,1)-1, bdims_rem(2,2)+1 |
---|
| 1846 | |
---|
| 1847 | DO i = bdims_rem(1,1), bdims_rem(1,2) |
---|
| 1848 | |
---|
| 1849 | bottomx = (nxf+1)/(nxc+1) * i |
---|
| 1850 | topx = (nxf+1)/(nxc+1) * (i+1) - 1 |
---|
| 1851 | |
---|
[2712] | 1852 | DO iif = bottomx, topx |
---|
[2365] | 1853 | |
---|
[2712] | 1854 | eps = (iif * dxf + 0.5 * dxf - i * dxc - 0.5 * dxc) / dxc |
---|
[2365] | 1855 | alpha = ( (dxf/dxc)**2.0 - 1.0) / 24.0 |
---|
| 1856 | eminus = eps * ( eps - 1.0 ) / 2.0 + alpha |
---|
| 1857 | edot = ( 1.0 - eps**2.0 ) - 2.0 * alpha |
---|
| 1858 | eplus = eps * ( eps + 1.0 ) / 2.0 + alpha |
---|
[2712] | 1859 | wprf(j,iif) = eminus * work3d(bdims_rem(3,1),j,i-1) & |
---|
[2365] | 1860 | + edot * work3d(bdims_rem(3,1),j,i) & |
---|
| 1861 | + eplus * work3d(bdims_rem(3,1),j,i+1) |
---|
| 1862 | |
---|
| 1863 | END DO |
---|
| 1864 | |
---|
| 1865 | END DO |
---|
| 1866 | |
---|
| 1867 | END DO |
---|
| 1868 | |
---|
| 1869 | ! |
---|
| 1870 | !-- Interpolation in y-direction |
---|
| 1871 | |
---|
| 1872 | DO j = bdims_rem(2,1), bdims_rem(2,2) |
---|
| 1873 | |
---|
| 1874 | bottomy = (nyf+1)/(nyc+1) * j |
---|
| 1875 | topy = (nyf+1)/(nyc+1) * (j+1) - 1 |
---|
| 1876 | |
---|
[2712] | 1877 | DO iif = nxl, nxr |
---|
[2365] | 1878 | |
---|
[2712] | 1879 | DO jjf = bottomy, topy |
---|
[2365] | 1880 | |
---|
[2712] | 1881 | eps = (jjf * dyf + 0.5 * dyf - j * dyc - 0.5 * dyc) / dyc |
---|
[2365] | 1882 | |
---|
| 1883 | alpha = ( (dyf/dyc)**2.0 - 1.0) / 24.0 |
---|
| 1884 | |
---|
| 1885 | eminus = eps * ( eps - 1.0 ) / 2.0 + alpha |
---|
| 1886 | |
---|
| 1887 | edot = ( 1.0 - eps**2.0 ) - 2.0 * alpha |
---|
| 1888 | |
---|
| 1889 | eplus = eps * ( eps + 1.0 ) / 2.0 + alpha |
---|
| 1890 | |
---|
[2712] | 1891 | w(nzt,jjf,iif) = eminus * wprf(j-1,iif) & |
---|
| 1892 | + edot * wprf(j,iif) & |
---|
| 1893 | + eplus * wprf(j+1,iif) |
---|
[2365] | 1894 | |
---|
| 1895 | END DO |
---|
| 1896 | |
---|
| 1897 | END DO |
---|
| 1898 | |
---|
| 1899 | END DO |
---|
| 1900 | |
---|
| 1901 | DEALLOCATE( wprf ) |
---|
| 1902 | |
---|
| 1903 | END SUBROUTINE vnest_set_topbc_w |
---|
| 1904 | |
---|
| 1905 | |
---|
| 1906 | SUBROUTINE vnest_set_topbc_u |
---|
| 1907 | |
---|
| 1908 | |
---|
| 1909 | USE arrays_3d |
---|
| 1910 | USE control_parameters |
---|
| 1911 | USE grid_variables |
---|
| 1912 | USE indices |
---|
| 1913 | USE pegrid |
---|
| 1914 | |
---|
| 1915 | |
---|
| 1916 | IMPLICIT NONE |
---|
[2712] | 1917 | |
---|
| 1918 | INTEGER(iwp) :: i |
---|
| 1919 | INTEGER(iwp) :: j |
---|
| 1920 | INTEGER(iwp) :: k |
---|
| 1921 | INTEGER(iwp) :: iif |
---|
| 1922 | INTEGER(iwp) :: jjf |
---|
| 1923 | INTEGER(iwp) :: bottomx |
---|
| 1924 | INTEGER(iwp) :: bottomy |
---|
| 1925 | INTEGER(iwp) :: topx |
---|
| 1926 | INTEGER(iwp) :: topy |
---|
| 1927 | REAL(wp) :: eps |
---|
| 1928 | REAL(wp) :: alpha |
---|
| 1929 | REAL(wp) :: eminus |
---|
| 1930 | REAL(wp) :: edot |
---|
| 1931 | REAL(wp) :: eplus |
---|
| 1932 | REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: uprf |
---|
| 1933 | REAL(wp), DIMENSION(:,:), ALLOCATABLE :: uprs |
---|
[2365] | 1934 | |
---|
| 1935 | ALLOCATE( uprf(bdims_rem(3,1):bdims_rem(3,2),nys:nyn,bdims_rem(1,1)-1:bdims_rem(1,2)+1) ) |
---|
| 1936 | ALLOCATE( uprs(nys:nyn,bdims_rem(1,1)-1:bdims_rem(1,2)+1) ) |
---|
| 1937 | |
---|
| 1938 | |
---|
| 1939 | ! |
---|
| 1940 | !-- Interpolation in y-direction |
---|
| 1941 | |
---|
| 1942 | DO k = bdims_rem(3,1), bdims_rem(3,2) |
---|
| 1943 | DO j = bdims_rem(2,1), bdims_rem(2,2) |
---|
| 1944 | |
---|
| 1945 | bottomy = (nyf+1)/(nyc+1) * j |
---|
| 1946 | topy = (nyf+1)/(nyc+1) * (j+1) - 1 |
---|
| 1947 | |
---|
| 1948 | DO i = bdims_rem(1,1)-1, bdims_rem(1,2)+1 |
---|
[2712] | 1949 | DO jjf = bottomy, topy |
---|
[2365] | 1950 | |
---|
[2712] | 1951 | eps = (jjf * dyf + 0.5 * dyf - j * dyc - 0.5 * dyc) / dyc |
---|
[2365] | 1952 | alpha = ( (dyf/dyc)**2.0 - 1.0) / 24.0 |
---|
| 1953 | eminus = eps * ( eps - 1.0 ) / 2.0 + alpha |
---|
| 1954 | edot = ( 1.0 - eps**2.0 ) - 2.0 * alpha |
---|
| 1955 | eplus = eps * ( eps + 1.0 ) / 2.0 + alpha |
---|
| 1956 | |
---|
[2712] | 1957 | uprf(k,jjf,i) = eminus * work3d(k,j-1,i) & |
---|
[2365] | 1958 | + edot * work3d(k,j,i) & |
---|
| 1959 | + eplus * work3d(k,j+1,i) |
---|
| 1960 | END DO |
---|
| 1961 | END DO |
---|
| 1962 | |
---|
| 1963 | END DO |
---|
| 1964 | END DO |
---|
| 1965 | |
---|
| 1966 | ! |
---|
| 1967 | !-- Interpolation in z-direction |
---|
| 1968 | |
---|
[2712] | 1969 | DO jjf = nys, nyn |
---|
[2365] | 1970 | DO i = bdims_rem(1,1)-1, bdims_rem(1,2)+1 |
---|
| 1971 | eps = ( zuf(nzt+1) - zuc(bdims_rem(3,1)+1) ) / dzc |
---|
| 1972 | alpha = ( (dzf/dzc)**2.0 - 1.0) / 24.0 |
---|
| 1973 | eminus = eps * ( eps - 1.0 ) / 2.0 + alpha |
---|
| 1974 | edot = ( 1.0 - eps**2.0 ) - 2.0 * alpha |
---|
| 1975 | eplus = eps * ( eps + 1.0 ) / 2.0 + alpha |
---|
[2712] | 1976 | uprs(jjf,i) = eminus * uprf(bdims_rem(3,1),jjf,i) & |
---|
| 1977 | + edot * uprf(bdims_rem(3,1)+1,jjf,i) & |
---|
| 1978 | + eplus * uprf(bdims_rem(3,1)+2,jjf,i) |
---|
[2365] | 1979 | END DO |
---|
| 1980 | END DO |
---|
| 1981 | |
---|
| 1982 | ! |
---|
| 1983 | !-- Interpolation in x-direction |
---|
| 1984 | |
---|
[2712] | 1985 | DO jjf = nys, nyn |
---|
[2365] | 1986 | DO i = bdims_rem(1,1), bdims_rem(1,2) |
---|
| 1987 | |
---|
| 1988 | bottomx = (nxf+1)/(nxc+1) * i |
---|
| 1989 | topx = (nxf+1)/(nxc+1) * (i+1) - 1 |
---|
| 1990 | |
---|
[2712] | 1991 | DO iif = bottomx, topx |
---|
| 1992 | u(nzt+1,jjf,iif) = uprs(jjf,i) + ( iif * dxf - i * dxc ) * ( uprs(jjf,i+1) - uprs(jjf,i) ) / dxc |
---|
[2365] | 1993 | END DO |
---|
| 1994 | |
---|
| 1995 | END DO |
---|
| 1996 | END DO |
---|
| 1997 | |
---|
| 1998 | |
---|
| 1999 | |
---|
| 2000 | DEALLOCATE ( uprf, uprs ) |
---|
| 2001 | |
---|
| 2002 | END SUBROUTINE vnest_set_topbc_u |
---|
| 2003 | |
---|
| 2004 | |
---|
| 2005 | SUBROUTINE vnest_set_topbc_v |
---|
| 2006 | |
---|
| 2007 | |
---|
| 2008 | USE arrays_3d |
---|
| 2009 | USE control_parameters |
---|
| 2010 | USE grid_variables |
---|
| 2011 | USE indices |
---|
| 2012 | USE pegrid |
---|
| 2013 | |
---|
| 2014 | |
---|
| 2015 | IMPLICIT NONE |
---|
[2712] | 2016 | |
---|
| 2017 | INTEGER(iwp) :: i |
---|
| 2018 | INTEGER(iwp) :: j |
---|
| 2019 | INTEGER(iwp) :: k |
---|
| 2020 | INTEGER(iwp) :: iif |
---|
| 2021 | INTEGER(iwp) :: jjf |
---|
| 2022 | INTEGER(iwp) :: bottomx |
---|
| 2023 | INTEGER(iwp) :: bottomy |
---|
| 2024 | INTEGER(iwp) :: topx |
---|
| 2025 | INTEGER(iwp) :: topy |
---|
| 2026 | REAL(wp) :: eps |
---|
| 2027 | REAL(wp) :: alpha |
---|
| 2028 | REAL(wp) :: eminus |
---|
| 2029 | REAL(wp) :: edot |
---|
| 2030 | REAL(wp) :: eplus |
---|
| 2031 | REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: vprf |
---|
| 2032 | REAL(wp), DIMENSION(:,:), ALLOCATABLE :: vprs |
---|
[2365] | 2033 | |
---|
| 2034 | |
---|
| 2035 | |
---|
| 2036 | ALLOCATE( vprf(bdims_rem(3,1):bdims_rem(3,2),bdims_rem(2,1)-1:bdims_rem(2,2)+1,nxl:nxr) ) |
---|
| 2037 | ALLOCATE( vprs(bdims_rem(2,1)-1:bdims_rem(2,2)+1,nxl:nxr) ) |
---|
| 2038 | ! |
---|
| 2039 | !-- Determination of a boundary condition for the horizontal velocity component v: |
---|
| 2040 | !-- Interpolation in x- and z-direction is carried out by using the scheme, |
---|
| 2041 | !-- which was derived by Clark and Farley (1984). In y-direction a |
---|
| 2042 | !-- linear interpolation is carried out. |
---|
| 2043 | |
---|
| 2044 | ! |
---|
| 2045 | !-- Interpolation in x-direction |
---|
| 2046 | |
---|
| 2047 | DO k = bdims_rem(3,1), bdims_rem(3,2) |
---|
| 2048 | DO j = bdims_rem(2,1)-1, bdims_rem(2,2)+1 |
---|
| 2049 | DO i = bdims_rem(1,1), bdims_rem(1,2) |
---|
| 2050 | |
---|
| 2051 | bottomx = (nxf+1)/(nxc+1) * i |
---|
| 2052 | topx = (nxf+1)/(nxc+1) * (i+1) - 1 |
---|
| 2053 | |
---|
[2712] | 2054 | DO iif = bottomx, topx |
---|
[2365] | 2055 | |
---|
[2712] | 2056 | eps = (iif * dxf + 0.5 * dxf - i * dxc - 0.5 * dxc) / dxc |
---|
[2365] | 2057 | alpha = ( (dxf/dxc)**2.0 - 1.0) / 24.0 |
---|
| 2058 | eminus = eps * ( eps - 1.0 ) / 2.0 + alpha |
---|
| 2059 | edot = ( 1.0 - eps**2.0 ) - 2.0 * alpha |
---|
| 2060 | eplus = eps * ( eps + 1.0 ) / 2.0 + alpha |
---|
[2712] | 2061 | vprf(k,j,iif) = eminus * work3d(k,j,i-1) & |
---|
[2365] | 2062 | + edot * work3d(k,j,i) & |
---|
| 2063 | + eplus * work3d(k,j,i+1) |
---|
| 2064 | END DO |
---|
| 2065 | |
---|
| 2066 | END DO |
---|
| 2067 | END DO |
---|
| 2068 | END DO |
---|
| 2069 | |
---|
| 2070 | ! |
---|
| 2071 | !-- Interpolation in z-direction |
---|
| 2072 | |
---|
| 2073 | DO j = bdims_rem(2,1)-1, bdims_rem(2,2)+1 |
---|
[2712] | 2074 | DO iif = nxl, nxr |
---|
[2365] | 2075 | |
---|
| 2076 | eps = ( zuf(nzt+1) - zuc(bdims_rem(3,1)+1) ) / dzc |
---|
| 2077 | alpha = ( (dzf/dzc)**2.0 - 1.0) / 24.0 |
---|
| 2078 | eminus = eps * ( eps - 1.0 ) / 2.0 + alpha |
---|
| 2079 | edot = ( 1.0 - eps**2.0 ) - 2.0 * alpha |
---|
| 2080 | eplus = eps * ( eps + 1.0 ) / 2.0 + alpha |
---|
[2712] | 2081 | vprs(j,iif) = eminus * vprf(bdims_rem(3,1),j,iif) & |
---|
| 2082 | + edot * vprf(bdims_rem(3,1)+1,j,iif) & |
---|
| 2083 | + eplus * vprf(bdims_rem(3,1)+2,j,iif) |
---|
[2365] | 2084 | |
---|
| 2085 | END DO |
---|
| 2086 | END DO |
---|
| 2087 | |
---|
| 2088 | ! |
---|
| 2089 | !-- Interpolation in y-direction |
---|
| 2090 | |
---|
| 2091 | DO j = bdims_rem(2,1), bdims_rem(2,2) |
---|
[2712] | 2092 | DO iif = nxl, nxr |
---|
[2365] | 2093 | |
---|
| 2094 | bottomy = (nyf+1)/(nyc+1) * j |
---|
| 2095 | topy = (nyf+1)/(nyc+1) * (j+1) - 1 |
---|
| 2096 | |
---|
[2712] | 2097 | DO jjf = bottomy, topy |
---|
[2365] | 2098 | |
---|
[2712] | 2099 | v(nzt+1,jjf,iif) = vprs(j,iif) + ( jjf * dyf - j * dyc ) * ( vprs(j+1,iif) - vprs(j,iif) ) / dyc |
---|
[2365] | 2100 | |
---|
| 2101 | END DO |
---|
| 2102 | END DO |
---|
| 2103 | END DO |
---|
| 2104 | |
---|
| 2105 | |
---|
| 2106 | DEALLOCATE ( vprf, vprs) |
---|
| 2107 | |
---|
| 2108 | |
---|
| 2109 | |
---|
| 2110 | END SUBROUTINE vnest_set_topbc_v |
---|
| 2111 | |
---|
| 2112 | |
---|
| 2113 | SUBROUTINE vnest_set_topbc_s |
---|
| 2114 | |
---|
| 2115 | |
---|
| 2116 | USE arrays_3d |
---|
| 2117 | USE control_parameters |
---|
| 2118 | USE grid_variables |
---|
| 2119 | USE indices |
---|
| 2120 | USE pegrid |
---|
| 2121 | |
---|
| 2122 | |
---|
| 2123 | IMPLICIT NONE |
---|
[2712] | 2124 | |
---|
| 2125 | INTEGER(iwp) :: i |
---|
| 2126 | INTEGER(iwp) :: j |
---|
| 2127 | INTEGER(iwp) :: k |
---|
| 2128 | INTEGER(iwp) :: iif |
---|
| 2129 | INTEGER(iwp) :: jjf |
---|
| 2130 | INTEGER(iwp) :: bottomx |
---|
| 2131 | INTEGER(iwp) :: bottomy |
---|
| 2132 | INTEGER(iwp) :: topx |
---|
| 2133 | INTEGER(iwp) :: topy |
