[2365] | 1 | !> @file vertical_nesting_mod.f90 |
---|
| 2 | !------------------------------------------------------------------------------! |
---|
| 3 | ! This file is part of PALM. |
---|
| 4 | ! |
---|
| 5 | ! PALM is free software: you can redistribute it and/or modify it under the |
---|
| 6 | ! terms of the GNU General Public License as published by the Free Software |
---|
| 7 | ! Foundation, either version 3 of the License, or (at your option) any later |
---|
| 8 | ! version. |
---|
| 9 | ! |
---|
| 10 | ! PALM is distributed in the hope that it will be useful, but WITHOUT ANY |
---|
| 11 | ! WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR |
---|
| 12 | ! A PARTICULAR PURPOSE. See the GNU General Public License for more details. |
---|
| 13 | ! |
---|
| 14 | ! You should have received a copy of the GNU General Public License along with |
---|
| 15 | ! PALM. If not, see <http://www.gnu.org/licenses/>. |
---|
| 16 | ! |
---|
| 17 | ! Copyright 1997-2017 Leibniz Universitaet Hannover |
---|
| 18 | !------------------------------------------------------------------------------! |
---|
| 19 | ! |
---|
| 20 | ! Current revisions: |
---|
| 21 | ! ----------------- |
---|
| 22 | ! |
---|
[2516] | 23 | ! |
---|
[2365] | 24 | ! Former revisions: |
---|
| 25 | ! ----------------- |
---|
| 26 | ! $Id: vertical_nesting_mod.f90 2516 2017-10-04 11:03:04Z schwenkel $ |
---|
[2516] | 27 | ! Remove tabs |
---|
| 28 | ! |
---|
| 29 | ! 2514 2017-10-04 09:52:37Z suehring |
---|
[2374] | 30 | ! Added todo list |
---|
| 31 | ! |
---|
| 32 | ! 2365 2017-08-21 14:59:59Z kanani |
---|
[2365] | 33 | ! Initial revision (SadiqHuq) |
---|
| 34 | ! |
---|
| 35 | ! |
---|
| 36 | ! |
---|
| 37 | ! |
---|
| 38 | ! Description: |
---|
| 39 | ! ------------ |
---|
[2374] | 40 | !> Module for vertical nesting. |
---|
| 41 | !> |
---|
| 42 | !> Definition of parameters and variables for vertical nesting |
---|
| 43 | !> |
---|
| 44 | !> @todo Ensure that code can be compiled for serial and parallel mode. Please |
---|
| 45 | !> check the placement of the directive "__parallel". |
---|
| 46 | !> @todo Add descriptions for all declared variables/parameters, one declaration |
---|
| 47 | !> statement per variable |
---|
| 48 | !> @todo Add a descriptive header above each subroutine (see land_surface_model) |
---|
| 49 | !> @todo FORTRAN language statements must not be used as names for variables |
---|
| 50 | !> (e.g. if). Please rename it. |
---|
| 51 | !> @todo Revise code according to PALM Coding Standard |
---|
[2365] | 52 | !------------------------------------------------------------------------------! |
---|
| 53 | MODULE vertical_nesting_mod |
---|
| 54 | |
---|
| 55 | USE kinds |
---|
| 56 | |
---|
| 57 | IMPLICIT NONE |
---|
| 58 | |
---|
[2374] | 59 | INTEGER(iwp),DIMENSION(3,2) :: bdims = 0 |
---|
| 60 | INTEGER(iwp),DIMENSION(3,2) :: bdims_rem = 0 !> Add description. It should not be longer than up to this point | |
---|
| 61 | !> If really necessary, a second line can be added like this. |
---|
[2365] | 62 | INTEGER(iwp) :: cg_nprocs, fg_nprocs |
---|
| 63 | INTEGER(iwp),DIMENSION(:,:,:),ALLOCATABLE:: c2f_dims_cg, f2c_dims_cg |
---|
| 64 | INTEGER(iwp),DIMENSION(:),ALLOCATABLE :: c2f_dims_fg, f2c_dims_fg |
---|
| 65 | INTEGER(iwp) :: TYPE_VNEST_BC, TYPE_VNEST_ANTER |
---|
| 66 | |
---|
| 67 | INTEGER(iwp),DIMENSION(:,:),ALLOCATABLE :: f_rnk_lst, c_rnk_lst |
---|
| 68 | INTEGER(iwp),DIMENSION(3) :: cfratio |
---|
| 69 | |
---|
| 70 | INTEGER(iwp) :: nxc, nxf, nyc, nyf, nzc, nzf |
---|
| 71 | INTEGER(iwp) :: ngp_c, ngp_f |
---|
| 72 | |
---|
| 73 | INTEGER(iwp) :: target_idex, n_cell_c, n_cell_f |
---|
| 74 | INTEGER(iwp),DIMENSION(2) :: pdims_partner |
---|
| 75 | INTEGER(iwp),DIMENSION(2) :: offset,map_coord |
---|
| 76 | |
---|
| 77 | REAL(wp) :: dxc, dyc, dxf, dyf, dzc, dzf,dtc,dtf |
---|
| 78 | |
---|
| 79 | REAL(wp),DIMENSION(:,:,:), ALLOCATABLE :: work3d |
---|
| 80 | REAL(wp),DIMENSION(:,:), ALLOCATABLE :: work2dshf |
---|
| 81 | REAL(wp),DIMENSION(:,:), ALLOCATABLE :: work2dusws |
---|
| 82 | REAL(wp),DIMENSION(:,:), ALLOCATABLE :: work2dvsws |
---|
| 83 | REAL(wp),DIMENSION(:,:), ALLOCATABLE :: work2dts |
---|
| 84 | REAL(wp),DIMENSION(:,:), ALLOCATABLE :: work2dus |
---|
| 85 | REAL(wp),DIMENSION(:,:), ALLOCATABLE :: work2dz0 |
---|
| 86 | |
---|
| 87 | |
---|
| 88 | REAL(wp), DIMENSION(:), ALLOCATABLE :: zuc, zuf, zwc, zwf |
---|
| 89 | REAL(wp), DIMENSION(:,:,:), POINTER :: interpol3d,anterpol3d |
---|
| 90 | ! REAL(wp), DIMENSION(:,:,:), ALLOCATABLE, TARGET :: interpol3d |
---|
| 91 | |
---|
| 92 | LOGICAL :: vnest_init = .FALSE., vnested = .FALSE., & |
---|
[2514] | 93 | vnest_twi = .FALSE., vnest_couple_rk3 = .FALSE. |
---|
[2365] | 94 | |
---|
| 95 | ! PARIN |
---|
| 96 | REAL(wp) :: vnest_start_time = 9999999.9 |
---|
| 97 | |
---|
| 98 | SAVE |
---|
| 99 | |
---|
| 100 | !-- Public functions |
---|
| 101 | PUBLIC vnest_init_fine, vnest_boundary_conds, vnest_anterpolate, & |
---|
[2514] | 102 | vnest_boundary_conds_khkm, vnest_anterpolate_e, & |
---|
| 103 | vnest_init_pegrid_rank, vnest_init_pegrid_domain, vnest_init_grid, & |
---|
| 104 | vnest_timestep_sync, vnest_deallocate |
---|
[2365] | 105 | |
---|
| 106 | !-- Public constants and variables |
---|
| 107 | PUBLIC vnested, vnest_init, vnest_twi, vnest_couple_rk3, & |
---|
| 108 | vnest_start_time |
---|
| 109 | |
---|
| 110 | PRIVATE bdims, bdims_rem, & |
---|
| 111 | work3d, work2dshf, work2dusws, work2dvsws, & |
---|
| 112 | work2dts, work2dus, work2dz0, & |
---|
| 113 | dxc, dyc, dxf, dyf, dzc, dzf, dtc, dtf, & |
---|
| 114 | zuc, zuf, zwc, zwf, interpol3d, anterpol3d, & |
---|
| 115 | cg_nprocs, fg_nprocs, & |
---|
| 116 | c2f_dims_cg, c2f_dims_fg, f2c_dims_cg, f2c_dims_fg, & |
---|
| 117 | f_rnk_lst, c_rnk_lst, cfratio, pdims_partner, & |
---|
| 118 | nxc, nxf, nyc, nyf, nzc, nzf, & |
---|
| 119 | ngp_c, ngp_f, target_idex, n_cell_c, n_cell_f, & |
---|
[2514] | 120 | offset, map_coord, TYPE_VNEST_BC, TYPE_VNEST_ANTER |
---|
[2365] | 121 | |
---|
| 122 | INTERFACE vnest_anterpolate |
---|
| 123 | MODULE PROCEDURE vnest_anterpolate |
---|
| 124 | END INTERFACE vnest_anterpolate |
---|
| 125 | |
---|
| 126 | INTERFACE vnest_anterpolate_e |
---|
| 127 | MODULE PROCEDURE vnest_anterpolate_e |
---|
| 128 | END INTERFACE vnest_anterpolate_e |
---|
| 129 | |
---|
| 130 | INTERFACE vnest_boundary_conds |
---|
| 131 | MODULE PROCEDURE vnest_boundary_conds |
---|
| 132 | END INTERFACE vnest_boundary_conds |
---|
| 133 | |
---|
| 134 | INTERFACE vnest_boundary_conds_khkm |
---|
| 135 | MODULE PROCEDURE vnest_boundary_conds_khkm |
---|
| 136 | END INTERFACE vnest_boundary_conds_khkm |
---|
| 137 | |
---|
| 138 | INTERFACE vnest_check_parameters |
---|
| 139 | MODULE PROCEDURE vnest_check_parameters |
---|
| 140 | END INTERFACE vnest_check_parameters |
---|
| 141 | |
---|
| 142 | INTERFACE vnest_deallocate |
---|
| 143 | MODULE PROCEDURE vnest_deallocate |
---|
| 144 | END INTERFACE vnest_deallocate |
---|
| 145 | |
---|
| 146 | INTERFACE vnest_init_fine |
---|
| 147 | MODULE PROCEDURE vnest_init_fine |
---|
| 148 | END INTERFACE vnest_init_fine |
---|
| 149 | |
---|
| 150 | INTERFACE vnest_init_grid |
---|
| 151 | MODULE PROCEDURE vnest_init_grid |
---|
| 152 | END INTERFACE vnest_init_grid |
---|
| 153 | |
---|
| 154 | INTERFACE vnest_init_pegrid_domain |
---|
| 155 | MODULE PROCEDURE vnest_init_pegrid_domain |
---|
| 156 | END INTERFACE vnest_init_pegrid_domain |
---|
| 157 | |
---|
| 158 | INTERFACE vnest_init_pegrid_rank |
---|
| 159 | MODULE PROCEDURE vnest_init_pegrid_rank |
---|
| 160 | END INTERFACE vnest_init_pegrid_rank |
---|
| 161 | |
---|
| 162 | INTERFACE vnest_timestep_sync |
---|
| 163 | MODULE PROCEDURE vnest_timestep_sync |
---|
| 164 | END INTERFACE vnest_timestep_sync |
---|
| 165 | |
---|
| 166 | CONTAINS |
---|
| 167 | |
---|
| 168 | |
---|
| 169 | |
---|
| 170 | SUBROUTINE vnest_init_fine |
---|
| 171 | |
---|
| 172 | !--------------------------------------------------------------------------------! |
---|
| 173 | ! Description: |
---|
| 174 | ! ------------ |
---|
| 175 | ! At the specified vnest_start_time initialize the Fine Grid based on the coarse |
---|
| 176 | ! grid values |
---|
| 177 | !------------------------------------------------------------------------------! |
---|
| 178 | |
---|
| 179 | |
---|
| 180 | USE arrays_3d |
---|
| 181 | USE control_parameters |
---|
| 182 | USE grid_variables |
---|
| 183 | USE indices |
---|
| 184 | USE interfaces |
---|
| 185 | USE pegrid |
---|
| 186 | USE surface_mod, & |
---|
| 187 | ONLY : surf_def_h, surf_def_v |
---|
| 188 | |
---|
| 189 | |
---|
| 190 | IMPLICIT NONE |
---|
| 191 | |
---|
| 192 | REAL(wp) :: time_since_reference_point_rem |
---|
| 193 | |
---|
| 194 | INTEGER(iwp) :: i, j, k,im,jn,ko |
---|
| 195 | INTEGER(iwp) :: if, jf, kf |
---|
| 196 | |
---|
| 197 | #if defined( __parallel ) |
---|
| 198 | |
---|
| 199 | if (myid ==0 )print *, ' TIME TO INIT FINE from COARSE', simulated_time |
---|
| 200 | |
---|
| 201 | ! |
---|
| 202 | !-- In case of model termination initiated by the remote model |
---|
| 203 | !-- (terminate_coupled_remote > 0), initiate termination of the local model. |
---|
| 204 | !-- The rest of the coupler must then be skipped because it would cause an MPI |
---|
| 205 | !-- intercomminucation hang. |
---|
| 206 | !-- If necessary, the coupler will be called at the beginning of the next |
---|
| 207 | !-- restart run. |
---|
| 208 | |
---|
| 209 | IF ( myid == 0) THEN |
---|
| 210 | CALL MPI_SENDRECV( terminate_coupled, 1, MPI_INTEGER, & |
---|
| 211 | target_id, 0, & |
---|
| 212 | terminate_coupled_remote, 1, MPI_INTEGER, & |
---|
| 213 | target_id, 0, & |
---|
| 214 | comm_inter, status, ierr ) |
---|
| 215 | ENDIF |
---|
| 216 | CALL MPI_BCAST( terminate_coupled_remote, 1, MPI_INTEGER, 0, comm2d, & |
---|
| 217 | ierr ) |
---|
| 218 | |
---|
| 219 | IF ( terminate_coupled_remote > 0 ) THEN |
---|
| 220 | WRITE( message_string, * ) 'remote model "', & |
---|
| 221 | TRIM( coupling_mode_remote ), & |
---|
| 222 | '" terminated', & |
---|
| 223 | '&with terminate_coupled_remote = ', & |
---|
| 224 | terminate_coupled_remote, & |
---|
| 225 | '&local model "', TRIM( coupling_mode ), & |
---|
| 226 | '" has', & |
---|
| 227 | '&terminate_coupled = ', & |
---|
| 228 | terminate_coupled |
---|
| 229 | CALL message( 'vnest_init_fine', 'PA0310', 1, 2, 0, 6, 0 ) |
---|
| 230 | RETURN |
---|
| 231 | ENDIF |
---|
| 232 | |
---|
| 233 | |
---|
| 234 | ! |
---|
| 235 | !-- Exchange the current simulated time between the models, |
---|
| 236 | !-- currently just for total_2ding |
---|
| 237 | IF ( myid == 0 ) THEN |
---|
| 238 | |
---|
| 239 | CALL MPI_SEND( time_since_reference_point, 1, MPI_REAL, target_id, & |
---|
| 240 | 11, comm_inter, ierr ) |
---|
| 241 | CALL MPI_RECV( time_since_reference_point_rem, 1, MPI_REAL, & |
---|
| 242 | target_id, 11, comm_inter, status, ierr ) |
---|
| 243 | |
---|
| 244 | ENDIF |
---|
| 245 | |
---|
| 246 | CALL MPI_BCAST( time_since_reference_point_rem, 1, MPI_REAL, 0, comm2d, & |
---|
| 247 | ierr ) |
---|
| 248 | |
---|
| 249 | |
---|
| 250 | IF ( coupling_mode == 'vnested_crse' ) THEN |
---|
| 251 | !-- Send data to fine grid for initialization |
---|
| 252 | |
---|
| 253 | offset(1) = ( pdims_partner(1) / pdims(1) ) * pcoord(1) |
---|
| 254 | offset(2) = ( pdims_partner(2) / pdims(2) ) * pcoord(2) |
---|
| 255 | |
---|
| 256 | do j = 0, ( pdims_partner(2) / pdims(2) ) - 1 |
---|
| 257 | do i = 0, ( pdims_partner(1) / pdims(1) ) - 1 |
---|
| 258 | map_coord(1) = i+offset(1) |
---|
| 259 | map_coord(2) = j+offset(2) |
---|
| 260 | |
---|
| 261 | target_idex = f_rnk_lst(map_coord(1),map_coord(2)) + numprocs |
---|
| 262 | |
---|
| 263 | CALL MPI_RECV( bdims_rem, 6, MPI_INTEGER, target_idex, 10, & |
---|
| 264 | comm_inter,status, ierr ) |
---|
| 265 | |
---|
| 266 | bdims (1,1) = bdims_rem (1,1) / cfratio(1) |
---|
| 267 | bdims (1,2) = bdims_rem (1,2) / cfratio(1) |
---|
| 268 | bdims (2,1) = bdims_rem (2,1) / cfratio(2) |
---|
| 269 | bdims (2,2) = bdims_rem (2,2) / cfratio(2) |
---|
| 270 | bdims (3,1) = bdims_rem (3,1) |
---|
| 271 | bdims (3,2) = bdims_rem (3,2) / cfratio(3) |
---|
| 272 | |
---|
| 273 | |
---|
| 274 | CALL MPI_SEND( bdims, 6, MPI_INTEGER, target_idex, 9, & |
---|
| 275 | comm_inter, ierr ) |
---|
| 276 | |
---|
| 277 | |
---|
| 278 | n_cell_c = (bdims(1,2)-bdims(1,1)+3) * & |
---|
| 279 | (bdims(2,2)-bdims(2,1)+3) * & |
---|
| 280 | (bdims(3,2)-bdims(3,1)+3) |
---|
| 281 | |
---|
| 282 | CALL MPI_SEND( u( bdims(3,1):bdims(3,2)+2, & |
---|
| 283 | bdims(2,1)-1:bdims(2,2)+1, & |
---|
| 284 | bdims(1,1)-1:bdims(1,2)+1),& |
---|
| 285 | n_cell_c, MPI_REAL, target_idex, & |
---|
[2514] | 286 | 101, comm_inter, ierr) |
---|
[2365] | 287 | |
---|
| 288 | CALL MPI_SEND( v( bdims(3,1):bdims(3,2)+2, & |
---|
| 289 | bdims(2,1)-1:bdims(2,2)+1, & |
---|
| 290 | bdims(1,1)-1:bdims(1,2)+1),& |
---|
| 291 | n_cell_c, MPI_REAL, target_idex, & |
---|
[2514] | 292 | 102, comm_inter, ierr) |
---|
[2365] | 293 | |
---|
| 294 | CALL MPI_SEND( w( bdims(3,1):bdims(3,2)+2, & |
---|
| 295 | bdims(2,1)-1:bdims(2,2)+1, & |
---|
| 296 | bdims(1,1)-1:bdims(1,2)+1),& |
---|
| 297 | n_cell_c, MPI_REAL, target_idex, & |
---|
[2514] | 298 | 103, comm_inter, ierr) |
---|
[2365] | 299 | |
---|
| 300 | CALL MPI_SEND( pt(bdims(3,1):bdims(3,2)+2, & |
---|
| 301 | bdims(2,1)-1:bdims(2,2)+1, & |
---|
| 302 | bdims(1,1)-1:bdims(1,2)+1),& |
---|
| 303 | n_cell_c, MPI_REAL, target_idex, & |
---|
[2514] | 304 | 105, comm_inter, ierr) |
---|
[2365] | 305 | |
---|
| 306 | IF ( humidity ) THEN |
---|
| 307 | CALL MPI_SEND( q(bdims(3,1):bdims(3,2)+2, & |
---|
| 308 | bdims(2,1)-1:bdims(2,2)+1, & |
---|
| 309 | bdims(1,1)-1:bdims(1,2)+1),& |
---|
| 310 | n_cell_c, MPI_REAL, target_idex, & |
---|
[2514] | 311 | 116, comm_inter, ierr) |
---|
[2365] | 312 | ENDIF |
---|
| 313 | |
---|
| 314 | CALL MPI_SEND( e( bdims(3,1):bdims(3,2)+2, & |
---|
| 315 | bdims(2,1)-1:bdims(2,2)+1, & |
---|
| 316 | bdims(1,1)-1:bdims(1,2)+1),& |
---|
| 317 | n_cell_c, MPI_REAL, target_idex, & |
---|
[2514] | 318 | 104, comm_inter, ierr) |
---|
[2365] | 319 | |
---|
| 320 | CALL MPI_SEND(kh( bdims(3,1):bdims(3,2)+2, & |
---|
| 321 | bdims(2,1)-1:bdims(2,2)+1, & |
---|
| 322 | bdims(1,1)-1:bdims(1,2)+1),& |
---|
| 323 | n_cell_c, MPI_REAL, target_idex, & |
---|
[2514] | 324 | 106, comm_inter, ierr) |
---|
[2365] | 325 | |
---|
| 326 | CALL MPI_SEND(km( bdims(3,1):bdims(3,2)+2, & |
---|
| 327 | bdims(2,1)-1:bdims(2,2)+1, & |
---|
| 328 | bdims(1,1)-1:bdims(1,2)+1),& |
---|
| 329 | n_cell_c, MPI_REAL, target_idex, & |
---|
[2514] | 330 | 107, comm_inter, ierr) |
---|
[2365] | 331 | |
---|
| 332 | !-- Send Surface fluxes |
---|
| 333 | IF ( use_surface_fluxes ) THEN |
---|
| 334 | |
---|
| 335 | n_cell_c = (bdims(1,2)-bdims(1,1)+3) * & |
---|
| 336 | (bdims(2,2)-bdims(2,1)+3) |
---|
| 337 | |
---|
| 338 | !-- WARNING |
---|
| 339 | !-- shf,z0 not interpolated |
---|
| 340 | !-- line commented in interpolate_to_fine_flux |
---|
| 341 | !-- FG needs to read it's own data file |
---|
| 342 | !MERGE-WIP CALL MPI_SEND(surf_def_h(0)%shf ( bdims(2,1)-1:bdims(2,2)+1, & |
---|
| 343 | !MERGE-WIP bdims(1,1)-1:bdims(1,2)+1),& |
---|
| 344 | !MERGE-WIP n_cell_c, MPI_REAL, target_idex, & |
---|
[2514] | 345 | !MERGE-WIP 109, comm_inter, ierr ) |
---|
[2365] | 346 | !MERGE-WIP |
---|
| 347 | !MERGE-WIP CALL MPI_SEND(surf_def_h(0)%usws( bdims(2,1)-1:bdims(2,2)+1, & |
---|
| 348 | !MERGE-WIP bdims(1,1)-1:bdims(1,2)+1),& |
---|
| 349 | !MERGE-WIP n_cell_c, MPI_REAL, target_idex, & |
---|
[2514] | 350 | !MERGE-WIP 110, comm_inter, ierr ) |
---|
[2365] | 351 | !MERGE-WIP |
---|
| 352 | !MERGE-WIP CALL MPI_SEND(surf_def_h(0)%vsws( bdims(2,1)-1:bdims(2,2)+1, & |
---|
| 353 | !MERGE-WIP bdims(1,1)-1:bdims(1,2)+1),& |
---|
| 354 | !MERGE-WIP n_cell_c, MPI_REAL, target_idex, & |
---|
[2514] | 355 | !MERGE-WIP 111, comm_inter, ierr ) |
---|
[2365] | 356 | !MERGE-WIP |
---|
| 357 | !MERGE CALL MPI_SEND(ts ( bdims(2,1)-1:bdims(2,2)+1, & |
---|
| 358 | !MERGE bdims(1,1)-1:bdims(1,2)+1),& |
---|
| 359 | !MERGE n_cell_c, MPI_REAL, target_idex, & |
---|
[2514] | 360 | !MERGE 112, comm_inter, ierr ) |
---|
[2365] | 361 | !MERGE |
---|
| 362 | !MERGE CALL MPI_SEND(us ( bdims(2,1)-1:bdims(2,2)+1, & |
---|
| 363 | !MERGE bdims(1,1)-1:bdims(1,2)+1),& |
---|
| 364 | !MERGE n_cell_c, MPI_REAL, target_idex, & |
---|
[2514] | 365 | !MERGE 113, comm_inter, ierr ) |
---|
[2365] | 366 | !MERGE |
---|
| 367 | !MERGE CALL MPI_SEND(z0 ( bdims(2,1)-1:bdims(2,2)+1, & |
---|
| 368 | !MERGE bdims(1,1)-1:bdims(1,2)+1),& |
---|
| 369 | !MERGE n_cell_c, MPI_REAL, target_idex, & |
---|
[2514] | 370 | !MERGE 114, comm_inter, ierr ) |
---|
[2365] | 371 | ENDIF |
---|
| 372 | |
---|
| 373 | |
---|
| 374 | |
---|
| 375 | |
---|
| 376 | end do |
---|
| 377 | end do |
---|
| 378 | |
---|
| 379 | ELSEIF ( coupling_mode == 'vnested_fine' ) THEN |
---|
| 380 | !-- Receive data from coarse grid for initialization |
---|
| 381 | |
---|
| 382 | offset(1) = pcoord(1) / ( pdims(1)/pdims_partner(1) ) |
---|
| 383 | offset(2) = pcoord(2) / ( pdims(2)/pdims_partner(2) ) |
---|
| 384 | map_coord(1) = offset(1) |
---|
| 385 | map_coord(2) = offset(2) |
---|
| 386 | target_idex = c_rnk_lst(map_coord(1),map_coord(2)) |
---|
| 387 | |
---|
| 388 | bdims (1,1) = nxl |
---|
| 389 | bdims (1,2) = nxr |
---|
| 390 | bdims (2,1) = nys |
---|
| 391 | bdims (2,2) = nyn |
---|
| 392 | bdims (3,1) = nzb |
---|
| 393 | bdims (3,2) = nzt |
---|
| 394 | |
---|
| 395 | CALL MPI_SEND( bdims, 6, MPI_INTEGER, target_idex, 10, & |
---|
| 396 | comm_inter, ierr ) |
---|
| 397 | |
---|
| 398 | CALL MPI_RECV( bdims_rem, 6, MPI_INTEGER, target_idex, 9, & |
---|
| 399 | comm_inter,status, ierr ) |
---|
| 400 | |
---|
| 401 | n_cell_c = (bdims_rem(1,2)-bdims_rem(1,1)+3) * & |
---|
| 402 | (bdims_rem(2,2)-bdims_rem(2,1)+3) * & |
---|
| 403 | (bdims_rem(3,2)-bdims_rem(3,1)+3) |
---|
| 404 | |
---|
| 405 | ALLOCATE( work3d ( bdims_rem(3,1) :bdims_rem(3,2)+2, & |
---|