---|
| 2134 | REAL(wp) :: eps |
---|
| 2135 | REAL(wp) :: alpha |
---|
| 2136 | REAL(wp) :: eminus |
---|
| 2137 | REAL(wp) :: edot |
---|
| 2138 | REAL(wp) :: eplus |
---|
| 2139 | REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: ptprf |
---|
| 2140 | REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: ptprs |
---|
[2365] | 2141 | |
---|
| 2142 | |
---|
| 2143 | |
---|
| 2144 | ALLOCATE( ptprf(bdims_rem(3,1):bdims_rem(3,2),bdims_rem(2,1)-1:bdims_rem(2,2)+1,nxl:nxr) ) |
---|
| 2145 | ALLOCATE( ptprs(bdims_rem(3,1):bdims_rem(3,2),nys:nyn,nxl:nxr) ) |
---|
| 2146 | |
---|
| 2147 | ! |
---|
| 2148 | !-- Determination of a boundary condition for the potential temperature pt: |
---|
| 2149 | !-- The scheme derived by Clark and Farley can be used in all three dimensions. |
---|
| 2150 | |
---|
| 2151 | ! |
---|
| 2152 | !-- Interpolation in x-direction |
---|
| 2153 | |
---|
| 2154 | DO k = bdims_rem(3,1), bdims_rem(3,2) |
---|
| 2155 | |
---|
| 2156 | DO j = bdims_rem(2,1)-1, bdims_rem(2,2)+1 |
---|
| 2157 | |
---|
| 2158 | DO i = bdims_rem(1,1), bdims_rem(1,2) |
---|
| 2159 | |
---|
| 2160 | bottomx = (nxf+1)/(nxc+1) * i |
---|
| 2161 | topx = (nxf+1)/(nxc+1) *(i+1) - 1 |
---|
| 2162 | |
---|
[2712] | 2163 | DO iif = bottomx, topx |
---|
[2365] | 2164 | |
---|
[2712] | 2165 | eps = (iif * dxf + 0.5 * dxf - i * dxc - 0.5 * dxc) / dxc |
---|
[2365] | 2166 | |
---|
| 2167 | alpha = ( (dxf/dxc)**2.0 - 1.0) / 24.0 |
---|
| 2168 | |
---|
| 2169 | eminus = eps * (eps - 1.0 ) / 2.0 + alpha |
---|
| 2170 | |
---|
| 2171 | edot = ( 1.0 - eps**2.0 ) - 2.0 * alpha |
---|
| 2172 | |
---|
| 2173 | eplus = eps * ( eps + 1.0 ) / 2.0 + alpha |
---|
| 2174 | |
---|
[2712] | 2175 | ptprf(k,j,iif) = eminus * work3d(k,j,i-1) & |
---|
[2365] | 2176 | + edot * work3d(k,j,i) & |
---|
| 2177 | + eplus * work3d(k,j,i+1) |
---|
| 2178 | END DO |
---|
| 2179 | |
---|
| 2180 | END DO |
---|
| 2181 | |
---|
| 2182 | END DO |
---|
| 2183 | |
---|
| 2184 | END DO |
---|
| 2185 | |
---|
| 2186 | ! |
---|
| 2187 | !-- Interpolation in y-direction |
---|
| 2188 | |
---|
| 2189 | DO k = bdims_rem(3,1), bdims_rem(3,2) |
---|
| 2190 | |
---|
| 2191 | DO j = bdims_rem(2,1), bdims_rem(2,2) |
---|
| 2192 | |
---|
| 2193 | bottomy = (nyf+1)/(nyc+1) * j |
---|
| 2194 | topy = (nyf+1)/(nyc+1) * (j+1) - 1 |
---|
| 2195 | |
---|
[2712] | 2196 | DO iif = nxl, nxr |
---|
[2365] | 2197 | |
---|
[2712] | 2198 | DO jjf = bottomy, topy |
---|
[2365] | 2199 | |
---|
[2712] | 2200 | eps = (jjf * dyf + 0.5 * dyf - j * dyc - 0.5 * dyc) / dyc |
---|
[2365] | 2201 | |
---|
| 2202 | alpha = ( (dyf/dyc)**2.0 - 1.0) / 24.0 |
---|
| 2203 | |
---|
| 2204 | eminus = eps * (eps - 1.0) / 2.0 + alpha |
---|
| 2205 | |
---|
| 2206 | edot = ( 1.0 - eps**2.0 ) - 2.0 * alpha |
---|
| 2207 | |
---|
| 2208 | eplus = eps * ( eps + 1.0 ) / 2.0 + alpha |
---|
| 2209 | |
---|
[2712] | 2210 | ptprs(k,jjf,iif) = eminus * ptprf(k,j-1,iif) & |
---|
| 2211 | + edot * ptprf(k,j,iif) & |
---|
| 2212 | + eplus * ptprf(k,j+1,iif) |
---|
[2365] | 2213 | END DO |
---|
| 2214 | |
---|
| 2215 | END DO |
---|
| 2216 | |
---|
| 2217 | END DO |
---|
| 2218 | |
---|
| 2219 | END DO |
---|
| 2220 | |
---|
| 2221 | ! |
---|
| 2222 | !-- Interpolation in z-direction |
---|
| 2223 | |
---|
[2712] | 2224 | DO jjf = nys, nyn |
---|
| 2225 | DO iif = nxl, nxr |
---|
[2365] | 2226 | |
---|
| 2227 | eps = ( zuf(nzt+1) - zuc(bdims_rem(3,1)+1) ) / dzc |
---|
| 2228 | |
---|
| 2229 | alpha = ( (dzf/dzc)**2.0 - 1.0) / 24.0 |
---|
| 2230 | |
---|
| 2231 | eminus = eps * ( eps - 1.0 ) / 2.0 + alpha |
---|
| 2232 | |
---|
| 2233 | edot = ( 1.0 - eps**2.0 ) - 2.0 * alpha |
---|
| 2234 | |
---|
| 2235 | eplus = eps * ( eps + 1.0 ) / 2.0 + alpha |
---|
| 2236 | |
---|
[2712] | 2237 | interpol3d (nzt+1,jjf,iif) = eminus * ptprs(bdims_rem(3,1),jjf,iif) & |
---|
| 2238 | + edot * ptprs(bdims_rem(3,1)+1,jjf,iif) & |
---|
| 2239 | + eplus * ptprs(bdims_rem(3,1)+2,jjf,iif) |
---|
[2365] | 2240 | |
---|
| 2241 | END DO |
---|
| 2242 | END DO |
---|
| 2243 | |
---|
| 2244 | DEALLOCATE ( ptprf, ptprs ) |
---|
| 2245 | |
---|
| 2246 | |
---|
| 2247 | |
---|
| 2248 | END SUBROUTINE vnest_set_topbc_s |
---|
[2712] | 2249 | #endif |
---|
[2365] | 2250 | END SUBROUTINE vnest_boundary_conds |
---|
| 2251 | |
---|
| 2252 | |
---|
| 2253 | SUBROUTINE vnest_boundary_conds_khkm |
---|
[2712] | 2254 | #if defined( __parallel ) |
---|
[2365] | 2255 | |
---|
| 2256 | !--------------------------------------------------------------------------------! |
---|
| 2257 | ! Description: |
---|
| 2258 | ! ------------ |
---|
| 2259 | ! Boundary conditions for the prognostic quantities. |
---|
| 2260 | ! One additional bottom boundary condition is applied for the TKE (=(u*)**2) |
---|
| 2261 | ! in prandtl_fluxes. The cyclic lateral boundary conditions are implicitly |
---|
| 2262 | ! handled in routine exchange_horiz. Pressure boundary conditions are |
---|
| 2263 | ! explicitly set in routines pres, poisfft, poismg and sor. |
---|
| 2264 | !------------------------------------------------------------------------------! |
---|
| 2265 | |
---|
| 2266 | USE arrays_3d |
---|
| 2267 | USE control_parameters |
---|
| 2268 | USE grid_variables |
---|
| 2269 | USE indices |
---|
| 2270 | USE pegrid |
---|
| 2271 | |
---|
| 2272 | |
---|
| 2273 | IMPLICIT NONE |
---|
| 2274 | |
---|
[2712] | 2275 | INTEGER(iwp) :: i |
---|
| 2276 | INTEGER(iwp) :: j |
---|
| 2277 | INTEGER(iwp) :: iif |
---|
| 2278 | INTEGER(iwp) :: jjf |
---|
[2365] | 2279 | |
---|
| 2280 | |
---|
| 2281 | IF ( coupling_mode == 'vnested_crse' ) THEN |
---|
| 2282 | ! Send data to fine grid for TOP BC |
---|
| 2283 | |
---|
| 2284 | offset(1) = ( pdims_partner(1) / pdims(1) ) * pcoord(1) |
---|
| 2285 | offset(2) = ( pdims_partner(2) / pdims(2) ) * pcoord(2) |
---|
| 2286 | |
---|
| 2287 | do j = 0, ( pdims_partner(2) / pdims(2) ) - 1 |
---|
| 2288 | do i = 0, ( pdims_partner(1) / pdims(1) ) - 1 |
---|
| 2289 | map_coord(1) = i+offset(1) |
---|
| 2290 | map_coord(2) = j+offset(2) |
---|
| 2291 | |
---|
| 2292 | target_idex = f_rnk_lst(map_coord(1),map_coord(2)) + numprocs |
---|
| 2293 | |
---|
| 2294 | CALL MPI_RECV( bdims_rem, 6, MPI_INTEGER, target_idex, 10, & |
---|
| 2295 | comm_inter,status, ierr ) |
---|
| 2296 | |
---|
| 2297 | bdims (1,1) = bdims_rem (1,1) / cfratio(1) |
---|
| 2298 | bdims (1,2) = bdims_rem (1,2) / cfratio(1) |
---|
| 2299 | bdims (2,1) = bdims_rem (2,1) / cfratio(2) |
---|
| 2300 | bdims (2,2) = bdims_rem (2,2) / cfratio(2) |
---|
| 2301 | bdims (3,1) = bdims_rem (3,2) / cfratio(3) |
---|
| 2302 | bdims (3,2) = bdims (3,1) + 2 |
---|
| 2303 | |
---|
| 2304 | CALL MPI_SEND( bdims, 6, MPI_INTEGER, target_idex, 9, & |
---|
| 2305 | comm_inter, ierr ) |
---|
| 2306 | |
---|
| 2307 | |
---|
| 2308 | n_cell_c = ( (bdims(1,2)-bdims(1,1)) + 3 ) * & |
---|
| 2309 | ( (bdims(2,2)-bdims(2,1)) + 3 ) * & |
---|
| 2310 | ( (bdims(3,2)-bdims(3,1)) + 1 ) |
---|
| 2311 | |
---|
| 2312 | CALL MPI_SEND(kh(bdims(3,1) :bdims(3,2) , & |
---|
| 2313 | bdims(2,1)-1:bdims(2,2)+1, & |
---|
| 2314 | bdims(1,1)-1:bdims(1,2)+1),& |
---|
| 2315 | n_cell_c, MPI_REAL, target_idex, & |
---|
[2514] | 2316 | 207, comm_inter, ierr) |
---|
[2365] | 2317 | |
---|
| 2318 | CALL MPI_SEND(km(bdims(3,1) :bdims(3,2) , & |
---|
| 2319 | bdims(2,1)-1:bdims(2,2)+1, & |
---|
| 2320 | bdims(1,1)-1:bdims(1,2)+1),& |
---|
| 2321 | n_cell_c, MPI_REAL, target_idex, & |
---|
[2514] | 2322 | 208, comm_inter, ierr) |
---|
[2365] | 2323 | |
---|
| 2324 | |
---|
| 2325 | |
---|
| 2326 | end do |
---|
| 2327 | end do |
---|
| 2328 | |
---|
| 2329 | ELSEIF ( coupling_mode == 'vnested_fine' ) THEN |
---|
| 2330 | ! Receive data from coarse grid for TOP BC |
---|
| 2331 | |
---|
| 2332 | offset(1) = pcoord(1) / ( pdims(1)/pdims_partner(1) ) |
---|
| 2333 | offset(2) = pcoord(2) / ( pdims(2)/pdims_partner(2) ) |
---|
| 2334 | map_coord(1) = offset(1) |
---|
| 2335 | map_coord(2) = offset(2) |
---|
| 2336 | target_idex = c_rnk_lst(map_coord(1),map_coord(2)) |
---|
| 2337 | |
---|
| 2338 | bdims (1,1) = nxl |
---|
| 2339 | bdims (1,2) = nxr |
---|
| 2340 | bdims (2,1) = nys |
---|
| 2341 | bdims (2,2) = nyn |
---|
| 2342 | bdims (3,1) = nzb |
---|
| 2343 | bdims (3,2) = nzt |
---|
| 2344 | |
---|
| 2345 | CALL MPI_SEND( bdims, 6, MPI_INTEGER, target_idex, 10, & |
---|
| 2346 | comm_inter, ierr ) |
---|
| 2347 | |
---|
| 2348 | CALL MPI_RECV( bdims_rem, 6, MPI_INTEGER, target_idex, 9, & |
---|
| 2349 | comm_inter,status, ierr ) |
---|
| 2350 | |
---|
| 2351 | n_cell_c = ( (bdims_rem(1,2)-bdims_rem(1,1)) + 3 ) * & |
---|
| 2352 | ( (bdims_rem(2,2)-bdims_rem(2,1)) + 3 ) * & |
---|
| 2353 | ( (bdims_rem(3,2)-bdims_rem(3,1)) + 1 ) |
---|
| 2354 | |
---|
| 2355 | ALLOCATE( work3d ( bdims_rem(3,1) :bdims_rem(3,2) , & |
---|
| 2356 | bdims_rem(2,1)-1:bdims_rem(2,2)+1, & |
---|
| 2357 | bdims_rem(1,1)-1:bdims_rem(1,2)+1)) |
---|
| 2358 | |
---|
| 2359 | |
---|
| 2360 | CALL MPI_RECV( work3d,n_cell_c, MPI_REAL, target_idex, 207, & |
---|
| 2361 | comm_inter,status, ierr ) |
---|
| 2362 | |
---|
| 2363 | ! Neumann BC for FG kh |
---|
[2712] | 2364 | DO jjf = nys, nyn |
---|
| 2365 | DO iif = nxl, nxr |
---|
| 2366 | kh(nzt+1,jjf,iif) = kh(nzt,jjf,iif) |
---|
[2365] | 2367 | END DO |
---|
| 2368 | END DO |
---|
| 2369 | |
---|
| 2370 | CALL MPI_RECV( work3d,n_cell_c, MPI_REAL, target_idex, 208, & |
---|
| 2371 | comm_inter,status, ierr ) |
---|
| 2372 | |
---|
| 2373 | ! Neumann BC for FG kh |
---|
[2712] | 2374 | DO jjf = nys, nyn |
---|
| 2375 | DO iif = nxl, nxr |
---|
| 2376 | km(nzt+1,jjf,iif) = km(nzt,jjf,iif) |
---|
[2365] | 2377 | END DO |
---|
| 2378 | END DO |
---|
| 2379 | |
---|
| 2380 | |
---|
| 2381 | ! |
---|
| 2382 | !-- The following evaluation can only be performed, if the fine grid is situated below the inversion |
---|
[2712] | 2383 | !! DO jjf = nys-1, nyn+1 |
---|
| 2384 | !! DO iif = nxl-1, nxr+1 |
---|
[2365] | 2385 | !! |
---|
[2712] | 2386 | !! km(nzt+1,jjf,iif) = 0.1 * l_grid(nzt+1) * SQRT( e(nzt+1,jjf,iif) ) |
---|
| 2387 | !! kh(nzt+1,jjf,iif) = 3.0 * km(nzt+1,jjf,iif) |
---|
[2365] | 2388 | !! |
---|
| 2389 | !! END DO |
---|
| 2390 | !! END DO |
---|
| 2391 | |
---|
| 2392 | CALL exchange_horiz_2d(km(nzt+1,:,:) ) |
---|
| 2393 | CALL exchange_horiz_2d(kh(nzt+1,:,:) ) |
---|
| 2394 | |
---|
| 2395 | DEALLOCATE ( work3d ) |
---|
| 2396 | |
---|
| 2397 | ENDIF |
---|
| 2398 | |
---|
| 2399 | |
---|
| 2400 | CONTAINS |
---|
| 2401 | |
---|
| 2402 | SUBROUTINE vnest_set_topbc_kh |
---|
| 2403 | |
---|
| 2404 | |
---|
| 2405 | USE arrays_3d |
---|
| 2406 | USE control_parameters |
---|
| 2407 | USE grid_variables |
---|
| 2408 | USE indices |
---|
| 2409 | USE pegrid |
---|
| 2410 | |
---|
| 2411 | |
---|
| 2412 | IMPLICIT NONE |
---|
[2712] | 2413 | |
---|
| 2414 | INTEGER(iwp) :: i |
---|
| 2415 | INTEGER(iwp) :: j |
---|
| 2416 | INTEGER(iwp) :: k |
---|
| 2417 | INTEGER(iwp) :: iif |
---|
| 2418 | INTEGER(iwp) :: jjf |
---|
| 2419 | INTEGER(iwp) :: bottomx |
---|
| 2420 | INTEGER(iwp) :: bottomy |
---|
| 2421 | INTEGER(iwp) :: topx |
---|
| 2422 | INTEGER(iwp) :: topy |
---|
| 2423 | REAL(wp) :: eps |
---|
| 2424 | REAL(wp) :: alpha |
---|
| 2425 | REAL(wp) :: eminus |
---|
| 2426 | REAL(wp) :: edot |
---|
| 2427 | REAL(wp) :: eplus |
---|
| 2428 | REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: ptprf |
---|
| 2429 | REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: ptprs |
---|
[2365] | 2430 | |
---|
| 2431 | |
---|
| 2432 | |
---|
| 2433 | ALLOCATE( ptprf(bdims_rem(3,1):bdims_rem(3,2),bdims_rem(2,1)-1:bdims_rem(2,2)+1,nxl:nxr) ) |
---|
| 2434 | ALLOCATE( ptprs(bdims_rem(3,1):bdims_rem(3,2),nys:nyn,nxl:nxr) ) |
---|
| 2435 | |
---|
| 2436 | ! |
---|
| 2437 | !-- Determination of a boundary condition for the potential temperature pt: |
---|
| 2438 | !-- The scheme derived by Clark and Farley can be used in all three dimensions. |
---|
| 2439 | |
---|
| 2440 | ! |
---|
| 2441 | !-- Interpolation in x-direction |
---|
| 2442 | |
---|
| 2443 | DO k = bdims_rem(3,1), bdims_rem(3,2) |
---|
| 2444 | |
---|
| 2445 | DO j = bdims_rem(2,1)-1, bdims_rem(2,2)+1 |
---|
| 2446 | |
---|
| 2447 | DO i = bdims_rem(1,1), bdims_rem(1,2) |
---|
| 2448 | |
---|
| 2449 | bottomx = (nxf+1)/(nxc+1) * i |
---|
| 2450 | topx = (nxf+1)/(nxc+1) *(i+1) - 1 |
---|
| 2451 | |
---|
[2712] | 2452 | DO iif = bottomx, topx |
---|
[2365] | 2453 | |
---|
[2712] | 2454 | eps = (iif * dxf + 0.5 * dxf - i * dxc - 0.5 * dxc) / dxc |
---|
[2365] | 2455 | |
---|
| 2456 | alpha = ( (dxf/dxc)**2.0 - 1.0) / 24.0 |
---|
| 2457 | |
---|
| 2458 | eminus = eps * (eps - 1.0 ) / 2.0 + alpha |
---|
| 2459 | |
---|
| 2460 | edot = ( 1.0 - eps**2.0 ) - 2.0 * alpha |
---|
| 2461 | |
---|
| 2462 | eplus = eps * ( eps + 1.0 ) / 2.0 + alpha |
---|
| 2463 | |
---|
[2712] | 2464 | ptprf(k,j,iif) = eminus * work3d(k,j,i-1) & |
---|
[2365] | 2465 | + edot * work3d(k,j,i) & |
---|
| 2466 | + eplus * work3d(k,j,i+1) |
---|
| 2467 | END DO |
---|
| 2468 | |
---|
| 2469 | END DO |
---|
| 2470 | |
---|
| 2471 | END DO |
---|
| 2472 | |
---|
| 2473 | END DO |
---|
| 2474 | |
---|
| 2475 | ! |
---|
| 2476 | !-- Interpolation in y-direction |
---|
| 2477 | |
---|
| 2478 | DO k = bdims_rem(3,1), bdims_rem(3,2) |
---|
| 2479 | |
---|
| 2480 | DO j = bdims_rem(2,1), bdims_rem(2,2) |
---|
| 2481 | |
---|
| 2482 | bottomy = (nyf+1)/(nyc+1) * j |
---|
| 2483 | topy = (nyf+1)/(nyc+1) * (j+1) - 1 |
---|
| 2484 | |
---|
[2712] | 2485 | DO iif = nxl, nxr |
---|
[2365] | 2486 | |
---|
[2712] | 2487 | DO jjf = bottomy, topy |
---|
[2365] | 2488 | |
---|
[2712] | 2489 | eps = (jjf * dyf + 0.5 * dyf - j * dyc - 0.5 * dyc) / dyc |
---|
[2365] | 2490 | |
---|
| 2491 | alpha = ( (dyf/dyc)**2.0 - 1.0) / 24.0 |
---|
| 2492 | |
---|
| 2493 | eminus = eps * (eps - 1.0) / 2.0 + alpha |
---|
| 2494 | |
---|
| 2495 | edot = ( 1.0 - eps**2.0 ) - 2.0 * alpha |
---|
| 2496 | |
---|
| 2497 | eplus = eps * ( eps + 1.0 ) / 2.0 + alpha |
---|
| 2498 | |
---|
[2712] | 2499 | ptprs(k,jjf,iif) = eminus * ptprf(k,j-1,iif) & |
---|
| 2500 | + edot * ptprf(k,j,iif) & |
---|
| 2501 | + eplus * ptprf(k,j+1,iif) |
---|
[2365] | 2502 | END DO |
---|
| 2503 | |
---|
| 2504 | END DO |
---|
| 2505 | |
---|
| 2506 | END DO |
---|
| 2507 | |
---|
| 2508 | END DO |
---|
| 2509 | |
---|
| 2510 | ! |
---|
| 2511 | !-- Interpolation in z-direction |
---|
| 2512 | |
---|
[2712] | 2513 | DO jjf = nys, nyn |
---|
| 2514 | DO iif = nxl, nxr |
---|
[2365] | 2515 | |
---|
| 2516 | eps = ( zuf(nzt+1) - zuc(bdims_rem(3,1)+1) ) / dzc |
---|
| 2517 | |
---|
| 2518 | alpha = ( (dzf/dzc)**2.0 - 1.0) / 24.0 |
---|
| 2519 | |
---|
| 2520 | eminus = eps * ( eps - 1.0 ) / 2.0 + alpha |
---|
| 2521 | |
---|
| 2522 | edot = ( 1.0 - eps**2.0 ) - 2.0 * alpha |
---|
| 2523 | |
---|
| 2524 | eplus = eps * ( eps + 1.0 ) / 2.0 + alpha |
---|
| 2525 | |
---|
[2712] | 2526 | kh (nzt+1,jjf,iif) = eminus * ptprs(bdims_rem(3,1),jjf,iif) & |
---|
| 2527 | + edot * ptprs(bdims_rem(3,1)+1,jjf,iif) & |
---|
| 2528 | + eplus * ptprs(bdims_rem(3,1)+2,jjf,iif) |
---|
[2365] | 2529 | |
---|
| 2530 | END DO |
---|
| 2531 | END DO |
---|
| 2532 | |
---|
| 2533 | DEALLOCATE ( ptprf, ptprs ) |
---|
| 2534 | |
---|
| 2535 | |
---|
| 2536 | |
---|
| 2537 | END SUBROUTINE vnest_set_topbc_kh |
---|
| 2538 | |
---|
| 2539 | SUBROUTINE vnest_set_topbc_km |
---|
| 2540 | |
---|
| 2541 | |
---|
| 2542 | USE arrays_3d |
---|
| 2543 | USE control_parameters |
---|
| 2544 | USE grid_variables |
---|
| 2545 | USE indices |
---|
| 2546 | USE pegrid |
---|
| 2547 | |
---|
| 2548 | |
---|
| 2549 | IMPLICIT NONE |
---|
[2712] | 2550 | |
---|
| 2551 | INTEGER(iwp) :: i |
---|
| 2552 | INTEGER(iwp) :: j |
---|
| 2553 | INTEGER(iwp) :: k |
---|
| 2554 | INTEGER(iwp) :: iif |
---|
| 2555 | INTEGER(iwp) :: jjf |
---|
| 2556 | INTEGER(iwp) :: bottomx |
---|
| 2557 | INTEGER(iwp) :: bottomy |
---|
| 2558 | INTEGER(iwp) :: topx |
---|
| 2559 | INTEGER(iwp) :: topy |
---|
| 2560 | REAL(wp) :: eps |
---|
| 2561 | REAL(wp) :: alpha |
---|
| 2562 | REAL(wp) :: eminus |
---|
| 2563 | REAL(wp) :: edot |
---|
| 2564 | REAL(wp) :: eplus |
---|
| 2565 | REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: ptprf |
---|
| 2566 | REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: ptprs |
---|
[2365] | 2567 | |
---|
| 2568 | |
---|
| 2569 | |
---|
| 2570 | ALLOCATE( ptprf(bdims_rem(3,1):bdims_rem(3,2),bdims_rem(2,1)-1:bdims_rem(2,2)+1,nxl:nxr) ) |
---|
| 2571 | ALLOCATE( ptprs(bdims_rem(3,1):bdims_rem(3,2),nys:nyn,nxl:nxr) ) |
---|
| 2572 | |
---|
| 2573 | ! |
---|
| 2574 | !-- Determination of a boundary condition for the potential temperature pt: |
---|
| 2575 | !-- The scheme derived by Clark and Farley can be used in all three dimensions. |
---|
| 2576 | |
---|
| 2577 | ! |
---|
| 2578 | !-- Interpolation in x-direction |
---|
| 2579 | |
---|
| 2580 | DO k = bdims_rem(3,1), bdims_rem(3,2) |
---|
| 2581 | |
---|
| 2582 | DO j = bdims_rem(2,1)-1, bdims_rem(2,2)+1 |
---|
| 2583 | |
---|
| 2584 | DO i = bdims_rem(1,1), bdims_rem(1,2) |
---|
| 2585 | |
---|
| 2586 | bottomx = (nxf+1)/(nxc+1) * i |
---|
| 2587 | topx = (nxf+1)/(nxc+1) *(i+1) - 1 |
---|
| 2588 | |
---|
[2712] | 2589 | DO iif = bottomx, topx |
---|
[2365] | 2590 | |
---|
[2712] | 2591 | eps = (iif * dxf + 0.5 * dxf - i * dxc - 0.5 * dxc) / dxc |
---|
[2365] | 2592 | |
---|
| 2593 | alpha = ( (dxf/dxc)**2.0 - 1.0) / 24.0 |
---|
| 2594 | |
---|
| 2595 | eminus = eps * (eps - 1.0 ) / 2.0 + alpha |
---|
| 2596 | |
---|
| 2597 | edot = ( 1.0 - eps**2.0 ) - 2.0 * alpha |
---|
| 2598 | |
---|
| 2599 | eplus = eps * ( eps + 1.0 ) / 2.0 + alpha |
---|
| 2600 | |
---|
[2712] | 2601 | ptprf(k,j,iif) = eminus * work3d(k,j,i-1) & |
---|
[2365] | 2602 | + edot * work3d(k,j,i) & |
---|
| 2603 | + eplus * work3d(k,j,i+1) |
---|
| 2604 | END DO |
---|
| 2605 | |
---|
| 2606 | END DO |
---|
| 2607 | |
---|
| 2608 | END DO |
---|
| 2609 | |
---|
| 2610 | END DO |
---|
| 2611 | |
---|
| 2612 | ! |
---|
| 2613 | !-- Interpolation in y-direction |
---|
| 2614 | |
---|
| 2615 | DO k = bdims_rem(3,1), bdims_rem(3,2) |
---|
| 2616 | |
---|
| 2617 | DO j = bdims_rem(2,1), bdims_rem(2,2) |
---|
| 2618 | |
---|
| 2619 | bottomy = (nyf+1)/(nyc+1) * j |
---|
| 2620 | topy = (nyf+1)/(nyc+1) * (j+1) - 1 |
---|
| 2621 | |
---|
[2712] | 2622 | DO iif = nxl, nxr |
---|
[2365] | 2623 | |
---|
[2712] | 2624 | DO jjf = bottomy, topy |
---|
[2365] | 2625 | |
---|
[2712] | 2626 | eps = (jjf * dyf + 0.5 * dyf - j * dyc - 0.5 * dyc) / dyc |
---|
[2365] | 2627 | |
---|
| 2628 | alpha = ( (dyf/dyc)**2.0 - 1.0) / 24.0 |
---|
| 2629 | |
---|
| 2630 | eminus = eps * (eps - 1.0) / 2.0 + alpha |
---|
| 2631 | |
---|
| 2632 | edot = ( 1.0 - eps**2.0 ) - 2.0 * alpha |
---|
| 2633 | |
---|
| 2634 | eplus = eps * ( eps + 1.0 ) / 2.0 + alpha |
---|
| 2635 | |
---|
[2712] | 2636 | ptprs(k,jjf,iif) = eminus * ptprf(k,j-1,iif) & |
---|
| 2637 | + edot * ptprf(k,j,iif) & |
---|
| 2638 | + eplus * ptprf(k,j+1,iif) |
---|
[2365] | 2639 | END DO |
---|
| 2640 | |
---|
| 2641 | END DO |
---|
| 2642 | |
---|
| 2643 | END DO |
---|
| 2644 | |
---|
| 2645 | END DO |
---|
| 2646 | |
---|
| 2647 | ! |
---|
| 2648 | !-- Interpolation in z-direction |
---|
| 2649 | |
---|
[2712] | 2650 | DO jjf = nys, nyn |
---|
| 2651 | DO iif = nxl, nxr |
---|
[2365] | 2652 | |
---|
| 2653 | eps = ( zuf(nzt+1) - zuc(bdims_rem(3,1)+1) ) / dzc |
---|
| 2654 | |
---|
| 2655 | alpha = ( (dzf/dzc)**2.0 - 1.0) / 24.0 |
---|
| 2656 | |
---|
| 2657 | eminus = eps * ( eps - 1.0 ) / 2.0 + alpha |
---|
| 2658 | |
---|
| 2659 | edot = ( 1.0 - eps**2.0 ) - 2.0 * alpha |
---|
| 2660 | |
---|
| 2661 | eplus = eps * ( eps + 1.0 ) / 2.0 + alpha |
---|
| 2662 | |
---|
[2712] | 2663 | km (nzt+1,jjf,iif) = eminus * ptprs(bdims_rem(3,1),jjf,iif) & |
---|
| 2664 | + edot * ptprs(bdims_rem(3,1)+1,jjf,iif) & |
---|
| 2665 | + eplus * ptprs(bdims_rem(3,1)+2,jjf,iif) |
---|
[2365] | 2666 | |
---|
| 2667 | END DO |
---|
| 2668 | END DO |
---|
| 2669 | |
---|
| 2670 | DEALLOCATE ( ptprf, ptprs ) |
---|
| 2671 | |
---|
| 2672 | |
---|
| 2673 | |
---|
| 2674 | END SUBROUTINE vnest_set_topbc_km |
---|
| 2675 | |
---|
| 2676 | |
---|
[2712] | 2677 | #endif |
---|
[2365] | 2678 | END SUBROUTINE vnest_boundary_conds_khkm |
---|
| 2679 | |
---|
| 2680 | |
---|
| 2681 | |
---|
| 2682 | SUBROUTINE vnest_anterpolate |
---|
[2712] | 2683 | |
---|
| 2684 | #if defined( __parallel ) |
---|
[2365] | 2685 | |
---|
| 2686 | !--------------------------------------------------------------------------------! |
---|
| 2687 | ! Description: |
---|
| 2688 | ! ------------ |
---|
| 2689 | ! Anterpolate data from fine grid to coarse grid. |
---|
| 2690 | !------------------------------------------------------------------------------! |
---|
| 2691 | |
---|
| 2692 | USE arrays_3d |
---|
| 2693 | USE control_parameters |
---|
| 2694 | USE grid_variables |
---|
| 2695 | USE indices |
---|
| 2696 | USE interfaces |
---|
| 2697 | USE pegrid |
---|
| 2698 | USE surface_mod, & |
---|
| 2699 | ONLY : bc_h |
---|
| 2700 | |
---|
| 2701 | |
---|
| 2702 | IMPLICIT NONE |
---|
| 2703 | |
---|
[2712] | 2704 | REAL(wp) :: time_since_reference_point_rem |
---|
| 2705 | INTEGER(iwp) :: i |
---|
| 2706 | INTEGER(iwp) :: j |
---|
| 2707 | INTEGER(iwp) :: k |
---|
| 2708 | INTEGER(iwp) :: kb !< variable to set respective boundary value, depends on facing. |
---|
| 2709 | INTEGER(iwp) :: l !< running index boundary type, for up- and downward-facing walls |