| 406 | bdims_rem(2,1)-1:bdims_rem(2,2)+1, & |
---|
| 407 | bdims_rem(1,1)-1:bdims_rem(1,2)+1)) |
---|
| 408 | |
---|
| 409 | |
---|
| 410 | CALL MPI_RECV( work3d,n_cell_c, MPI_REAL, target_idex, 101, & |
---|
| 411 | comm_inter,status, ierr ) |
---|
| 412 | interpol3d => u |
---|
| 413 | call interpolate_to_fine_u ( 101 ) |
---|
| 414 | |
---|
| 415 | CALL MPI_RECV( work3d,n_cell_c, MPI_REAL, target_idex, 102, & |
---|
| 416 | comm_inter,status, ierr ) |
---|
| 417 | interpol3d => v |
---|
| 418 | call interpolate_to_fine_v ( 102 ) |
---|
| 419 | |
---|
| 420 | CALL MPI_RECV( work3d,n_cell_c, MPI_REAL, target_idex, 103, & |
---|
| 421 | comm_inter,status, ierr ) |
---|
| 422 | interpol3d => w |
---|
| 423 | call interpolate_to_fine_w ( 103 ) |
---|
| 424 | |
---|
| 425 | CALL MPI_RECV( work3d,n_cell_c, MPI_REAL, target_idex, 105, & |
---|
| 426 | comm_inter,status, ierr ) |
---|
| 427 | interpol3d => pt |
---|
| 428 | call interpolate_to_fine_s ( 105 ) |
---|
| 429 | |
---|
| 430 | IF ( humidity ) THEN |
---|
| 431 | CALL MPI_RECV( work3d,n_cell_c, MPI_REAL, target_idex, 116, & |
---|
| 432 | comm_inter,status, ierr ) |
---|
| 433 | interpol3d => q |
---|
| 434 | call interpolate_to_fine_s ( 116 ) |
---|
| 435 | ENDIF |
---|
| 436 | |
---|
| 437 | CALL MPI_RECV( work3d,n_cell_c, MPI_REAL, target_idex, 104, & |
---|
| 438 | comm_inter,status, ierr ) |
---|
| 439 | interpol3d => e |
---|
| 440 | call interpolate_to_fine_s ( 104 ) |
---|
| 441 | |
---|
| 442 | !-- kh,km no target attribute, use of pointer not possible |
---|
| 443 | CALL MPI_RECV( work3d,n_cell_c, MPI_REAL, target_idex, 106, & |
---|
| 444 | comm_inter,status, ierr ) |
---|
| 445 | call interpolate_to_fine_kh ( 106 ) |
---|
| 446 | |
---|
| 447 | CALL MPI_RECV( work3d,n_cell_c, MPI_REAL, target_idex, 107, & |
---|
| 448 | comm_inter,status, ierr ) |
---|
| 449 | call interpolate_to_fine_km ( 107 ) |
---|
| 450 | |
---|
| 451 | DEALLOCATE( work3d ) |
---|
| 452 | NULLIFY ( interpol3d ) |
---|
| 453 | |
---|
[2514] | 454 | !-- Recv Surface Fluxes |
---|
[2365] | 455 | IF ( use_surface_fluxes ) THEN |
---|
| 456 | n_cell_c = (bdims_rem(1,2)-bdims_rem(1,1)+3) * & |
---|
| 457 | (bdims_rem(2,2)-bdims_rem(2,1)+3) |
---|
| 458 | |
---|
| 459 | ALLOCATE( work2dshf ( bdims_rem(2,1)-1:bdims_rem(2,2)+1, & |
---|
| 460 | bdims_rem(1,1)-1:bdims_rem(1,2)+1) ) |
---|
| 461 | ALLOCATE( work2dusws ( bdims_rem(2,1)-1:bdims_rem(2,2)+1, & |
---|
| 462 | bdims_rem(1,1)-1:bdims_rem(1,2)+1) ) |
---|
| 463 | ALLOCATE( work2dvsws ( bdims_rem(2,1)-1:bdims_rem(2,2)+1, & |
---|
| 464 | bdims_rem(1,1)-1:bdims_rem(1,2)+1) ) |
---|
| 465 | ALLOCATE( work2dts ( bdims_rem(2,1)-1:bdims_rem(2,2)+1, & |
---|
| 466 | bdims_rem(1,1)-1:bdims_rem(1,2)+1) ) |
---|
| 467 | ALLOCATE( work2dus ( bdims_rem(2,1)-1:bdims_rem(2,2)+1, & |
---|
| 468 | bdims_rem(1,1)-1:bdims_rem(1,2)+1) ) |
---|
| 469 | ALLOCATE( work2dz0 ( bdims_rem(2,1)-1:bdims_rem(2,2)+1, & |
---|
| 470 | bdims_rem(1,1)-1:bdims_rem(1,2)+1) ) |
---|
| 471 | |
---|
| 472 | !MERGE-WIP CALL MPI_RECV( work2dshf ,n_cell_c, MPI_REAL, target_idex, 109, & |
---|
| 473 | !MERGE-WIP comm_inter,status, ierr ) |
---|
| 474 | !MERGE-WIP |
---|
| 475 | !MERGE-WIP CALL MPI_RECV( work2dusws,n_cell_c, MPI_REAL, target_idex, 110, & |
---|
| 476 | !MERGE-WIP comm_inter,status, ierr ) |
---|
| 477 | !MERGE-WIP |
---|
| 478 | !MERGE-WIP CALL MPI_RECV( work2dvsws,n_cell_c, MPI_REAL, target_idex, 111, & |
---|
| 479 | !MERGE-WIP comm_inter,status, ierr ) |
---|
| 480 | !MERGE-WIP |
---|
| 481 | !MERGE CALL MPI_RECV( work2dts ,n_cell_c, MPI_REAL, target_idex, 112, & |
---|
| 482 | !MERGE comm_inter,status, ierr ) |
---|
| 483 | !MERGE |
---|
| 484 | !MERGE CALL MPI_RECV( work2dus ,n_cell_c, MPI_REAL, target_idex, 113, & |
---|
| 485 | !MERGE comm_inter,status, ierr ) |
---|
| 486 | !MERGE |
---|
| 487 | !MERGE CALL MPI_RECV( work2dz0 ,n_cell_c, MPI_REAL, target_idex, 114, & |
---|
| 488 | !MERGE comm_inter,status, ierr ) |
---|
| 489 | !MERGE |
---|
| 490 | !MERGE-WIP CALL interpolate_to_fine_flux ( 108 ) |
---|
| 491 | |
---|
| 492 | DEALLOCATE( work2dshf ) |
---|
| 493 | DEALLOCATE( work2dusws ) |
---|
| 494 | DEALLOCATE( work2dvsws ) |
---|
| 495 | DEALLOCATE( work2dts ) |
---|
| 496 | DEALLOCATE( work2dus ) |
---|
| 497 | DEALLOCATE( work2dz0 ) |
---|
| 498 | ENDIF |
---|
| 499 | |
---|
| 500 | IF ( .NOT. constant_diffusion ) THEN |
---|
| 501 | DO kf = bdims(3,1)+1,bdims(3,2)+1 |
---|
| 502 | DO jf = bdims(2,1),bdims(2,2) |
---|
| 503 | DO if = bdims(1,1),bdims(1,2) |
---|
| 504 | |
---|
| 505 | IF ( e(kf,jf,if) < 0.0 ) THEN |
---|
| 506 | e(kf,jf,if) = 1E-15_wp |
---|
| 507 | END IF |
---|
| 508 | |
---|
| 509 | END DO |
---|
| 510 | END DO |
---|
| 511 | END DO |
---|
| 512 | ENDIF |
---|
| 513 | |
---|
| 514 | w(nzt+1,:,:) = w(nzt,:,:) |
---|
| 515 | |
---|
| 516 | CALL exchange_horiz( u, nbgp ) |
---|
| 517 | CALL exchange_horiz( v, nbgp ) |
---|
| 518 | CALL exchange_horiz( w, nbgp ) |
---|
| 519 | CALL exchange_horiz( pt, nbgp ) |
---|
| 520 | IF ( .NOT. constant_diffusion ) CALL exchange_horiz( e, nbgp ) |
---|
| 521 | IF ( humidity ) CALL exchange_horiz( q, nbgp ) |
---|
| 522 | |
---|
| 523 | ! |
---|
| 524 | !-- Velocity boundary conditions at the bottom boundary |
---|
| 525 | IF ( ibc_uv_b == 0 ) THEN |
---|
| 526 | u(nzb,:,:) = 0.0_wp |
---|
| 527 | v(nzb,:,:) = 0.0_wp |
---|
| 528 | ELSE |
---|
| 529 | u(nzb,:,:) = u(nzb+1,:,:) |
---|
| 530 | v(nzb,:,:) = v(nzb+1,:,:) |
---|
| 531 | END IF |
---|
| 532 | |
---|
| 533 | |
---|
| 534 | w(nzb,:,:) = 0.0_wp |
---|
| 535 | |
---|
[2514] | 536 | ! |
---|
| 537 | !-- Temperature boundary conditions at the bottom boundary |
---|
[2365] | 538 | IF ( ibc_pt_b /= 0 ) THEN |
---|
| 539 | pt(nzb,:,:) = pt(nzb+1,:,:) |
---|
| 540 | END IF |
---|
| 541 | |
---|
| 542 | ! |
---|
| 543 | !-- Bottom boundary condition for the turbulent kinetic energy |
---|
| 544 | !-- Generally a Neumann condition with de/dz=0 is assumed |
---|
| 545 | IF ( .NOT. constant_diffusion ) THEN |
---|
| 546 | e(nzb,:,:) = e(nzb+1,:,:) |
---|
| 547 | END IF |
---|
| 548 | |
---|
| 549 | ! |
---|
| 550 | !-- Bottom boundary condition for turbulent diffusion coefficients |
---|
| 551 | km(nzb,:,:) = km(nzb+1,:,:) |
---|
| 552 | kh(nzb,:,:) = kh(nzb+1,:,:) |
---|
| 553 | |
---|
| 554 | !diffusivities required |
---|
| 555 | IF ( .NOT. humidity ) THEN |
---|
| 556 | CALL diffusivities( pt, pt_reference ) |
---|
| 557 | ELSE |
---|
| 558 | CALL diffusivities( vpt, pt_reference ) |
---|
| 559 | ENDIF |
---|
| 560 | |
---|
| 561 | |
---|
| 562 | ! |
---|
| 563 | !-- Reset Fine Grid top Boundary Condition |
---|
| 564 | !-- At the top of the FG, the scalars always follow Dirichlet condition |
---|
| 565 | |
---|
| 566 | ibc_pt_t = 0 |
---|
| 567 | |
---|
| 568 | !-- Initialize old time levels |
---|
| 569 | pt_p = pt; u_p = u; v_p = v; w_p = w |
---|
| 570 | IF ( .NOT. constant_diffusion ) e_p = e |
---|
| 571 | IF ( humidity ) THEN |
---|
| 572 | ibc_q_t = 0 |
---|
| 573 | q_p = q |
---|
| 574 | ENDIF |
---|
| 575 | |
---|
| 576 | ENDIF |
---|
| 577 | |
---|
| 578 | |
---|
| 579 | if (myid==0) print *, '** Fine Initalized ** simulated_time:', simulated_time |
---|
| 580 | #endif |
---|
| 581 | CONTAINS |
---|
| 582 | |
---|
| 583 | SUBROUTINE interpolate_to_fine_w( tag ) |
---|
| 584 | |
---|
| 585 | #if defined( __parallel ) |
---|
| 586 | |
---|
| 587 | USE arrays_3d |
---|
| 588 | USE control_parameters |
---|
| 589 | USE grid_variables |
---|
| 590 | USE indices |
---|
| 591 | USE pegrid |
---|
| 592 | |
---|
| 593 | |
---|
| 594 | IMPLICIT NONE |
---|
| 595 | |
---|
| 596 | INTEGER(iwp), intent(in) :: tag |
---|
| 597 | INTEGER(iwp) :: i, j, k |
---|
| 598 | INTEGER(iwp) :: if, jf, kf |
---|
| 599 | INTEGER(iwp) :: bottomx, topx |
---|
| 600 | INTEGER(iwp) :: bottomy, topy |
---|
| 601 | INTEGER(iwp) :: bottomz, topz |
---|
| 602 | REAL(wp) :: eps, alpha, eminus, edot, eplus |
---|
| 603 | REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: wprs, wprf |
---|
| 604 | |
---|
| 605 | INTEGER(iwp) :: nzbottom, nztop |
---|
| 606 | |
---|
| 607 | |
---|
| 608 | nzbottom = bdims_rem (3,1) |
---|
| 609 | nztop = bdims_rem (3,2) |
---|
| 610 | |
---|
| 611 | ALLOCATE( wprf(nzbottom:nztop, bdims_rem(2,1)-1: bdims_rem(2,2)+1,nxl:nxr) ) |
---|
| 612 | ALLOCATE( wprs(nzbottom:nztop,nys:nyn,nxl:nxr) ) |
---|
| 613 | |
---|
| 614 | |
---|
| 615 | ! |
---|
| 616 | !-- Initialisation of the velocity component w |
---|
| 617 | ! |
---|
| 618 | !-- Interpolation in x-direction |
---|
| 619 | DO k = nzbottom, nztop |
---|
| 620 | DO j = bdims_rem(2,1)-1, bdims_rem(2,2)+1 |
---|
| 621 | DO i = bdims_rem(1,1),bdims_rem(1,2) |
---|
| 622 | |
---|
| 623 | bottomx = (nxf+1)/(nxc+1) * i |
---|
| 624 | topx = (nxf+1)/(nxc+1) * (i+1) - 1 |
---|
| 625 | |
---|
| 626 | DO if = bottomx, topx |
---|
| 627 | |
---|
| 628 | eps = ( if * dxf + 0.5 * dxf - i * dxc - 0.5 * dxc ) / dxc |
---|
| 629 | alpha = ( ( dxf / dxc )**2.0 - 1.0 ) / 24.0 |
---|
| 630 | eminus = eps * ( eps - 1.0 ) / 2.0 + alpha |
---|
| 631 | edot = ( 1.0 - eps**2.0 ) - 2.0 * alpha |
---|
| 632 | eplus = eps * ( eps + 1.0 ) / 2.0 + alpha |
---|
| 633 | |
---|
| 634 | wprf(k,j,if) = eminus * work3d(k,j,i-1) & |
---|
| 635 | + edot * work3d(k,j,i) & |
---|
| 636 | + eplus * work3d(k,j,i+1) |
---|
| 637 | END DO |
---|
| 638 | |
---|
| 639 | END DO |
---|
| 640 | END DO |
---|
| 641 | END DO |
---|
| 642 | |
---|
| 643 | ! |
---|
| 644 | !-- Interpolation in y-direction (quadratic, Clark and Farley) |
---|
| 645 | DO k = nzbottom, nztop |
---|
| 646 | DO j = bdims_rem(2,1), bdims_rem(2,2) |
---|
| 647 | |
---|
| 648 | bottomy = (nyf+1)/(nyc+1) * j |
---|
| 649 | topy = (nyf+1)/(nyc+1) * (j+1) - 1 |
---|
| 650 | |
---|
| 651 | DO if = nxl, nxr |
---|
| 652 | DO jf = bottomy, topy |
---|
| 653 | |
---|
| 654 | eps = ( jf * dyf + 0.5 * dyf - j * dyc - 0.5 * dyc ) / dyc |
---|
| 655 | alpha = ( ( dyf / dyc )**2.0 - 1.0 ) / 24.0 |
---|
| 656 | eminus = eps * ( eps - 1.0 ) / 2.0 + alpha |
---|
| 657 | edot = ( 1.0 - eps**2.0 ) - 2.0 * alpha |
---|
| 658 | eplus = eps * ( eps + 1.0 ) / 2.0 + alpha |
---|
| 659 | |
---|
| 660 | wprs(k,jf,if) = eminus * wprf(k,j-1,if) & |
---|
| 661 | + edot * wprf(k,j,if) & |
---|
| 662 | + eplus * wprf(k,j+1,if) |
---|
| 663 | |
---|
| 664 | END DO |
---|
| 665 | END DO |
---|
| 666 | |
---|
| 667 | END DO |
---|
| 668 | END DO |
---|
| 669 | |
---|
| 670 | ! |
---|
| 671 | !-- Interpolation in z-direction (linear) |
---|
| 672 | |
---|
| 673 | DO k = nzbottom, nztop-1 |
---|
| 674 | |
---|
| 675 | bottomz = (dzc/dzf) * k |
---|
| 676 | topz = (dzc/dzf) * (k+1) - 1 |
---|
| 677 | |
---|
| 678 | DO jf = nys, nyn |
---|
| 679 | DO if = nxl, nxr |
---|
| 680 | DO kf = bottomz, topz |
---|
| 681 | |
---|
| 682 | w(kf,jf,if) = wprs(k,jf,if) + ( zwf(kf) - zwc(k) ) & |
---|
| 683 | * ( wprs(k+1,jf,if) - wprs(k,jf,if) ) / dzc |
---|
| 684 | |
---|
| 685 | END DO |
---|
| 686 | END DO |
---|
| 687 | END DO |
---|
| 688 | |
---|
| 689 | END DO |
---|
| 690 | |
---|
| 691 | DO jf = nys, nyn |
---|
| 692 | DO if = nxl, nxr |
---|
| 693 | |
---|
| 694 | w(nzt,jf,if) = wprs(nztop,jf,if) |
---|
| 695 | |
---|
| 696 | END DO |
---|
| 697 | END DO |
---|
| 698 | ! |
---|
| 699 | ! w(nzb:nzt+1,nys:nyn,nxl:nxr) = 0 |
---|
| 700 | |
---|
| 701 | DEALLOCATE( wprf, wprs ) |
---|
| 702 | |
---|
| 703 | #endif |
---|
| 704 | END SUBROUTINE interpolate_to_fine_w |
---|
| 705 | |
---|
| 706 | SUBROUTINE interpolate_to_fine_u( tag ) |
---|
| 707 | |
---|
| 708 | #if defined( __parallel ) |
---|
| 709 | |
---|
| 710 | USE arrays_3d |
---|
| 711 | USE control_parameters |
---|
| 712 | USE grid_variables |
---|
| 713 | USE indices |
---|
| 714 | USE pegrid |
---|
| 715 | |
---|
| 716 | |
---|
| 717 | IMPLICIT NONE |
---|
| 718 | |
---|
| 719 | INTEGER(iwp), intent(in) :: tag |
---|
| 720 | INTEGER(iwp) :: i, j, k |
---|
| 721 | INTEGER(iwp) :: if, jf, kf |
---|
| 722 | INTEGER(iwp) :: bottomx, topx |
---|
| 723 | INTEGER(iwp) :: bottomy, topy |
---|
| 724 | INTEGER(iwp) :: bottomz, topz |
---|
| 725 | REAL(wp) :: eps, alpha, eminus, edot, eplus |
---|
| 726 | REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: uprs, uprf |
---|
| 727 | |
---|
| 728 | INTEGER(iwp) :: nzbottom, nztop |
---|
| 729 | |
---|
| 730 | |
---|
| 731 | nzbottom = bdims_rem (3,1) |
---|
| 732 | nztop = bdims_rem (3,2) |
---|
| 733 | |
---|
| 734 | ALLOCATE( uprf(nzbottom:nztop+2,nys:nyn,bdims_rem(1,1)-1:bdims_rem(1,2)+1) ) |
---|
| 735 | ALLOCATE( uprs(nzb+1:nzt+1,nys:nyn,bdims_rem(1,1)-1:bdims_rem(1,2)+1) ) |
---|
| 736 | |
---|
| 737 | ! |
---|
| 738 | !-- Initialisation of the velocity component uf |
---|
| 739 | |
---|
| 740 | ! |
---|
| 741 | !-- Interpolation in y-direction (quadratic, Clark and Farley) |
---|
| 742 | |
---|
| 743 | DO k = nzbottom, nztop+2 |
---|
| 744 | DO j = bdims_rem(2,1), bdims_rem(2,2) |
---|
| 745 | |
---|
| 746 | bottomy = (nyf+1)/(nyc+1) * j |
---|
| 747 | topy = (nyf+1)/(nyc+1) * (j+1) - 1 |
---|
| 748 | |
---|
| 749 | DO i = bdims_rem(1,1)-1, bdims_rem(1,2)+1 |
---|
| 750 | DO jf = bottomy, topy |
---|
| 751 | |
---|
| 752 | eps = ( jf * dyf + 0.5 * dyf - j * dyc - 0.5 * dyc ) / dyc |
---|
| 753 | alpha = ( ( dyf / dyc )**2.0 - 1.0 ) / 24.0 |
---|
| 754 | eminus = eps * ( eps - 1.0 ) / 2.0 + alpha |
---|
| 755 | edot = ( 1.0 - eps**2.0 ) - 2.0 * alpha |
---|
| 756 | eplus = eps * ( eps + 1.0 ) / 2.0 + alpha |
---|
| 757 | |
---|
| 758 | uprf(k,jf,i) = eminus * work3d(k,j-1,i) & |
---|
| 759 | + edot * work3d(k,j,i) & |
---|
| 760 | + eplus * work3d(k,j+1,i) |
---|
| 761 | |
---|
| 762 | END DO |
---|
| 763 | END DO |
---|
| 764 | |
---|
| 765 | END DO |
---|
| 766 | END DO |
---|
| 767 | |
---|
| 768 | ! |
---|
| 769 | !-- Interpolation in z-direction (quadratic, Clark and Farley) |
---|
| 770 | |
---|
| 771 | DO k = nzbottom+1, nztop |
---|
| 772 | |
---|
| 773 | bottomz = (dzc/dzf) * (k-1) + 1 |
---|
| 774 | topz = (dzc/dzf) * k |
---|
| 775 | |
---|
| 776 | DO jf = nys, nyn |
---|
| 777 | DO i = bdims_rem(1,1)-1, bdims_rem(1,2)+1 |
---|
| 778 | DO kf = bottomz, topz |
---|
| 779 | |
---|
| 780 | eps = ( zuf(kf) - zuc(k) ) / dzc |
---|
| 781 | alpha = ( ( dzf / dzc )**2.0 - 1.0 ) / 24.0 |
---|
| 782 | eminus = eps * ( eps - 1.0 ) / 2.0 + alpha |
---|
| 783 | edot = ( 1.0 - eps**2.0 ) - 2.0 * alpha |
---|
| 784 | eplus = eps * ( eps + 1.0 ) / 2.0 + alpha |
---|
| 785 | |
---|
| 786 | uprs(kf,jf,i) = eminus * uprf(k-1,jf,i) & |
---|
| 787 | + edot * uprf(k,jf,i) & |
---|
| 788 | + eplus * uprf(k+1,jf,i) |
---|
| 789 | |
---|
| 790 | END DO |
---|
| 791 | END DO |
---|
| 792 | END DO |
---|
| 793 | |
---|
| 794 | END DO |
---|
| 795 | |
---|
| 796 | DO jf = nys, nyn |
---|
| 797 | DO i = bdims_rem(1,1)-1, bdims_rem(1,2)+1 |
---|
| 798 | |
---|
| 799 | eps = ( zuf(nzt+1) - zuc(nztop+1) ) / dzc |
---|
| 800 | alpha = ( ( dzf / dzc )**2.0 - 1.0 ) / 24.0 |
---|
| 801 | eminus = eps * ( eps - 1.0 ) / 2.0 + alpha |
---|
| 802 | edot = ( 1.0 - eps**2.0 ) - 2.0 * alpha |
---|
| 803 | eplus = eps * ( eps + 1.0 ) / 2.0 + alpha |
---|
| 804 | |
---|
| 805 | uprs(nzt+1,jf,i) = eminus * uprf(nztop,jf,i) & |
---|
| 806 | + edot * uprf(nztop+1,jf,i) & |
---|
| 807 | + eplus * uprf(nztop+2,jf,i) |
---|
| 808 | |
---|
| 809 | END DO |
---|
| 810 | END DO |
---|
| 811 | |
---|
| 812 | ! |
---|
| 813 | !-- Interpolation in x-direction (linear) |
---|
| 814 | |
---|
| 815 | DO kf = nzb+1, nzt+1 |
---|
| 816 | DO jf = nys, nyn |
---|
| 817 | DO i = bdims_rem(1,1), bdims_rem(1,2) |
---|
| 818 | |
---|
| 819 | bottomx = (nxf+1)/(nxc+1) * i |
---|
| 820 | topx = (nxf+1)/(nxc+1) * (i+1) - 1 |
---|
| 821 | |
---|
| 822 | DO if = bottomx, topx |
---|
| 823 | u(kf,jf,if) = uprs(kf,jf,i) + ( if * dxf - i * dxc ) & |
---|
| 824 | * ( uprs(kf,jf,i+1) - uprs(kf,jf,i) ) / dxc |
---|
| 825 | END DO |
---|
| 826 | |
---|
| 827 | END DO |
---|
| 828 | END DO |
---|
| 829 | END DO |
---|
| 830 | ! |
---|
| 831 | !-- Determination of uf at the bottom boundary |
---|
| 832 | |
---|
| 833 | |
---|
| 834 | |
---|
| 835 | DEALLOCATE( uprf, uprs ) |
---|
| 836 | |
---|
| 837 | #endif |
---|
| 838 | END SUBROUTINE interpolate_to_fine_u |
---|
| 839 | |
---|
| 840 | |
---|
| 841 | SUBROUTINE interpolate_to_fine_v( tag ) |
---|
| 842 | |
---|
| 843 | #if defined( __parallel ) |
---|
| 844 | |
---|
| 845 | USE arrays_3d |
---|
| 846 | USE control_parameters |
---|
| 847 | USE grid_variables |
---|
| 848 | USE indices |
---|
| 849 | USE pegrid |
---|
| 850 | |
---|
| 851 | |
---|
| 852 | IMPLICIT NONE |
---|
| 853 | |
---|
| 854 | INTEGER(iwp), intent(in) :: tag |
---|
| 855 | INTEGER(iwp) :: i, j, k |
---|
| 856 | INTEGER(iwp) :: if, jf, kf |
---|
| 857 | INTEGER(iwp) :: bottomx, topx |
---|
| 858 | INTEGER(iwp) :: bottomy, topy |
---|
| 859 | INTEGER(iwp) :: bottomz, topz |
---|
| 860 | REAL(wp) :: eps, alpha, eminus, edot, eplus |
---|
| 861 | REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: vprs, vprf |
---|
| 862 | |
---|
| 863 | INTEGER(iwp) :: nzbottom, nztop |
---|
| 864 | |
---|
| 865 | |
---|
| 866 | nzbottom = bdims_rem (3,1) |
---|
| 867 | nztop = bdims_rem (3,2) |
---|
| 868 | |
---|
| 869 | ALLOCATE( vprf(nzbottom:nztop+2,bdims_rem(2,1)-1:bdims_rem(2,2)+1,nxl:nxr) ) |
---|
| 870 | ALLOCATE( vprs(nzb+1:nzt+1, bdims_rem(2,1)-1:bdims_rem(2,2)+1,nxl:nxr) ) |
---|
| 871 | ! |
---|
| 872 | !-- Initialisation of the velocity component vf |
---|
| 873 | |
---|
| 874 | ! |
---|
| 875 | !-- Interpolation in x-direction (quadratic, Clark and Farley) |
---|
| 876 | |
---|
| 877 | DO k = nzbottom, nztop+2 |
---|
| 878 | DO j = bdims_rem(2,1)-1, bdims_rem(2,2)+1 |
---|
| 879 | DO i = bdims_rem(1,1), bdims_rem(1,2) |
---|
| 880 | |
---|
| 881 | bottomx = (nxf+1)/(nxc+1) * i |
---|
| 882 | topx = (nxf+1)/(nxc+1) * (i+1) - 1 |
---|
| 883 | |
---|
| 884 | DO if = bottomx, topx |
---|
| 885 | |
---|
| 886 | eps = ( if * dxf + 0.5 * dxf - i * dxc - 0.5 * dxc ) / dxc |
---|
| 887 | alpha = ( ( dxf / dxc )**2.0 - 1.0 ) / 24.0 |
---|
| 888 | eminus = eps * ( eps - 1.0 ) / 2.0 + alpha |
---|
| 889 | edot = ( 1.0 - eps**2.0 ) - 2.0 * alpha |