---|
| 2710 | INTEGER(iwp) :: m !< running index surface elements |
---|
[2365] | 2711 | |
---|
| 2712 | |
---|
| 2713 | |
---|
| 2714 | ! |
---|
| 2715 | !-- In case of model termination initiated by the remote model |
---|
| 2716 | !-- (terminate_coupled_remote > 0), initiate termination of the local model. |
---|
| 2717 | !-- The rest of the coupler must then be skipped because it would cause an MPI |
---|
| 2718 | !-- intercomminucation hang. |
---|
| 2719 | !-- If necessary, the coupler will be called at the beginning of the next |
---|
| 2720 | !-- restart run. |
---|
| 2721 | |
---|
| 2722 | IF ( myid == 0) THEN |
---|
| 2723 | CALL MPI_SENDRECV( terminate_coupled, 1, MPI_INTEGER, & |
---|
| 2724 | target_id, 0, & |
---|
| 2725 | terminate_coupled_remote, 1, MPI_INTEGER, & |
---|
| 2726 | target_id, 0, & |
---|
| 2727 | comm_inter, status, ierr ) |
---|
| 2728 | ENDIF |
---|
| 2729 | CALL MPI_BCAST( terminate_coupled_remote, 1, MPI_INTEGER, 0, comm2d, & |
---|
| 2730 | ierr ) |
---|
| 2731 | |
---|
| 2732 | IF ( terminate_coupled_remote > 0 ) THEN |
---|
[3045] | 2733 | WRITE( message_string, * ) 'remote model "', & |
---|
| 2734 | TRIM( coupling_mode_remote ), & |
---|
| 2735 | '" terminated', & |
---|
[3046] | 2736 | '&with terminate_coupled_remote = ', & |
---|
[3045] | 2737 | terminate_coupled_remote, & |
---|
[3046] | 2738 | '&local model "', TRIM( coupling_mode ), & |
---|
[3045] | 2739 | '" has', & |
---|
[3046] | 2740 | '&terminate_coupled = ', & |
---|
[2365] | 2741 | terminate_coupled |
---|
| 2742 | CALL message( 'vnest_anterpolate', 'PA0310', 1, 2, 0, 6, 0 ) |
---|
| 2743 | RETURN |
---|
| 2744 | ENDIF |
---|
| 2745 | |
---|
| 2746 | |
---|
| 2747 | ! |
---|
| 2748 | !-- Exchange the current simulated time between the models |
---|
| 2749 | |
---|
| 2750 | IF ( myid == 0 ) THEN |
---|
| 2751 | |
---|
| 2752 | CALL MPI_SEND( time_since_reference_point, 1, MPI_REAL, target_id, & |
---|
| 2753 | 11, comm_inter, ierr ) |
---|
| 2754 | CALL MPI_RECV( time_since_reference_point_rem, 1, MPI_REAL, & |
---|
| 2755 | target_id, 11, comm_inter, status, ierr ) |
---|
| 2756 | |
---|
| 2757 | ENDIF |
---|
| 2758 | |
---|
| 2759 | CALL MPI_BCAST( time_since_reference_point_rem, 1, MPI_REAL, 0, comm2d, & |
---|
| 2760 | ierr ) |
---|
| 2761 | |
---|
| 2762 | IF ( coupling_mode == 'vnested_crse' ) THEN |
---|
| 2763 | ! Receive data from fine grid for anterpolation |
---|
| 2764 | |
---|
| 2765 | offset(1) = ( pdims_partner(1) / pdims(1) ) * pcoord(1) |
---|
| 2766 | offset(2) = ( pdims_partner(2) / pdims(2) ) * pcoord(2) |
---|
| 2767 | |
---|
| 2768 | do j = 0, ( pdims_partner(2) / pdims(2) ) - 1 |
---|
| 2769 | do i = 0, ( pdims_partner(1) / pdims(1) ) - 1 |
---|
| 2770 | map_coord(1) = i+offset(1) |
---|
| 2771 | map_coord(2) = j+offset(2) |
---|
| 2772 | |
---|
| 2773 | target_idex = f_rnk_lst(map_coord(1),map_coord(2)) + numprocs |
---|
| 2774 | |
---|
| 2775 | CALL MPI_RECV( bdims_rem, 6, MPI_INTEGER, target_idex, 10, & |
---|
| 2776 | comm_inter,status, ierr ) |
---|
| 2777 | |
---|
| 2778 | bdims (1,1) = bdims_rem (1,1) / cfratio(1) |
---|
| 2779 | bdims (1,2) = bdims_rem (1,2) / cfratio(1) |
---|
| 2780 | bdims (2,1) = bdims_rem (2,1) / cfratio(2) |
---|
| 2781 | bdims (2,2) = bdims_rem (2,2) / cfratio(2) |
---|
| 2782 | bdims (3,1) = bdims_rem (3,1) |
---|
| 2783 | bdims (3,2) = bdims_rem (3,2) / cfratio(3) |
---|
| 2784 | |
---|
| 2785 | CALL MPI_SEND( bdims, 6, MPI_INTEGER, target_idex, 9, & |
---|
| 2786 | comm_inter, ierr ) |
---|
| 2787 | |
---|
| 2788 | n_cell_c = & |
---|
| 2789 | (bdims(1,2)-bdims(1,1)+1) * & |
---|
| 2790 | (bdims(2,2)-bdims(2,1)+1) * & |
---|
| 2791 | (bdims(3,2)-bdims(3,1)+0) |
---|
| 2792 | |
---|
| 2793 | CALL MPI_RECV( u( & |
---|
| 2794 | bdims(3,1)+1:bdims(3,2), & |
---|
| 2795 | bdims(2,1) :bdims(2,2), & |
---|
| 2796 | bdims(1,1) :bdims(1,2)),& |
---|
| 2797 | n_cell_c, MPI_REAL, target_idex, 101, & |
---|
| 2798 | comm_inter,status, ierr ) |
---|
| 2799 | |
---|
| 2800 | CALL MPI_RECV( v( & |
---|
| 2801 | bdims(3,1)+1:bdims(3,2), & |
---|
| 2802 | bdims(2,1) :bdims(2,2), & |
---|
| 2803 | bdims(1,1) :bdims(1,2)),& |
---|
| 2804 | n_cell_c, MPI_REAL, target_idex, 102, & |
---|
| 2805 | comm_inter,status, ierr ) |
---|
| 2806 | |
---|
| 2807 | CALL MPI_RECV(pt( & |
---|
| 2808 | bdims(3,1)+1:bdims(3,2), & |
---|
| 2809 | bdims(2,1) :bdims(2,2), & |
---|
| 2810 | bdims(1,1) :bdims(1,2)),& |
---|
| 2811 | n_cell_c, MPI_REAL, target_idex, 105, & |
---|
| 2812 | comm_inter,status, ierr ) |
---|
| 2813 | |
---|
[2514] | 2814 | IF ( humidity ) THEN |
---|
[2365] | 2815 | CALL MPI_RECV(q( & |
---|
| 2816 | bdims(3,1)+1:bdims(3,2), & |
---|
| 2817 | bdims(2,1) :bdims(2,2), & |
---|
| 2818 | bdims(1,1) :bdims(1,2)),& |
---|
| 2819 | n_cell_c, MPI_REAL, target_idex, 106, & |
---|
| 2820 | comm_inter,status, ierr ) |
---|
[2514] | 2821 | ENDIF |
---|
[2365] | 2822 | |
---|
| 2823 | CALL MPI_RECV( w( & |
---|
| 2824 | bdims(3,1) :bdims(3,2)-1, & |
---|
| 2825 | bdims(2,1) :bdims(2,2), & |
---|
| 2826 | bdims(1,1) :bdims(1,2)), & |
---|
| 2827 | n_cell_c, MPI_REAL, target_idex, 103, & |
---|
| 2828 | comm_inter,status, ierr ) |
---|
| 2829 | |
---|
| 2830 | end do |
---|
| 2831 | end do |
---|
| 2832 | |
---|
| 2833 | |
---|
| 2834 | |
---|
| 2835 | ! |
---|
| 2836 | !-- Boundary conditions for the velocity components u and v |
---|
| 2837 | |
---|
| 2838 | |
---|
| 2839 | IF ( ibc_uv_b == 0 ) THEN |
---|
| 2840 | u(nzb,:,:) = 0.0_wp |
---|
| 2841 | v(nzb,:,:) = 0.0_wp |
---|
| 2842 | ELSE |
---|
| 2843 | u(nzb,:,:) = u(nzb+1,:,:) |
---|
| 2844 | v(nzb,:,:) = v(nzb+1,:,:) |
---|
| 2845 | END IF |
---|
| 2846 | ! |
---|
| 2847 | !-- Boundary conditions for the velocity components w |
---|
| 2848 | |
---|
| 2849 | w(nzb,:,:) = 0.0_wp |
---|
| 2850 | |
---|
| 2851 | ! |
---|
| 2852 | !-- Temperature at bottom boundary. |
---|
| 2853 | !-- Neumann, zero-gradient |
---|
| 2854 | IF ( ibc_pt_b == 1 ) THEN |
---|
| 2855 | DO l = 0, 1 |
---|
| 2856 | ! |
---|
| 2857 | !-- Set kb, for upward-facing surfaces value at topography top (k-1) is set, |
---|
| 2858 | !-- for downward-facing surfaces at topography bottom (k+1). |
---|
| 2859 | kb = MERGE( -1, 1, l == 0 ) |
---|
| 2860 | DO m = 1, bc_h(l)%ns |
---|
| 2861 | i = bc_h(l)%i(m) |
---|
| 2862 | j = bc_h(l)%j(m) |
---|
| 2863 | k = bc_h(l)%k(m) |
---|
| 2864 | pt(k+kb,j,i) = pt(k,j,i) |
---|
| 2865 | ENDDO |
---|
| 2866 | ENDDO |
---|
| 2867 | ENDIF |
---|
| 2868 | |
---|
| 2869 | |
---|
| 2870 | CALL exchange_horiz( u, nbgp ) |
---|
| 2871 | CALL exchange_horiz( v, nbgp ) |
---|
| 2872 | CALL exchange_horiz( w, nbgp ) |
---|
| 2873 | CALL exchange_horiz( pt, nbgp ) |
---|
| 2874 | |
---|
| 2875 | |
---|
| 2876 | ELSEIF ( coupling_mode == 'vnested_fine' ) THEN |
---|
| 2877 | ! Send data to coarse grid for anterpolation |
---|
| 2878 | |
---|
| 2879 | offset(1) = pcoord(1) / ( pdims(1)/pdims_partner(1) ) |
---|
| 2880 | offset(2) = pcoord(2) / ( pdims(2)/pdims_partner(2) ) |
---|
| 2881 | map_coord(1) = offset(1) |
---|
| 2882 | map_coord(2) = offset(2) |
---|
| 2883 | target_idex = c_rnk_lst(map_coord(1),map_coord(2)) |
---|
| 2884 | |
---|
| 2885 | !-- Limit anterpolation level to nzt - z nesting ratio (a pseudo-buffer layer) |
---|
| 2886 | bdims (1,1) = nxl |
---|
| 2887 | bdims (1,2) = nxr |
---|
| 2888 | bdims (2,1) = nys |
---|
| 2889 | bdims (2,2) = nyn |
---|
| 2890 | bdims (3,1) = nzb |
---|
| 2891 | bdims (3,2) = nzt-cfratio(3) |
---|
| 2892 | |
---|
| 2893 | CALL MPI_SEND( bdims, 6, MPI_INTEGER, target_idex, 10, & |
---|
| 2894 | comm_inter, ierr ) |
---|
| 2895 | |
---|
| 2896 | CALL MPI_RECV( bdims_rem, 6, MPI_INTEGER, target_idex, 9, & |
---|
| 2897 | comm_inter,status, ierr ) |
---|
| 2898 | |
---|
| 2899 | |
---|
| 2900 | ALLOCATE( work3d ( & |
---|
| 2901 | bdims_rem(3,1)+1:bdims_rem(3,2), & |
---|
| 2902 | bdims_rem(2,1) :bdims_rem(2,2), & |
---|
| 2903 | bdims_rem(1,1) :bdims_rem(1,2))) |
---|
| 2904 | |
---|
| 2905 | |
---|
| 2906 | anterpol3d => u |
---|
[2514] | 2907 | |
---|
[3241] | 2908 | CALL anterpolate_to_crse_u |
---|
[2365] | 2909 | CALL MPI_SEND( work3d, 1, TYPE_VNEST_ANTER, target_idex, & |
---|
[2514] | 2910 | 101, comm_inter, ierr) |
---|
[2365] | 2911 | |
---|
| 2912 | anterpol3d => v |
---|
| 2913 | |
---|
[3241] | 2914 | CALL anterpolate_to_crse_v |
---|
[2365] | 2915 | CALL MPI_SEND( work3d, 1, TYPE_VNEST_ANTER, target_idex, & |
---|
[2514] | 2916 | 102, comm_inter, ierr) |
---|
[2365] | 2917 | |
---|
| 2918 | anterpol3d => pt |
---|
| 2919 | |
---|
[3241] | 2920 | CALL anterpolate_to_crse_s |
---|
[2365] | 2921 | CALL MPI_SEND( work3d, 1, TYPE_VNEST_ANTER, target_idex, & |
---|
[2514] | 2922 | 105, comm_inter, ierr) |
---|
[2365] | 2923 | |
---|
| 2924 | |
---|
| 2925 | IF ( humidity ) THEN |
---|
| 2926 | |
---|
| 2927 | anterpol3d => q |
---|
| 2928 | |
---|
[3241] | 2929 | CALL anterpolate_to_crse_s |
---|
[2365] | 2930 | CALL MPI_SEND( work3d, 1, TYPE_VNEST_ANTER, target_idex, & |
---|
[2514] | 2931 | 106, comm_inter, ierr) |
---|
[2365] | 2932 | ENDIF |
---|
| 2933 | |
---|
| 2934 | |
---|
| 2935 | DEALLOCATE( work3d ) |
---|
| 2936 | ALLOCATE( work3d ( bdims_rem(3,1) :bdims_rem(3,2)-1, & |
---|
| 2937 | bdims_rem(2,1) :bdims_rem(2,2), & |
---|
| 2938 | bdims_rem(1,1) :bdims_rem(1,2))) |
---|
| 2939 | anterpol3d => w |
---|
[3241] | 2940 | CALL anterpolate_to_crse_w |
---|
[2365] | 2941 | CALL MPI_SEND( work3d, 1, TYPE_VNEST_ANTER, target_idex, & |
---|
[2514] | 2942 | 103, comm_inter, ierr) |
---|
[2365] | 2943 | |
---|
| 2944 | NULLIFY ( anterpol3d ) |
---|
| 2945 | DEALLOCATE( work3d ) |
---|
| 2946 | |
---|
| 2947 | ENDIF |
---|
| 2948 | |
---|
| 2949 | |
---|
| 2950 | |
---|
| 2951 | CONTAINS |
---|
[3241] | 2952 | SUBROUTINE anterpolate_to_crse_u |
---|
[2365] | 2953 | |
---|
| 2954 | |
---|
| 2955 | USE arrays_3d |
---|
| 2956 | USE control_parameters |
---|
| 2957 | USE grid_variables |
---|
| 2958 | USE indices |
---|
| 2959 | USE pegrid |
---|
| 2960 | |
---|
| 2961 | |
---|
| 2962 | IMPLICIT NONE |
---|
[2712] | 2963 | |
---|
| 2964 | INTEGER(iwp) :: i |
---|
| 2965 | INTEGER(iwp) :: j |
---|
| 2966 | INTEGER(iwp) :: k |
---|
| 2967 | INTEGER(iwp) :: iif |
---|
| 2968 | INTEGER(iwp) :: jjf |
---|
| 2969 | INTEGER(iwp) :: kkf |
---|
| 2970 | INTEGER(iwp) :: bottomy |
---|
| 2971 | INTEGER(iwp) :: bottomz |
---|
| 2972 | INTEGER(iwp) :: topy |
---|
| 2973 | INTEGER(iwp) :: topz |
---|
| 2974 | REAL(wp) :: aweight |
---|
[2365] | 2975 | |
---|
| 2976 | ! |
---|
| 2977 | !-- Anterpolation of the velocity components u |
---|
| 2978 | !-- only values in yz-planes that coincide in the fine and |
---|
| 2979 | !-- the coarse grid are considered |
---|
| 2980 | |
---|
| 2981 | DO k = bdims_rem(3,1)+1, bdims_rem(3,2) |
---|
| 2982 | |
---|
| 2983 | bottomz = (dzc/dzf) * (k-1) + 1 |
---|
| 2984 | topz = (dzc/dzf) * k |
---|
| 2985 | |
---|
| 2986 | DO j = bdims_rem(2,1),bdims_rem(2,2) |
---|
| 2987 | |
---|
| 2988 | bottomy = (nyf+1) / (nyc+1) * j |
---|
| 2989 | topy = (nyf+1) / (nyc+1) * (j+1) - 1 |
---|
| 2990 | |
---|
| 2991 | DO i = bdims_rem(1,1),bdims_rem(1,2) |
---|
| 2992 | |
---|
[2712] | 2993 | iif = (nxf+1) / (nxc+1) * i |
---|
[2365] | 2994 | |
---|
| 2995 | aweight = 0.0 |
---|
| 2996 | |
---|
[2712] | 2997 | DO kkf = bottomz, topz |
---|
| 2998 | DO jjf = bottomy, topy |
---|
[2365] | 2999 | |
---|
[2712] | 3000 | aweight = aweight + anterpol3d(kkf,jjf,iif) * & |
---|
[2365] | 3001 | (dzf/dzc) * (dyf/dyc) |
---|
| 3002 | |
---|
| 3003 | END DO |
---|
| 3004 | END DO |
---|
| 3005 | |
---|
| 3006 | work3d(k,j,i) = aweight |
---|
| 3007 | |
---|
| 3008 | END DO |
---|
| 3009 | |
---|
| 3010 | END DO |
---|
| 3011 | |
---|
| 3012 | END DO |
---|
| 3013 | |
---|
| 3014 | |
---|
| 3015 | |
---|
| 3016 | END SUBROUTINE anterpolate_to_crse_u |
---|
| 3017 | |
---|
| 3018 | |
---|
[3241] | 3019 | SUBROUTINE anterpolate_to_crse_v |
---|
[2365] | 3020 | |
---|
| 3021 | |
---|
| 3022 | USE arrays_3d |
---|
| 3023 | USE control_parameters |
---|
| 3024 | USE grid_variables |
---|
| 3025 | USE indices |
---|
| 3026 | USE pegrid |
---|
| 3027 | |
---|
| 3028 | |
---|
| 3029 | IMPLICIT NONE |
---|
[2712] | 3030 | |
---|
| 3031 | INTEGER(iwp) :: i |
---|
| 3032 | INTEGER(iwp) :: j |
---|
| 3033 | INTEGER(iwp) :: k |
---|
| 3034 | INTEGER(iwp) :: iif |
---|
| 3035 | INTEGER(iwp) :: jjf |
---|
| 3036 | INTEGER(iwp) :: kkf |
---|
| 3037 | INTEGER(iwp) :: bottomx |
---|
| 3038 | INTEGER(iwp) :: bottomz |
---|
| 3039 | INTEGER(iwp) :: topx |
---|
| 3040 | INTEGER(iwp) :: topz |
---|
| 3041 | REAL(wp) :: aweight |
---|
| 3042 | |
---|
[2365] | 3043 | ! |
---|
| 3044 | !-- Anterpolation of the velocity components v |
---|
| 3045 | !-- only values in xz-planes that coincide in the fine and |
---|
| 3046 | !-- the coarse grid are considered |
---|
| 3047 | |
---|
| 3048 | DO k = bdims_rem(3,1)+1, bdims_rem(3,2) |
---|
| 3049 | |
---|
| 3050 | bottomz = (dzc/dzf) * (k-1) + 1 |
---|
| 3051 | topz = (dzc/dzf) * k |
---|
| 3052 | |
---|
| 3053 | DO j = bdims_rem(2,1), bdims_rem(2,2) |
---|
| 3054 | |
---|
[2712] | 3055 | jjf = (nyf+1) / (nyc+1) * j |
---|
[2365] | 3056 | |
---|
| 3057 | DO i = bdims_rem(1,1), bdims_rem(1,2) |
---|
| 3058 | |
---|
| 3059 | bottomx = (nxf+1) / (nxc+1) * i |
---|
| 3060 | topx = (nxf+1) / (nxc+1) * (i+1) - 1 |
---|
| 3061 | |
---|
| 3062 | aweight = 0.0 |
---|
| 3063 | |
---|
[2712] | 3064 | DO kkf = bottomz, topz |
---|
| 3065 | DO iif = bottomx, topx |
---|
[2365] | 3066 | |
---|
[2712] | 3067 | aweight = aweight + anterpol3d(kkf,jjf,iif) * & |
---|
[2365] | 3068 | (dzf/dzc) * (dxf/dxc) |
---|
| 3069 | |
---|
| 3070 | |
---|
| 3071 | END DO |
---|
| 3072 | END DO |
---|
| 3073 | |
---|
| 3074 | work3d(k,j,i) = aweight |
---|
| 3075 | |
---|
| 3076 | END DO |
---|
| 3077 | END DO |
---|
| 3078 | END DO |
---|
| 3079 | |
---|
| 3080 | |
---|
| 3081 | |
---|
| 3082 | END SUBROUTINE anterpolate_to_crse_v |
---|
| 3083 | |
---|
| 3084 | |
---|
[3241] | 3085 | SUBROUTINE anterpolate_to_crse_w |
---|
[2365] | 3086 | |
---|
| 3087 | |
---|
| 3088 | USE arrays_3d |
---|
| 3089 | USE control_parameters |
---|
| 3090 | USE grid_variables |
---|
| 3091 | USE indices |
---|
| 3092 | USE pegrid |
---|
| 3093 | |
---|
| 3094 | |
---|
| 3095 | IMPLICIT NONE |
---|
[2712] | 3096 | |
---|
| 3097 | INTEGER(iwp) :: i |
---|
| 3098 | INTEGER(iwp) :: j |
---|
| 3099 | INTEGER(iwp) :: k |
---|
| 3100 | INTEGER(iwp) :: iif |
---|
| 3101 | INTEGER(iwp) :: jjf |
---|
| 3102 | INTEGER(iwp) :: kkf |
---|
| 3103 | INTEGER(iwp) :: bottomx |
---|
| 3104 | INTEGER(iwp) :: bottomy |
---|
| 3105 | INTEGER(iwp) :: topx |
---|
| 3106 | INTEGER(iwp) :: topy |
---|
| 3107 | REAL(wp) :: aweight |
---|
| 3108 | |
---|
[2365] | 3109 | ! |
---|
| 3110 | !-- Anterpolation of the velocity components w |
---|
| 3111 | !-- only values in xy-planes that coincide in the fine and |
---|
| 3112 | !-- the coarse grid are considered |
---|
| 3113 | |
---|
| 3114 | DO k = bdims_rem(3,1), bdims_rem(3,2)-1 |
---|
| 3115 | |
---|
[2712] | 3116 | kkf = cfratio(3) * k |
---|
[2365] | 3117 | |
---|
| 3118 | DO j = bdims_rem(2,1), bdims_rem(2,2) |
---|
| 3119 | |
---|
| 3120 | bottomy = (nyf+1) / (nyc+1) * j |
---|
| 3121 | topy = (nyf+1) / (nyc+1) * (j+1) - 1 |
---|
| 3122 | |
---|
| 3123 | DO i = bdims_rem(1,1), bdims_rem(1,2) |
---|
| 3124 | |
---|
| 3125 | bottomx = (nxf+1) / (nxc+1) * i |
---|
| 3126 | topx = (nxf+1) / (nxc+1) * (i+1) - 1 |
---|
| 3127 | |
---|
| 3128 | aweight = 0.0 |
---|
| 3129 | |
---|
[2712] | 3130 | DO jjf = bottomy, topy |
---|
| 3131 | DO iif = bottomx, topx |
---|
[2365] | 3132 | |
---|
[2712] | 3133 | aweight = aweight + anterpol3d (kkf,jjf,iif) * & |
---|
[2365] | 3134 | (dxf/dxc) * (dyf/dyc) |
---|
| 3135 | |
---|
| 3136 | END DO |
---|
| 3137 | END DO |
---|
| 3138 | |
---|
| 3139 | work3d(k,j,i) = aweight |
---|
| 3140 | |
---|
| 3141 | END DO |
---|
| 3142 | |
---|
| 3143 | END DO |
---|
| 3144 | |
---|
| 3145 | END DO |
---|
| 3146 | |
---|
| 3147 | |
---|
| 3148 | END SUBROUTINE anterpolate_to_crse_w |
---|
| 3149 | |
---|
| 3150 | |
---|
[3241] | 3151 | SUBROUTINE anterpolate_to_crse_s |
---|
[2365] | 3152 | |
---|
| 3153 | |
---|
| 3154 | USE arrays_3d |
---|
| 3155 | USE control_parameters |
---|
| 3156 | USE grid_variables |
---|
| 3157 | USE indices |
---|
| 3158 | USE pegrid |
---|
| 3159 | |
---|
| 3160 | |
---|
| 3161 | IMPLICIT NONE |
---|
[2712] | 3162 | |
---|
| 3163 | INTEGER(iwp) :: i |
---|
| 3164 | INTEGER(iwp) :: j |
---|
| 3165 | INTEGER(iwp) :: k |
---|
| 3166 | INTEGER(iwp) :: iif |
---|
| 3167 | INTEGER(iwp) :: jjf |
---|
| 3168 | INTEGER(iwp) :: kkf |
---|
| 3169 | INTEGER(iwp) :: bottomx |
---|
| 3170 | INTEGER(iwp) :: bottomy |
---|
| 3171 | INTEGER(iwp) :: bottomz |
---|
| 3172 | INTEGER(iwp) :: topx |
---|
| 3173 | INTEGER(iwp) :: topy |
---|
| 3174 | INTEGER(iwp) :: topz |
---|
| 3175 | REAL(wp) :: aweight |
---|
[2365] | 3176 | |
---|
| 3177 | ! |
---|
| 3178 | !-- Anterpolation of the potential temperature pt |
---|
| 3179 | !-- all fine grid values are considered |
---|
| 3180 | |
---|
| 3181 | DO k = bdims_rem(3,1)+1, bdims_rem(3,2) |
---|
| 3182 | |
---|
| 3183 | bottomz = (dzc/dzf) * (k-1) + 1 |
---|
| 3184 | topz = (dzc/dzf) * k |
---|
| 3185 | |
---|
| 3186 | DO j = bdims_rem(2,1), bdims_rem(2,2) |
---|
| 3187 | |
---|
| 3188 | bottomy = (nyf+1) / (nyc+1) * j |
---|
| 3189 | topy = (nyf+1) / (nyc+1) * (j+1) - 1 |
---|
| 3190 | |
---|
| 3191 | DO i = bdims_rem(1,1), bdims_rem(1,2) |
---|
| 3192 | |
---|
| 3193 | bottomx = (nxf+1) / (nxc+1) * i |
---|
| 3194 | topx = (nxf+1) / (nxc+1) * (i+1) - 1 |
---|
| 3195 | |
---|
| 3196 | aweight = 0.0 |
---|
| 3197 | |
---|
[2712] | 3198 | DO kkf = bottomz, topz |
---|
| 3199 | DO jjf = bottomy, topy |
---|
| 3200 | DO iif = bottomx, topx |
---|
[2365] | 3201 | |
---|
[2712] | 3202 | aweight = aweight + anterpol3d(kkf,jjf,iif) * & |
---|
[2365] | 3203 | (dzf/dzc) * (dyf/dyc) * (dxf/dxc) |
---|
| 3204 | |
---|
| 3205 | END DO |
---|
| 3206 | END DO |
---|
| 3207 | END DO |
---|
| 3208 | |
---|
| 3209 | work3d(k,j,i) = aweight |
---|
| 3210 | |
---|
| 3211 | END DO |
---|
| 3212 | |
---|
| 3213 | END DO |
---|
| 3214 | |
---|
| 3215 | END DO |
---|
| 3216 | |
---|
| 3217 | |
---|
| 3218 | END SUBROUTINE anterpolate_to_crse_s |
---|
[2712] | 3219 | #endif |
---|
[2365] | 3220 | END SUBROUTINE vnest_anterpolate |
---|
| 3221 | |
---|
| 3222 | |
---|
| 3223 | |
---|
| 3224 | SUBROUTINE vnest_anterpolate_e |
---|
[2712] | 3225 | #if defined( __parallel ) |
---|
[2365] | 3226 | |
---|
| 3227 | !--------------------------------------------------------------------------------! |
---|
| 3228 | ! Description: |
---|
| 3229 | ! ------------ |
---|
| 3230 | ! Anterpolate TKE from fine grid to coarse grid. |
---|
| 3231 | !------------------------------------------------------------------------------! |
---|
| 3232 | |
---|
| 3233 | USE arrays_3d |
---|
| 3234 | USE control_parameters |
---|
| 3235 | USE grid_variables |
---|
| 3236 | USE indices |
---|
| 3237 | USE interfaces |
---|
| 3238 | USE pegrid |
---|
| 3239 | |
---|
| 3240 | |
---|
| 3241 | IMPLICIT NONE |
---|
| 3242 | |
---|
[2712] | 3243 | REAL(wp) :: time_since_reference_point_rem |
---|
| 3244 | INTEGER(iwp) :: i |
---|
| 3245 | INTEGER(iwp) :: j |
---|
[2365] | 3246 | |
---|
| 3247 | ! |
---|
| 3248 | !-- In case of model termination initiated by the remote model |
---|
| 3249 | !-- (terminate_coupled_remote > 0), initiate termination of the local model. |
---|
| 3250 | !-- The rest of the coupler must then be skipped because it would cause an MPI |
---|
| 3251 | !-- intercomminucation hang. |
---|
| 3252 | !-- If necessary, the coupler will be called at the beginning of the next |
---|
| 3253 | !-- restart run. |
---|
| 3254 | |
---|
| 3255 | IF ( myid == 0) THEN |
---|
[3045] | 3256 | CALL MPI_SENDRECV( terminate_coupled, 1, MPI_INTEGER, & |
---|
| 3257 | target_id, 0, & |
---|
| 3258 | terminate_coupled_remote, 1, MPI_INTEGER, & |
---|
| 3259 | target_id, 0, & |
---|
[2365] | 3260 | comm_inter, status, ierr ) |
---|
| 3261 | ENDIF |
---|
[3045] | 3262 | CALL MPI_BCAST( terminate_coupled_remote, 1, MPI_INTEGER, 0, comm2d, & |
---|
[2365] | 3263 | ierr ) |
---|
| 3264 | |
---|
| 3265 | IF ( terminate_coupled_remote > 0 ) THEN |
---|
[3045] | 3266 | WRITE( message_string, * ) 'remote model "', & |
---|
| 3267 | TRIM( coupling_mode_remote ), & |
---|
| 3268 | '" terminated', & |
---|
[3046] | 3269 | '&with terminate_coupled_remote = ', & |
---|
[3045] | 3270 | terminate_coupled_remote, & |
---|
[3046] | 3271 | '&local model "', TRIM( coupling_mode ), & |
---|
[3045] | 3272 | '" has', & |
---|
[3046] | 3273 | '&terminate_coupled = ', & |
---|
[2365] | 3274 | terminate_coupled |
---|
| 3275 | CALL message( 'vnest_anterpolate_e', 'PA0310', 1, 2, 0, 6, 0 ) |
---|
| 3276 | RETURN |
---|
| 3277 | ENDIF |
---|
| 3278 | |
---|
| 3279 | |
---|
| 3280 | ! |
---|
| 3281 | !-- Exchange the current simulated time between the models |
---|
| 3282 | IF ( myid == 0 ) THEN |
---|
| 3283 | |
---|
| 3284 | CALL MPI_SEND( time_since_reference_point, 1, MPI_REAL, target_id, & |
---|
| 3285 | 11, comm_inter, ierr ) |
---|
| 3286 | CALL MPI_RECV( time_since_reference_point_rem, 1, MPI_REAL, & |
---|
| 3287 | target_id, 11, comm_inter, status, ierr ) |
---|
| 3288 | |
---|
| 3289 | ENDIF |
---|
| 3290 | |
---|
| 3291 | CALL MPI_BCAST( time_since_reference_point_rem, 1, MPI_REAL, 0, comm2d, & |