---|
| 890 | eplus = eps * ( eps + 1.0 ) / 2.0 + alpha |
---|
| 891 | |
---|
| 892 | vprf(k,j,if) = eminus * work3d(k,j,i-1) & |
---|
| 893 | + edot * work3d(k,j,i) & |
---|
| 894 | + eplus * work3d(k,j,i+1) |
---|
| 895 | |
---|
| 896 | END DO |
---|
| 897 | |
---|
| 898 | END DO |
---|
| 899 | END DO |
---|
| 900 | END DO |
---|
| 901 | |
---|
| 902 | ! |
---|
| 903 | !-- Interpolation in z-direction (quadratic, Clark and Farley) |
---|
| 904 | |
---|
| 905 | DO k = nzbottom+1, nztop |
---|
| 906 | |
---|
| 907 | bottomz = (dzc/dzf) * (k-1) + 1 |
---|
| 908 | topz = (dzc/dzf) * k |
---|
| 909 | |
---|
| 910 | DO j = bdims_rem(2,1)-1, bdims_rem(2,2)+1 |
---|
| 911 | DO if = nxl, nxr |
---|
| 912 | DO kf = bottomz, topz |
---|
| 913 | |
---|
| 914 | eps = ( zuf(kf) - zuc(k) ) / dzc |
---|
| 915 | alpha = ( ( dzf / dzc )**2.0 - 1.0 ) / 24.0 |
---|
| 916 | eminus = eps * ( eps - 1.0 ) / 2.0 + alpha |
---|
| 917 | edot = ( 1.0 - eps**2.0 ) - 2.0 * alpha |
---|
| 918 | eplus = eps * ( eps + 1.0 ) / 2.0 + alpha |
---|
| 919 | |
---|
| 920 | vprs(kf,j,if) = eminus * vprf(k-1,j,if) & |
---|
| 921 | + edot * vprf(k,j,if) & |
---|
| 922 | + eplus * vprf(k+1,j,if) |
---|
| 923 | |
---|
| 924 | END DO |
---|
| 925 | END DO |
---|
| 926 | END DO |
---|
| 927 | |
---|
| 928 | END DO |
---|
| 929 | |
---|
| 930 | DO j = bdims_rem(2,1)-1, bdims_rem(2,2)+1 |
---|
| 931 | DO if = nxl, nxr |
---|
| 932 | |
---|
| 933 | eps = ( zuf(nzt+1) - zuc(nztop+1) ) / dzc |
---|
| 934 | alpha = ( ( dzf / dzc )**2.0 - 1.0 ) / 24.0 |
---|
| 935 | eminus = eps * ( eps - 1.0 ) / 2.0 + alpha |
---|
| 936 | edot = ( 1.0 - eps**2.0 ) - 2.0 * alpha |
---|
| 937 | eplus = eps * ( eps + 1.0 ) / 2.0 + alpha |
---|
| 938 | |
---|
| 939 | vprs(nzt+1,j,if) = eminus * vprf(nztop,j,if) & |
---|
| 940 | + edot * vprf(nztop+1,j,if) & |
---|
| 941 | + eplus * vprf(nztop+2,j,if) |
---|
| 942 | |
---|
| 943 | END DO |
---|
| 944 | END DO |
---|
| 945 | |
---|
| 946 | ! |
---|
| 947 | !-- Interpolation in y-direction (linear) |
---|
| 948 | |
---|
| 949 | DO kf = nzb+1, nzt+1 |
---|
| 950 | DO j = bdims_rem(2,1), bdims_rem(2,2) |
---|
| 951 | |
---|
| 952 | bottomy = (nyf+1)/(nyc+1) * j |
---|
| 953 | topy = (nyf+1)/(nyc+1) * (j+1) - 1 |
---|
| 954 | |
---|
| 955 | DO if = nxl, nxr |
---|
| 956 | DO jf = bottomy, topy |
---|
| 957 | v (kf,jf,if) = vprs(kf,j,if) + ( jf * dyf - j * dyc ) & |
---|
| 958 | * ( vprs(kf,j+1,if) - vprs(kf,j,if) ) / dyc |
---|
| 959 | END DO |
---|
| 960 | END DO |
---|
| 961 | |
---|
| 962 | END DO |
---|
| 963 | END DO |
---|
| 964 | |
---|
| 965 | ! |
---|
| 966 | !-- Determination of vf at the bottom boundary |
---|
| 967 | |
---|
| 968 | |
---|
| 969 | DEALLOCATE( vprf, vprs ) |
---|
| 970 | |
---|
| 971 | #endif |
---|
| 972 | END SUBROUTINE interpolate_to_fine_v |
---|
| 973 | |
---|
| 974 | |
---|
| 975 | SUBROUTINE interpolate_to_fine_s( tag ) |
---|
| 976 | |
---|
| 977 | #if defined( __parallel ) |
---|
| 978 | |
---|
| 979 | USE arrays_3d |
---|
| 980 | USE control_parameters |
---|
| 981 | USE grid_variables |
---|
| 982 | USE indices |
---|
| 983 | USE pegrid |
---|
| 984 | |
---|
| 985 | |
---|
| 986 | IMPLICIT NONE |
---|
| 987 | |
---|
| 988 | |
---|
| 989 | INTEGER(iwp), intent(in) :: tag |
---|
| 990 | INTEGER(iwp) :: i, j, k |
---|
| 991 | INTEGER(iwp) :: if, jf, kf |
---|
| 992 | INTEGER(iwp) :: bottomx, topx |
---|
| 993 | INTEGER(iwp) :: bottomy, topy |
---|
| 994 | INTEGER(iwp) :: bottomz, topz |
---|
| 995 | REAL(wp) :: eps, alpha, eminus, edot, eplus |
---|
| 996 | REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: ptprs, ptprf |
---|
| 997 | |
---|
| 998 | INTEGER(iwp) :: nzbottom, nztop |
---|
| 999 | |
---|
| 1000 | |
---|
| 1001 | nzbottom = bdims_rem (3,1) |
---|
| 1002 | nztop = bdims_rem (3,2) |
---|
| 1003 | |
---|
| 1004 | ALLOCATE( ptprf(nzbottom:nztop+2,bdims_rem(2,1)-1:bdims_rem(2,2)+1,nxl:nxr) ) |
---|
| 1005 | ALLOCATE( ptprs(nzbottom:nztop+2,nys:nyn,nxl:nxr) ) |
---|
| 1006 | |
---|
| 1007 | ! |
---|
| 1008 | !-- Initialisation of scalar variables |
---|
| 1009 | |
---|
| 1010 | ! |
---|
| 1011 | !-- Interpolation in x-direction (quadratic, Clark and Farley) |
---|
| 1012 | |
---|
| 1013 | DO k = nzbottom, nztop+2 |
---|
| 1014 | DO j = bdims_rem(2,1)-1, bdims_rem(2,2)+1 |
---|
| 1015 | DO i = bdims_rem(1,1), bdims_rem(1,2) |
---|
| 1016 | |
---|
| 1017 | bottomx = (nxf+1)/(nxc+1) * i |
---|
| 1018 | topx = (nxf+1)/(nxc+1) * (i+1) - 1 |
---|
| 1019 | |
---|
| 1020 | DO if = bottomx, topx |
---|
| 1021 | |
---|
| 1022 | eps = ( if * dxf + 0.5 * dxf - i * dxc - 0.5 * dxc ) / dxc |
---|
| 1023 | alpha = ( ( dxf / dxc )**2.0 - 1.0 ) / 24.0 |
---|
| 1024 | eminus = eps * ( eps - 1.0 ) / 2.0 + alpha |
---|
| 1025 | edot = ( 1.0 - eps**2.0 ) - 2.0 * alpha |
---|
| 1026 | eplus = eps * ( eps + 1.0 ) / 2.0 + alpha |
---|
| 1027 | |
---|
| 1028 | ptprf(k,j,if) = eminus * work3d(k,j,i-1) & |
---|
| 1029 | + edot * work3d(k,j,i) & |
---|
| 1030 | + eplus * work3d(k,j,i+1) |
---|
| 1031 | END DO |
---|
| 1032 | |
---|
| 1033 | END DO |
---|
| 1034 | END DO |
---|
| 1035 | END DO |
---|
| 1036 | |
---|
| 1037 | ! |
---|
| 1038 | !-- Interpolation in y-direction (quadratic, Clark and Farley) |
---|
| 1039 | |
---|
| 1040 | DO k = nzbottom, nztop+2 |
---|
| 1041 | DO j = bdims_rem(2,1), bdims_rem(2,2) |
---|
| 1042 | |
---|
| 1043 | bottomy = (nyf+1)/(nyc+1) * j |
---|
| 1044 | topy = (nyf+1)/(nyc+1) * (j+1) - 1 |
---|
| 1045 | |
---|
| 1046 | DO if = nxl, nxr |
---|
| 1047 | DO jf = bottomy, topy |
---|
| 1048 | |
---|
| 1049 | eps = ( jf * dyf + 0.5 * dyf - j * dyc - 0.5 * dyc ) / dyc |
---|
| 1050 | alpha = ( ( dyf / dyc )**2.0 - 1.0 ) / 24.0 |
---|
| 1051 | eminus = eps * ( eps - 1.0 ) / 2.0 + alpha |
---|
| 1052 | edot = ( 1.0 - eps**2.0 ) - 2.0 * alpha |
---|
| 1053 | eplus = eps * ( eps + 1.0 ) / 2.0 + alpha |
---|
| 1054 | |
---|
| 1055 | ptprs(k,jf,if) = eminus * ptprf(k,j-1,if) & |
---|
| 1056 | + edot * ptprf(k,j,if) & |
---|
| 1057 | + eplus * ptprf(k,j+1,if) |
---|
| 1058 | |
---|
| 1059 | END DO |
---|
| 1060 | END DO |
---|
| 1061 | |
---|
| 1062 | END DO |
---|
| 1063 | END DO |
---|
| 1064 | |
---|
| 1065 | ! |
---|
| 1066 | !-- Interpolation in z-direction (quadratic, Clark and Farley) |
---|
| 1067 | |
---|
| 1068 | DO k = nzbottom+1, nztop |
---|
| 1069 | |
---|
| 1070 | bottomz = (dzc/dzf) * (k-1) + 1 |
---|
| 1071 | topz = (dzc/dzf) * k |
---|
| 1072 | |
---|
| 1073 | DO jf = nys, nyn |
---|
| 1074 | DO if = nxl, nxr |
---|
| 1075 | DO kf = bottomz, topz |
---|
| 1076 | |
---|
| 1077 | eps = ( zuf(kf) - zuc(k) ) / dzc |
---|
| 1078 | alpha = ( ( dzf / dzc )**2.0 - 1.0 ) / 24.0 |
---|
| 1079 | eminus = eps * ( eps - 1.0 ) / 2.0 + alpha |
---|
| 1080 | edot = ( 1.0 - eps**2.0 ) - 2.0 * alpha |
---|
| 1081 | eplus = eps * ( eps + 1.0 ) / 2.0 + alpha |
---|
| 1082 | |
---|
| 1083 | interpol3d(kf,jf,if) = eminus * ptprs(k-1,jf,if) & |
---|
| 1084 | + edot * ptprs(k,jf,if) & |
---|
| 1085 | + eplus * ptprs(k+1,jf,if) |
---|
| 1086 | |
---|
| 1087 | END DO |
---|
| 1088 | END DO |
---|
| 1089 | END DO |
---|
| 1090 | |
---|
| 1091 | END DO |
---|
| 1092 | |
---|
| 1093 | DO jf = nys, nyn |
---|
| 1094 | DO if = nxl, nxr |
---|
| 1095 | |
---|
| 1096 | eps = ( zuf(nzt+1) - zuc(nztop+1) ) / dzc |
---|
| 1097 | alpha = ( ( dzf / dzc )**2.0 - 1.0 ) / 24.0 |
---|
| 1098 | eminus = eps * ( eps - 1.0 ) / 2.0 + alpha |
---|
| 1099 | edot = ( 1.0 - eps**2.0 ) - 2.0 * alpha |
---|
| 1100 | eplus = eps * ( eps + 1.0 ) / 2.0 + alpha |
---|
| 1101 | |
---|
| 1102 | interpol3d(nzt+1,jf,if) = eminus * ptprs(nztop,jf,if) & |
---|
| 1103 | + edot * ptprs(nztop+1,jf,if) & |
---|
| 1104 | + eplus * ptprs(nztop+2,jf,if) |
---|
| 1105 | |
---|
| 1106 | END DO |
---|
| 1107 | END DO |
---|
| 1108 | |
---|
| 1109 | |
---|
| 1110 | DEALLOCATE( ptprf, ptprs ) |
---|
| 1111 | |
---|
| 1112 | #endif |
---|
| 1113 | END SUBROUTINE interpolate_to_fine_s |
---|
| 1114 | |
---|
| 1115 | |
---|
| 1116 | SUBROUTINE interpolate_to_fine_kh( tag ) |
---|
| 1117 | |
---|
| 1118 | #if defined( __parallel ) |
---|
| 1119 | |
---|
| 1120 | USE arrays_3d |
---|
| 1121 | USE control_parameters |
---|
| 1122 | USE grid_variables |
---|
| 1123 | USE indices |
---|
| 1124 | USE pegrid |
---|
| 1125 | |
---|
| 1126 | |
---|
| 1127 | IMPLICIT NONE |
---|
| 1128 | |
---|
| 1129 | |
---|
| 1130 | INTEGER(iwp), intent(in) :: tag |
---|
| 1131 | INTEGER(iwp) :: i, j, k |
---|
| 1132 | INTEGER(iwp) :: if, jf, kf |
---|
| 1133 | INTEGER(iwp) :: bottomx, topx |
---|
| 1134 | INTEGER(iwp) :: bottomy, topy |
---|
| 1135 | INTEGER(iwp) :: bottomz, topz |
---|
| 1136 | REAL(wp) :: eps, alpha, eminus, edot, eplus |
---|
| 1137 | REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: uprs, uprf |
---|
| 1138 | REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: vprs, vprf |
---|
| 1139 | REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: wprs, wprf |
---|
| 1140 | REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: ptprs, ptprf |
---|
| 1141 | REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: eprs, eprf |
---|
| 1142 | REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: kmprs, kmprf |
---|
| 1143 | REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: khprs, khprf |
---|
| 1144 | REAL(wp), DIMENSION(:,:), ALLOCATABLE :: shfpr, uswspr, vswspr |
---|
| 1145 | REAL(wp), DIMENSION(:,:), ALLOCATABLE :: tspr, uspr, z0pr |
---|
| 1146 | |
---|
| 1147 | INTEGER(iwp) :: nzbottom, nztop |
---|
| 1148 | |
---|
| 1149 | |
---|
| 1150 | nzbottom = bdims_rem (3,1) |
---|
| 1151 | nztop = bdims_rem (3,2) |
---|
| 1152 | ! nztop = blk_dim_rem (3,2)+1 |
---|
| 1153 | |
---|
| 1154 | |
---|
| 1155 | ALLOCATE( ptprf(nzbottom:nztop+2,bdims_rem(2,1)-1:bdims_rem(2,2)+1,nxl:nxr) ) |
---|
| 1156 | ALLOCATE( ptprs(nzbottom:nztop+2,nys:nyn,nxl:nxr) ) |
---|
| 1157 | |
---|
| 1158 | |
---|
| 1159 | ! |
---|
| 1160 | !-- Initialisation of scalar variables |
---|
| 1161 | |
---|
| 1162 | ! |
---|
| 1163 | !-- Interpolation in x-direction (quadratic, Clark and Farley) |
---|
| 1164 | |
---|
| 1165 | DO k = nzbottom, nztop+2 |
---|
| 1166 | DO j = bdims_rem(2,1)-1, bdims_rem(2,2)+1 |
---|
| 1167 | DO i = bdims_rem(1,1), bdims_rem(1,2) |
---|
| 1168 | |
---|
| 1169 | bottomx = (nxf+1)/(nxc+1) * i |
---|
| 1170 | topx = (nxf+1)/(nxc+1) * (i+1) - 1 |
---|
| 1171 | |
---|
| 1172 | DO if = bottomx, topx |
---|
| 1173 | |
---|
| 1174 | eps = ( if * dxf + 0.5 * dxf - i * dxc - 0.5 * dxc ) / dxc |
---|
| 1175 | alpha = ( ( dxf / dxc )**2.0 - 1.0 ) / 24.0 |
---|
| 1176 | eminus = eps * ( eps - 1.0 ) / 2.0 + alpha |
---|
| 1177 | edot = ( 1.0 - eps**2.0 ) - 2.0 * alpha |
---|
| 1178 | eplus = eps * ( eps + 1.0 ) / 2.0 + alpha |
---|
| 1179 | |
---|
| 1180 | ptprf(k,j,if) = eminus * work3d(k,j,i-1) & |
---|
| 1181 | + edot * work3d(k,j,i) & |
---|
| 1182 | + eplus * work3d(k,j,i+1) |
---|
| 1183 | END DO |
---|
| 1184 | |
---|
| 1185 | END DO |
---|
| 1186 | END DO |
---|
| 1187 | END DO |
---|
| 1188 | |
---|
| 1189 | ! |
---|
| 1190 | !-- Interpolation in y-direction (quadratic, Clark and Farley) |
---|
| 1191 | |
---|
| 1192 | DO k = nzbottom, nztop+2 |
---|
| 1193 | DO j = bdims_rem(2,1), bdims_rem(2,2) |
---|
| 1194 | |
---|
| 1195 | bottomy = (nyf+1)/(nyc+1) * j |
---|
| 1196 | topy = (nyf+1)/(nyc+1) * (j+1) - 1 |
---|
| 1197 | |
---|
| 1198 | DO if = nxl, nxr |
---|
| 1199 | DO jf = bottomy, topy |
---|
| 1200 | |
---|
| 1201 | eps = ( jf * dyf + 0.5 * dyf - j * dyc - 0.5 * dyc ) / dyc |
---|
| 1202 | alpha = ( ( dyf / dyc )**2.0 - 1.0 ) / 24.0 |
---|
| 1203 | eminus = eps * ( eps - 1.0 ) / 2.0 + alpha |
---|
| 1204 | edot = ( 1.0 - eps**2.0 ) - 2.0 * alpha |
---|
| 1205 | eplus = eps * ( eps + 1.0 ) / 2.0 + alpha |
---|
| 1206 | |
---|
| 1207 | ptprs(k,jf,if) = eminus * ptprf(k,j-1,if) & |
---|
| 1208 | + edot * ptprf(k,j,if) & |
---|
| 1209 | + eplus * ptprf(k,j+1,if) |
---|
| 1210 | |
---|
| 1211 | END DO |
---|
| 1212 | END DO |
---|
| 1213 | |
---|
| 1214 | END DO |
---|
| 1215 | END DO |
---|
| 1216 | |
---|
| 1217 | ! |
---|
| 1218 | !-- Interpolation in z-direction (quadratic, Clark and Farley) |
---|
| 1219 | |
---|
| 1220 | DO k = nzbottom+1, nztop |
---|
| 1221 | |
---|
| 1222 | bottomz = (dzc/dzf) * (k-1) + 1 |
---|
| 1223 | topz = (dzc/dzf) * k |
---|
| 1224 | |
---|
| 1225 | DO jf = nys, nyn |
---|
| 1226 | DO if = nxl, nxr |
---|
| 1227 | DO kf = bottomz, topz |
---|
| 1228 | |
---|
| 1229 | eps = ( zuf(kf) - zuc(k) ) / dzc |
---|
| 1230 | alpha = ( ( dzf / dzc )**2.0 - 1.0 ) / 24.0 |
---|
| 1231 | eminus = eps * ( eps - 1.0 ) / 2.0 + alpha |
---|
| 1232 | edot = ( 1.0 - eps**2.0 ) - 2.0 * alpha |
---|
| 1233 | eplus = eps * ( eps + 1.0 ) / 2.0 + alpha |
---|
| 1234 | |
---|
| 1235 | kh(kf,jf,if) = eminus * ptprs(k-1,jf,if) & |
---|
| 1236 | + edot * ptprs(k,jf,if) & |
---|
| 1237 | + eplus * ptprs(k+1,jf,if) |
---|
| 1238 | |
---|
| 1239 | END DO |
---|
| 1240 | END DO |
---|
| 1241 | END DO |
---|
| 1242 | |
---|
| 1243 | END DO |
---|
| 1244 | |
---|
| 1245 | DO jf = nys, nyn |
---|
| 1246 | DO if = nxl, nxr |
---|
| 1247 | |
---|
| 1248 | eps = ( zuf(nzt+1) - zuc(nztop+1) ) / dzc |
---|
| 1249 | alpha = ( ( dzf / dzc )**2.0 - 1.0 ) / 24.0 |
---|
| 1250 | eminus = eps * ( eps - 1.0 ) / 2.0 + alpha |
---|
| 1251 | edot = ( 1.0 - eps**2.0 ) - 2.0 * alpha |
---|
| 1252 | eplus = eps * ( eps + 1.0 ) / 2.0 + alpha |
---|
| 1253 | |
---|
| 1254 | kh(nzt+1,jf,if) = eminus * ptprs(nztop,jf,if) & |
---|
| 1255 | + edot * ptprs(nztop+1,jf,if) & |
---|
| 1256 | + eplus * ptprs(nztop+2,jf,if) |
---|
| 1257 | |
---|
| 1258 | END DO |
---|
| 1259 | END DO |
---|
| 1260 | |
---|
| 1261 | |
---|
| 1262 | DEALLOCATE( ptprf, ptprs ) |
---|
| 1263 | |
---|
| 1264 | #endif |
---|
| 1265 | END SUBROUTINE interpolate_to_fine_kh |
---|
| 1266 | |
---|
| 1267 | SUBROUTINE interpolate_to_fine_km( tag ) |
---|
| 1268 | |
---|
| 1269 | #if defined( __parallel ) |
---|
| 1270 | |
---|
| 1271 | USE arrays_3d |
---|
| 1272 | USE control_parameters |
---|
| 1273 | USE grid_variables |
---|
| 1274 | USE indices |
---|
| 1275 | USE pegrid |
---|
| 1276 | |
---|
| 1277 | |
---|
| 1278 | IMPLICIT NONE |
---|
| 1279 | |
---|
| 1280 | |
---|
| 1281 | INTEGER(iwp), intent(in) :: tag |
---|
| 1282 | INTEGER(iwp) :: i, j, k |
---|
| 1283 | INTEGER(iwp) :: if, jf, kf |
---|
| 1284 | INTEGER(iwp) :: bottomx, topx |
---|
| 1285 | INTEGER(iwp) :: bottomy, topy |
---|
| 1286 | INTEGER(iwp) :: bottomz, topz |
---|
| 1287 | REAL(wp) :: eps, alpha, eminus, edot, eplus |
---|
| 1288 | REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: uprs, uprf |
---|
| 1289 | REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: vprs, vprf |
---|
| 1290 | REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: wprs, wprf |
---|
| 1291 | REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: ptprs, ptprf |
---|
| 1292 | REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: eprs, eprf |
---|
| 1293 | REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: kmprs, kmprf |
---|
| 1294 | REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: khprs, khprf |
---|
| 1295 | REAL(wp), DIMENSION(:,:), ALLOCATABLE :: shfpr, uswspr, vswspr |
---|
| 1296 | REAL(wp), DIMENSION(:,:), ALLOCATABLE :: tspr, uspr, z0pr |
---|
| 1297 | |
---|
| 1298 | INTEGER(iwp) :: nzbottom, nztop |
---|
| 1299 | |
---|
| 1300 | |
---|
| 1301 | nzbottom = bdims_rem (3,1) |
---|
| 1302 | nztop = bdims_rem (3,2) |
---|
| 1303 | ! nztop = blk_dim_rem (3,2)+1 |
---|
| 1304 | |
---|
| 1305 | |
---|
| 1306 | ALLOCATE( ptprf(nzbottom:nztop+2,bdims_rem(2,1)-1:bdims_rem(2,2)+1,nxl:nxr) ) |
---|
| 1307 | ALLOCATE( ptprs(nzbottom:nztop+2,nys:nyn,nxl:nxr) ) |
---|
| 1308 | |
---|
| 1309 | |
---|
| 1310 | ! |
---|
| 1311 | !-- Initialisation of scalar variables |
---|
| 1312 | |
---|
| 1313 | ! |
---|
| 1314 | !-- Interpolation in x-direction (quadratic, Clark and Farley) |
---|
| 1315 | |
---|
| 1316 | DO k = nzbottom, nztop+2 |
---|
| 1317 | DO j = bdims_rem(2,1)-1, bdims_rem(2,2)+1 |
---|
| 1318 | DO i = bdims_rem(1,1), bdims_rem(1,2) |
---|
| 1319 | |
---|
| 1320 | bottomx = (nxf+1)/(nxc+1) * i |
---|
| 1321 | topx = (nxf+1)/(nxc+1) * (i+1) - 1 |
---|
| 1322 | |
---|
| 1323 | DO if = bottomx, topx |
---|
| 1324 | |
---|
| 1325 | eps = ( if * dxf + 0.5 * dxf - i * dxc - 0.5 * dxc ) / dxc |
---|
| 1326 | alpha = ( ( dxf / dxc )**2.0 - 1.0 ) / 24.0 |
---|
| 1327 | eminus = eps * ( eps - 1.0 ) / 2.0 + alpha |
---|
| 1328 | edot = ( 1.0 - eps**2.0 ) - 2.0 * alpha |
---|
| 1329 | eplus = eps * ( eps + 1.0 ) / 2.0 + alpha |
---|
| 1330 | |
---|
| 1331 | ptprf(k,j,if) = eminus * work3d(k,j,i-1) & |
---|
| 1332 | + edot * work3d(k,j,i) & |
---|
| 1333 | + eplus * work3d(k,j,i+1) |
---|
| 1334 | END DO |
---|
| 1335 | |
---|
| 1336 | END DO |
---|
| 1337 | END DO |
---|
| 1338 | END DO |
---|
| 1339 | |
---|
| 1340 | ! |
---|
| 1341 | !-- Interpolation in y-direction (quadratic, Clark and Farley) |
---|
| 1342 | |
---|
| 1343 | DO k = nzbottom, nztop+2 |
---|
| 1344 | DO j = bdims_rem(2,1), bdims_rem(2,2) |
---|
| 1345 | |
---|
| 1346 | bottomy = (nyf+1)/(nyc+1) * j |
---|
| 1347 | topy = (nyf+1)/(nyc+1) * (j+1) - 1 |
---|
| 1348 | |
---|
| 1349 | DO if = nxl, nxr |
---|
| 1350 | DO jf = bottomy, topy |
---|
| 1351 | |
---|
| 1352 | eps = ( jf * dyf + 0.5 * dyf - j * dyc - 0.5 * dyc ) / dyc |
---|
| 1353 | alpha = ( ( dyf / dyc )**2.0 - 1.0 ) / 24.0 |
---|
| 1354 | eminus = eps * ( eps - 1.0 ) / 2.0 + alpha |
---|
| 1355 | edot = ( 1.0 - eps**2.0 ) - 2.0 * alpha |
---|
| 1356 | eplus = eps * ( eps + 1.0 ) / 2.0 + alpha |
---|
| 1357 | |
---|
| 1358 | ptprs(k,jf,if) = eminus * ptprf(k,j-1,if) & |
---|
| 1359 | + edot * ptprf(k,j,if) & |
---|
| 1360 | + eplus * ptprf(k,j+1,if) |
---|
| 1361 | |
---|
| 1362 | END DO |
---|
| 1363 | END DO |
---|
| 1364 | |
---|
| 1365 | END DO |
---|
| 1366 | END DO |
---|
| 1367 | |
---|
| 1368 | ! |
---|
| 1369 | !-- Interpolation in z-direction (quadratic, Clark and Farley) |
---|
| 1370 | |
---|
| 1371 | DO k = nzbottom+1, nztop |
---|
| 1372 | |
---|
| 1373 | bottomz = (dzc/dzf) * (k-1) + 1 |