---|
| 3292 | ierr ) |
---|
| 3293 | |
---|
| 3294 | IF ( coupling_mode == 'vnested_crse' ) THEN |
---|
| 3295 | ! Receive data from fine grid for anterpolation |
---|
| 3296 | |
---|
| 3297 | offset(1) = ( pdims_partner(1) / pdims(1) ) * pcoord(1) |
---|
| 3298 | offset(2) = ( pdims_partner(2) / pdims(2) ) * pcoord(2) |
---|
| 3299 | |
---|
| 3300 | do j = 0, ( pdims_partner(2) / pdims(2) ) - 1 |
---|
| 3301 | do i = 0, ( pdims_partner(1) / pdims(1) ) - 1 |
---|
| 3302 | map_coord(1) = i+offset(1) |
---|
| 3303 | map_coord(2) = j+offset(2) |
---|
| 3304 | |
---|
| 3305 | target_idex = f_rnk_lst(map_coord(1),map_coord(2)) + numprocs |
---|
| 3306 | |
---|
| 3307 | bdims (1,1) = f2c_dims_cg (0,map_coord(1),map_coord(2)) |
---|
| 3308 | bdims (1,2) = f2c_dims_cg (1,map_coord(1),map_coord(2)) |
---|
| 3309 | bdims (2,1) = f2c_dims_cg (2,map_coord(1),map_coord(2)) |
---|
| 3310 | bdims (2,2) = f2c_dims_cg (3,map_coord(1),map_coord(2)) |
---|
| 3311 | bdims (3,1) = f2c_dims_cg (4,map_coord(1),map_coord(2)) |
---|
| 3312 | bdims (3,2) = f2c_dims_cg (5,map_coord(1),map_coord(2)) |
---|
| 3313 | |
---|
| 3314 | |
---|
| 3315 | n_cell_c = (bdims(1,2)-bdims(1,1)+1) * & |
---|
| 3316 | (bdims(2,2)-bdims(2,1)+1) * & |
---|
| 3317 | (bdims(3,2)-bdims(3,1)+0) |
---|
| 3318 | |
---|
| 3319 | |
---|
| 3320 | CALL MPI_RECV( e( bdims(3,1)+1:bdims(3,2), & |
---|
| 3321 | bdims(2,1) :bdims(2,2), & |
---|
| 3322 | bdims(1,1) :bdims(1,2)),& |
---|
| 3323 | n_cell_c, MPI_REAL, target_idex, 104, & |
---|
| 3324 | comm_inter,status, ierr ) |
---|
| 3325 | end do |
---|
| 3326 | end do |
---|
| 3327 | |
---|
| 3328 | |
---|
| 3329 | ! |
---|
| 3330 | !-- Boundary conditions |
---|
| 3331 | |
---|
| 3332 | IF ( .NOT. constant_diffusion ) THEN |
---|
| 3333 | e(nzb,:,:) = e(nzb+1,:,:) |
---|
| 3334 | END IF |
---|
| 3335 | |
---|
| 3336 | IF ( .NOT. constant_diffusion ) CALL exchange_horiz( e, nbgp ) |
---|
| 3337 | |
---|
| 3338 | ELSEIF ( coupling_mode == 'vnested_fine' ) THEN |
---|
| 3339 | ! Send data to coarse grid for anterpolation |
---|
| 3340 | |
---|
| 3341 | offset(1) = pcoord(1) / ( pdims(1)/pdims_partner(1) ) |
---|
| 3342 | offset(2) = pcoord(2) / ( pdims(2)/pdims_partner(2) ) |
---|
| 3343 | map_coord(1) = offset(1) |
---|
| 3344 | map_coord(2) = offset(2) |
---|
| 3345 | target_idex = c_rnk_lst(map_coord(1),map_coord(2)) |
---|
| 3346 | |
---|
| 3347 | bdims_rem (1,1) = f2c_dims_fg (0) |
---|
| 3348 | bdims_rem (1,2) = f2c_dims_fg (1) |
---|
| 3349 | bdims_rem (2,1) = f2c_dims_fg (2) |
---|
| 3350 | bdims_rem (2,2) = f2c_dims_fg (3) |
---|
| 3351 | bdims_rem (3,1) = f2c_dims_fg (4) |
---|
| 3352 | bdims_rem (3,2) = f2c_dims_fg (5) |
---|
| 3353 | |
---|
| 3354 | ALLOCATE( work3d ( & |
---|
| 3355 | bdims_rem(3,1)+1:bdims_rem(3,2), & |
---|
| 3356 | bdims_rem(2,1) :bdims_rem(2,2), & |
---|
| 3357 | bdims_rem(1,1) :bdims_rem(1,2))) |
---|
| 3358 | |
---|
| 3359 | anterpol3d => e |
---|
| 3360 | |
---|
[3241] | 3361 | CALL anterpolate_to_crse_e |
---|
[2365] | 3362 | |
---|
| 3363 | CALL MPI_SEND( work3d, 1, TYPE_VNEST_ANTER, target_idex, & |
---|
[2514] | 3364 | 104, comm_inter, ierr) |
---|
[2365] | 3365 | |
---|
| 3366 | NULLIFY ( anterpol3d ) |
---|
| 3367 | DEALLOCATE( work3d ) |
---|
| 3368 | ENDIF |
---|
| 3369 | |
---|
| 3370 | |
---|
| 3371 | CONTAINS |
---|
| 3372 | |
---|
| 3373 | |
---|
| 3374 | |
---|
| 3375 | |
---|
| 3376 | |
---|
[3241] | 3377 | SUBROUTINE anterpolate_to_crse_e |
---|
[2365] | 3378 | |
---|
| 3379 | |
---|
| 3380 | USE arrays_3d |
---|
| 3381 | USE control_parameters |
---|
| 3382 | USE grid_variables |
---|
| 3383 | USE indices |
---|
| 3384 | USE pegrid |
---|
| 3385 | |
---|
| 3386 | |
---|
| 3387 | IMPLICIT NONE |
---|
[2712] | 3388 | |
---|
| 3389 | INTEGER(iwp) :: i |
---|
| 3390 | INTEGER(iwp) :: j |
---|
| 3391 | INTEGER(iwp) :: k |
---|
| 3392 | INTEGER(iwp) :: iif |
---|
| 3393 | INTEGER(iwp) :: jjf |
---|
| 3394 | INTEGER(iwp) :: kkf |
---|
| 3395 | INTEGER(iwp) :: bottomx |
---|
| 3396 | INTEGER(iwp) :: bottomy |
---|
| 3397 | INTEGER(iwp) :: bottomz |
---|
| 3398 | INTEGER(iwp) :: topx |
---|
| 3399 | INTEGER(iwp) :: topy |
---|
| 3400 | INTEGER(iwp) :: topz |
---|
| 3401 | REAL(wp) :: aweight_a |
---|
| 3402 | REAL(wp) :: aweight_b |
---|
| 3403 | REAL(wp) :: aweight_c |
---|
| 3404 | REAL(wp) :: aweight_d |
---|
| 3405 | REAL(wp) :: aweight_e |
---|
| 3406 | REAL(wp) :: energ |
---|
[2365] | 3407 | |
---|
| 3408 | DO k = bdims_rem(3,1)+1, bdims_rem(3,2) |
---|
| 3409 | |
---|
| 3410 | bottomz = (dzc/dzf) * (k-1) + 1 |
---|
| 3411 | topz = (dzc/dzf) * k |
---|
| 3412 | |
---|
| 3413 | DO j = bdims_rem(2,1), bdims_rem(2,2) |
---|
| 3414 | |
---|
| 3415 | bottomy = (nyf+1) / (nyc+1) * j |
---|
| 3416 | topy = (nyf+1) / (nyc+1) * (j+1) - 1 |
---|
| 3417 | |
---|
| 3418 | DO i = bdims_rem(1,1), bdims_rem(1,2) |
---|
| 3419 | |
---|
| 3420 | bottomx = (nxf+1) / (nxc+1) * i |
---|
| 3421 | topx = (nxf+1) / (nxc+1) * (i+1) - 1 |
---|
| 3422 | |
---|
| 3423 | aweight_a = 0.0 |
---|
| 3424 | aweight_b = 0.0 |
---|
| 3425 | aweight_c = 0.0 |
---|
| 3426 | aweight_d = 0.0 |
---|
| 3427 | aweight_e = 0.0 |
---|
| 3428 | |
---|
[2712] | 3429 | DO kkf = bottomz, topz |
---|
| 3430 | DO jjf = bottomy, topy |
---|
| 3431 | DO iif = bottomx, topx |
---|
[2365] | 3432 | |
---|
[2712] | 3433 | aweight_a = aweight_a + anterpol3d(kkf,jjf,iif) * & |
---|
[2365] | 3434 | (dzf/dzc) * (dyf/dyc) * (dxf/dxc) |
---|
| 3435 | |
---|
| 3436 | |
---|
[2712] | 3437 | energ = ( 0.5 * ( u(kkf,jjf,iif) + u(kkf,jjf,iif+1) ) )**2.0 + & |
---|
| 3438 | ( 0.5 * ( v(kkf,jjf,iif) + v(kkf,jjf+1,iif) ) )**2.0 + & |
---|
| 3439 | ( 0.5 * ( w(kkf-1,jjf,iif) + w(kkf,jjf,iif) ) )**2.0 |
---|
[2365] | 3440 | |
---|
| 3441 | aweight_b = aweight_b + energ * & |
---|
| 3442 | (dzf/dzc) * (dyf/dyc) * (dxf/dxc) |
---|
| 3443 | |
---|
[2712] | 3444 | aweight_c = aweight_c + 0.5 * ( u(kkf,jjf,iif) + u(kkf,jjf,iif+1) ) * & |
---|
[2365] | 3445 | (dzf/dzc) * (dyf/dyc) * (dxf/dxc) |
---|
| 3446 | |
---|
[2712] | 3447 | aweight_d = aweight_d + 0.5 * ( v(kkf,jjf,iif) + v(kkf,jjf+1,iif) ) * & |
---|
[2365] | 3448 | (dzf/dzc) * (dyf/dyc) * (dxf/dxc) |
---|
| 3449 | |
---|
[2712] | 3450 | aweight_e = aweight_e + 0.5 * ( w(kkf-1,jjf,iif) + w(kkf,jjf,iif) ) * & |
---|
[2365] | 3451 | (dzf/dzc) * (dyf/dyc) * (dxf/dxc) |
---|
| 3452 | |
---|
| 3453 | |
---|
| 3454 | END DO |
---|
| 3455 | END DO |
---|
| 3456 | END DO |
---|
| 3457 | |
---|
| 3458 | work3d(k,j,i) = aweight_a + 0.5 * ( aweight_b - & |
---|
| 3459 | aweight_c**2.0 - & |
---|
| 3460 | aweight_d**2.0 - & |
---|
| 3461 | aweight_e**2.0 ) |
---|
| 3462 | |
---|
| 3463 | END DO |
---|
| 3464 | |
---|
| 3465 | END DO |
---|
| 3466 | |
---|
| 3467 | END DO |
---|
| 3468 | |
---|
| 3469 | |
---|
| 3470 | |
---|
| 3471 | END SUBROUTINE anterpolate_to_crse_e |
---|
[2712] | 3472 | #endif |
---|
[2365] | 3473 | END SUBROUTINE vnest_anterpolate_e |
---|
| 3474 | |
---|
| 3475 | SUBROUTINE vnest_init_pegrid_rank |
---|
[2712] | 3476 | #if defined( __parallel ) |
---|
[2365] | 3477 | ! Domain decomposition and exchange of grid variables between coarse and fine |
---|
| 3478 | ! Given processor coordinates as index f_rnk_lst(pcoord(1), pcoord(2)) |
---|
| 3479 | ! returns the rank. A single coarse block will have to send data to multiple |
---|
| 3480 | ! fine blocks. In the coarse grid the pcoords of the remote block is first found and then using |
---|
| 3481 | ! f_rnk_lst the target_idex is identified. |
---|
| 3482 | ! blk_dim stores the index limits of a given block. blk_dim_remote is received |
---|
| 3483 | ! from the asscoiated nest partner. |
---|
| 3484 | ! cf_ratio(1:3) is the ratio between fine and coarse grid: nxc/nxf, nyc/nyf and |
---|
| 3485 | ! ceiling(dxc/dxf) |
---|
| 3486 | |
---|
| 3487 | |
---|
[3241] | 3488 | USE control_parameters, & |
---|
| 3489 | ONLY: coupling_mode |
---|
[2365] | 3490 | |
---|
| 3491 | USE kinds |
---|
| 3492 | |
---|
| 3493 | USE pegrid |
---|
| 3494 | |
---|
| 3495 | |
---|
| 3496 | IMPLICIT NONE |
---|
| 3497 | |
---|
[2712] | 3498 | INTEGER(iwp) :: dest_rnk |
---|
| 3499 | INTEGER(iwp) :: i !< |
---|
[2365] | 3500 | |
---|
| 3501 | IF (myid == 0) THEN |
---|
| 3502 | IF ( coupling_mode == 'vnested_crse') THEN |
---|
| 3503 | CALL MPI_SEND( pdims, 2, MPI_INTEGER, numprocs, 33, comm_inter, & |
---|
| 3504 | ierr ) |
---|
[3241] | 3505 | CALL MPI_RECV( pdims_partner, 2, MPI_INTEGER, numprocs, 66, & |
---|
[2365] | 3506 | comm_inter, status, ierr ) |
---|
| 3507 | ELSEIF ( coupling_mode == 'vnested_fine') THEN |
---|
| 3508 | CALL MPI_RECV( pdims_partner, 2, MPI_INTEGER, 0, 33, & |
---|
| 3509 | comm_inter, status, ierr ) |
---|
| 3510 | CALL MPI_SEND( pdims, 2, MPI_INTEGER, 0, 66, comm_inter, & |
---|
| 3511 | ierr ) |
---|
| 3512 | ENDIF |
---|
| 3513 | ENDIF |
---|
| 3514 | |
---|
| 3515 | |
---|
| 3516 | IF ( coupling_mode == 'vnested_crse') THEN |
---|
| 3517 | CALL MPI_BCAST( pdims_partner, 2, MPI_INTEGER, 0, comm2d, ierr ) |
---|
| 3518 | ALLOCATE( c_rnk_lst( 0:(pdims(1)-1) ,0:(pdims(2)-1) ) ) |
---|
| 3519 | ALLOCATE( f_rnk_lst( 0:(pdims_partner(1)-1) ,0:(pdims_partner(2)-1) ) ) |
---|
| 3520 | do i=0,numprocs-1 |
---|
| 3521 | CALL MPI_CART_COORDS( comm2d, i, ndim, pcoord, ierr ) |
---|
| 3522 | call MPI_Cart_rank(comm2d, pcoord, dest_rnk, ierr) |
---|
| 3523 | c_rnk_lst(pcoord(1),pcoord(2)) = dest_rnk |
---|
| 3524 | end do |
---|
| 3525 | ELSEIF ( coupling_mode == 'vnested_fine') THEN |
---|
| 3526 | CALL MPI_BCAST( pdims_partner, 2, MPI_INTEGER, 0, comm2d, ierr ) |
---|
| 3527 | ALLOCATE( c_rnk_lst( 0:(pdims_partner(1)-1) ,0:(pdims_partner(2)-1) ) ) |
---|
| 3528 | ALLOCATE( f_rnk_lst( 0:(pdims(1)-1) ,0:(pdims(2)-1) ) ) |
---|
| 3529 | |
---|
| 3530 | do i=0,numprocs-1 |
---|
| 3531 | CALL MPI_CART_COORDS( comm2d, i, ndim, pcoord, ierr ) |
---|
| 3532 | call MPI_Cart_rank(comm2d, pcoord, dest_rnk, ierr) |
---|
| 3533 | f_rnk_lst(pcoord(1),pcoord(2)) = dest_rnk |
---|
| 3534 | enddo |
---|
| 3535 | ENDIF |
---|
| 3536 | |
---|
| 3537 | |
---|
| 3538 | IF ( coupling_mode == 'vnested_crse') THEN |
---|
| 3539 | if (myid == 0) then |
---|
| 3540 | CALL MPI_SEND( c_rnk_lst, pdims(1)*pdims(2), MPI_INTEGER, numprocs, 0, comm_inter, ierr ) |
---|
| 3541 | CALL MPI_RECV( f_rnk_lst, pdims_partner(1)*pdims_partner(2), MPI_INTEGER, numprocs, 4, comm_inter,status, ierr ) |
---|
| 3542 | end if |
---|
| 3543 | CALL MPI_BCAST( f_rnk_lst, pdims_partner(1)*pdims_partner(2), MPI_INTEGER, 0, comm2d, ierr ) |
---|
| 3544 | ELSEIF ( coupling_mode == 'vnested_fine') THEN |
---|
| 3545 | if (myid == 0) then |
---|
| 3546 | CALL MPI_RECV( c_rnk_lst, pdims_partner(1)*pdims_partner(2), MPI_INTEGER, 0, 0, comm_inter,status, ierr ) |
---|
| 3547 | CALL MPI_SEND( f_rnk_lst, pdims(1)*pdims(2), MPI_INTEGER, 0, 4, comm_inter, ierr ) |
---|
| 3548 | end if |
---|
| 3549 | CALL MPI_BCAST( c_rnk_lst, pdims_partner(1)*pdims_partner(2), MPI_INTEGER, 0, comm2d, ierr ) |
---|
| 3550 | ENDIF |
---|
| 3551 | |
---|
| 3552 | !-- Reason for MPI error unknown; solved if three lines duplicated |
---|
| 3553 | CALL MPI_CART_COORDS( comm2d, myid, ndim, pcoord, ierr ) |
---|
| 3554 | CALL MPI_CART_SHIFT( comm2d, 0, 1, pleft, pright, ierr ) |
---|
| 3555 | CALL MPI_CART_SHIFT( comm2d, 1, 1, psouth, pnorth, ierr ) |
---|
| 3556 | |
---|
| 3557 | |
---|
[2712] | 3558 | #endif |
---|
[2365] | 3559 | |
---|
| 3560 | END SUBROUTINE vnest_init_pegrid_rank |
---|
| 3561 | |
---|
| 3562 | |
---|
| 3563 | SUBROUTINE vnest_init_pegrid_domain |
---|
[2712] | 3564 | #if defined( __parallel ) |
---|
[2365] | 3565 | |
---|
[3241] | 3566 | USE control_parameters, & |
---|
| 3567 | ONLY: coupling_mode, coupling_topology, dz, & |
---|
[3065] | 3568 | dz_stretch_level_start, message_string |
---|
[2365] | 3569 | |
---|
[3241] | 3570 | USE grid_variables, & |
---|
[2365] | 3571 | ONLY: dx, dy |
---|
| 3572 | |
---|
[3241] | 3573 | USE indices, & |
---|
| 3574 | ONLY: nbgp, nx, ny, nz, nxl, nxr, nys, nyn, nzb, nzt |
---|
[2365] | 3575 | |
---|
| 3576 | USE kinds |
---|
| 3577 | |
---|
| 3578 | USE pegrid |
---|
| 3579 | |
---|
| 3580 | IMPLICIT NONE |
---|
| 3581 | |
---|
[2712] | 3582 | INTEGER(iwp) :: i !< |
---|
| 3583 | INTEGER(iwp) :: j !< |
---|
| 3584 | INTEGER(iwp) :: tempx |
---|
| 3585 | INTEGER(iwp) :: tempy |
---|
| 3586 | INTEGER(iwp) :: TYPE_INT_YZ |
---|
| 3587 | INTEGER(iwp) :: SIZEOFREAL |
---|
| 3588 | INTEGER(iwp) :: MTV_X |
---|
| 3589 | INTEGER(iwp) :: MTV_Y |
---|
| 3590 | INTEGER(iwp) :: MTV_Z |
---|
| 3591 | INTEGER(iwp) :: MTV_RX |
---|
| 3592 | INTEGER(iwp) :: MTV_RY |
---|
| 3593 | INTEGER(iwp) :: MTV_RZ |
---|
[2365] | 3594 | |
---|
| 3595 | ! |
---|
| 3596 | !-- Pass the number of grid points of the coarse model to |
---|
| 3597 | !-- the nested model and vice versa |
---|
| 3598 | IF ( coupling_mode == 'vnested_crse' ) THEN |
---|
| 3599 | |
---|
| 3600 | nxc = nx |
---|
| 3601 | nyc = ny |
---|
| 3602 | nzc = nz |
---|
| 3603 | dxc = dx |
---|
| 3604 | dyc = dy |
---|
[3065] | 3605 | dzc = dz(1) |
---|
[2365] | 3606 | cg_nprocs = numprocs |
---|
| 3607 | |
---|
| 3608 | IF ( myid == 0 ) THEN |
---|
| 3609 | |
---|
[3065] | 3610 | CALL MPI_SEND( nxc, 1, MPI_INTEGER , numprocs, 1, comm_inter, & |
---|
[2365] | 3611 | ierr ) |
---|
[3065] | 3612 | CALL MPI_SEND( nyc, 1, MPI_INTEGER , numprocs, 2, comm_inter, & |
---|
[2365] | 3613 | ierr ) |
---|
[3065] | 3614 | CALL MPI_SEND( nzc, 1, MPI_INTEGER , numprocs, 3, comm_inter, & |
---|
[2365] | 3615 | ierr ) |
---|
[3065] | 3616 | CALL MPI_SEND( dxc, 1, MPI_REAL , numprocs, 4, comm_inter, & |
---|
[2365] | 3617 | ierr ) |
---|
[3065] | 3618 | CALL MPI_SEND( dyc, 1, MPI_REAL , numprocs, 5, comm_inter, & |
---|
[2365] | 3619 | ierr ) |
---|
[3065] | 3620 | CALL MPI_SEND( dzc, 1, MPI_REAL , numprocs, 6, comm_inter, & |
---|
[2365] | 3621 | ierr ) |
---|
[3065] | 3622 | CALL MPI_SEND( pdims, 2, MPI_INTEGER, numprocs, 7, comm_inter, & |
---|
[2365] | 3623 | ierr ) |
---|
| 3624 | CALL MPI_SEND( cg_nprocs, 1, MPI_INTEGER, numprocs, 8, comm_inter, & |
---|
| 3625 | ierr ) |
---|
[3065] | 3626 | CALL MPI_RECV( nxf, 1, MPI_INTEGER, numprocs, 21, comm_inter, & |
---|
[2365] | 3627 | status, ierr ) |
---|
[3065] | 3628 | CALL MPI_RECV( nyf, 1, MPI_INTEGER, numprocs, 22, comm_inter, & |
---|
[2365] | 3629 | status, ierr ) |
---|
[3065] | 3630 | CALL MPI_RECV( nzf, 1, MPI_INTEGER, numprocs, 23, comm_inter, & |
---|
[2365] | 3631 | status, ierr ) |
---|
[3065] | 3632 | CALL MPI_RECV( dxf, 1, MPI_REAL, numprocs, 24, comm_inter, & |
---|
[2365] | 3633 | status, ierr ) |
---|
[3065] | 3634 | CALL MPI_RECV( dyf, 1, MPI_REAL, numprocs, 25, comm_inter, & |
---|
[2365] | 3635 | status, ierr ) |
---|
[3065] | 3636 | CALL MPI_RECV( dzf, 1, MPI_REAL, numprocs, 26, comm_inter, & |
---|
[2365] | 3637 | status, ierr ) |
---|
[3065] | 3638 | CALL MPI_RECV( pdims_partner, 2, MPI_INTEGER, & |
---|
[2365] | 3639 | numprocs, 27, comm_inter, status, ierr ) |
---|
[3065] | 3640 | CALL MPI_RECV( fg_nprocs, 1, MPI_INTEGER, & |
---|
[2365] | 3641 | numprocs, 28, comm_inter, status, ierr ) |
---|
| 3642 | ENDIF |
---|
| 3643 | |
---|
| 3644 | CALL MPI_BCAST( nxf, 1, MPI_INTEGER, 0, comm2d, ierr ) |
---|
| 3645 | CALL MPI_BCAST( nyf, 1, MPI_INTEGER, 0, comm2d, ierr ) |
---|
| 3646 | CALL MPI_BCAST( nzf, 1, MPI_INTEGER, 0, comm2d, ierr ) |
---|
| 3647 | CALL MPI_BCAST( dxf, 1, MPI_REAL, 0, comm2d, ierr ) |
---|
| 3648 | CALL MPI_BCAST( dyf, 1, MPI_REAL, 0, comm2d, ierr ) |
---|
| 3649 | CALL MPI_BCAST( dzf, 1, MPI_REAL, 0, comm2d, ierr ) |
---|
| 3650 | CALL MPI_BCAST( pdims_partner, 2, MPI_INTEGER, 0, comm2d, ierr ) |
---|
| 3651 | CALL MPI_BCAST( fg_nprocs, 1, MPI_INTEGER, 0, comm2d, ierr ) |
---|
[3065] | 3652 | |
---|
| 3653 | ! |
---|
| 3654 | !-- Check if stretching is used within the nested domain. ABS(...) is |
---|
| 3655 | !-- necessary because of the default value of -9999999.9_wp (negative) |
---|
| 3656 | IF ( ABS( dz_stretch_level_start(1) ) <= (nzf+1)*dzf ) THEN |
---|
| 3657 | message_string = 'Stretching in the parent domain is '// & |
---|
| 3658 | 'only allowed above the nested domain' |
---|
[3066] | 3659 | CALL message( 'vnest_init_pegrid_domain', 'PA0497', 1, 2, 0, 6, 0 ) |
---|
[3065] | 3660 | ENDIF |
---|
[2365] | 3661 | |
---|
| 3662 | ELSEIF ( coupling_mode == 'vnested_fine' ) THEN |
---|
| 3663 | |
---|
| 3664 | nxf = nx |
---|
| 3665 | nyf = ny |
---|
| 3666 | nzf = nz |
---|
| 3667 | dxf = dx |
---|
| 3668 | dyf = dy |
---|
[3065] | 3669 | dzf = dz(1) |
---|
[2365] | 3670 | fg_nprocs = numprocs |
---|
| 3671 | |
---|
| 3672 | IF ( myid == 0 ) THEN |
---|
| 3673 | |
---|
| 3674 | CALL MPI_RECV( nxc, 1, MPI_INTEGER, 0, 1, comm_inter, status, & |
---|
| 3675 | ierr ) |
---|
| 3676 | CALL MPI_RECV( nyc, 1, MPI_INTEGER, 0, 2, comm_inter, status, & |
---|
| 3677 | ierr ) |
---|
| 3678 | CALL MPI_RECV( nzc, 1, MPI_INTEGER, 0, 3, comm_inter, status, & |
---|
| 3679 | ierr ) |
---|
| 3680 | CALL MPI_RECV( dxc, 1, MPI_REAL, 0, 4, comm_inter, status, & |
---|
| 3681 | ierr ) |
---|
| 3682 | CALL MPI_RECV( dyc, 1, MPI_REAL, 0, 5, comm_inter, status, & |
---|
| 3683 | ierr ) |
---|
| 3684 | CALL MPI_RECV( dzc, 1, MPI_REAL, 0, 6, comm_inter, status, & |
---|
| 3685 | ierr ) |
---|
| 3686 | CALL MPI_RECV( pdims_partner, 2, MPI_INTEGER, 0, 7, comm_inter, & |
---|
| 3687 | status, ierr ) |
---|
| 3688 | CALL MPI_RECV( cg_nprocs, 1, MPI_INTEGER, 0, 8, comm_inter, & |
---|
| 3689 | status, ierr ) |
---|
| 3690 | CALL MPI_SEND( nxf, 1, MPI_INTEGER, 0, 21, comm_inter, ierr ) |
---|
| 3691 | CALL MPI_SEND( nyf, 1, MPI_INTEGER, 0, 22, comm_inter, ierr ) |
---|
| 3692 | CALL MPI_SEND( nzf, 1, MPI_INTEGER, 0, 23, comm_inter, ierr ) |
---|
| 3693 | CALL MPI_SEND( dxf, 1, MPI_REAL, 0, 24, comm_inter, ierr ) |
---|
| 3694 | CALL MPI_SEND( dyf, 1, MPI_REAL, 0, 25, comm_inter, ierr ) |
---|
| 3695 | CALL MPI_SEND( dzf, 1, MPI_REAL, 0, 26, comm_inter, ierr ) |
---|
| 3696 | CALL MPI_SEND( pdims,2,MPI_INTEGER, 0, 27, comm_inter, ierr ) |
---|
| 3697 | CALL MPI_SEND( fg_nprocs,1,MPI_INTEGER, 0, 28, comm_inter, ierr ) |
---|
| 3698 | ENDIF |
---|
| 3699 | |
---|
| 3700 | CALL MPI_BCAST( nxc, 1, MPI_INTEGER, 0, comm2d, ierr) |
---|
| 3701 | CALL MPI_BCAST( nyc, 1, MPI_INTEGER, 0, comm2d, ierr) |
---|
| 3702 | CALL MPI_BCAST( nzc, 1, MPI_INTEGER, 0, comm2d, ierr) |
---|
| 3703 | CALL MPI_BCAST( dxc, 1, MPI_REAL, 0, comm2d, ierr) |
---|
| 3704 | CALL MPI_BCAST( dyc, 1, MPI_REAL, 0, comm2d, ierr) |
---|
| 3705 | CALL MPI_BCAST( dzc, 1, MPI_REAL, 0, comm2d, ierr) |
---|
| 3706 | CALL MPI_BCAST( pdims_partner, 2, MPI_INTEGER, 0, comm2d, ierr) |
---|
| 3707 | CALL MPI_BCAST( cg_nprocs, 1, MPI_INTEGER, 0, comm2d, ierr) |
---|
| 3708 | |
---|
| 3709 | ENDIF |
---|
[3065] | 3710 | |
---|
[2365] | 3711 | ngp_c = ( nxc+1 + 2 * nbgp ) * ( nyc+1 + 2 * nbgp ) |
---|
| 3712 | ngp_f = ( nxf+1 + 2 * nbgp ) * ( nyf+1 + 2 * nbgp ) |
---|
| 3713 | |
---|
| 3714 | IF ( coupling_mode(1:8) == 'vnested_') coupling_topology = 1 |
---|
| 3715 | |
---|
| 3716 | |
---|
| 3717 | !-- Nesting Ratio: For each coarse grid cell how many fine grid cells exist |
---|
| 3718 | cfratio(1) = INT ( (nxf+1) / (nxc+1) ) |
---|
| 3719 | cfratio(2) = INT ( (nyf+1) / (nyc+1) ) |
---|
| 3720 | cfratio(3) = CEILING ( dzc / dzf ) |
---|
| 3721 | |
---|
| 3722 | !-- target_id is used only for exhange of information like simulated_time |
---|
| 3723 | !-- which are then MPI_BCAST to other processors in the group |
---|
| 3724 | IF ( myid == 0 ) THEN |
---|
| 3725 | |
---|
| 3726 | IF ( TRIM( coupling_mode ) == 'vnested_crse' ) THEN |
---|
| 3727 | target_id = numprocs |
---|
| 3728 | ELSE IF ( TRIM( coupling_mode ) == 'vnested_fine' ) THEN |
---|
| 3729 | target_id = 0 |
---|
| 3730 | ENDIF |
---|
| 3731 | |
---|
| 3732 | ENDIF |
---|
| 3733 | |
---|
| 3734 | !-- Store partner grid dimenstions and create MPI derived types |
---|
| 3735 | |
---|
| 3736 | IF ( coupling_mode == 'vnested_crse' ) THEN |
---|
| 3737 | |
---|
| 3738 | offset(1) = ( pdims_partner(1) / pdims(1) ) * pcoord(1) |
---|
| 3739 | offset(2) = ( pdims_partner(2) / pdims(2) ) * pcoord(2) |
---|
| 3740 | |
---|
[2514] | 3741 | tempx = ( pdims_partner(1) / pdims(1) ) - 1 |
---|
| 3742 | tempy = ( pdims_partner(2) / pdims(2) ) - 1 |
---|
[2365] | 3743 | ALLOCATE( c2f_dims_cg (0:5,offset(1):tempx+offset(1),offset(2):tempy+offset(2) ) ) |
---|
| 3744 | ALLOCATE( f2c_dims_cg (0:5,offset(1):tempx+offset(1),offset(2):tempy+offset(2) ) ) |
---|
| 3745 | |
---|
| 3746 | do j = 0, ( pdims_partner(2) / pdims(2) ) - 1 |
---|
| 3747 | do i = 0, ( pdims_partner(1) / pdims(1) ) - 1 |
---|
| 3748 | map_coord(1) = i+offset(1) |
---|
| 3749 | map_coord(2) = j+offset(2) |
---|
| 3750 | |
---|
| 3751 | target_idex = f_rnk_lst(map_coord(1),map_coord(2)) + numprocs |
---|
| 3752 | |
---|
| 3753 | CALL MPI_RECV( bdims_rem, 6, MPI_INTEGER, target_idex, 10, & |
---|
| 3754 | comm_inter,status, ierr ) |
---|
| 3755 | |
---|
| 3756 | !-- Store the CG dimensions that correspond to the FG partner; needed for FG top BC |
---|
| 3757 | !-- One CG can have multiple FG partners. The 3D array is mapped by partner proc co-ord |
---|
| 3758 | c2f_dims_cg (0,map_coord(1),map_coord(2)) = bdims_rem (1,1) / cfratio(1) |
---|
| 3759 | c2f_dims_cg (1,map_coord(1),map_coord(2)) = bdims_rem (1,2) / cfratio(1) |
---|
| 3760 | c2f_dims_cg (2,map_coord(1),map_coord(2)) = bdims_rem (2,1) / cfratio(2) |
---|
| 3761 | c2f_dims_cg (3,map_coord(1),map_coord(2)) = bdims_rem (2,2) / cfratio(2) |