---|
| 1374 | topz = (dzc/dzf) * k |
---|
| 1375 | |
---|
| 1376 | DO jf = nys, nyn |
---|
| 1377 | DO if = nxl, nxr |
---|
| 1378 | DO kf = bottomz, topz |
---|
| 1379 | |
---|
| 1380 | eps = ( zuf(kf) - zuc(k) ) / dzc |
---|
| 1381 | alpha = ( ( dzf / dzc )**2.0 - 1.0 ) / 24.0 |
---|
| 1382 | eminus = eps * ( eps - 1.0 ) / 2.0 + alpha |
---|
| 1383 | edot = ( 1.0 - eps**2.0 ) - 2.0 * alpha |
---|
| 1384 | eplus = eps * ( eps + 1.0 ) / 2.0 + alpha |
---|
| 1385 | |
---|
| 1386 | km(kf,jf,if) = eminus * ptprs(k-1,jf,if) & |
---|
| 1387 | + edot * ptprs(k,jf,if) & |
---|
| 1388 | + eplus * ptprs(k+1,jf,if) |
---|
| 1389 | |
---|
| 1390 | END DO |
---|
| 1391 | END DO |
---|
| 1392 | END DO |
---|
| 1393 | |
---|
| 1394 | END DO |
---|
| 1395 | |
---|
| 1396 | DO jf = nys, nyn |
---|
| 1397 | DO if = nxl, nxr |
---|
| 1398 | |
---|
| 1399 | eps = ( zuf(nzt+1) - zuc(nztop+1) ) / dzc |
---|
| 1400 | alpha = ( ( dzf / dzc )**2.0 - 1.0 ) / 24.0 |
---|
| 1401 | eminus = eps * ( eps - 1.0 ) / 2.0 + alpha |
---|
| 1402 | edot = ( 1.0 - eps**2.0 ) - 2.0 * alpha |
---|
| 1403 | eplus = eps * ( eps + 1.0 ) / 2.0 + alpha |
---|
| 1404 | |
---|
| 1405 | km(nzt+1,jf,if) = eminus * ptprs(nztop,jf,if) & |
---|
| 1406 | + edot * ptprs(nztop+1,jf,if) & |
---|
| 1407 | + eplus * ptprs(nztop+2,jf,if) |
---|
| 1408 | |
---|
| 1409 | END DO |
---|
| 1410 | END DO |
---|
| 1411 | |
---|
| 1412 | |
---|
| 1413 | DEALLOCATE( ptprf, ptprs ) |
---|
| 1414 | |
---|
| 1415 | #endif |
---|
| 1416 | END SUBROUTINE interpolate_to_fine_km |
---|
| 1417 | |
---|
| 1418 | |
---|
| 1419 | |
---|
| 1420 | |
---|
| 1421 | SUBROUTINE interpolate_to_fine_flux( tag ) |
---|
| 1422 | |
---|
| 1423 | #if defined( __parallel ) |
---|
| 1424 | |
---|
| 1425 | USE arrays_3d |
---|
| 1426 | USE control_parameters |
---|
| 1427 | USE grid_variables |
---|
| 1428 | USE indices |
---|
| 1429 | USE pegrid |
---|
| 1430 | |
---|
| 1431 | |
---|
| 1432 | IMPLICIT NONE |
---|
| 1433 | |
---|
| 1434 | |
---|
| 1435 | INTEGER(iwp), intent(in) :: tag |
---|
| 1436 | INTEGER(iwp) :: i, j, k |
---|
| 1437 | INTEGER(iwp) :: if, jf, kf |
---|
| 1438 | INTEGER(iwp) :: bottomx, topx |
---|
| 1439 | INTEGER(iwp) :: bottomy, topy |
---|
| 1440 | INTEGER(iwp) :: bottomz, topz |
---|
| 1441 | REAL(wp) :: eps, alpha, eminus, edot, eplus |
---|
| 1442 | REAL(wp), DIMENSION(:,:), ALLOCATABLE :: shfpr, uswspr, vswspr |
---|
| 1443 | REAL(wp), DIMENSION(:,:), ALLOCATABLE :: tspr, uspr, z0pr |
---|
| 1444 | |
---|
| 1445 | |
---|
| 1446 | INTEGER(iwp) :: nzbottom, nztop |
---|
| 1447 | |
---|
| 1448 | ALLOCATE( shfpr (bdims_rem(2,1)-1:bdims_rem(2,2)+1,nxl:nxr) ) |
---|
| 1449 | ALLOCATE( uswspr(bdims_rem(2,1)-1:bdims_rem(2,2)+1,nxl:nxr) ) |
---|
| 1450 | ALLOCATE( vswspr(bdims_rem(2,1)-1:bdims_rem(2,2)+1,nxl:nxr) ) |
---|
| 1451 | ALLOCATE( tspr (bdims_rem(2,1)-1:bdims_rem(2,2)+1,nxl:nxr) ) |
---|
| 1452 | ALLOCATE( uspr (bdims_rem(2,1)-1:bdims_rem(2,2)+1,nxl:nxr) ) |
---|
| 1453 | ALLOCATE( z0pr (bdims_rem(2,1)-1:bdims_rem(2,2)+1,nxl:nxr) ) |
---|
| 1454 | |
---|
| 1455 | ! |
---|
| 1456 | !-- Initialisation of scalar variables (2D) |
---|
| 1457 | |
---|
| 1458 | ! |
---|
| 1459 | !-- Interpolation in x-direction (quadratic, Clark and Farley) |
---|
| 1460 | |
---|
| 1461 | DO j = bdims_rem(2,1)-1, bdims_rem(2,2)+1 |
---|
| 1462 | DO i = bdims_rem(1,1), bdims_rem(1,2) |
---|
| 1463 | |
---|
| 1464 | bottomx = (nxf+1)/(nxc+1) * i |
---|
| 1465 | topx = (nxf+1)/(nxc+1) * (i+1) - 1 |
---|
| 1466 | |
---|
| 1467 | DO if = bottomx, topx |
---|
| 1468 | |
---|
| 1469 | eps = ( if * dxf + 0.5 * dxf - i * dxc - 0.5 * dxc ) / dxc |
---|
| 1470 | alpha = ( ( dxf / dxc )**2.0 - 1.0 ) / 24.0 |
---|
| 1471 | eminus = eps * ( eps - 1.0 ) / 2.0 + alpha |
---|
| 1472 | edot = ( 1.0 - eps**2.0 ) - 2.0 * alpha |
---|
| 1473 | eplus = eps * ( eps + 1.0 ) / 2.0 + alpha |
---|
| 1474 | |
---|
| 1475 | shfpr(j,if) = eminus * work2dshf(j,i-1) & |
---|
| 1476 | + edot * work2dshf(j,i) & |
---|
| 1477 | + eplus * work2dshf(j,i+1) |
---|
| 1478 | |
---|
| 1479 | uswspr(j,if) = eminus * work2dusws(j,i-1) & |
---|
| 1480 | + edot * work2dusws(j,i) & |
---|
| 1481 | + eplus * work2dusws(j,i+1) |
---|
| 1482 | |
---|
| 1483 | vswspr(j,if) = eminus * work2dvsws(j,i-1) & |
---|
| 1484 | + edot * work2dvsws(j,i) & |
---|
| 1485 | + eplus * work2dvsws(j,i+1) |
---|
| 1486 | |
---|
| 1487 | tspr(j,if) = eminus * work2dts(j,i-1) & |
---|
| 1488 | + edot * work2dts(j,i) & |
---|
| 1489 | + eplus * work2dts(j,i+1) |
---|
| 1490 | |
---|
| 1491 | uspr(j,if) = eminus * work2dus(j,i-1) & |
---|
| 1492 | + edot * work2dus(j,i) & |
---|
| 1493 | + eplus * work2dus(j,i+1) |
---|
| 1494 | |
---|
| 1495 | z0pr(j,if) = eminus * work2dz0(j,i-1) & |
---|
| 1496 | + edot * work2dz0(j,i) & |
---|
| 1497 | + eplus * work2dz0(j,i+1) |
---|
| 1498 | |
---|
| 1499 | END DO |
---|
| 1500 | |
---|
| 1501 | END DO |
---|
| 1502 | END DO |
---|
| 1503 | |
---|
| 1504 | ! |
---|
| 1505 | !-- Interpolation in y-direction (quadratic, Clark and Farley) |
---|
| 1506 | |
---|
| 1507 | DO j = bdims_rem(2,1), bdims_rem(2,2) |
---|
| 1508 | |
---|
| 1509 | bottomy = (nyf+1)/(nyc+1) * j |
---|
| 1510 | topy = (nyf+1)/(nyc+1) * (j+1) - 1 |
---|
| 1511 | |
---|
| 1512 | DO if = nxl, nxr |
---|
| 1513 | DO jf = bottomy, topy |
---|
| 1514 | |
---|
| 1515 | eps = ( jf * dyf + 0.5 * dyf - j * dyc - 0.5 * dyc ) / dyc |
---|
| 1516 | alpha = ( ( dyf / dyc )**2.0 - 1.0 ) / 24.0 |
---|
| 1517 | eminus = eps * ( eps - 1.0 ) / 2.0 + alpha |
---|
| 1518 | edot = ( 1.0 - eps**2.0 ) - 2.0 * alpha |
---|
| 1519 | eplus = eps * ( eps + 1.0 ) / 2.0 + alpha |
---|
| 1520 | |
---|
| 1521 | !-- WARNING |
---|
| 1522 | !-- shf,z0 not interpolated |
---|
| 1523 | !-- line commented in interpolate_to_fine_flux |
---|
| 1524 | !-- FG needs to read it's own data file |
---|
| 1525 | !MERGE-WIP! surf_def_h(0)%shf(jf,if) = eminus * shfpr(j-1,if) & |
---|
| 1526 | !MERGE-WIP! + edot * shfpr(j,if) & |
---|
| 1527 | !MERGE-WIP! + eplus * shfpr(j+1,if) |
---|
| 1528 | !MERGE-WIP |
---|
| 1529 | !MERGE-WIP surf_def_h(0)%usws(jf,if) = eminus * uswspr(j-1,if) & |
---|
| 1530 | !MERGE-WIP + edot * uswspr(j,if) & |
---|
| 1531 | !MERGE-WIP + eplus * uswspr(j+1,if) |
---|
| 1532 | !MERGE-WIP |
---|
| 1533 | !MERGE-WIP surf_def_h(0)%vsws(jf,if) = eminus * vswspr(j-1,if) & |
---|
| 1534 | !MERGE-WIP + edot * vswspr(j,if) & |
---|
| 1535 | !MERGE-WIP + eplus * vswspr(j+1,if) |
---|
| 1536 | !MERGE-WIP |
---|
| 1537 | !MERGE ts(jf,if) = eminus * tspr(j-1,if) & |
---|
| 1538 | !MERGE + edot * tspr(j,if) & |
---|
| 1539 | !MERGE + eplus * tspr(j+1,if) |
---|
| 1540 | !MERGE |
---|
| 1541 | !MERGE us(jf,if) = eminus * uspr(j-1,if) & |
---|
| 1542 | !MERGE + edot * uspr(j,if) & |
---|
| 1543 | !MERGE + eplus * uspr(j+1,if) |
---|
| 1544 | !MERGE |
---|
| 1545 | !MERGE! z0(jf,if) = eminus * z0pr(j-1,if) & |
---|
| 1546 | !MERGE! + edot * z0pr(j,if) & |
---|
| 1547 | !MERGE! + eplus * z0pr(j+1,if) |
---|
| 1548 | |
---|
| 1549 | END DO |
---|
| 1550 | END DO |
---|
| 1551 | |
---|
| 1552 | END DO |
---|
| 1553 | |
---|
| 1554 | |
---|
| 1555 | DEALLOCATE( shfpr, uswspr, vswspr ) |
---|
| 1556 | DEALLOCATE( tspr, uspr, z0pr ) |
---|
| 1557 | |
---|
| 1558 | |
---|
| 1559 | #endif |
---|
| 1560 | END SUBROUTINE interpolate_to_fine_flux |
---|
| 1561 | |
---|
| 1562 | |
---|
| 1563 | END SUBROUTINE vnest_init_fine |
---|
| 1564 | |
---|
| 1565 | SUBROUTINE vnest_boundary_conds |
---|
| 1566 | !------------------------------------------------------------------------------! |
---|
| 1567 | ! Description: |
---|
| 1568 | ! ------------ |
---|
| 1569 | ! Boundary conditions for the prognostic quantities. |
---|
| 1570 | ! One additional bottom boundary condition is applied for the TKE (=(u*)**2) |
---|
| 1571 | ! in prandtl_fluxes. The cyclic lateral boundary conditions are implicitly |
---|
| 1572 | ! handled in routine exchange_horiz. Pressure boundary conditions are |
---|
| 1573 | ! explicitly set in routines pres, poisfft, poismg and sor. |
---|
| 1574 | !------------------------------------------------------------------------------! |
---|
| 1575 | |
---|
| 1576 | USE arrays_3d |
---|
| 1577 | USE control_parameters |
---|
| 1578 | USE grid_variables |
---|
| 1579 | USE indices |
---|
| 1580 | USE pegrid |
---|
| 1581 | |
---|
| 1582 | |
---|
| 1583 | IMPLICIT NONE |
---|
| 1584 | |
---|
| 1585 | INTEGER(iwp) :: i, j, k |
---|
| 1586 | INTEGER(iwp) :: if, jf |
---|
| 1587 | |
---|
| 1588 | REAL(wp) :: c_max, denom |
---|
| 1589 | |
---|
| 1590 | #if defined( __parallel ) |
---|
| 1591 | |
---|
| 1592 | ! |
---|
| 1593 | !-- vnest: top boundary conditions |
---|
| 1594 | |
---|
| 1595 | IF ( coupling_mode == 'vnested_crse' ) THEN |
---|
| 1596 | !-- Send data to fine grid for TOP BC |
---|
| 1597 | |
---|
| 1598 | offset(1) = ( pdims_partner(1) / pdims(1) ) * pcoord(1) |
---|
| 1599 | offset(2) = ( pdims_partner(2) / pdims(2) ) * pcoord(2) |
---|
| 1600 | |
---|
| 1601 | do j = 0, ( pdims_partner(2) / pdims(2) ) - 1 |
---|
| 1602 | do i = 0, ( pdims_partner(1) / pdims(1) ) - 1 |
---|
| 1603 | map_coord(1) = i+offset(1) |
---|
| 1604 | map_coord(2) = j+offset(2) |
---|
| 1605 | |
---|
| 1606 | target_idex = f_rnk_lst(map_coord(1),map_coord(2)) + numprocs |
---|
| 1607 | |
---|
| 1608 | bdims (1,1) = c2f_dims_cg (0,map_coord(1),map_coord(2)) |
---|
| 1609 | bdims (1,2) = c2f_dims_cg (1,map_coord(1),map_coord(2)) |
---|
| 1610 | bdims (2,1) = c2f_dims_cg (2,map_coord(1),map_coord(2)) |
---|
| 1611 | bdims (2,2) = c2f_dims_cg (3,map_coord(1),map_coord(2)) |
---|
| 1612 | bdims (3,1) = c2f_dims_cg (4,map_coord(1),map_coord(2)) |
---|
| 1613 | bdims (3,2) = c2f_dims_cg (5,map_coord(1),map_coord(2)) |
---|
| 1614 | |
---|
| 1615 | n_cell_c = ( (bdims(1,2)-bdims(1,1)) + 3 ) * & |
---|
| 1616 | ( (bdims(2,2)-bdims(2,1)) + 3 ) * & |
---|
| 1617 | ( (bdims(3,2)-bdims(3,1)) + 1 ) |
---|
| 1618 | |
---|
| 1619 | CALL MPI_SEND(u (bdims(3,1), bdims(2,1)-1, bdims(1,1)-1), & |
---|
| 1620 | 1, TYPE_VNEST_BC, target_idex, & |
---|
| 1621 | 201, comm_inter, ierr) |
---|
| 1622 | |
---|
| 1623 | CALL MPI_SEND(v(bdims(3,1), bdims(2,1)-1, bdims(1,1)-1),& |
---|
| 1624 | 1, TYPE_VNEST_BC, target_idex, & |
---|
| 1625 | 202, comm_inter, ierr) |
---|
| 1626 | |
---|
| 1627 | CALL MPI_SEND(w(bdims(3,1), bdims(2,1)-1, bdims(1,1)-1),& |
---|
| 1628 | 1, TYPE_VNEST_BC, target_idex, & |
---|
| 1629 | 203, comm_inter, ierr) |
---|
| 1630 | |
---|
| 1631 | CALL MPI_SEND(pt(bdims(3,1), bdims(2,1)-1, bdims(1,1)-1),& |
---|
| 1632 | 1, TYPE_VNEST_BC, target_idex, & |
---|
| 1633 | 205, comm_inter, ierr) |
---|
| 1634 | |
---|
| 1635 | IF ( humidity ) THEN |
---|
| 1636 | CALL MPI_SEND(q(bdims(3,1), bdims(2,1)-1, bdims(1,1)-1),& |
---|
| 1637 | 1, TYPE_VNEST_BC, target_idex, & |
---|
| 1638 | 209, comm_inter, ierr) |
---|
| 1639 | ENDIF |
---|
| 1640 | |
---|
| 1641 | end do |
---|
| 1642 | end do |
---|
| 1643 | |
---|
| 1644 | ELSEIF ( coupling_mode == 'vnested_fine' ) THEN |
---|
| 1645 | !-- Receive data from coarse grid for TOP BC |
---|
| 1646 | |
---|
| 1647 | offset(1) = pcoord(1) / ( pdims(1)/pdims_partner(1) ) |
---|
| 1648 | offset(2) = pcoord(2) / ( pdims(2)/pdims_partner(2) ) |
---|
| 1649 | map_coord(1) = offset(1) |
---|
| 1650 | map_coord(2) = offset(2) |
---|
| 1651 | target_idex = c_rnk_lst(map_coord(1),map_coord(2)) |
---|
| 1652 | |
---|
| 1653 | bdims_rem (1,1) = c2f_dims_fg(0) |
---|
| 1654 | bdims_rem (1,2) = c2f_dims_fg(1) |
---|
| 1655 | bdims_rem (2,1) = c2f_dims_fg(2) |
---|
| 1656 | bdims_rem (2,2) = c2f_dims_fg(3) |
---|
| 1657 | bdims_rem (3,1) = c2f_dims_fg(4) |
---|
| 1658 | bdims_rem (3,2) = c2f_dims_fg(5) |
---|
| 1659 | |
---|
| 1660 | n_cell_c = & |
---|
| 1661 | ( (bdims_rem(1,2)-bdims_rem(1,1)) + 3 ) * & |
---|
| 1662 | ( (bdims_rem(2,2)-bdims_rem(2,1)) + 3 ) * & |
---|
| 1663 | ( (bdims_rem(3,2)-bdims_rem(3,1)) + 1 ) |
---|
| 1664 | |
---|
| 1665 | ALLOCATE( work3d ( & |
---|
| 1666 | bdims_rem(3,1) :bdims_rem(3,2) , & |
---|
| 1667 | bdims_rem(2,1)-1:bdims_rem(2,2)+1, & |
---|
| 1668 | bdims_rem(1,1)-1:bdims_rem(1,2)+1)) |
---|
| 1669 | |
---|
| 1670 | |
---|
| 1671 | CALL MPI_RECV( work3d ,n_cell_c, MPI_REAL, target_idex, 201, & |
---|
| 1672 | comm_inter,status, ierr ) |
---|
| 1673 | interpol3d => u |
---|
| 1674 | call vnest_set_topbc_u |
---|
| 1675 | |
---|
| 1676 | CALL MPI_RECV( work3d ,n_cell_c, MPI_REAL, target_idex, 202, & |
---|
| 1677 | comm_inter,status, ierr ) |
---|
| 1678 | interpol3d => v |
---|
| 1679 | call vnest_set_topbc_v |
---|
| 1680 | |
---|
| 1681 | CALL MPI_RECV( work3d ,n_cell_c, MPI_REAL, target_idex, 203, & |
---|
| 1682 | comm_inter,status, ierr ) |
---|
| 1683 | interpol3d => w |
---|
| 1684 | call vnest_set_topbc_w |
---|
| 1685 | |
---|
| 1686 | CALL MPI_RECV( work3d,n_cell_c, MPI_REAL, target_idex, 205, & |
---|
| 1687 | comm_inter,status, ierr ) |
---|
| 1688 | interpol3d => pt |
---|
| 1689 | call vnest_set_topbc_s |
---|
| 1690 | |
---|
| 1691 | IF ( humidity ) THEN |
---|
[2514] | 1692 | CALL MPI_RECV( work3d,n_cell_c, MPI_REAL, target_idex, 209, & |
---|
[2365] | 1693 | comm_inter,status, ierr ) |
---|
| 1694 | interpol3d => q |
---|
| 1695 | call vnest_set_topbc_s |
---|
| 1696 | |
---|
| 1697 | CALL exchange_horiz_2d(q (nzt+1,:,:) ) |
---|
| 1698 | ENDIF |
---|
| 1699 | |
---|
| 1700 | !-- TKE Neumann BC for FG top |
---|
| 1701 | DO jf = nys, nyn |
---|
| 1702 | DO if = nxl, nxr |
---|
| 1703 | e(nzt+1,jf,if) = e(nzt,jf,if) |
---|
| 1704 | END DO |
---|
| 1705 | END DO |
---|
| 1706 | |
---|
| 1707 | ! |
---|
| 1708 | !-- w level nzt+1 does not impact results. Only to avoid jumps while |
---|
| 1709 | !-- plotting profiles |
---|
| 1710 | w(nzt+1,:,:) = w(nzt,:,:) |
---|
| 1711 | |
---|
| 1712 | CALL exchange_horiz_2d(u (nzt+1,:,:) ) |
---|
| 1713 | CALL exchange_horiz_2d(v (nzt+1,:,:) ) |
---|
| 1714 | CALL exchange_horiz_2d(pt(nzt+1,:,:) ) |
---|
| 1715 | CALL exchange_horiz_2d(e (nzt+1,:,:) ) |
---|
| 1716 | CALL exchange_horiz_2d(w (nzt+1,:,:) ) |
---|
| 1717 | CALL exchange_horiz_2d(w (nzt ,:,:) ) |
---|
| 1718 | |
---|
| 1719 | NULLIFY ( interpol3d ) |
---|
| 1720 | DEALLOCATE ( work3d ) |
---|
| 1721 | |
---|
| 1722 | ENDIF |
---|
| 1723 | |
---|
| 1724 | |
---|
| 1725 | #endif |
---|
| 1726 | CONTAINS |
---|
| 1727 | |
---|
| 1728 | SUBROUTINE vnest_set_topbc_w |
---|
| 1729 | |
---|
| 1730 | #if defined( __parallel ) |
---|
| 1731 | |
---|
| 1732 | USE arrays_3d |
---|
| 1733 | USE control_parameters |
---|
| 1734 | USE grid_variables |
---|
| 1735 | USE indices |
---|
| 1736 | USE pegrid |
---|
| 1737 | |
---|
| 1738 | |
---|
| 1739 | IMPLICIT NONE |
---|
| 1740 | |
---|
| 1741 | INTEGER(iwp) :: i, j, k |
---|
| 1742 | INTEGER(iwp) :: if, jf |
---|
| 1743 | INTEGER(iwp) :: bottomx, topx |
---|
| 1744 | INTEGER(iwp) :: bottomy, topy |
---|
| 1745 | REAL(wp) :: eps, alpha, eminus, edot, eplus |
---|
| 1746 | REAL(wp), DIMENSION(:,:), ALLOCATABLE :: wprf |
---|
| 1747 | |
---|
| 1748 | |
---|
| 1749 | ALLOCATE( wprf(bdims_rem(2,1)-1:bdims_rem(2,2)+1,nxl:nxr) ) |
---|
| 1750 | |
---|
| 1751 | ! |
---|
| 1752 | !-- Determination of a boundary condition for the vertical velocity component w: |
---|
| 1753 | !-- In this case only interpolation in x- and y- direction is necessary, as the |
---|
| 1754 | !-- boundary w-node of the fine grid coincides with a w-node in the coarse grid. |
---|
| 1755 | !-- For both interpolations the scheme of Clark and Farley is used. |
---|
| 1756 | |
---|
| 1757 | ! |
---|
| 1758 | !-- Interpolation in x-direction |
---|
| 1759 | |
---|
| 1760 | DO j = bdims_rem(2,1)-1, bdims_rem(2,2)+1 |
---|
| 1761 | |
---|
| 1762 | DO i = bdims_rem(1,1), bdims_rem(1,2) |
---|
| 1763 | |
---|
| 1764 | bottomx = (nxf+1)/(nxc+1) * i |
---|
| 1765 | topx = (nxf+1)/(nxc+1) * (i+1) - 1 |
---|
| 1766 | |
---|
| 1767 | DO if = bottomx, topx |
---|
| 1768 | |
---|
| 1769 | eps = (if * dxf + 0.5 * dxf - i * dxc - 0.5 * dxc) / dxc |
---|
| 1770 | alpha = ( (dxf/dxc)**2.0 - 1.0) / 24.0 |
---|
| 1771 | eminus = eps * ( eps - 1.0 ) / 2.0 + alpha |
---|
| 1772 | edot = ( 1.0 - eps**2.0 ) - 2.0 * alpha |
---|
| 1773 | eplus = eps * ( eps + 1.0 ) / 2.0 + alpha |
---|
| 1774 | wprf(j,if) = eminus * work3d(bdims_rem(3,1),j,i-1) & |
---|
| 1775 | + edot * work3d(bdims_rem(3,1),j,i) & |
---|
| 1776 | + eplus * work3d(bdims_rem(3,1),j,i+1) |
---|
| 1777 | |
---|
| 1778 | END DO |
---|
| 1779 | |
---|
| 1780 | END DO |
---|
| 1781 | |
---|
| 1782 | END DO |
---|
| 1783 | |
---|
| 1784 | ! |
---|
| 1785 | !-- Interpolation in y-direction |
---|
| 1786 | |
---|
| 1787 | DO j = bdims_rem(2,1), bdims_rem(2,2) |
---|
| 1788 | |
---|
| 1789 | bottomy = (nyf+1)/(nyc+1) * j |
---|
| 1790 | topy = (nyf+1)/(nyc+1) * (j+1) - 1 |
---|
| 1791 | |
---|
| 1792 | DO if = nxl, nxr |
---|
| 1793 | |
---|
| 1794 | DO jf = bottomy, topy |
---|
| 1795 | |
---|
| 1796 | eps = (jf * dyf + 0.5 * dyf - j * dyc - 0.5 * dyc) / dyc |
---|
| 1797 | |
---|
| 1798 | alpha = ( (dyf/dyc)**2.0 - 1.0) / 24.0 |
---|
| 1799 | |
---|
| 1800 | eminus = eps * ( eps - 1.0 ) / 2.0 + alpha |
---|
| 1801 | |
---|
| 1802 | edot = ( 1.0 - eps**2.0 ) - 2.0 * alpha |
---|
| 1803 | |
---|
| 1804 | eplus = eps * ( eps + 1.0 ) / 2.0 + alpha |
---|
| 1805 | |
---|
| 1806 | w(nzt,jf,if) = eminus * wprf(j-1,if) & |
---|
| 1807 | + edot * wprf(j,if) & |
---|
| 1808 | + eplus * wprf(j+1,if) |
---|
| 1809 | |
---|
| 1810 | END DO |
---|
| 1811 | |
---|
| 1812 | END DO |
---|
| 1813 | |
---|
| 1814 | END DO |
---|
| 1815 | |
---|
| 1816 | DEALLOCATE( wprf ) |
---|
| 1817 | #endif |
---|
| 1818 | |
---|
| 1819 | END SUBROUTINE vnest_set_topbc_w |
---|
| 1820 | |
---|
| 1821 | |
---|
| 1822 | SUBROUTINE vnest_set_topbc_u |
---|
| 1823 | |
---|
| 1824 | #if defined( __parallel ) |
---|
| 1825 | |
---|
| 1826 | USE arrays_3d |
---|
| 1827 | USE control_parameters |
---|
| 1828 | USE grid_variables |
---|
| 1829 | USE indices |
---|
| 1830 | USE pegrid |
---|
| 1831 | |
---|
| 1832 | |
---|
| 1833 | IMPLICIT NONE |
---|
| 1834 | |
---|
| 1835 | INTEGER(iwp) :: i, j, k |
---|
| 1836 | INTEGER(iwp) :: if, jf |
---|
| 1837 | INTEGER(iwp) :: bottomx, topx |
---|
| 1838 | INTEGER(iwp) :: bottomy, topy |
---|
| 1839 | REAL(wp) :: eps, alpha, eminus, edot, eplus |
---|
| 1840 | REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: uprf |
---|
| 1841 | REAL(wp), DIMENSION(:,:), ALLOCATABLE :: uprs |
---|
| 1842 | |
---|
| 1843 | |
---|
| 1844 | |
---|
| 1845 | ALLOCATE( uprf(bdims_rem(3,1):bdims_rem(3,2),nys:nyn,bdims_rem(1,1)-1:bdims_rem(1,2)+1) ) |
---|
| 1846 | ALLOCATE( uprs(nys:nyn,bdims_rem(1,1)-1:bdims_rem(1,2)+1) ) |
---|
| 1847 | |
---|
| 1848 | |
---|
| 1849 | ! |
---|
| 1850 | !-- Interpolation in y-direction |
---|
| 1851 | |
---|
| 1852 | DO k = bdims_rem(3,1), bdims_rem(3,2) |
---|
| 1853 | DO j = bdims_rem(2,1), bdims_rem(2,2) |
---|
| 1854 | |
---|
| 1855 | bottomy = (nyf+1)/(nyc+1) * j |
---|
| 1856 | topy = (nyf+1)/(nyc+1) * (j+1) - 1 |
---|
| 1857 | |
---|
| 1858 | DO i = bdims_rem(1,1)-1, bdims_rem(1,2)+1 |
---|
| 1859 | DO jf = bottomy, topy |
---|
| 1860 | |
---|
| 1861 | eps = (jf * dyf + 0.5 * dyf - j * dyc - 0.5 * dyc) / dyc |
---|
| 1862 | alpha = ( (dyf/dyc)**2.0 - 1.0) / 24.0 |
---|
| 1863 | eminus = eps * ( eps - 1.0 ) / 2.0 + alpha |
---|
| 1864 | edot = ( 1.0 - eps**2.0 ) - 2.0 * alpha |
---|
| 1865 | eplus = eps * ( eps + 1.0 ) / 2.0 + alpha |
---|
| 1866 | |
---|
| 1867 | uprf(k,jf,i) = eminus * work3d(k,j-1,i) & |
---|
| 1868 | + edot * work3d(k,j,i) & |
---|
| 1869 | + eplus * work3d(k,j+1,i) |
---|
| 1870 | END DO |
---|
| 1871 | END DO |
---|
| 1872 | |
---|
| 1873 | END DO |
---|
| 1874 | END DO |
---|
| 1875 | |
---|
| 1876 | ! |
---|
| 1877 | !-- Interpolation in z-direction |
---|
| 1878 | |
---|
| 1879 | DO jf = nys, nyn |
---|
| 1880 | DO i = bdims_rem(1,1)-1, bdims_rem(1,2)+1 |
---|
| 1881 | eps = ( zuf(nzt+1) - zuc(bdims_rem(3,1)+1) ) / dzc |
---|
| 1882 | alpha = ( (dzf/dzc)**2.0 - 1.0) / 24.0 |
---|
| 1883 | eminus = eps * ( eps - 1.0 ) / 2.0 + alpha |
---|
| 1884 | edot = ( 1.0 - eps**2.0 ) - 2.0 * alpha |
---|
| 1885 | eplus = eps * ( eps + 1.0 ) / 2.0 + alpha |
---|
| 1886 | uprs(jf,i) = eminus * uprf(bdims_rem(3,1),jf,i) & |
---|
| 1887 | + edot * uprf(bdims_rem(3,1)+1,jf,i) & |
---|
| 1888 | + eplus * uprf(bdims_rem(3,1)+2,jf,i) |
---|
| 1889 | END DO |
---|
| 1890 | END DO |
---|
| 1891 | |
---|
| 1892 | ! |
---|
| 1893 | !-- Interpolation in x-direction |
---|
| 1894 | |
---|
| 1895 | DO jf = nys, nyn |
---|
| 1896 | DO i = bdims_rem(1,1), bdims_rem(1,2) |
---|
| 1897 | |
---|
| 1898 | bottomx = (nxf+1)/(nxc+1) * i |
---|
| 1899 | topx = (nxf+1)/(nxc+1) * (i+1) - 1 |
---|
| 1900 | |
---|
| 1901 | DO if = bottomx, topx |
---|
| 1902 | u(nzt+1,jf,if) = uprs(jf,i) + ( if * dxf - i * dxc ) * ( uprs(jf,i+1) - uprs(jf,i) ) / dxc |
---|
| 1903 | END DO |
---|
| 1904 | |
---|
| 1905 | END DO |
---|
| 1906 | END DO |
---|
| 1907 | |
---|
| 1908 | |
---|
| 1909 | |
---|
| 1910 | DEALLOCATE ( uprf, uprs ) |
---|
| 1911 | #endif |
---|
| 1912 | |
---|
| 1913 | END SUBROUTINE vnest_set_topbc_u |
---|
| 1914 | |
---|
| 1915 | |
---|
| 1916 | SUBROUTINE vnest_set_topbc_v |
---|
| 1917 | |
---|
| 1918 | #if defined( __parallel ) |
---|
| 1919 | |
---|
| 1920 | USE arrays_3d |
---|
| 1921 | USE control_parameters |
---|
| 1922 | USE grid_variables |
---|
| 1923 | USE indices |
---|
| 1924 | USE pegrid |
---|
| 1925 | |
---|
| 1926 | |
---|
| 1927 | IMPLICIT NONE |
---|
| 1928 | |
---|
| 1929 | INTEGER(iwp) :: i, j, k |
---|
| 1930 | INTEGER(iwp) :: if, jf |
---|
| 1931 | INTEGER(iwp) :: bottomx, topx |
---|
| 1932 | INTEGER(iwp) :: bottomy, topy |
---|
| 1933 | REAL(wp) :: eps, alpha, eminus, edot, eplus |
---|
| 1934 | REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: vprf |
---|
| 1935 | REAL(wp), DIMENSION(:,:), ALLOCATABLE :: vprs |
---|
| 1936 | |
---|
| 1937 | |
---|
| 1938 | |
---|
| 1939 | ALLOCATE( vprf(bdims_rem(3,1):bdims_rem(3,2),bdims_rem(2,1)-1:bdims_rem(2,2)+1,nxl:nxr) ) |
---|
| 1940 | ALLOCATE( vprs(bdims_rem(2,1)-1:bdims_rem(2,2)+1,nxl:nxr) ) |
---|
| 1941 | ! |
---|
| 1942 | !-- Determination of a boundary condition for the horizontal velocity component v: |
---|
| 1943 | !-- Interpolation in x- and z-direction is carried out by using the scheme, |
---|
| 1944 | !-- which was derived by Clark and Farley (1984). In y-direction a |
---|
| 1945 | !-- linear interpolation is carried out. |
---|
| 1946 | |
---|
| 1947 | ! |
---|
| 1948 | !-- Interpolation in x-direction |
---|
| 1949 | |
---|
| 1950 | DO k = bdims_rem(3,1), bdims_rem(3,2) |
---|
| 1951 | DO j = bdims_rem(2,1)-1, bdims_rem(2,2)+1 |
---|
| 1952 | DO i = bdims_rem(1,1), bdims_rem(1,2) |
---|
| 1953 | |
---|
| 1954 | bottomx = (nxf+1)/(nxc+1) * i |
---|
| 1955 | topx = (nxf+1)/(nxc+1) * (i+1) - 1 |
---|
| 1956 | |
---|
| 1957 | DO if = bottomx, topx |
---|
| 1958 | |
---|
| 1959 | eps = (if * dxf + 0.5 * dxf - i * dxc - 0.5 * dxc) / dxc |
---|
| 1960 | alpha = ( (dxf/dxc)**2.0 - 1.0) / 24.0 |
---|
| 1961 | eminus = eps * ( eps - 1.0 ) / 2.0 + alpha |
---|
| 1962 | edot = ( 1.0 - eps**2.0 ) - 2.0 * alpha |
---|
| 1963 | eplus = eps * ( eps + 1.0 ) / 2.0 + alpha |
---|
| 1964 | vprf(k,j,if) = eminus * work3d(k,j,i-1) & |
---|
| 1965 | + edot * work3d(k,j,i) & |
---|
| 1966 | + eplus * work3d(k,j,i+1) |
---|
| 1967 | END DO |
---|
| 1968 | |
---|
| 1969 | END DO |
---|
| 1970 | END DO |
---|
| 1971 | END DO |
---|
| 1972 | |
---|
| 1973 | ! |
---|
| 1974 | !-- Interpolation in z-direction |
---|
| 1975 | |
---|
| 1976 | DO j = bdims_rem(2,1)-1, bdims_rem(2,2)+1 |
---|
| 1977 | DO if = nxl, nxr |
---|
| 1978 | |
---|
| 1979 | eps = ( zuf(nzt+1) - zuc(bdims_rem(3,1)+1) ) / dzc |
---|
| 1980 | alpha = ( (dzf/dzc)**2.0 - 1.0) / 24.0 |
---|
| 1981 | eminus = eps * ( eps - 1.0 ) / 2.0 + alpha |
---|
| 1982 | edot = ( 1.0 - eps**2.0 ) - 2.0 * alpha |
---|
| 1983 | eplus = eps * ( eps + 1.0 ) / 2.0 + alpha |
---|
| 1984 | vprs(j,if) = eminus * vprf(bdims_rem(3,1),j,if) & |
---|
| 1985 | + edot * vprf(bdims_rem(3,1)+1,j,if) & |
---|
| 1986 | + eplus * vprf(bdims_rem(3,1)+2,j,if) |
---|
| 1987 | |
---|
| 1988 | END DO |
---|
| 1989 | END DO |
---|
| 1990 | |
---|
| 1991 | ! |
---|
| 1992 | !-- Interpolation in y-direction |
---|
| 1993 | |
---|
| 1994 | DO j = bdims_rem(2,1), bdims_rem(2,2) |
---|
| 1995 | DO if = nxl, nxr |
---|
| 1996 | |
---|
| 1997 | bottomy = (nyf+1)/(nyc+1) * j |
---|
| 1998 | topy = (nyf+1)/(nyc+1) * (j+1) - 1 |
---|
| 1999 | |
---|
| 2000 | DO jf = bottomy, topy |
---|
| 2001 | |
---|
| 2002 | v(nzt+1,jf,if) = vprs(j,if) + ( jf * dyf - j * dyc ) * ( vprs(j+1,if) - vprs(j,if) ) / dyc |
---|
| 2003 | |
---|
| 2004 | END DO |
---|
| 2005 | END DO |
---|
| 2006 | END DO |
---|
| 2007 | |
---|
| 2008 | |
---|
| 2009 | DEALLOCATE ( vprf, vprs) |
---|
| 2010 | |
---|
| 2011 | |
---|
| 2012 | #endif |
---|
| 2013 | |
---|
| 2014 | END SUBROUTINE vnest_set_topbc_v |
---|
| 2015 | |
---|
| 2016 | |
---|
| 2017 | SUBROUTINE vnest_set_topbc_s |
---|
| 2018 | |
---|
| 2019 | #if defined( __parallel ) |
---|
| 2020 | |
---|
| 2021 | USE arrays_3d |
---|
| 2022 | USE control_parameters |
---|
| 2023 | USE grid_variables |
---|
| 2024 | USE indices |
---|
| 2025 | USE pegrid |
---|
| 2026 | |
---|
| 2027 | |
---|
| 2028 | IMPLICIT NONE |
---|
| 2029 | |
---|
| 2030 | INTEGER(iwp) :: i, j, k |
---|
| 2031 | INTEGER(iwp) :: if, jf |
---|
| 2032 | INTEGER(iwp) :: bottomx, topx |
---|
| 2033 | INTEGER(iwp) :: bottomy, topy |
---|
| 2034 | REAL(wp) :: eps, alpha, eminus, edot, eplus |
---|
| 2035 | REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: ptprf, ptprs |
---|
| 2036 | |
---|
| 2037 | |
---|
| 2038 | |
---|
| 2039 | ALLOCATE( ptprf(bdims_rem(3,1):bdims_rem(3,2),bdims_rem(2,1)-1:bdims_rem(2,2)+1,nxl:nxr) ) |
---|
| 2040 | ALLOCATE( ptprs(bdims_rem(3,1):bdims_rem(3,2),nys:nyn,nxl:nxr) ) |
---|
| 2041 | |
---|
| 2042 | ! |
---|
| 2043 | !-- Determination of a boundary condition for the potential temperature pt: |
---|
| 2044 | !-- The scheme derived by Clark and Farley can be used in all three dimensions. |
---|
| 2045 | |
---|
| 2046 | ! |
---|
| 2047 | !-- Interpolation in x-direction |
---|
| 2048 | |
---|
| 2049 | DO k = bdims_rem(3,1), bdims_rem(3,2) |
---|
| 2050 | |
---|
| 2051 | DO j = bdims_rem(2,1)-1, bdims_rem(2,2)+1 |
---|
| 2052 | |
---|
| 2053 | DO i = bdims_rem(1,1), bdims_rem(1,2) |
---|
| 2054 | |
---|
| 2055 | bottomx = (nxf+1)/(nxc+1) * i |
---|
| 2056 | topx = (nxf+1)/(nxc+1) *(i+1) - 1 |
---|
| 2057 | |
---|
| 2058 | DO if = bottomx, topx |
---|
| 2059 | |
---|
| 2060 | eps = (if * dxf + 0.5 * dxf - i * dxc - 0.5 * dxc) / dxc |
---|
| 2061 | |
---|
| 2062 | alpha = ( (dxf/dxc)**2.0 - 1.0) / 24.0 |
---|
| 2063 | |
---|
| 2064 | eminus = eps * (eps - 1.0 ) / 2.0 + alpha |
---|
| 2065 | |
---|
| 2066 | edot = ( 1.0 - eps**2.0 ) - 2.0 * alpha |
---|
| 2067 | |
---|
| 2068 | eplus = eps * ( eps + 1.0 ) / 2.0 + alpha |
---|
| 2069 | |
---|
| 2070 | ptprf(k,j,if) = eminus * work3d(k,j,i-1) & |
---|
| 2071 | + edot * work3d(k,j,i) & |
---|
| 2072 | + eplus * work3d(k,j,i+1) |
---|
| 2073 | END DO |
---|
| 2074 | |
---|
| 2075 | END DO |
---|
| 2076 | |
---|
| 2077 | END DO |
---|
| 2078 | |
---|
| 2079 | END DO |
---|
| 2080 | |
---|
| 2081 | ! |
---|
| 2082 | !-- Interpolation in y-direction |
---|
| 2083 | |
---|
| 2084 | DO k = bdims_rem(3,1), bdims_rem(3,2) |
---|
| 2085 | |
---|
| 2086 | DO j = bdims_rem(2,1), bdims_rem(2,2) |
---|
| 2087 | |
---|
| 2088 | bottomy = (nyf+1)/(nyc+1) * j |
---|
| 2089 | topy = (nyf+1)/(nyc+1) * (j+1) - 1 |
---|
| 2090 | |
---|
| 2091 | DO if = nxl, nxr |
---|
| 2092 | |
---|
| 2093 | DO jf = bottomy, topy |
---|
| 2094 | |
---|
| 2095 | eps = (jf * dyf + 0.5 * dyf - j * dyc - 0.5 * dyc) / dyc |
---|
| 2096 | |
---|
| 2097 | alpha = ( (dyf/dyc)**2.0 - 1.0) / 24.0 |
---|
| 2098 | |
---|
| 2099 | eminus = eps * (eps - 1.0) / 2.0 + alpha |
---|
| 2100 | |
---|
| 2101 | edot = ( 1.0 - eps**2.0 ) - 2.0 * alpha |
---|
| 2102 | |
---|
| 2103 | eplus = eps * ( eps + 1.0 ) / 2.0 + alpha |
---|
| 2104 | |
---|
| 2105 | ptprs(k,jf,if) = eminus * ptprf(k,j-1,if) & |
---|
| 2106 | + edot * ptprf(k,j,if) & |
---|
| 2107 | + eplus * ptprf(k,j+1,if) |
---|
| 2108 | END DO |
---|
| 2109 | |
---|
| 2110 | END DO |
---|
| 2111 | |
---|
| 2112 | END DO |
---|
| 2113 | |
---|
| 2114 | END DO |
---|
| 2115 | |
---|
| 2116 | ! |
---|
| 2117 | !-- Interpolation in z-direction |
---|
| 2118 | |
---|
| 2119 | DO jf = nys, nyn |
---|
| 2120 | DO if = nxl, nxr |
---|
| 2121 | |
---|
| 2122 | eps = ( zuf(nzt+1) - zuc(bdims_rem(3,1)+1) ) / dzc |
---|
| 2123 | |
---|
| 2124 | alpha = ( (dzf/dzc)**2.0 - 1.0) / 24.0 |
---|
| 2125 | |
---|
| 2126 | eminus = eps * ( eps - 1.0 ) / 2.0 + alpha |
---|
| 2127 | |
---|
| 2128 | edot = ( 1.0 - eps**2.0 ) - 2.0 * alpha |
---|
| 2129 | |
---|
| 2130 | eplus = eps * ( eps + 1.0 ) / 2.0 + alpha |
---|
| 2131 | |
---|
| 2132 | interpol3d (nzt+1,jf,if) = eminus * ptprs(bdims_rem(3,1),jf,if) & |
---|
| 2133 | + edot * ptprs(bdims_rem(3,1)+1,jf,if) & |
---|
| 2134 | + eplus * ptprs(bdims_rem(3,1)+2,jf,if) |
---|
| 2135 | |
---|
| 2136 | END DO |
---|
| 2137 | END DO |
---|
| 2138 | |
---|
| 2139 | DEALLOCATE ( ptprf, ptprs ) |
---|
| 2140 | |
---|
| 2141 | |
---|
| 2142 | #endif |
---|
| 2143 | |
---|
| 2144 | END SUBROUTINE vnest_set_topbc_s |
---|
| 2145 | END SUBROUTINE vnest_boundary_conds |
---|
| 2146 | |
---|
| 2147 | |
---|
| 2148 | SUBROUTINE vnest_boundary_conds_khkm |
---|
| 2149 | |
---|
| 2150 | !--------------------------------------------------------------------------------! |
---|
| 2151 | ! Description: |
---|
| 2152 | ! ------------ |
---|
| 2153 | ! Boundary conditions for the prognostic quantities. |
---|
| 2154 | ! One additional bottom boundary condition is applied for the TKE (=(u*)**2) |
---|
| 2155 | ! in prandtl_fluxes. The cyclic lateral boundary conditions are implicitly |
---|
| 2156 | ! handled in routine exchange_horiz. Pressure boundary conditions are |
---|
| 2157 | ! explicitly set in routines pres, poisfft, poismg and sor. |
---|
| 2158 | !------------------------------------------------------------------------------! |
---|
| 2159 | |
---|
| 2160 | USE arrays_3d |
---|
| 2161 | USE control_parameters |
---|
| 2162 | USE grid_variables |
---|
| 2163 | USE indices |
---|
| 2164 | USE pegrid |
---|
| 2165 | |
---|
| 2166 | |
---|
| 2167 | IMPLICIT NONE |
---|
| 2168 | |
---|
| 2169 | INTEGER(iwp) :: i, j, k |
---|
| 2170 | INTEGER(iwp) :: if, jf |
---|
| 2171 | |
---|
| 2172 | REAL(wp) :: c_max, denom |
---|
| 2173 | |
---|
| 2174 | #if defined( __parallel ) |
---|
| 2175 | |
---|
| 2176 | IF ( coupling_mode == 'vnested_crse' ) THEN |
---|
| 2177 | ! Send data to fine grid for TOP BC |
---|
| 2178 | |
---|
| 2179 | offset(1) = ( pdims_partner(1) / pdims(1) ) * pcoord(1) |
---|
| 2180 | offset(2) = ( pdims_partner(2) / pdims(2) ) * pcoord(2) |
---|
| 2181 | |
---|
| 2182 | do j = 0, ( pdims_partner(2) / pdims(2) ) - 1 |
---|
| 2183 | do i = 0, ( pdims_partner(1) / pdims(1) ) - 1 |
---|
| 2184 | map_coord(1) = i+offset(1) |
---|
| 2185 | map_coord(2) = j+offset(2) |
---|
| 2186 | |
---|
| 2187 | target_idex = f_rnk_lst(map_coord(1),map_coord(2)) + numprocs |
---|
| 2188 | |
---|
| 2189 | CALL MPI_RECV( bdims_rem, 6, MPI_INTEGER, target_idex, 10, & |
---|
| 2190 | comm_inter,status, ierr ) |
---|
| 2191 | |
---|
| 2192 | bdims (1,1) = bdims_rem (1,1) / cfratio(1) |
---|
| 2193 | bdims (1,2) = bdims_rem (1,2) / cfratio(1) |
---|
| 2194 | bdims (2,1) = bdims_rem (2,1) / cfratio(2) |
---|
| 2195 | bdims (2,2) = bdims_rem (2,2) / cfratio(2) |
---|
| 2196 | bdims (3,1) = bdims_rem (3,2) / cfratio(3) |
---|
| 2197 | bdims (3,2) = bdims (3,1) + 2 |
---|
| 2198 | |
---|
| 2199 | CALL MPI_SEND( bdims, 6, MPI_INTEGER, target_idex, 9, & |
---|
| 2200 | comm_inter, ierr ) |
---|
| 2201 | |
---|
| 2202 | |
---|
| 2203 | n_cell_c = ( (bdims(1,2)-bdims(1,1)) + 3 ) * & |
---|
| 2204 | ( (bdims(2,2)-bdims(2,1)) + 3 ) * & |
---|
| 2205 | ( (bdims(3,2)-bdims(3,1)) + 1 ) |
---|
| 2206 | |
---|
| 2207 | CALL MPI_SEND(kh(bdims(3,1) :bdims(3,2) , & |
---|
| 2208 | bdims(2,1)-1:bdims(2,2)+1, & |
---|
| 2209 | bdims(1,1)-1:bdims(1,2)+1),& |
---|
| 2210 | n_cell_c, MPI_REAL, target_idex, & |
---|
[2514] | 2211 | 207, comm_inter, ierr) |
---|
[2365] | 2212 | |
---|
| 2213 | CALL MPI_SEND(km(bdims(3,1) :bdims(3,2) , & |
---|
| 2214 | bdims(2,1)-1:bdims(2,2)+1, & |
---|
| 2215 | bdims(1,1)-1:bdims(1,2)+1),& |
---|
| 2216 | n_cell_c, MPI_REAL, target_idex, & |
---|
[2514] | 2217 | 208, comm_inter, ierr) |
---|
[2365] | 2218 | |
---|
| 2219 | |
---|
| 2220 | |
---|
| 2221 | end do |
---|
| 2222 | end do |
---|
| 2223 | |
---|
| 2224 | ELSEIF ( coupling_mode == 'vnested_fine' ) THEN |
---|
| 2225 | ! Receive data from coarse grid for TOP BC |
---|
| 2226 | |
---|
| 2227 | offset(1) = pcoord(1) / ( pdims(1)/pdims_partner(1) ) |
---|
| 2228 | offset(2) = pcoord(2) / ( pdims(2)/pdims_partner(2) ) |
---|
| 2229 | map_coord(1) = offset(1) |
---|
| 2230 | map_coord(2) = offset(2) |
---|
| 2231 | target_idex = c_rnk_lst(map_coord(1),map_coord(2)) |
---|
| 2232 | |
---|
| 2233 | bdims (1,1) = nxl |
---|
| 2234 | bdims (1,2) = nxr |
---|
| 2235 | bdims (2,1) = nys |
---|
| 2236 | bdims (2,2) = nyn |
---|
| 2237 | bdims (3,1) = nzb |
---|
| 2238 | bdims (3,2) = nzt |
---|
| 2239 | |
---|
| 2240 | CALL MPI_SEND( bdims, 6, MPI_INTEGER, target_idex, 10, & |
---|
| 2241 | comm_inter, ierr ) |
---|
| 2242 | |
---|
| 2243 | CALL MPI_RECV( bdims_rem, 6, MPI_INTEGER, target_idex, 9, & |
---|
| 2244 | comm_inter,status, ierr ) |
---|
| 2245 | |
---|
| 2246 | n_cell_c = ( (bdims_rem(1,2)-bdims_rem(1,1)) + 3 ) * & |
---|
| 2247 | ( (bdims_rem(2,2)-bdims_rem(2,1)) + 3 ) * & |
---|
| 2248 | ( (bdims_rem(3,2)-bdims_rem(3,1)) + 1 ) |
---|
| 2249 | |
---|
| 2250 | ALLOCATE( work3d ( bdims_rem(3,1) :bdims_rem(3,2) , & |
---|
| 2251 | bdims_rem(2,1)-1:bdims_rem(2,2)+1, & |
---|
| 2252 | bdims_rem(1,1)-1:bdims_rem(1,2)+1)) |
---|
| 2253 | |
---|
| 2254 | |
---|
| 2255 | CALL MPI_RECV( work3d,n_cell_c, MPI_REAL, target_idex, 207, & |
---|
| 2256 | comm_inter,status, ierr ) |
---|
| 2257 | |
---|
| 2258 | ! Neumann BC for FG kh |
---|
| 2259 | DO jf = nys, nyn |
---|
| 2260 | DO if = nxl, nxr |
---|
| 2261 | kh(nzt+1,jf,if) = kh(nzt,jf,if) |
---|
| 2262 | END DO |
---|
| 2263 | END DO |
---|
| 2264 | |
---|
| 2265 | CALL MPI_RECV( work3d,n_cell_c, MPI_REAL, target_idex, 208, & |
---|
| 2266 | comm_inter,status, ierr ) |
---|
| 2267 | |
---|
| 2268 | ! Neumann BC for FG kh |
---|
| 2269 | DO jf = nys, nyn |
---|
| 2270 | DO if = nxl, nxr |
---|
| 2271 | km(nzt+1,jf,if) = km(nzt,jf,if) |
---|
| 2272 | END DO |
---|
| 2273 | END DO |
---|
| 2274 | |
---|
| 2275 | |
---|
| 2276 | ! |
---|
| 2277 | !-- The following evaluation can only be performed, if the fine grid is situated below the inversion |
---|
| 2278 | !! DO jf = nys-1, nyn+1 |
---|
| 2279 | !! DO if = nxl-1, nxr+1 |
---|
| 2280 | !! |
---|
| 2281 | !! km(nzt+1,jf,if) = 0.1 * l_grid(nzt+1) * SQRT( e(nzt+1,jf,if) ) |
---|
| 2282 | !! kh(nzt+1,jf,if) = 3.0 * km(nzt+1,jf,if) |
---|
| 2283 | !! |
---|
| 2284 | !! END DO |
---|
| 2285 | !! END DO |
---|
| 2286 | |
---|
| 2287 | CALL exchange_horiz_2d(km(nzt+1,:,:) ) |
---|
| 2288 | CALL exchange_horiz_2d(kh(nzt+1,:,:) ) |
---|
| 2289 | |
---|
| 2290 | DEALLOCATE ( work3d ) |
---|
| 2291 | |
---|
| 2292 | ENDIF |
---|
| 2293 | |
---|
| 2294 | #endif |
---|
| 2295 | |
---|
| 2296 | CONTAINS |
---|
| 2297 | |
---|
| 2298 | SUBROUTINE vnest_set_topbc_kh |
---|
| 2299 | |
---|
| 2300 | #if defined( __parallel ) |
---|
| 2301 | |
---|
| 2302 | USE arrays_3d |
---|
| 2303 | USE control_parameters |
---|
| 2304 | USE grid_variables |
---|
| 2305 | USE indices |
---|
| 2306 | USE pegrid |
---|
| 2307 | |
---|
| 2308 | |
---|
| 2309 | IMPLICIT NONE |
---|
| 2310 | |
---|
| 2311 | INTEGER(iwp) :: i, j, k |
---|
| 2312 | INTEGER(iwp) :: if, jf |
---|
| 2313 | INTEGER(iwp) :: bottomx, topx |
---|
| 2314 | INTEGER(iwp) :: bottomy, topy |
---|
| 2315 | REAL(wp) :: eps, alpha, eminus, edot, eplus |
---|
| 2316 | REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: ptprf, ptprs |