---|
| 3762 | c2f_dims_cg (4,map_coord(1),map_coord(2)) = bdims_rem (3,2) / cfratio(3) |
---|
| 3763 | c2f_dims_cg (5,map_coord(1),map_coord(2)) =(bdims_rem (3,2) / cfratio(3)) + 2 |
---|
| 3764 | |
---|
| 3765 | !-- Store the CG dimensions that correspond to the FG partner; needed for anterpolation |
---|
| 3766 | f2c_dims_cg (0,map_coord(1),map_coord(2)) = bdims_rem (1,1) / cfratio(1) |
---|
| 3767 | f2c_dims_cg (1,map_coord(1),map_coord(2)) = bdims_rem (1,2) / cfratio(1) |
---|
| 3768 | f2c_dims_cg (2,map_coord(1),map_coord(2)) = bdims_rem (2,1) / cfratio(2) |
---|
| 3769 | f2c_dims_cg (3,map_coord(1),map_coord(2)) = bdims_rem (2,2) / cfratio(2) |
---|
| 3770 | f2c_dims_cg (4,map_coord(1),map_coord(2)) = bdims_rem (3,1) |
---|
| 3771 | f2c_dims_cg (5,map_coord(1),map_coord(2)) =(bdims_rem (3,2)-cfratio(3))/ cfratio(3) |
---|
| 3772 | |
---|
| 3773 | CALL MPI_SEND( c2f_dims_cg (:,map_coord(1),map_coord(2)), 6, & |
---|
[2514] | 3774 | MPI_INTEGER, target_idex, 100, comm_inter, ierr ) |
---|
[2365] | 3775 | |
---|
| 3776 | CALL MPI_SEND( f2c_dims_cg (:,map_coord(1),map_coord(2)), 6, & |
---|
[2514] | 3777 | MPI_INTEGER, target_idex, 101, comm_inter, ierr ) |
---|
[2365] | 3778 | |
---|
| 3779 | end do |
---|
| 3780 | end do |
---|
| 3781 | |
---|
| 3782 | !-- A derived data type to pack 3 Z-levels of CG to set FG top BC |
---|
| 3783 | MTV_X = ( nxr - nxl + 1 ) + 2*nbgp |
---|
| 3784 | MTV_Y = ( nyn - nys + 1 ) + 2*nbgp |
---|
| 3785 | MTV_Z = nzt+1 - nzb +1 |
---|
| 3786 | |
---|
| 3787 | MTV_RX = ( c2f_dims_cg (1,offset(1),offset(2)) - c2f_dims_cg (0,offset(1),offset(2)) ) +1+2 |
---|
| 3788 | MTV_RY = ( c2f_dims_cg (3,offset(1),offset(2)) - c2f_dims_cg (2,offset(1),offset(2)) ) +1+2 |
---|
| 3789 | MTV_RZ = ( c2f_dims_cg (5,offset(1),offset(2)) - c2f_dims_cg (4,offset(1),offset(2)) ) +1 |
---|
| 3790 | |
---|
| 3791 | CALL MPI_TYPE_EXTENT(MPI_REAL, SIZEOFREAL, IERR) |
---|
| 3792 | |
---|
| 3793 | CALL MPI_TYPE_VECTOR ( MTV_RY, MTV_RZ, MTV_Z, MPI_REAL, TYPE_INT_YZ, IERR) |
---|
| 3794 | CALL MPI_TYPE_HVECTOR( MTV_RX, 1, MTV_Z*MTV_Y*SIZEOFREAL, & |
---|
[2514] | 3795 | TYPE_INT_YZ, TYPE_VNEST_BC, IERR) |
---|
[2365] | 3796 | CALL MPI_TYPE_FREE(TYPE_INT_YZ, IERR) |
---|
[2514] | 3797 | CALL MPI_TYPE_COMMIT(TYPE_VNEST_BC, IERR) |
---|
[2365] | 3798 | |
---|
| 3799 | |
---|
| 3800 | ELSEIF ( coupling_mode == 'vnested_fine' ) THEN |
---|
| 3801 | |
---|
| 3802 | ALLOCATE( c2f_dims_fg (0:5) ) |
---|
| 3803 | ALLOCATE( f2c_dims_fg (0:5) ) |
---|
| 3804 | |
---|
| 3805 | offset(1) = pcoord(1) / ( pdims(1)/pdims_partner(1) ) |
---|
| 3806 | offset(2) = pcoord(2) / ( pdims(2)/pdims_partner(2) ) |
---|
| 3807 | map_coord(1) = offset(1) |
---|
| 3808 | map_coord(2) = offset(2) |
---|
| 3809 | target_idex = c_rnk_lst(map_coord(1),map_coord(2)) |
---|
| 3810 | |
---|
| 3811 | bdims (1,1) = nxl |
---|
| 3812 | bdims (1,2) = nxr |
---|
| 3813 | bdims (2,1) = nys |
---|
| 3814 | bdims (2,2) = nyn |
---|
| 3815 | bdims (3,1) = nzb |
---|
| 3816 | bdims (3,2) = nzt |
---|
| 3817 | |
---|
| 3818 | CALL MPI_SEND( bdims, 6, MPI_INTEGER, target_idex, 10, & |
---|
| 3819 | comm_inter, ierr ) |
---|
| 3820 | |
---|
| 3821 | !-- Store the CG dimensions that correspond to the FG partner; needed for FG top BC |
---|
| 3822 | !-- One FG can have only one CG partner |
---|
| 3823 | CALL MPI_RECV( c2f_dims_fg, 6, MPI_INTEGER, target_idex, 100, & |
---|
| 3824 | comm_inter,status, ierr ) |
---|
| 3825 | |
---|
| 3826 | CALL MPI_RECV( f2c_dims_fg, 6, MPI_INTEGER, target_idex, 101, & |
---|
| 3827 | comm_inter,status, ierr ) |
---|
| 3828 | |
---|
| 3829 | !-- Store the CG dimensions that correspond to the FG partner; needed for anterpolation |
---|
| 3830 | |
---|
| 3831 | n_cell_c = (f2c_dims_fg(1)-f2c_dims_fg(0)+1) * & |
---|
| 3832 | (f2c_dims_fg(3)-f2c_dims_fg(2)+1) * & |
---|
| 3833 | (f2c_dims_fg(5)-f2c_dims_fg(4)+0) |
---|
| 3834 | |
---|
| 3835 | CALL MPI_TYPE_CONTIGUOUS(n_cell_c, MPI_REAL, TYPE_VNEST_ANTER, IERR) |
---|
| 3836 | CALL MPI_TYPE_COMMIT(TYPE_VNEST_ANTER, ierr) |
---|
| 3837 | |
---|
| 3838 | ENDIF |
---|
[2712] | 3839 | #endif |
---|
[2365] | 3840 | END SUBROUTINE vnest_init_pegrid_domain |
---|
| 3841 | |
---|
| 3842 | |
---|
| 3843 | SUBROUTINE vnest_init_grid |
---|
| 3844 | |
---|
[2712] | 3845 | #if defined( __parallel ) |
---|
[3065] | 3846 | USE arrays_3d, & |
---|
[2365] | 3847 | ONLY: zu, zw |
---|
| 3848 | |
---|
[3065] | 3849 | USE control_parameters, & |
---|
| 3850 | ONLY: coupling_mode, message_string, number_stretch_level_start |
---|
[2365] | 3851 | |
---|
[3065] | 3852 | USE indices, & |
---|
[2365] | 3853 | ONLY: nzt |
---|
| 3854 | |
---|
| 3855 | USE kinds |
---|
| 3856 | |
---|
| 3857 | USE pegrid |
---|
| 3858 | |
---|
[2514] | 3859 | IMPLICIT NONE |
---|
[2365] | 3860 | |
---|
[3065] | 3861 | ! |
---|
| 3862 | !-- Allocate and Exchange zuc and zuf, zwc and zwf |
---|
[2365] | 3863 | IF ( coupling_mode(1:8) == 'vnested_' ) THEN |
---|
| 3864 | |
---|
| 3865 | ALLOCATE( zuc(0:nzc+1), zuf(0:nzf+1) ) |
---|
| 3866 | ALLOCATE( zwc(0:nzc+1), zwf(0:nzf+1) ) |
---|
| 3867 | |
---|
| 3868 | IF ( coupling_mode == 'vnested_crse' ) THEN |
---|
[3065] | 3869 | |
---|
| 3870 | zuc = zu |
---|
| 3871 | zwc = zw |
---|
| 3872 | |
---|
[2365] | 3873 | IF ( myid == 0 ) THEN |
---|
| 3874 | |
---|
| 3875 | CALL MPI_SEND( zuc, nzt+2, MPI_REAL, numprocs, 41, comm_inter, & |
---|
| 3876 | ierr ) |
---|
| 3877 | CALL MPI_RECV( zuf, nzf+2, MPI_REAL, numprocs, 42, comm_inter, & |
---|
| 3878 | status, ierr ) |
---|
| 3879 | |
---|
| 3880 | CALL MPI_SEND( zwc, nzt+2, MPI_REAL, numprocs, 43, comm_inter, & |
---|
| 3881 | ierr ) |
---|
| 3882 | CALL MPI_RECV( zwf, nzf+2, MPI_REAL, numprocs, 44, comm_inter, & |
---|
| 3883 | status, ierr ) |
---|
| 3884 | |
---|
| 3885 | ENDIF |
---|
| 3886 | |
---|
| 3887 | CALL MPI_BCAST( zuf,nzf+2,MPI_REAL, 0, comm2d, ierr ) |
---|
| 3888 | CALL MPI_BCAST( zwf,nzf+2,MPI_REAL, 0, comm2d, ierr ) |
---|
| 3889 | |
---|
| 3890 | ELSEIF ( coupling_mode == 'vnested_fine' ) THEN |
---|
| 3891 | |
---|
[3065] | 3892 | ! |
---|
| 3893 | !-- Check if stretching is used within the nested domain |
---|
| 3894 | IF ( number_stretch_level_start > 0 ) THEN |
---|
| 3895 | message_string = 'Stretching in the nested domain is not '//& |
---|
| 3896 | 'allowed' |
---|
[3066] | 3897 | CALL message( 'vnest_init_grid', 'PA0498', 1, 2, 0, 6, 0 ) |
---|
[3065] | 3898 | ENDIF |
---|
| 3899 | |
---|
| 3900 | zuf = zu |
---|
| 3901 | zwf = zw |
---|
| 3902 | |
---|
[2365] | 3903 | IF ( myid == 0 ) THEN |
---|
| 3904 | |
---|
| 3905 | CALL MPI_RECV( zuc,nzc+2, MPI_REAL, 0, 41, comm_inter, status, & |
---|
| 3906 | ierr ) |
---|
| 3907 | CALL MPI_SEND( zuf,nzt+2, MPI_REAL, 0, 42, comm_inter, ierr ) |
---|
| 3908 | |
---|
| 3909 | CALL MPI_RECV( zwc,nzc+2, MPI_REAL, 0, 43, comm_inter, status, & |
---|
| 3910 | ierr ) |
---|
| 3911 | CALL MPI_SEND( zwf,nzt+2, MPI_REAL, 0, 44, comm_inter, ierr ) |
---|
| 3912 | ENDIF |
---|
| 3913 | |
---|
| 3914 | CALL MPI_BCAST( zuc,nzc+2,MPI_REAL, 0, comm2d, ierr ) |
---|
| 3915 | CALL MPI_BCAST( zwc,nzc+2,MPI_REAL, 0, comm2d, ierr ) |
---|
| 3916 | |
---|
| 3917 | ENDIF |
---|
| 3918 | ENDIF |
---|
| 3919 | |
---|
[2712] | 3920 | #endif |
---|
[2365] | 3921 | END SUBROUTINE vnest_init_grid |
---|
| 3922 | |
---|
| 3923 | |
---|
| 3924 | SUBROUTINE vnest_check_parameters |
---|
[2712] | 3925 | #if defined( __parallel ) |
---|
[2365] | 3926 | |
---|
[2712] | 3927 | USE pegrid, & |
---|
| 3928 | ONLY: myid |
---|
[2365] | 3929 | |
---|
[2514] | 3930 | IMPLICIT NONE |
---|
[2365] | 3931 | |
---|
[2514] | 3932 | IF (myid==0) PRINT*, '*** vnest: check parameters not implemented yet ***' |
---|
[2365] | 3933 | |
---|
[2712] | 3934 | #endif |
---|
[2365] | 3935 | END SUBROUTINE vnest_check_parameters |
---|
| 3936 | |
---|
| 3937 | |
---|
| 3938 | SUBROUTINE vnest_timestep_sync |
---|
| 3939 | |
---|
[2712] | 3940 | #if defined( __parallel ) |
---|
[2365] | 3941 | USE control_parameters, & |
---|
[2712] | 3942 | ONLY: coupling_mode, dt_3d, old_dt |
---|
[2365] | 3943 | |
---|
| 3944 | USE interfaces |
---|
| 3945 | |
---|
| 3946 | USE kinds |
---|
| 3947 | |
---|
| 3948 | USE pegrid |
---|
| 3949 | |
---|
| 3950 | IMPLICIT NONE |
---|
| 3951 | |
---|
| 3952 | IF ( coupling_mode == 'vnested_crse') THEN |
---|
[2514] | 3953 | dtc = dt_3d |
---|
| 3954 | if (myid == 0) then |
---|
[2365] | 3955 | CALL MPI_SEND( dt_3d, 1, MPI_REAL, target_id, & |
---|
| 3956 | 31, comm_inter, ierr ) |
---|
| 3957 | CALL MPI_RECV( dtf, 1, MPI_REAL, & |
---|
| 3958 | target_id, 32, comm_inter, status, ierr ) |
---|
| 3959 | |
---|
[2514] | 3960 | endif |
---|
| 3961 | CALL MPI_BCAST( dtf, 1, MPI_REAL, 0, comm2d, ierr ) |
---|
[2365] | 3962 | ELSE |
---|
[2514] | 3963 | dtf = dt_3d |
---|
| 3964 | if (myid == 0) then |
---|
[2365] | 3965 | CALL MPI_RECV( dtc, 1, MPI_REAL, & |
---|
| 3966 | target_id, 31, comm_inter, status, ierr ) |
---|
| 3967 | CALL MPI_SEND( dt_3d, 1, MPI_REAL, target_id, & |
---|
| 3968 | 32, comm_inter, ierr ) |
---|
| 3969 | |
---|
[2514] | 3970 | endif |
---|
| 3971 | CALL MPI_BCAST( dtc, 1, MPI_REAL, 0, comm2d, ierr ) |
---|
[2365] | 3972 | |
---|
| 3973 | ENDIF |
---|
| 3974 | !-- Identical timestep for coarse and fine grids |
---|
| 3975 | dt_3d = MIN( dtc, dtf ) |
---|
[3083] | 3976 | !> @fixme setting old_dt might be obsolete at this point |
---|
| 3977 | !> Due to changes in timestep routine, setting of old_dt might be |
---|
| 3978 | !> not necessary any more at this point. However, could not be |
---|
| 3979 | !> tested so far. |
---|
| 3980 | !> 2018-05-18, gronemeier |
---|
[2712] | 3981 | old_dt = dt_3d |
---|
| 3982 | #endif |
---|
[2365] | 3983 | END SUBROUTINE vnest_timestep_sync |
---|
| 3984 | |
---|
| 3985 | SUBROUTINE vnest_deallocate |
---|
[2712] | 3986 | #if defined( __parallel ) |
---|
[2365] | 3987 | USE control_parameters, & |
---|
| 3988 | ONLY: coupling_mode |
---|
| 3989 | |
---|
| 3990 | IMPLICIT NONE |
---|
| 3991 | |
---|
| 3992 | IF ( ALLOCATED(c_rnk_lst) ) DEALLOCATE (c_rnk_lst) |
---|
| 3993 | IF ( ALLOCATED(f_rnk_lst) ) DEALLOCATE (f_rnk_lst) |
---|
| 3994 | |
---|
| 3995 | IF ( coupling_mode == 'vnested_crse') THEN |
---|
| 3996 | IF ( ALLOCATED (c2f_dims_cg) ) DEALLOCATE (c2f_dims_cg) |
---|
| 3997 | IF ( ALLOCATED (f2c_dims_cg) ) DEALLOCATE (f2c_dims_cg) |
---|
| 3998 | ELSEIF( coupling_mode == 'vnested_fine' ) THEN |
---|
| 3999 | IF ( ALLOCATED (c2f_dims_fg) ) DEALLOCATE (c2f_dims_fg) |
---|
| 4000 | IF ( ALLOCATED (f2c_dims_fg) ) DEALLOCATE (f2c_dims_fg) |
---|
| 4001 | ENDIF |
---|
[2712] | 4002 | #endif |
---|
[2365] | 4003 | END SUBROUTINE vnest_deallocate |
---|
| 4004 | |
---|
[3467] | 4005 | END MODULE vertical_nesting_mod |
---|