---|
| 2317 | |
---|
| 2318 | |
---|
| 2319 | |
---|
| 2320 | ALLOCATE( ptprf(bdims_rem(3,1):bdims_rem(3,2),bdims_rem(2,1)-1:bdims_rem(2,2)+1,nxl:nxr) ) |
---|
| 2321 | ALLOCATE( ptprs(bdims_rem(3,1):bdims_rem(3,2),nys:nyn,nxl:nxr) ) |
---|
| 2322 | |
---|
| 2323 | ! |
---|
| 2324 | !-- Determination of a boundary condition for the potential temperature pt: |
---|
| 2325 | !-- The scheme derived by Clark and Farley can be used in all three dimensions. |
---|
| 2326 | |
---|
| 2327 | ! |
---|
| 2328 | !-- Interpolation in x-direction |
---|
| 2329 | |
---|
| 2330 | DO k = bdims_rem(3,1), bdims_rem(3,2) |
---|
| 2331 | |
---|
| 2332 | DO j = bdims_rem(2,1)-1, bdims_rem(2,2)+1 |
---|
| 2333 | |
---|
| 2334 | DO i = bdims_rem(1,1), bdims_rem(1,2) |
---|
| 2335 | |
---|
| 2336 | bottomx = (nxf+1)/(nxc+1) * i |
---|
| 2337 | topx = (nxf+1)/(nxc+1) *(i+1) - 1 |
---|
| 2338 | |
---|
| 2339 | DO if = bottomx, topx |
---|
| 2340 | |
---|
| 2341 | eps = (if * dxf + 0.5 * dxf - i * dxc - 0.5 * dxc) / dxc |
---|
| 2342 | |
---|
| 2343 | alpha = ( (dxf/dxc)**2.0 - 1.0) / 24.0 |
---|
| 2344 | |
---|
| 2345 | eminus = eps * (eps - 1.0 ) / 2.0 + alpha |
---|
| 2346 | |
---|
| 2347 | edot = ( 1.0 - eps**2.0 ) - 2.0 * alpha |
---|
| 2348 | |
---|
| 2349 | eplus = eps * ( eps + 1.0 ) / 2.0 + alpha |
---|
| 2350 | |
---|
| 2351 | ptprf(k,j,if) = eminus * work3d(k,j,i-1) & |
---|
| 2352 | + edot * work3d(k,j,i) & |
---|
| 2353 | + eplus * work3d(k,j,i+1) |
---|
| 2354 | END DO |
---|
| 2355 | |
---|
| 2356 | END DO |
---|
| 2357 | |
---|
| 2358 | END DO |
---|
| 2359 | |
---|
| 2360 | END DO |
---|
| 2361 | |
---|
| 2362 | ! |
---|
| 2363 | !-- Interpolation in y-direction |
---|
| 2364 | |
---|
| 2365 | DO k = bdims_rem(3,1), bdims_rem(3,2) |
---|
| 2366 | |
---|
| 2367 | DO j = bdims_rem(2,1), bdims_rem(2,2) |
---|
| 2368 | |
---|
| 2369 | bottomy = (nyf+1)/(nyc+1) * j |
---|
| 2370 | topy = (nyf+1)/(nyc+1) * (j+1) - 1 |
---|
| 2371 | |
---|
| 2372 | DO if = nxl, nxr |
---|
| 2373 | |
---|
| 2374 | DO jf = bottomy, topy |
---|
| 2375 | |
---|
| 2376 | eps = (jf * dyf + 0.5 * dyf - j * dyc - 0.5 * dyc) / dyc |
---|
| 2377 | |
---|
| 2378 | alpha = ( (dyf/dyc)**2.0 - 1.0) / 24.0 |
---|
| 2379 | |
---|
| 2380 | eminus = eps * (eps - 1.0) / 2.0 + alpha |
---|
| 2381 | |
---|
| 2382 | edot = ( 1.0 - eps**2.0 ) - 2.0 * alpha |
---|
| 2383 | |
---|
| 2384 | eplus = eps * ( eps + 1.0 ) / 2.0 + alpha |
---|
| 2385 | |
---|
| 2386 | ptprs(k,jf,if) = eminus * ptprf(k,j-1,if) & |
---|
| 2387 | + edot * ptprf(k,j,if) & |
---|
| 2388 | + eplus * ptprf(k,j+1,if) |
---|
| 2389 | END DO |
---|
| 2390 | |
---|
| 2391 | END DO |
---|
| 2392 | |
---|
| 2393 | END DO |
---|
| 2394 | |
---|
| 2395 | END DO |
---|
| 2396 | |
---|
| 2397 | ! |
---|
| 2398 | !-- Interpolation in z-direction |
---|
| 2399 | |
---|
| 2400 | DO jf = nys, nyn |
---|
| 2401 | DO if = nxl, nxr |
---|
| 2402 | |
---|
| 2403 | eps = ( zuf(nzt+1) - zuc(bdims_rem(3,1)+1) ) / dzc |
---|
| 2404 | |
---|
| 2405 | alpha = ( (dzf/dzc)**2.0 - 1.0) / 24.0 |
---|
| 2406 | |
---|
| 2407 | eminus = eps * ( eps - 1.0 ) / 2.0 + alpha |
---|
| 2408 | |
---|
| 2409 | edot = ( 1.0 - eps**2.0 ) - 2.0 * alpha |
---|
| 2410 | |
---|
| 2411 | eplus = eps * ( eps + 1.0 ) / 2.0 + alpha |
---|
| 2412 | |
---|
| 2413 | kh (nzt+1,jf,if) = eminus * ptprs(bdims_rem(3,1),jf,if) & |
---|
| 2414 | + edot * ptprs(bdims_rem(3,1)+1,jf,if) & |
---|
| 2415 | + eplus * ptprs(bdims_rem(3,1)+2,jf,if) |
---|
| 2416 | |
---|
| 2417 | END DO |
---|
| 2418 | END DO |
---|
| 2419 | |
---|
| 2420 | DEALLOCATE ( ptprf, ptprs ) |
---|
| 2421 | |
---|
| 2422 | |
---|
| 2423 | #endif |
---|
| 2424 | |
---|
| 2425 | END SUBROUTINE vnest_set_topbc_kh |
---|
| 2426 | |
---|
| 2427 | SUBROUTINE vnest_set_topbc_km |
---|
| 2428 | |
---|
| 2429 | #if defined( __parallel ) |
---|
| 2430 | |
---|
| 2431 | USE arrays_3d |
---|
| 2432 | USE control_parameters |
---|
| 2433 | USE grid_variables |
---|
| 2434 | USE indices |
---|
| 2435 | USE pegrid |
---|
| 2436 | |
---|
| 2437 | |
---|
| 2438 | IMPLICIT NONE |
---|
| 2439 | |
---|
| 2440 | INTEGER(iwp) :: i, j, k |
---|
| 2441 | INTEGER(iwp) :: if, jf |
---|
| 2442 | INTEGER(iwp) :: bottomx, topx |
---|
| 2443 | INTEGER(iwp) :: bottomy, topy |
---|
| 2444 | REAL(wp) :: eps, alpha, eminus, edot, eplus |
---|
| 2445 | REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: ptprf, ptprs |
---|
| 2446 | |
---|
| 2447 | |
---|
| 2448 | |
---|
| 2449 | ALLOCATE( ptprf(bdims_rem(3,1):bdims_rem(3,2),bdims_rem(2,1)-1:bdims_rem(2,2)+1,nxl:nxr) ) |
---|
| 2450 | ALLOCATE( ptprs(bdims_rem(3,1):bdims_rem(3,2),nys:nyn,nxl:nxr) ) |
---|
| 2451 | |
---|
| 2452 | ! |
---|
| 2453 | !-- Determination of a boundary condition for the potential temperature pt: |
---|
| 2454 | !-- The scheme derived by Clark and Farley can be used in all three dimensions. |
---|
| 2455 | |
---|
| 2456 | ! |
---|
| 2457 | !-- Interpolation in x-direction |
---|
| 2458 | |
---|
| 2459 | DO k = bdims_rem(3,1), bdims_rem(3,2) |
---|
| 2460 | |
---|
| 2461 | DO j = bdims_rem(2,1)-1, bdims_rem(2,2)+1 |
---|
| 2462 | |
---|
| 2463 | DO i = bdims_rem(1,1), bdims_rem(1,2) |
---|
| 2464 | |
---|
| 2465 | bottomx = (nxf+1)/(nxc+1) * i |
---|
| 2466 | topx = (nxf+1)/(nxc+1) *(i+1) - 1 |
---|
| 2467 | |
---|
| 2468 | DO if = bottomx, topx |
---|
| 2469 | |
---|
| 2470 | eps = (if * dxf + 0.5 * dxf - i * dxc - 0.5 * dxc) / dxc |
---|
| 2471 | |
---|
| 2472 | alpha = ( (dxf/dxc)**2.0 - 1.0) / 24.0 |
---|
| 2473 | |
---|
| 2474 | eminus = eps * (eps - 1.0 ) / 2.0 + alpha |
---|
| 2475 | |
---|
| 2476 | edot = ( 1.0 - eps**2.0 ) - 2.0 * alpha |
---|
| 2477 | |
---|
| 2478 | eplus = eps * ( eps + 1.0 ) / 2.0 + alpha |
---|
| 2479 | |
---|
| 2480 | ptprf(k,j,if) = eminus * work3d(k,j,i-1) & |
---|
| 2481 | + edot * work3d(k,j,i) & |
---|
| 2482 | + eplus * work3d(k,j,i+1) |
---|
| 2483 | END DO |
---|
| 2484 | |
---|
| 2485 | END DO |
---|
| 2486 | |
---|
| 2487 | END DO |
---|
| 2488 | |
---|
| 2489 | END DO |
---|
| 2490 | |
---|
| 2491 | ! |
---|
| 2492 | !-- Interpolation in y-direction |
---|
| 2493 | |
---|
| 2494 | DO k = bdims_rem(3,1), bdims_rem(3,2) |
---|
| 2495 | |
---|
| 2496 | DO j = bdims_rem(2,1), bdims_rem(2,2) |
---|
| 2497 | |
---|
| 2498 | bottomy = (nyf+1)/(nyc+1) * j |
---|
| 2499 | topy = (nyf+1)/(nyc+1) * (j+1) - 1 |
---|
| 2500 | |
---|
| 2501 | DO if = nxl, nxr |
---|
| 2502 | |
---|
| 2503 | DO jf = bottomy, topy |
---|
| 2504 | |
---|
| 2505 | eps = (jf * dyf + 0.5 * dyf - j * dyc - 0.5 * dyc) / dyc |
---|
| 2506 | |
---|
| 2507 | alpha = ( (dyf/dyc)**2.0 - 1.0) / 24.0 |
---|
| 2508 | |
---|
| 2509 | eminus = eps * (eps - 1.0) / 2.0 + alpha |
---|
| 2510 | |
---|
| 2511 | edot = ( 1.0 - eps**2.0 ) - 2.0 * alpha |
---|
| 2512 | |
---|
| 2513 | eplus = eps * ( eps + 1.0 ) / 2.0 + alpha |
---|
| 2514 | |
---|
| 2515 | ptprs(k,jf,if) = eminus * ptprf(k,j-1,if) & |
---|
| 2516 | + edot * ptprf(k,j,if) & |
---|
| 2517 | + eplus * ptprf(k,j+1,if) |
---|
| 2518 | END DO |
---|
| 2519 | |
---|
| 2520 | END DO |
---|
| 2521 | |
---|
| 2522 | END DO |
---|
| 2523 | |
---|
| 2524 | END DO |
---|
| 2525 | |
---|
| 2526 | ! |
---|
| 2527 | !-- Interpolation in z-direction |
---|
| 2528 | |
---|
| 2529 | DO jf = nys, nyn |
---|
| 2530 | DO if = nxl, nxr |
---|
| 2531 | |
---|
| 2532 | eps = ( zuf(nzt+1) - zuc(bdims_rem(3,1)+1) ) / dzc |
---|
| 2533 | |
---|
| 2534 | alpha = ( (dzf/dzc)**2.0 - 1.0) / 24.0 |
---|
| 2535 | |
---|
| 2536 | eminus = eps * ( eps - 1.0 ) / 2.0 + alpha |
---|
| 2537 | |
---|
| 2538 | edot = ( 1.0 - eps**2.0 ) - 2.0 * alpha |
---|
| 2539 | |
---|
| 2540 | eplus = eps * ( eps + 1.0 ) / 2.0 + alpha |
---|
| 2541 | |
---|
| 2542 | km (nzt+1,jf,if) = eminus * ptprs(bdims_rem(3,1),jf,if) & |
---|
| 2543 | + edot * ptprs(bdims_rem(3,1)+1,jf,if) & |
---|
| 2544 | + eplus * ptprs(bdims_rem(3,1)+2,jf,if) |
---|
| 2545 | |
---|
| 2546 | END DO |
---|
| 2547 | END DO |
---|
| 2548 | |
---|
| 2549 | DEALLOCATE ( ptprf, ptprs ) |
---|
| 2550 | |
---|
| 2551 | |
---|
| 2552 | #endif |
---|
| 2553 | |
---|
| 2554 | END SUBROUTINE vnest_set_topbc_km |
---|
| 2555 | |
---|
| 2556 | |
---|
| 2557 | END SUBROUTINE vnest_boundary_conds_khkm |
---|
| 2558 | |
---|
| 2559 | |
---|
| 2560 | |
---|
| 2561 | SUBROUTINE vnest_anterpolate |
---|
| 2562 | |
---|
| 2563 | !--------------------------------------------------------------------------------! |
---|
| 2564 | ! Description: |
---|
| 2565 | ! ------------ |
---|
| 2566 | ! Anterpolate data from fine grid to coarse grid. |
---|
| 2567 | !------------------------------------------------------------------------------! |
---|
| 2568 | |
---|
| 2569 | USE arrays_3d |
---|
| 2570 | USE control_parameters |
---|
| 2571 | USE grid_variables |
---|
| 2572 | USE indices |
---|
| 2573 | USE interfaces |
---|
| 2574 | USE pegrid |
---|
| 2575 | USE surface_mod, & |
---|
| 2576 | ONLY : bc_h |
---|
| 2577 | |
---|
| 2578 | |
---|
| 2579 | IMPLICIT NONE |
---|
| 2580 | |
---|
| 2581 | REAL(wp) :: time_since_reference_point_rem |
---|
| 2582 | INTEGER(iwp) :: i, j, k, im, jn, ko |
---|
| 2583 | |
---|
| 2584 | !--- INTEGER(iwp) :: j !< grid index y direction |
---|
| 2585 | !-- INTEGER(iwp) :: k !< grid index z direction |
---|
| 2586 | INTEGER(iwp) :: kb !< variable to set respective boundary value, depends on facing. |
---|
| 2587 | INTEGER(iwp) :: l !< running index boundary type, for up- and downward-facing walls |
---|
| 2588 | INTEGER(iwp) :: m !< running index surface elements |
---|
| 2589 | |
---|
| 2590 | #if defined( __parallel ) |
---|
| 2591 | |
---|
| 2592 | |
---|
| 2593 | ! |
---|
| 2594 | !-- In case of model termination initiated by the remote model |
---|
| 2595 | !-- (terminate_coupled_remote > 0), initiate termination of the local model. |
---|
| 2596 | !-- The rest of the coupler must then be skipped because it would cause an MPI |
---|
| 2597 | !-- intercomminucation hang. |
---|
| 2598 | !-- If necessary, the coupler will be called at the beginning of the next |
---|
| 2599 | !-- restart run. |
---|
| 2600 | |
---|
| 2601 | IF ( myid == 0) THEN |
---|
| 2602 | CALL MPI_SENDRECV( terminate_coupled, 1, MPI_INTEGER, & |
---|
| 2603 | target_id, 0, & |
---|
| 2604 | terminate_coupled_remote, 1, MPI_INTEGER, & |
---|
| 2605 | target_id, 0, & |
---|
| 2606 | comm_inter, status, ierr ) |
---|
| 2607 | ENDIF |
---|
| 2608 | CALL MPI_BCAST( terminate_coupled_remote, 1, MPI_INTEGER, 0, comm2d, & |
---|
| 2609 | ierr ) |
---|
| 2610 | |
---|
| 2611 | IF ( terminate_coupled_remote > 0 ) THEN |
---|
| 2612 | WRITE( message_string, * ) 'remote model "', & |
---|
| 2613 | TRIM( coupling_mode_remote ), & |
---|
| 2614 | '" terminated', & |
---|
| 2615 | '&with terminate_coupled_remote = ', & |
---|
| 2616 | terminate_coupled_remote, & |
---|
| 2617 | '&local model "', TRIM( coupling_mode ), & |
---|
| 2618 | '" has', & |
---|
| 2619 | '&terminate_coupled = ', & |
---|
| 2620 | terminate_coupled |
---|
| 2621 | CALL message( 'vnest_anterpolate', 'PA0310', 1, 2, 0, 6, 0 ) |
---|
| 2622 | RETURN |
---|
| 2623 | ENDIF |
---|
| 2624 | |
---|
| 2625 | |
---|
| 2626 | ! |
---|
| 2627 | !-- Exchange the current simulated time between the models |
---|
| 2628 | |
---|
| 2629 | IF ( myid == 0 ) THEN |
---|
| 2630 | |
---|
| 2631 | CALL MPI_SEND( time_since_reference_point, 1, MPI_REAL, target_id, & |
---|
| 2632 | 11, comm_inter, ierr ) |
---|
| 2633 | CALL MPI_RECV( time_since_reference_point_rem, 1, MPI_REAL, & |
---|
| 2634 | target_id, 11, comm_inter, status, ierr ) |
---|
| 2635 | |
---|
| 2636 | ENDIF |
---|
| 2637 | |
---|
| 2638 | CALL MPI_BCAST( time_since_reference_point_rem, 1, MPI_REAL, 0, comm2d, & |
---|
| 2639 | ierr ) |
---|
| 2640 | |
---|
| 2641 | IF ( coupling_mode == 'vnested_crse' ) THEN |
---|
| 2642 | ! Receive data from fine grid for anterpolation |
---|
| 2643 | |
---|
| 2644 | offset(1) = ( pdims_partner(1) / pdims(1) ) * pcoord(1) |
---|
| 2645 | offset(2) = ( pdims_partner(2) / pdims(2) ) * pcoord(2) |
---|
| 2646 | |
---|
| 2647 | do j = 0, ( pdims_partner(2) / pdims(2) ) - 1 |
---|
| 2648 | do i = 0, ( pdims_partner(1) / pdims(1) ) - 1 |
---|
| 2649 | map_coord(1) = i+offset(1) |
---|
| 2650 | map_coord(2) = j+offset(2) |
---|
| 2651 | |
---|
| 2652 | target_idex = f_rnk_lst(map_coord(1),map_coord(2)) + numprocs |
---|
| 2653 | |
---|
| 2654 | CALL MPI_RECV( bdims_rem, 6, MPI_INTEGER, target_idex, 10, & |
---|
| 2655 | comm_inter,status, ierr ) |
---|
| 2656 | |
---|
| 2657 | bdims (1,1) = bdims_rem (1,1) / cfratio(1) |
---|
| 2658 | bdims (1,2) = bdims_rem (1,2) / cfratio(1) |
---|
| 2659 | bdims (2,1) = bdims_rem (2,1) / cfratio(2) |
---|
| 2660 | bdims (2,2) = bdims_rem (2,2) / cfratio(2) |
---|
| 2661 | bdims (3,1) = bdims_rem (3,1) |
---|
| 2662 | bdims (3,2) = bdims_rem (3,2) / cfratio(3) |
---|
| 2663 | |
---|
| 2664 | CALL MPI_SEND( bdims, 6, MPI_INTEGER, target_idex, 9, & |
---|
| 2665 | comm_inter, ierr ) |
---|
| 2666 | |
---|
| 2667 | n_cell_c = & |
---|
| 2668 | (bdims(1,2)-bdims(1,1)+1) * & |
---|
| 2669 | (bdims(2,2)-bdims(2,1)+1) * & |
---|
| 2670 | (bdims(3,2)-bdims(3,1)+0) |
---|
| 2671 | |
---|
| 2672 | CALL MPI_RECV( u( & |
---|
| 2673 | bdims(3,1)+1:bdims(3,2), & |
---|
| 2674 | bdims(2,1) :bdims(2,2), & |
---|
| 2675 | bdims(1,1) :bdims(1,2)),& |
---|
| 2676 | n_cell_c, MPI_REAL, target_idex, 101, & |
---|
| 2677 | comm_inter,status, ierr ) |
---|
| 2678 | |
---|
| 2679 | CALL MPI_RECV( v( & |
---|
| 2680 | bdims(3,1)+1:bdims(3,2), & |
---|
| 2681 | bdims(2,1) :bdims(2,2), & |
---|
| 2682 | bdims(1,1) :bdims(1,2)),& |
---|
| 2683 | n_cell_c, MPI_REAL, target_idex, 102, & |
---|
| 2684 | comm_inter,status, ierr ) |
---|
| 2685 | |
---|
| 2686 | CALL MPI_RECV(pt( & |
---|
| 2687 | bdims(3,1)+1:bdims(3,2), & |
---|
| 2688 | bdims(2,1) :bdims(2,2), & |
---|
| 2689 | bdims(1,1) :bdims(1,2)),& |
---|
| 2690 | n_cell_c, MPI_REAL, target_idex, 105, & |
---|
| 2691 | comm_inter,status, ierr ) |
---|
| 2692 | |
---|
[2514] | 2693 | IF ( humidity ) THEN |
---|
[2365] | 2694 | CALL MPI_RECV(q( & |
---|
| 2695 | bdims(3,1)+1:bdims(3,2), & |
---|
| 2696 | bdims(2,1) :bdims(2,2), & |
---|
| 2697 | bdims(1,1) :bdims(1,2)),& |
---|
| 2698 | n_cell_c, MPI_REAL, target_idex, 106, & |
---|
| 2699 | comm_inter,status, ierr ) |
---|
[2514] | 2700 | ENDIF |
---|
[2365] | 2701 | |
---|
| 2702 | CALL MPI_RECV( w( & |
---|
| 2703 | bdims(3,1) :bdims(3,2)-1, & |
---|
| 2704 | bdims(2,1) :bdims(2,2), & |
---|
| 2705 | bdims(1,1) :bdims(1,2)), & |
---|
| 2706 | n_cell_c, MPI_REAL, target_idex, 103, & |
---|
| 2707 | comm_inter,status, ierr ) |
---|
| 2708 | |
---|
| 2709 | end do |
---|
| 2710 | end do |
---|
| 2711 | |
---|
| 2712 | |
---|
| 2713 | |
---|
| 2714 | ! |
---|
| 2715 | !-- Boundary conditions for the velocity components u and v |
---|
| 2716 | |
---|
| 2717 | |
---|
| 2718 | IF ( ibc_uv_b == 0 ) THEN |
---|
| 2719 | u(nzb,:,:) = 0.0_wp |
---|
| 2720 | v(nzb,:,:) = 0.0_wp |
---|
| 2721 | ELSE |
---|
| 2722 | u(nzb,:,:) = u(nzb+1,:,:) |
---|
| 2723 | v(nzb,:,:) = v(nzb+1,:,:) |
---|
| 2724 | END IF |
---|
| 2725 | ! |
---|
| 2726 | !-- Boundary conditions for the velocity components w |
---|
| 2727 | |
---|
| 2728 | w(nzb,:,:) = 0.0_wp |
---|
| 2729 | |
---|
| 2730 | ! |
---|
| 2731 | !-- Temperature at bottom boundary. |
---|
| 2732 | !-- Neumann, zero-gradient |
---|
| 2733 | IF ( ibc_pt_b == 1 ) THEN |
---|
| 2734 | DO l = 0, 1 |
---|
| 2735 | ! |
---|
| 2736 | !-- Set kb, for upward-facing surfaces value at topography top (k-1) is set, |
---|
| 2737 | !-- for downward-facing surfaces at topography bottom (k+1). |
---|
| 2738 | kb = MERGE( -1, 1, l == 0 ) |
---|
| 2739 | DO m = 1, bc_h(l)%ns |
---|
| 2740 | i = bc_h(l)%i(m) |
---|
| 2741 | j = bc_h(l)%j(m) |
---|
| 2742 | k = bc_h(l)%k(m) |
---|
| 2743 | pt(k+kb,j,i) = pt(k,j,i) |
---|
| 2744 | ENDDO |
---|
| 2745 | ENDDO |
---|
| 2746 | ENDIF |
---|
| 2747 | |
---|
| 2748 | |
---|
| 2749 | CALL exchange_horiz( u, nbgp ) |
---|
| 2750 | CALL exchange_horiz( v, nbgp ) |
---|
| 2751 | CALL exchange_horiz( w, nbgp ) |
---|
| 2752 | CALL exchange_horiz( pt, nbgp ) |
---|
| 2753 | |
---|
| 2754 | |
---|
| 2755 | ELSEIF ( coupling_mode == 'vnested_fine' ) THEN |
---|
| 2756 | ! Send data to coarse grid for anterpolation |
---|
| 2757 | |
---|
| 2758 | offset(1) = pcoord(1) / ( pdims(1)/pdims_partner(1) ) |
---|
| 2759 | offset(2) = pcoord(2) / ( pdims(2)/pdims_partner(2) ) |
---|
| 2760 | map_coord(1) = offset(1) |
---|
| 2761 | map_coord(2) = offset(2) |
---|
| 2762 | target_idex = c_rnk_lst(map_coord(1),map_coord(2)) |
---|
| 2763 | |
---|
| 2764 | !-- Limit anterpolation level to nzt - z nesting ratio (a pseudo-buffer layer) |
---|
| 2765 | bdims (1,1) = nxl |
---|
| 2766 | bdims (1,2) = nxr |
---|
| 2767 | bdims (2,1) = nys |
---|
| 2768 | bdims (2,2) = nyn |
---|
| 2769 | bdims (3,1) = nzb |
---|
| 2770 | bdims (3,2) = nzt-cfratio(3) |
---|
| 2771 | |
---|
| 2772 | CALL MPI_SEND( bdims, 6, MPI_INTEGER, target_idex, 10, & |
---|
| 2773 | comm_inter, ierr ) |
---|
| 2774 | |
---|
| 2775 | CALL MPI_RECV( bdims_rem, 6, MPI_INTEGER, target_idex, 9, & |
---|
| 2776 | comm_inter,status, ierr ) |
---|
| 2777 | |
---|
| 2778 | |
---|
| 2779 | ALLOCATE( work3d ( & |
---|
| 2780 | bdims_rem(3,1)+1:bdims_rem(3,2), & |
---|
| 2781 | bdims_rem(2,1) :bdims_rem(2,2), & |
---|
| 2782 | bdims_rem(1,1) :bdims_rem(1,2))) |
---|
| 2783 | |
---|
| 2784 | |
---|
| 2785 | anterpol3d => u |
---|
[2514] | 2786 | |
---|
[2365] | 2787 | CALL anterpolate_to_crse_u ( 101 ) |
---|
| 2788 | CALL MPI_SEND( work3d, 1, TYPE_VNEST_ANTER, target_idex, & |
---|
[2514] | 2789 | 101, comm_inter, ierr) |
---|
[2365] | 2790 | |
---|
| 2791 | anterpol3d => v |
---|
| 2792 | |
---|
| 2793 | CALL anterpolate_to_crse_v ( 102 ) |
---|
| 2794 | CALL MPI_SEND( work3d, 1, TYPE_VNEST_ANTER, target_idex, & |
---|
[2514] | 2795 | 102, comm_inter, ierr) |
---|
[2365] | 2796 | |
---|
| 2797 | anterpol3d => pt |
---|
| 2798 | |
---|
| 2799 | CALL anterpolate_to_crse_s ( 105 ) |
---|
| 2800 | CALL MPI_SEND( work3d, 1, TYPE_VNEST_ANTER, target_idex, & |
---|
[2514] | 2801 | 105, comm_inter, ierr) |
---|
[2365] | 2802 | |
---|
| 2803 | |
---|
| 2804 | IF ( humidity ) THEN |
---|
| 2805 | |
---|
| 2806 | anterpol3d => q |
---|
| 2807 | |
---|
| 2808 | CALL anterpolate_to_crse_s ( 106 ) |
---|
| 2809 | CALL MPI_SEND( work3d, 1, TYPE_VNEST_ANTER, target_idex, & |
---|
[2514] | 2810 | 106, comm_inter, ierr) |
---|
[2365] | 2811 | ENDIF |
---|
| 2812 | |
---|
| 2813 | |
---|
| 2814 | DEALLOCATE( work3d ) |
---|
| 2815 | ALLOCATE( work3d ( bdims_rem(3,1) :bdims_rem(3,2)-1, & |
---|
| 2816 | bdims_rem(2,1) :bdims_rem(2,2), & |
---|
| 2817 | bdims_rem(1,1) :bdims_rem(1,2))) |
---|
| 2818 | anterpol3d => w |
---|
| 2819 | CALL anterpolate_to_crse_w ( 103 ) |
---|
| 2820 | CALL MPI_SEND( work3d, 1, TYPE_VNEST_ANTER, target_idex, & |
---|
[2514] | 2821 | 103, comm_inter, ierr) |
---|
[2365] | 2822 | |
---|
| 2823 | NULLIFY ( anterpol3d ) |
---|
| 2824 | DEALLOCATE( work3d ) |
---|
| 2825 | |
---|
| 2826 | ENDIF |
---|
| 2827 | |
---|
| 2828 | |
---|
| 2829 | #endif |
---|
| 2830 | |
---|
| 2831 | CONTAINS |
---|
| 2832 | SUBROUTINE anterpolate_to_crse_u( tag ) |
---|
| 2833 | |
---|
| 2834 | #if defined( __parallel ) |
---|
| 2835 | |
---|
| 2836 | USE arrays_3d |
---|
| 2837 | USE control_parameters |
---|
| 2838 | USE grid_variables |
---|
| 2839 | USE indices |
---|
| 2840 | USE pegrid |
---|
| 2841 | |
---|
| 2842 | |
---|
| 2843 | IMPLICIT NONE |
---|
| 2844 | |
---|
| 2845 | INTEGER(iwp) :: i, j, k |
---|
| 2846 | INTEGER(iwp) :: if, jf, kf |
---|
| 2847 | INTEGER(iwp) :: bottomx, topx |
---|
| 2848 | INTEGER(iwp) :: bottomy, topy |
---|
| 2849 | INTEGER(iwp) :: bottomz, topz |
---|
| 2850 | REAL(wp) :: aweight |
---|
| 2851 | INTEGER(iwp), intent(in) :: tag |
---|
| 2852 | |
---|
| 2853 | ! |
---|
| 2854 | !-- Anterpolation of the velocity components u |
---|
| 2855 | !-- only values in yz-planes that coincide in the fine and |
---|
| 2856 | !-- the coarse grid are considered |
---|
| 2857 | |
---|
| 2858 | DO k = bdims_rem(3,1)+1, bdims_rem(3,2) |
---|
| 2859 | |
---|
| 2860 | bottomz = (dzc/dzf) * (k-1) + 1 |
---|
| 2861 | topz = (dzc/dzf) * k |
---|
| 2862 | |
---|
| 2863 | DO j = bdims_rem(2,1),bdims_rem(2,2) |
---|
| 2864 | |
---|
| 2865 | bottomy = (nyf+1) / (nyc+1) * j |
---|
| 2866 | topy = (nyf+1) / (nyc+1) * (j+1) - 1 |
---|
| 2867 | |
---|
| 2868 | DO i = bdims_rem(1,1),bdims_rem(1,2) |
---|
| 2869 | |
---|
| 2870 | if = (nxf+1) / (nxc+1) * i |
---|
| 2871 | |
---|
| 2872 | aweight = 0.0 |
---|
| 2873 | |
---|
| 2874 | DO kf = bottomz, topz |
---|
| 2875 | DO jf = bottomy, topy |
---|
| 2876 | |
---|
| 2877 | aweight = aweight + anterpol3d(kf,jf,if) * & |
---|
| 2878 | (dzf/dzc) * (dyf/dyc) |
---|
| 2879 | |
---|
| 2880 | END DO |
---|
| 2881 | END DO |
---|
| 2882 | |
---|
| 2883 | work3d(k,j,i) = aweight |
---|
| 2884 | |
---|
| 2885 | END DO |
---|
| 2886 | |
---|
| 2887 | END DO |
---|
| 2888 | |
---|
| 2889 | END DO |
---|
| 2890 | |
---|
| 2891 | |
---|
| 2892 | #endif |
---|
| 2893 | |
---|
| 2894 | END SUBROUTINE anterpolate_to_crse_u |
---|
| 2895 | |
---|
| 2896 | |
---|
| 2897 | SUBROUTINE anterpolate_to_crse_v( tag ) |
---|
| 2898 | |
---|
| 2899 | #if defined( __parallel ) |
---|
| 2900 | |
---|
| 2901 | USE arrays_3d |
---|
| 2902 | USE control_parameters |
---|
| 2903 | USE grid_variables |
---|
| 2904 | USE indices |
---|
| 2905 | USE pegrid |
---|
| 2906 | |
---|
| 2907 | |
---|
| 2908 | IMPLICIT NONE |
---|
| 2909 | |
---|
| 2910 | INTEGER(iwp) :: i, j, k |
---|
| 2911 | INTEGER(iwp) :: if, jf, kf |
---|
| 2912 | INTEGER(iwp) :: bottomx, topx |
---|
| 2913 | INTEGER(iwp) :: bottomy, topy |
---|
| 2914 | INTEGER(iwp) :: bottomz, topz |
---|
| 2915 | REAL(wp) :: aweight |
---|
| 2916 | INTEGER(iwp), intent(in) :: tag |
---|
| 2917 | ! |
---|
| 2918 | !-- Anterpolation of the velocity components v |
---|
| 2919 | !-- only values in xz-planes that coincide in the fine and |
---|
| 2920 | !-- the coarse grid are considered |
---|
| 2921 | |
---|
| 2922 | DO k = bdims_rem(3,1)+1, bdims_rem(3,2) |
---|
| 2923 | |
---|
| 2924 | bottomz = (dzc/dzf) * (k-1) + 1 |
---|
| 2925 | topz = (dzc/dzf) * k |
---|
| 2926 | |
---|
| 2927 | DO j = bdims_rem(2,1), bdims_rem(2,2) |
---|
| 2928 | |
---|
| 2929 | jf = (nyf+1) / (nyc+1) * j |
---|
| 2930 | |
---|
| 2931 | DO i = bdims_rem(1,1), bdims_rem(1,2) |
---|
| 2932 | |
---|
| 2933 | bottomx = (nxf+1) / (nxc+1) * i |
---|
| 2934 | topx = (nxf+1) / (nxc+1) * (i+1) - 1 |
---|
| 2935 | |
---|
| 2936 | aweight = 0.0 |
---|
| 2937 | |
---|
| 2938 | DO kf = bottomz, topz |
---|
| 2939 | DO if = bottomx, topx |
---|
| 2940 | |
---|
| 2941 | aweight = aweight + anterpol3d(kf,jf,if) * & |
---|
| 2942 | (dzf/dzc) * (dxf/dxc) |
---|
| 2943 | |
---|
| 2944 | |
---|
| 2945 | END DO |
---|
| 2946 | END DO |
---|
| 2947 | |
---|
| 2948 | work3d(k,j,i) = aweight |
---|
| 2949 | |
---|
| 2950 | END DO |
---|
| 2951 | END DO |
---|
| 2952 | END DO |
---|
| 2953 | |
---|
| 2954 | |
---|
| 2955 | #endif |
---|
| 2956 | |
---|
| 2957 | END SUBROUTINE anterpolate_to_crse_v |
---|
| 2958 | |
---|
| 2959 | |
---|
| 2960 | SUBROUTINE anterpolate_to_crse_w( tag ) |
---|
| 2961 | |
---|
| 2962 | #if defined( __parallel ) |
---|
| 2963 | |
---|
| 2964 | USE arrays_3d |
---|
| 2965 | USE control_parameters |
---|
| 2966 | USE grid_variables |
---|
| 2967 | USE indices |
---|
| 2968 | USE pegrid |
---|
| 2969 | |
---|
| 2970 | |
---|
| 2971 | IMPLICIT NONE |
---|
| 2972 | |
---|
| 2973 | INTEGER(iwp) :: i, j, k |
---|
| 2974 | INTEGER(iwp) :: if, jf, kf |
---|
| 2975 | INTEGER(iwp) :: bottomx, topx |
---|
| 2976 | INTEGER(iwp) :: bottomy, topy |
---|
| 2977 | INTEGER(iwp) :: bottomz, topz |
---|
| 2978 | REAL(wp) :: aweight |
---|
| 2979 | INTEGER(iwp), intent(in) :: tag |
---|
| 2980 | ! |
---|
| 2981 | !-- Anterpolation of the velocity components w |
---|
| 2982 | !-- only values in xy-planes that coincide in the fine and |
---|
| 2983 | !-- the coarse grid are considered |
---|
| 2984 | |
---|
| 2985 | DO k = bdims_rem(3,1), bdims_rem(3,2)-1 |
---|
| 2986 | |
---|
| 2987 | kf = cfratio(3) * k |
---|
| 2988 | |
---|
| 2989 | DO j = bdims_rem(2,1), bdims_rem(2,2) |
---|
| 2990 | |
---|
| 2991 | bottomy = (nyf+1) / (nyc+1) * j |
---|
| 2992 | topy = (nyf+1) / (nyc+1) * (j+1) - 1 |
---|
| 2993 | |
---|
| 2994 | DO i = bdims_rem(1,1), bdims_rem(1,2) |
---|
| 2995 | |
---|
| 2996 | bottomx = (nxf+1) / (nxc+1) * i |
---|
| 2997 | topx = (nxf+1) / (nxc+1) * (i+1) - 1 |
---|
| 2998 | |
---|
| 2999 | aweight = 0.0 |
---|
| 3000 | |
---|
| 3001 | DO jf = bottomy, topy |
---|
| 3002 | DO if = bottomx, topx |
---|
| 3003 | |
---|
| 3004 | aweight = aweight + anterpol3d (kf,jf,if) * & |
---|
| 3005 | (dxf/dxc) * (dyf/dyc) |
---|
| 3006 | |
---|
| 3007 | END DO |
---|
| 3008 | END DO |
---|
| 3009 | |
---|
| 3010 | work3d(k,j,i) = aweight |
---|
| 3011 | |
---|
| 3012 | END DO |
---|
| 3013 | |
---|
| 3014 | END DO |
---|
| 3015 | |
---|
| 3016 | END DO |
---|
| 3017 | |
---|
| 3018 | #endif |
---|
| 3019 | |
---|
| 3020 | END SUBROUTINE anterpolate_to_crse_w |
---|
| 3021 | |
---|
| 3022 | |
---|
| 3023 | SUBROUTINE anterpolate_to_crse_s( tag ) |
---|
| 3024 | |
---|
| 3025 | #if defined( __parallel ) |
---|
| 3026 | |
---|
| 3027 | USE arrays_3d |
---|
| 3028 | USE control_parameters |
---|
| 3029 | USE grid_variables |
---|
| 3030 | USE indices |
---|
| 3031 | USE pegrid |
---|
| 3032 | |
---|
| 3033 | |
---|
| 3034 | IMPLICIT NONE |
---|
| 3035 | |
---|
| 3036 | INTEGER(iwp) :: i, j, k |
---|
| 3037 | INTEGER(iwp) :: if, jf, kf |
---|
| 3038 | INTEGER(iwp) :: bottomx, topx |
---|
| 3039 | INTEGER(iwp) :: bottomy, topy |
---|
| 3040 | INTEGER(iwp) :: bottomz, topz |
---|
| 3041 | REAL(wp) :: aweight |
---|
| 3042 | INTEGER(iwp), intent(in) :: tag |
---|
| 3043 | |
---|
| 3044 | ! |
---|
| 3045 | !-- Anterpolation of the potential temperature pt |
---|
| 3046 | !-- all fine grid values are considered |
---|
| 3047 | |
---|
| 3048 | DO k = bdims_rem(3,1)+1, bdims_rem(3,2) |
---|
| 3049 | |
---|
| 3050 | bottomz = (dzc/dzf) * (k-1) + 1 |
---|
| 3051 | topz = (dzc/dzf) * k |
---|
| 3052 | |
---|
| 3053 | DO j = bdims_rem(2,1), bdims_rem(2,2) |
---|
| 3054 | |
---|
| 3055 | bottomy = (nyf+1) / (nyc+1) * j |
---|
| 3056 | topy = (nyf+1) / (nyc+1) * (j+1) - 1 |
---|
| 3057 | |
---|
| 3058 | DO i = bdims_rem(1,1), bdims_rem(1,2) |
---|
| 3059 | |
---|
| 3060 | bottomx = (nxf+1) / (nxc+1) * i |
---|
| 3061 | topx = (nxf+1) / (nxc+1) * (i+1) - 1 |
---|
| 3062 | |
---|
| 3063 | aweight = 0.0 |
---|
| 3064 | |
---|
| 3065 | DO kf = bottomz, topz |
---|
| 3066 | DO jf = bottomy, topy |
---|
| 3067 | DO if = bottomx, topx |
---|
| 3068 | |
---|
| 3069 | aweight = aweight + anterpol3d(kf,jf,if) * & |
---|
| 3070 | (dzf/dzc) * (dyf/dyc) * (dxf/dxc) |
---|
| 3071 | |
---|
| 3072 | END DO |
---|
| 3073 | END DO |
---|
| 3074 | END DO |
---|
| 3075 | |
---|
| 3076 | work3d(k,j,i) = aweight |
---|
| 3077 | |
---|
| 3078 | END DO |
---|
| 3079 | |
---|
| 3080 | END DO |
---|
| 3081 | |
---|
| 3082 | END DO |
---|
| 3083 | |
---|
| 3084 | #endif |
---|
| 3085 | |
---|
| 3086 | END SUBROUTINE anterpolate_to_crse_s |
---|
| 3087 | END SUBROUTINE vnest_anterpolate |
---|
| 3088 | |
---|
| 3089 | |
---|
| 3090 | |
---|
| 3091 | SUBROUTINE vnest_anterpolate_e |
---|
| 3092 | |
---|
| 3093 | !--------------------------------------------------------------------------------! |
---|
| 3094 | ! Description: |
---|
| 3095 | ! ------------ |
---|
| 3096 | ! Anterpolate TKE from fine grid to coarse grid. |
---|
| 3097 | !------------------------------------------------------------------------------! |
---|
| 3098 | |
---|
| 3099 | USE arrays_3d |
---|
| 3100 | USE control_parameters |
---|
| 3101 | USE grid_variables |
---|
| 3102 | USE indices |
---|
| 3103 | USE interfaces |
---|
| 3104 | USE pegrid |
---|
| 3105 | |
---|
| 3106 | |
---|
| 3107 | IMPLICIT NONE |
---|
| 3108 | |
---|
| 3109 | REAL(wp) :: time_since_reference_point_rem |
---|
| 3110 | INTEGER(iwp) :: i, j, k, im, jn, ko |
---|
| 3111 | |
---|
| 3112 | #if defined( __parallel ) |
---|
| 3113 | |
---|
| 3114 | ! |
---|
| 3115 | !-- In case of model termination initiated by the remote model |
---|
| 3116 | !-- (terminate_coupled_remote > 0), initiate termination of the local model. |
---|
| 3117 | !-- The rest of the coupler must then be skipped because it would cause an MPI |
---|
| 3118 | !-- intercomminucation hang. |
---|
| 3119 | !-- If necessary, the coupler will be called at the beginning of the next |
---|
| 3120 | !-- restart run. |
---|
| 3121 | |
---|
| 3122 | IF ( myid == 0) THEN |
---|
| 3123 | CALL MPI_SENDRECV( terminate_coupled, 1, MPI_INTEGER, & |
---|
| 3124 | target_id, 0, & |
---|
| 3125 | terminate_coupled_remote, 1, MPI_INTEGER, & |
---|
| 3126 | target_id, 0, & |
---|
| 3127 | comm_inter, status, ierr ) |
---|
| 3128 | ENDIF |
---|
| 3129 | CALL MPI_BCAST( terminate_coupled_remote, 1, MPI_INTEGER, 0, comm2d, & |
---|
| 3130 | ierr ) |
---|
| 3131 | |
---|
| 3132 | IF ( terminate_coupled_remote > 0 ) THEN |
---|
| 3133 | WRITE( message_string, * ) 'remote model "', & |
---|
| 3134 | TRIM( coupling_mode_remote ), & |
---|
| 3135 | '" terminated', & |
---|
| 3136 | '&with terminate_coupled_remote = ', & |
---|
| 3137 | terminate_coupled_remote, & |
---|
| 3138 | '&local model "', TRIM( coupling_mode ), & |
---|
| 3139 | '" has', & |
---|
| 3140 | '&terminate_coupled = ', & |
---|
| 3141 | terminate_coupled |
---|
| 3142 | CALL message( 'vnest_anterpolate_e', 'PA0310', 1, 2, 0, 6, 0 ) |
---|
| 3143 | RETURN |
---|
| 3144 | ENDIF |
---|
| 3145 | |
---|
| 3146 | |
---|
| 3147 | ! |
---|
| 3148 | !-- Exchange the current simulated time between the models |
---|
| 3149 | IF ( myid == 0 ) THEN |
---|
| 3150 | |
---|
| 3151 | CALL MPI_SEND( time_since_reference_point, 1, MPI_REAL, target_id, & |
---|
| 3152 | 11, comm_inter, ierr ) |
---|
| 3153 | CALL MPI_RECV( time_since_reference_point_rem, 1, MPI_REAL, & |
---|
| 3154 | target_id, 11, comm_inter, status, ierr ) |
---|
| 3155 | |
---|
| 3156 | ENDIF |
---|
| 3157 | |
---|
| 3158 | CALL MPI_BCAST( time_since_reference_point_rem, 1, MPI_REAL, 0, comm2d, & |
---|
| 3159 | ierr ) |
---|
| 3160 | |
---|
| 3161 | IF ( coupling_mode == 'vnested_crse' ) THEN |
---|
| 3162 | ! Receive data from fine grid for anterpolation |
---|
| 3163 | |
---|
| 3164 | offset(1) = ( pdims_partner(1) / pdims(1) ) * pcoord(1) |
---|
| 3165 | offset(2) = ( pdims_partner(2) / pdims(2) ) * pcoord(2) |
---|
| 3166 | |
---|
| 3167 | do j = 0, ( pdims_partner(2) / pdims(2) ) - 1 |
---|
| 3168 | do i = 0, ( pdims_partner(1) / pdims(1) ) - 1 |
---|
| 3169 | map_coord(1) = i+offset(1) |
---|
| 3170 | map_coord(2) = j+offset(2) |
---|
| 3171 | |
---|
| 3172 | target_idex = f_rnk_lst(map_coord(1),map_coord(2)) + numprocs |
---|
| 3173 | |
---|
| 3174 | bdims (1,1) = f2c_dims_cg (0,map_coord(1),map_coord(2)) |
---|
| 3175 | bdims (1,2) = f2c_dims_cg (1,map_coord(1),map_coord(2)) |
---|
| 3176 | bdims (2,1) = f2c_dims_cg (2,map_coord(1),map_coord(2)) |
---|
| 3177 | bdims (2,2) = f2c_dims_cg (3,map_coord(1),map_coord(2)) |
---|
| 3178 | bdims (3,1) = f2c_dims_cg (4,map_coord(1),map_coord(2)) |
---|
| 3179 | bdims (3,2) = f2c_dims_cg (5,map_coord(1),map_coord(2)) |
---|
| 3180 | |
---|
| 3181 | |
---|
| 3182 | n_cell_c = (bdims(1,2)-bdims(1,1)+1) * & |
---|
| 3183 | (bdims(2,2)-bdims(2,1)+1) * & |
---|
| 3184 | (bdims(3,2)-bdims(3,1)+0) |
---|
| 3185 | |
---|
| 3186 | |
---|
| 3187 | CALL MPI_RECV( e( bdims(3,1)+1:bdims(3,2), & |
---|
| 3188 | bdims(2,1) :bdims(2,2), & |
---|
| 3189 | bdims(1,1) :bdims(1,2)),& |
---|
| 3190 | n_cell_c, MPI_REAL, target_idex, 104, & |
---|
| 3191 | comm_inter,status, ierr ) |
---|
| 3192 | end do |
---|
| 3193 | end do |
---|
| 3194 | |
---|
| 3195 | |
---|
| 3196 | ! |
---|
| 3197 | !-- Boundary conditions |
---|
| 3198 | |
---|
| 3199 | IF ( .NOT. constant_diffusion ) THEN |
---|
| 3200 | e(nzb,:,:) = e(nzb+1,:,:) |
---|
| 3201 | END IF |
---|
| 3202 | |
---|
| 3203 | IF ( .NOT. constant_diffusion ) CALL exchange_horiz( e, nbgp ) |
---|
| 3204 | |
---|
| 3205 | ELSEIF ( coupling_mode == 'vnested_fine' ) THEN |
---|
| 3206 | ! Send data to coarse grid for anterpolation |
---|
| 3207 | |
---|
| 3208 | offset(1) = pcoord(1) / ( pdims(1)/pdims_partner(1) ) |
---|
| 3209 | offset(2) = pcoord(2) / ( pdims(2)/pdims_partner(2) ) |
---|
| 3210 | map_coord(1) = offset(1) |
---|
| 3211 | map_coord(2) = offset(2) |
---|
| 3212 | target_idex = c_rnk_lst(map_coord(1),map_coord(2)) |
---|
| 3213 | |
---|
| 3214 | bdims_rem (1,1) = f2c_dims_fg (0) |
---|
| 3215 | bdims_rem (1,2) = f2c_dims_fg (1) |
---|
| 3216 | bdims_rem (2,1) = f2c_dims_fg (2) |
---|
| 3217 | bdims_rem (2,2) = f2c_dims_fg (3) |
---|
| 3218 | bdims_rem (3,1) = f2c_dims_fg (4) |
---|
| 3219 | bdims_rem (3,2) = f2c_dims_fg (5) |
---|
| 3220 | |
---|
| 3221 | ALLOCATE( work3d ( & |
---|
| 3222 | bdims_rem(3,1)+1:bdims_rem(3,2), & |
---|
| 3223 | bdims_rem(2,1) :bdims_rem(2,2), & |
---|
| 3224 | bdims_rem(1,1) :bdims_rem(1,2))) |
---|
| 3225 | |
---|
| 3226 | anterpol3d => e |
---|
| 3227 | |
---|
| 3228 | CALL anterpolate_to_crse_e ( 104 ) |
---|
| 3229 | |
---|
| 3230 | CALL MPI_SEND( work3d, 1, TYPE_VNEST_ANTER, target_idex, & |
---|
[2514] | 3231 | 104, comm_inter, ierr) |
---|
[2365] | 3232 | |
---|
| 3233 | NULLIFY ( anterpol3d ) |
---|
| 3234 | DEALLOCATE( work3d ) |
---|
| 3235 | ENDIF |
---|
| 3236 | |
---|
| 3237 | #endif |
---|
| 3238 | |
---|
| 3239 | CONTAINS |
---|
| 3240 | |
---|
| 3241 | |
---|
| 3242 | |
---|
| 3243 | |
---|
| 3244 | |
---|
| 3245 | SUBROUTINE anterpolate_to_crse_e( tag ) |
---|
| 3246 | |
---|
| 3247 | #if defined( __parallel ) |
---|
| 3248 | |
---|
| 3249 | USE arrays_3d |
---|
| 3250 | USE control_parameters |
---|
| 3251 | USE grid_variables |
---|
| 3252 | USE indices |
---|
| 3253 | USE pegrid |
---|
| 3254 | |
---|
| 3255 | |
---|
| 3256 | IMPLICIT NONE |
---|
| 3257 | |
---|
| 3258 | INTEGER(iwp) :: i, j, k |
---|
| 3259 | INTEGER(iwp) :: if, jf, kf |
---|
| 3260 | INTEGER(iwp) :: bottomx, topx |
---|
| 3261 | INTEGER(iwp) :: bottomy, topy |
---|
| 3262 | INTEGER(iwp) :: bottomz, topz |
---|
| 3263 | REAL(wp) :: aweight_a, aweight_b, aweight_c, aweight_d, aweight_e |
---|
| 3264 | REAL(wp) :: energ |
---|
| 3265 | INTEGER(iwp), intent(in) :: tag |
---|
| 3266 | |
---|
| 3267 | |
---|
| 3268 | DO k = bdims_rem(3,1)+1, bdims_rem(3,2) |
---|
| 3269 | |
---|
| 3270 | bottomz = (dzc/dzf) * (k-1) + 1 |
---|
| 3271 | topz = (dzc/dzf) * k |
---|
| 3272 | |
---|
| 3273 | DO j = bdims_rem(2,1), bdims_rem(2,2) |
---|
| 3274 | |
---|
| 3275 | bottomy = (nyf+1) / (nyc+1) * j |
---|
| 3276 | topy = (nyf+1) / (nyc+1) * (j+1) - 1 |
---|
| 3277 | |
---|
| 3278 | DO i = bdims_rem(1,1), bdims_rem(1,2) |
---|
| 3279 | |
---|
| 3280 | bottomx = (nxf+1) / (nxc+1) * i |
---|
| 3281 | topx = (nxf+1) / (nxc+1) * (i+1) - 1 |
---|
| 3282 | |
---|
| 3283 | aweight_a = 0.0 |
---|
| 3284 | aweight_b = 0.0 |
---|
| 3285 | aweight_c = 0.0 |
---|
| 3286 | aweight_d = 0.0 |
---|
| 3287 | aweight_e = 0.0 |
---|
| 3288 | |
---|
| 3289 | DO kf = bottomz, topz |
---|
| 3290 | DO jf = bottomy, topy |
---|
| 3291 | DO if = bottomx, topx |
---|
| 3292 | |
---|
| 3293 | aweight_a = aweight_a + anterpol3d(kf,jf,if) * & |
---|
| 3294 | (dzf/dzc) * (dyf/dyc) * (dxf/dxc) |
---|
| 3295 | |
---|
| 3296 | |
---|
| 3297 | energ = ( 0.5 * ( u(kf,jf,if) + u(kf,jf,if+1) ) )**2.0 + & |
---|
| 3298 | ( 0.5 * ( v(kf,jf,if) + v(kf,jf+1,if) ) )**2.0 + & |
---|
| 3299 | ( 0.5 * ( w(kf-1,jf,if) + w(kf,jf,if) ) )**2.0 |
---|
| 3300 | |
---|
| 3301 | aweight_b = aweight_b + energ * & |
---|
| 3302 | (dzf/dzc) * (dyf/dyc) * (dxf/dxc) |
---|
| 3303 | |
---|
| 3304 | aweight_c = aweight_c + 0.5 * ( u(kf,jf,if) + u(kf,jf,if+1) ) * & |
---|
| 3305 | (dzf/dzc) * (dyf/dyc) * (dxf/dxc) |
---|
| 3306 | |
---|
| 3307 | aweight_d = aweight_d + 0.5 * ( v(kf,jf,if) + v(kf,jf+1,if) ) * & |
---|
| 3308 | (dzf/dzc) * (dyf/dyc) * (dxf/dxc) |
---|
| 3309 | |
---|
| 3310 | aweight_e = aweight_e + 0.5 * ( w(kf-1,jf,if) + w(kf,jf,if) ) * & |
---|
| 3311 | (dzf/dzc) * (dyf/dyc) * (dxf/dxc) |
---|
| 3312 | |
---|
| 3313 | |
---|
| 3314 | END DO |
---|
| 3315 | END DO |
---|
| 3316 | END DO |
---|
| 3317 | |
---|
| 3318 | work3d(k,j,i) = aweight_a + 0.5 * ( aweight_b - & |
---|
| 3319 | aweight_c**2.0 - & |
---|
| 3320 | aweight_d**2.0 - & |
---|
| 3321 | aweight_e**2.0 ) |
---|
| 3322 | |
---|
| 3323 | END DO |
---|
| 3324 | |
---|
| 3325 | END DO |
---|
| 3326 | |
---|
| 3327 | END DO |
---|
| 3328 | |
---|
| 3329 | |
---|
| 3330 | #endif |
---|
| 3331 | |
---|
| 3332 | END SUBROUTINE anterpolate_to_crse_e |
---|
| 3333 | END SUBROUTINE vnest_anterpolate_e |
---|
| 3334 | |
---|
| 3335 | SUBROUTINE vnest_init_pegrid_rank |
---|
| 3336 | ! Domain decomposition and exchange of grid variables between coarse and fine |
---|
| 3337 | ! Given processor coordinates as index f_rnk_lst(pcoord(1), pcoord(2)) |
---|
| 3338 | ! returns the rank. A single coarse block will have to send data to multiple |
---|
| 3339 | ! fine blocks. In the coarse grid the pcoords of the remote block is first found and then using |
---|
| 3340 | ! f_rnk_lst the target_idex is identified. |
---|
| 3341 | ! blk_dim stores the index limits of a given block. blk_dim_remote is received |
---|
| 3342 | ! from the asscoiated nest partner. |
---|
| 3343 | ! cf_ratio(1:3) is the ratio between fine and coarse grid: nxc/nxf, nyc/nyf and |
---|
| 3344 | ! ceiling(dxc/dxf) |
---|
| 3345 | |
---|
| 3346 | |
---|
| 3347 | USE control_parameters, & |
---|
| 3348 | ONLY: coupling_mode, coupling_mode_remote, coupling_topology, dz |
---|
| 3349 | |
---|
| 3350 | USE grid_variables, & |
---|
| 3351 | ONLY: dx, dy |
---|
| 3352 | |
---|
| 3353 | USE indices, & |
---|
[2514] | 3354 | ONLY: nbgp, nx, ny, nz |
---|
[2365] | 3355 | |
---|
| 3356 | USE kinds |
---|
| 3357 | |
---|
| 3358 | USE pegrid |
---|
| 3359 | |
---|
| 3360 | |
---|
| 3361 | IMPLICIT NONE |
---|
| 3362 | |
---|
| 3363 | INTEGER(iwp) :: dest_rnk |
---|
| 3364 | INTEGER(iwp) :: i !< |
---|
| 3365 | |
---|
| 3366 | IF (myid == 0) THEN |
---|
| 3367 | IF ( coupling_mode == 'vnested_crse') THEN |
---|
| 3368 | CALL MPI_SEND( pdims, 2, MPI_INTEGER, numprocs, 33, comm_inter, & |
---|
| 3369 | ierr ) |
---|
| 3370 | CALL MPI_RECV( pdims_partner, 2, MPI_INTEGER, numprocs, 66, & |
---|
| 3371 | comm_inter, status, ierr ) |
---|
| 3372 | ELSEIF ( coupling_mode == 'vnested_fine') THEN |
---|
| 3373 | CALL MPI_RECV( pdims_partner, 2, MPI_INTEGER, 0, 33, & |
---|
| 3374 | comm_inter, status, ierr ) |
---|
| 3375 | CALL MPI_SEND( pdims, 2, MPI_INTEGER, 0, 66, comm_inter, & |
---|
| 3376 | ierr ) |
---|
| 3377 | ENDIF |
---|
| 3378 | ENDIF |
---|
| 3379 | |
---|
| 3380 | |
---|
| 3381 | IF ( coupling_mode == 'vnested_crse') THEN |
---|
| 3382 | CALL MPI_BCAST( pdims_partner, 2, MPI_INTEGER, 0, comm2d, ierr ) |
---|
| 3383 | ALLOCATE( c_rnk_lst( 0:(pdims(1)-1) ,0:(pdims(2)-1) ) ) |
---|
| 3384 | ALLOCATE( f_rnk_lst( 0:(pdims_partner(1)-1) ,0:(pdims_partner(2)-1) ) ) |
---|
| 3385 | do i=0,numprocs-1 |
---|
| 3386 | CALL MPI_CART_COORDS( comm2d, i, ndim, pcoord, ierr ) |
---|
| 3387 | call MPI_Cart_rank(comm2d, pcoord, dest_rnk, ierr) |
---|
| 3388 | c_rnk_lst(pcoord(1),pcoord(2)) = dest_rnk |
---|
| 3389 | end do |
---|
| 3390 | ELSEIF ( coupling_mode == 'vnested_fine') THEN |
---|
| 3391 | CALL MPI_BCAST( pdims_partner, 2, MPI_INTEGER, 0, comm2d, ierr ) |
---|
| 3392 | ALLOCATE( c_rnk_lst( 0:(pdims_partner(1)-1) ,0:(pdims_partner(2)-1) ) ) |
---|
| 3393 | ALLOCATE( f_rnk_lst( 0:(pdims(1)-1) ,0:(pdims(2)-1) ) ) |
---|
| 3394 | |
---|
| 3395 | do i=0,numprocs-1 |
---|
| 3396 | CALL MPI_CART_COORDS( comm2d, i, ndim, pcoord, ierr ) |
---|
| 3397 | call MPI_Cart_rank(comm2d, pcoord, dest_rnk, ierr) |
---|
| 3398 | f_rnk_lst(pcoord(1),pcoord(2)) = dest_rnk |
---|
| 3399 | enddo |
---|
| 3400 | ENDIF |
---|
| 3401 | |
---|
| 3402 | |
---|
| 3403 | IF ( coupling_mode == 'vnested_crse') THEN |
---|
| 3404 | if (myid == 0) then |
---|
| 3405 | CALL MPI_SEND( c_rnk_lst, pdims(1)*pdims(2), MPI_INTEGER, numprocs, 0, comm_inter, ierr ) |
---|
| 3406 | CALL MPI_RECV( f_rnk_lst, pdims_partner(1)*pdims_partner(2), MPI_INTEGER, numprocs, 4, comm_inter,status, ierr ) |
---|
| 3407 | end if |
---|
| 3408 | CALL MPI_BCAST( f_rnk_lst, pdims_partner(1)*pdims_partner(2), MPI_INTEGER, 0, comm2d, ierr ) |
---|
| 3409 | ELSEIF ( coupling_mode == 'vnested_fine') THEN |
---|
| 3410 | if (myid == 0) then |
---|
| 3411 | CALL MPI_RECV( c_rnk_lst, pdims_partner(1)*pdims_partner(2), MPI_INTEGER, 0, 0, comm_inter,status, ierr ) |
---|
| 3412 | CALL MPI_SEND( f_rnk_lst, pdims(1)*pdims(2), MPI_INTEGER, 0, 4, comm_inter, ierr ) |
---|
| 3413 | end if |
---|
| 3414 | CALL MPI_BCAST( c_rnk_lst, pdims_partner(1)*pdims_partner(2), MPI_INTEGER, 0, comm2d, ierr ) |
---|
| 3415 | ENDIF |
---|
| 3416 | |
---|
| 3417 | !-- Reason for MPI error unknown; solved if three lines duplicated |
---|
| 3418 | CALL MPI_CART_COORDS( comm2d, myid, ndim, pcoord, ierr ) |
---|
| 3419 | CALL MPI_CART_SHIFT( comm2d, 0, 1, pleft, pright, ierr ) |
---|
| 3420 | CALL MPI_CART_SHIFT( comm2d, 1, 1, psouth, pnorth, ierr ) |
---|
| 3421 | |
---|
| 3422 | |
---|
| 3423 | |
---|
| 3424 | END SUBROUTINE vnest_init_pegrid_rank |
---|
| 3425 | |
---|
| 3426 | |
---|
| 3427 | SUBROUTINE vnest_init_pegrid_domain |
---|
| 3428 | |
---|
| 3429 | USE control_parameters, & |
---|
| 3430 | ONLY: coupling_mode, coupling_mode_remote, coupling_topology, dz |
---|
| 3431 | |
---|
| 3432 | USE grid_variables, & |
---|
| 3433 | ONLY: dx, dy |
---|
| 3434 | |
---|
| 3435 | USE indices, & |
---|
[2514] | 3436 | ONLY: nbgp, nx, ny, nz, nxl, nxr, nys, nyn, nzb, nzt, & |
---|
| 3437 | nxlg, nxrg, nysg, nyng |
---|
[2365] | 3438 | |
---|
| 3439 | USE kinds |
---|
| 3440 | |
---|
| 3441 | USE pegrid |
---|
| 3442 | |
---|
| 3443 | IMPLICIT NONE |
---|
| 3444 | |
---|
| 3445 | INTEGER(iwp) :: dest_rnk |
---|
| 3446 | INTEGER(iwp) :: i, j !< |
---|
| 3447 | INTEGER(iwp) :: tempx, tempy !< |
---|
| 3448 | INTEGER(iwp) :: TYPE_INT_YZ, SIZEOFREAL |
---|
| 3449 | INTEGER(iwp) :: MTV_X,MTV_Y,MTV_Z,MTV_RX,MTV_RY,MTV_RZ |
---|
| 3450 | |
---|
| 3451 | ! |
---|
| 3452 | !-- Pass the number of grid points of the coarse model to |
---|
| 3453 | !-- the nested model and vice versa |
---|
| 3454 | IF ( coupling_mode == 'vnested_crse' ) THEN |
---|
| 3455 | |
---|
| 3456 | nxc = nx |
---|
| 3457 | nyc = ny |
---|
| 3458 | nzc = nz |
---|
| 3459 | dxc = dx |
---|
| 3460 | dyc = dy |
---|
| 3461 | dzc = dz |
---|
| 3462 | cg_nprocs = numprocs |
---|
| 3463 | |
---|
| 3464 | IF ( myid == 0 ) THEN |
---|
| 3465 | |
---|
| 3466 | CALL MPI_SEND( nxc, 1, MPI_INTEGER , numprocs, 1, comm_inter, & |
---|
| 3467 | ierr ) |
---|
| 3468 | CALL MPI_SEND( nyc, 1, MPI_INTEGER , numprocs, 2, comm_inter, & |
---|
| 3469 | ierr ) |
---|
| 3470 | CALL MPI_SEND( nzc, 1, MPI_INTEGER , numprocs, 3, comm_inter, & |
---|
| 3471 | ierr ) |
---|
| 3472 | CALL MPI_SEND( dxc, 1, MPI_REAL , numprocs, 4, comm_inter, & |
---|
| 3473 | ierr ) |
---|
| 3474 | CALL MPI_SEND( dyc, 1, MPI_REAL , numprocs, 5, comm_inter, & |
---|
| 3475 | ierr ) |
---|
| 3476 | CALL MPI_SEND( dzc, 1, MPI_REAL , numprocs, 6, comm_inter, & |
---|
| 3477 | ierr ) |
---|
| 3478 | CALL MPI_SEND( pdims, 2, MPI_INTEGER, numprocs, 7, comm_inter, & |
---|
| 3479 | ierr ) |
---|
| 3480 | CALL MPI_SEND( cg_nprocs, 1, MPI_INTEGER, numprocs, 8, comm_inter, & |
---|
| 3481 | ierr ) |
---|
| 3482 | CALL MPI_RECV( nxf, 1, MPI_INTEGER, numprocs, 21, comm_inter, & |
---|
| 3483 | status, ierr ) |
---|
| 3484 | CALL MPI_RECV( nyf, 1, MPI_INTEGER, numprocs, 22, comm_inter, & |
---|
| 3485 | status, ierr ) |
---|
| 3486 | CALL MPI_RECV( nzf, 1, MPI_INTEGER, numprocs, 23, comm_inter, & |
---|
| 3487 | status, ierr ) |
---|
| 3488 | CALL MPI_RECV( dxf, 1, MPI_REAL, numprocs, 24, comm_inter, & |
---|
| 3489 | status, ierr ) |
---|
| 3490 | CALL MPI_RECV( dyf, 1, MPI_REAL, numprocs, 25, comm_inter, & |
---|
| 3491 | status, ierr ) |
---|
| 3492 | CALL MPI_RECV( dzf, 1, MPI_REAL, numprocs, 26, comm_inter, & |
---|
| 3493 | status, ierr ) |
---|
| 3494 | CALL MPI_RECV( pdims_partner, 2, MPI_INTEGER, & |
---|
| 3495 | numprocs, 27, comm_inter, status, ierr ) |
---|
| 3496 | CALL MPI_RECV( fg_nprocs, 1, MPI_INTEGER, & |
---|
| 3497 | numprocs, 28, comm_inter, status, ierr ) |
---|
| 3498 | ENDIF |
---|
| 3499 | |
---|
| 3500 | CALL MPI_BCAST( nxf, 1, MPI_INTEGER, 0, comm2d, ierr ) |
---|
| 3501 | CALL MPI_BCAST( nyf, 1, MPI_INTEGER, 0, comm2d, ierr ) |
---|
| 3502 | CALL MPI_BCAST( nzf, 1, MPI_INTEGER, 0, comm2d, ierr ) |
---|
| 3503 | CALL MPI_BCAST( dxf, 1, MPI_REAL, 0, comm2d, ierr ) |
---|
| 3504 | CALL MPI_BCAST( dyf, 1, MPI_REAL, 0, comm2d, ierr ) |
---|
| 3505 | CALL MPI_BCAST( dzf, 1, MPI_REAL, 0, comm2d, ierr ) |
---|
| 3506 | CALL MPI_BCAST( pdims_partner, 2, MPI_INTEGER, 0, comm2d, ierr ) |
---|
| 3507 | CALL MPI_BCAST( fg_nprocs, 1, MPI_INTEGER, 0, comm2d, ierr ) |
---|
| 3508 | |
---|
| 3509 | ELSEIF ( coupling_mode == 'vnested_fine' ) THEN |
---|
| 3510 | |
---|
| 3511 | nxf = nx |
---|
| 3512 | nyf = ny |
---|
| 3513 | nzf = nz |
---|
| 3514 | dxf = dx |
---|
| 3515 | dyf = dy |
---|
| 3516 | dzf = dz |
---|
| 3517 | fg_nprocs = numprocs |
---|
| 3518 | |
---|
| 3519 | IF ( myid == 0 ) THEN |
---|
| 3520 | |
---|
| 3521 | CALL MPI_RECV( nxc, 1, MPI_INTEGER, 0, 1, comm_inter, status, & |
---|
| 3522 | ierr ) |
---|
| 3523 | CALL MPI_RECV( nyc, 1, MPI_INTEGER, 0, 2, comm_inter, status, & |
---|
| 3524 | ierr ) |
---|
| 3525 | CALL MPI_RECV( nzc, 1, MPI_INTEGER, 0, 3, comm_inter, status, & |
---|
| 3526 | ierr ) |
---|
| 3527 | CALL MPI_RECV( dxc, 1, MPI_REAL, 0, 4, comm_inter, status, & |
---|
| 3528 | ierr ) |
---|
| 3529 | CALL MPI_RECV( dyc, 1, MPI_REAL, 0, 5, comm_inter, status, & |
---|
| 3530 | ierr ) |
---|
| 3531 | CALL MPI_RECV( dzc, 1, MPI_REAL, 0, 6, comm_inter, status, & |
---|
| 3532 | ierr ) |
---|
| 3533 | CALL MPI_RECV( pdims_partner, 2, MPI_INTEGER, 0, 7, comm_inter, & |
---|
| 3534 | status, ierr ) |
---|
| 3535 | CALL MPI_RECV( cg_nprocs, 1, MPI_INTEGER, 0, 8, comm_inter, & |
---|
| 3536 | status, ierr ) |
---|
| 3537 | CALL MPI_SEND( nxf, 1, MPI_INTEGER, 0, 21, comm_inter, ierr ) |
---|
| 3538 | CALL MPI_SEND( nyf, 1, MPI_INTEGER, 0, 22, comm_inter, ierr ) |
---|
| 3539 | CALL MPI_SEND( nzf, 1, MPI_INTEGER, 0, 23, comm_inter, ierr ) |
---|
| 3540 | CALL MPI_SEND( dxf, 1, MPI_REAL, 0, 24, comm_inter, ierr ) |
---|
| 3541 | CALL MPI_SEND( dyf, 1, MPI_REAL, 0, 25, comm_inter, ierr ) |
---|
| 3542 | CALL MPI_SEND( dzf, 1, MPI_REAL, 0, 26, comm_inter, ierr ) |
---|
| 3543 | CALL MPI_SEND( pdims,2,MPI_INTEGER, 0, 27, comm_inter, ierr ) |
---|
| 3544 | CALL MPI_SEND( fg_nprocs,1,MPI_INTEGER, 0, 28, comm_inter, ierr ) |
---|
| 3545 | ENDIF |
---|
| 3546 | |
---|
| 3547 | CALL MPI_BCAST( nxc, 1, MPI_INTEGER, 0, comm2d, ierr) |
---|
| 3548 | CALL MPI_BCAST( nyc, 1, MPI_INTEGER, 0, comm2d, ierr) |
---|
| 3549 | CALL MPI_BCAST( nzc, 1, MPI_INTEGER, 0, comm2d, ierr) |
---|
| 3550 | CALL MPI_BCAST( dxc, 1, MPI_REAL, 0, comm2d, ierr) |
---|
| 3551 | CALL MPI_BCAST( dyc, 1, MPI_REAL, 0, comm2d, ierr) |
---|
| 3552 | CALL MPI_BCAST( dzc, 1, MPI_REAL, 0, comm2d, ierr) |
---|
| 3553 | CALL MPI_BCAST( pdims_partner, 2, MPI_INTEGER, 0, comm2d, ierr) |
---|
| 3554 | CALL MPI_BCAST( cg_nprocs, 1, MPI_INTEGER, 0, comm2d, ierr) |
---|
| 3555 | |
---|
| 3556 | ENDIF |
---|
| 3557 | |
---|
| 3558 | ngp_c = ( nxc+1 + 2 * nbgp ) * ( nyc+1 + 2 * nbgp ) |
---|
| 3559 | ngp_f = ( nxf+1 + 2 * nbgp ) * ( nyf+1 + 2 * nbgp ) |
---|
| 3560 | |
---|
| 3561 | IF ( coupling_mode(1:8) == 'vnested_') coupling_topology = 1 |
---|
| 3562 | |
---|
| 3563 | |
---|
| 3564 | !-- Nesting Ratio: For each coarse grid cell how many fine grid cells exist |
---|
| 3565 | cfratio(1) = INT ( (nxf+1) / (nxc+1) ) |
---|
| 3566 | cfratio(2) = INT ( (nyf+1) / (nyc+1) ) |
---|
| 3567 | cfratio(3) = CEILING ( dzc / dzf ) |
---|
| 3568 | |
---|
| 3569 | !-- target_id is used only for exhange of information like simulated_time |
---|
| 3570 | !-- which are then MPI_BCAST to other processors in the group |
---|
| 3571 | IF ( myid == 0 ) THEN |
---|
| 3572 | |
---|
| 3573 | IF ( TRIM( coupling_mode ) == 'vnested_crse' ) THEN |
---|
| 3574 | target_id = numprocs |
---|
| 3575 | ELSE IF ( TRIM( coupling_mode ) == 'vnested_fine' ) THEN |
---|
| 3576 | target_id = 0 |
---|
| 3577 | ENDIF |
---|
| 3578 | |
---|
| 3579 | ENDIF |
---|
| 3580 | |
---|
| 3581 | !-- Store partner grid dimenstions and create MPI derived types |
---|
| 3582 | |
---|
| 3583 | IF ( coupling_mode == 'vnested_crse' ) THEN |
---|
| 3584 | |
---|
| 3585 | offset(1) = ( pdims_partner(1) / pdims(1) ) * pcoord(1) |
---|
| 3586 | offset(2) = ( pdims_partner(2) / pdims(2) ) * pcoord(2) |
---|
| 3587 | |
---|
[2514] | 3588 | tempx = ( pdims_partner(1) / pdims(1) ) - 1 |
---|
| 3589 | tempy = ( pdims_partner(2) / pdims(2) ) - 1 |
---|
[2365] | 3590 | ALLOCATE( c2f_dims_cg (0:5,offset(1):tempx+offset(1),offset(2):tempy+offset(2) ) ) |
---|
| 3591 | ALLOCATE( f2c_dims_cg (0:5,offset(1):tempx+offset(1),offset(2):tempy+offset(2) ) ) |
---|
| 3592 | |
---|
| 3593 | do j = 0, ( pdims_partner(2) / pdims(2) ) - 1 |
---|
| 3594 | do i = 0, ( pdims_partner(1) / pdims(1) ) - 1 |
---|
| 3595 | map_coord(1) = i+offset(1) |
---|
| 3596 | map_coord(2) = j+offset(2) |
---|
| 3597 | |
---|
| 3598 | target_idex = f_rnk_lst(map_coord(1),map_coord(2)) + numprocs |
---|
| 3599 | |
---|
| 3600 | CALL MPI_RECV( bdims_rem, 6, MPI_INTEGER, target_idex, 10, & |
---|
| 3601 | comm_inter,status, ierr ) |
---|
| 3602 | |
---|
| 3603 | !-- Store the CG dimensions that correspond to the FG partner; needed for FG top BC |
---|
| 3604 | !-- One CG can have multiple FG partners. The 3D array is mapped by partner proc co-ord |
---|
| 3605 | c2f_dims_cg (0,map_coord(1),map_coord(2)) = bdims_rem (1,1) / cfratio(1) |
---|
| 3606 | c2f_dims_cg (1,map_coord(1),map_coord(2)) = bdims_rem (1,2) / cfratio(1) |
---|
| 3607 | c2f_dims_cg (2,map_coord(1),map_coord(2)) = bdims_rem (2,1) / cfratio(2) |
---|
| 3608 | c2f_dims_cg (3,map_coord(1),map_coord(2)) = bdims_rem (2,2) / cfratio(2) |
---|
| 3609 | c2f_dims_cg (4,map_coord(1),map_coord(2)) = bdims_rem (3,2) / cfratio(3) |
---|
| 3610 | c2f_dims_cg (5,map_coord(1),map_coord(2)) =(bdims_rem (3,2) / cfratio(3)) + 2 |
---|
| 3611 | |
---|
| 3612 | !-- Store the CG dimensions that correspond to the FG partner; needed for anterpolation |
---|
| 3613 | f2c_dims_cg (0,map_coord(1),map_coord(2)) = bdims_rem (1,1) / cfratio(1) |
---|
| 3614 | f2c_dims_cg (1,map_coord(1),map_coord(2)) = bdims_rem (1,2) / cfratio(1) |
---|
| 3615 | f2c_dims_cg (2,map_coord(1),map_coord(2)) = bdims_rem (2,1) / cfratio(2) |
---|
| 3616 | f2c_dims_cg (3,map_coord(1),map_coord(2)) = bdims_rem (2,2) / cfratio(2) |
---|
| 3617 | f2c_dims_cg (4,map_coord(1),map_coord(2)) = bdims_rem (3,1) |
---|
| 3618 | f2c_dims_cg (5,map_coord(1),map_coord(2)) =(bdims_rem (3,2)-cfratio(3))/ cfratio(3) |
---|
| 3619 | |
---|
| 3620 | CALL MPI_SEND( c2f_dims_cg (:,map_coord(1),map_coord(2)), 6, & |
---|
[2514] | 3621 | MPI_INTEGER, target_idex, 100, comm_inter, ierr ) |
---|
[2365] | 3622 | |
---|
| 3623 | CALL MPI_SEND( f2c_dims_cg (:,map_coord(1),map_coord(2)), 6, & |
---|
[2514] | 3624 | MPI_INTEGER, target_idex, 101, comm_inter, ierr ) |
---|
[2365] | 3625 | |
---|
| 3626 | end do |
---|
| 3627 | end do |
---|
| 3628 | |
---|
| 3629 | !-- A derived data type to pack 3 Z-levels of CG to set FG top BC |
---|
| 3630 | MTV_X = ( nxr - nxl + 1 ) + 2*nbgp |
---|
| 3631 | MTV_Y = ( nyn - nys + 1 ) + 2*nbgp |
---|
| 3632 | MTV_Z = nzt+1 - nzb +1 |
---|
| 3633 | |
---|
| 3634 | MTV_RX = ( c2f_dims_cg (1,offset(1),offset(2)) - c2f_dims_cg (0,offset(1),offset(2)) ) +1+2 |
---|
| 3635 | MTV_RY = ( c2f_dims_cg (3,offset(1),offset(2)) - c2f_dims_cg (2,offset(1),offset(2)) ) +1+2 |
---|
| 3636 | MTV_RZ = ( c2f_dims_cg (5,offset(1),offset(2)) - c2f_dims_cg (4,offset(1),offset(2)) ) +1 |
---|
| 3637 | |
---|
| 3638 | CALL MPI_TYPE_EXTENT(MPI_REAL, SIZEOFREAL, IERR) |
---|
| 3639 | |
---|
| 3640 | CALL MPI_TYPE_VECTOR ( MTV_RY, MTV_RZ, MTV_Z, MPI_REAL, TYPE_INT_YZ, IERR) |
---|
| 3641 | CALL MPI_TYPE_HVECTOR( MTV_RX, 1, MTV_Z*MTV_Y*SIZEOFREAL, & |
---|
[2514] | 3642 | TYPE_INT_YZ, TYPE_VNEST_BC, IERR) |
---|
[2365] | 3643 | CALL MPI_TYPE_FREE(TYPE_INT_YZ, IERR) |
---|
[2514] | 3644 | CALL MPI_TYPE_COMMIT(TYPE_VNEST_BC, IERR) |
---|
[2365] | 3645 | |
---|
| 3646 | |
---|
| 3647 | ELSEIF ( coupling_mode == 'vnested_fine' ) THEN |
---|
| 3648 | |
---|
| 3649 | ALLOCATE( c2f_dims_fg (0:5) ) |
---|
| 3650 | ALLOCATE( f2c_dims_fg (0:5) ) |
---|
| 3651 | |
---|
| 3652 | offset(1) = pcoord(1) / ( pdims(1)/pdims_partner(1) ) |
---|
| 3653 | offset(2) = pcoord(2) / ( pdims(2)/pdims_partner(2) ) |
---|
| 3654 | map_coord(1) = offset(1) |
---|
| 3655 | map_coord(2) = offset(2) |
---|
| 3656 | target_idex = c_rnk_lst(map_coord(1),map_coord(2)) |
---|
| 3657 | |
---|
| 3658 | bdims (1,1) = nxl |
---|
| 3659 | bdims (1,2) = nxr |
---|
| 3660 | bdims (2,1) = nys |
---|
| 3661 | bdims (2,2) = nyn |
---|
| 3662 | bdims (3,1) = nzb |
---|
| 3663 | bdims (3,2) = nzt |
---|
| 3664 | |
---|
| 3665 | CALL MPI_SEND( bdims, 6, MPI_INTEGER, target_idex, 10, & |
---|
| 3666 | comm_inter, ierr ) |
---|
| 3667 | |
---|
| 3668 | !-- Store the CG dimensions that correspond to the FG partner; needed for FG top BC |
---|
| 3669 | !-- One FG can have only one CG partner |
---|
| 3670 | CALL MPI_RECV( c2f_dims_fg, 6, MPI_INTEGER, target_idex, 100, & |
---|
| 3671 | comm_inter,status, ierr ) |
---|
| 3672 | |
---|
| 3673 | CALL MPI_RECV( f2c_dims_fg, 6, MPI_INTEGER, target_idex, 101, & |
---|
| 3674 | comm_inter,status, ierr ) |
---|
| 3675 | |
---|
| 3676 | !-- Store the CG dimensions that correspond to the FG partner; needed for anterpolation |
---|
| 3677 | |
---|
| 3678 | n_cell_c = (f2c_dims_fg(1)-f2c_dims_fg(0)+1) * & |
---|
| 3679 | (f2c_dims_fg(3)-f2c_dims_fg(2)+1) * & |
---|
| 3680 | (f2c_dims_fg(5)-f2c_dims_fg(4)+0) |
---|
| 3681 | |
---|
| 3682 | CALL MPI_TYPE_CONTIGUOUS(n_cell_c, MPI_REAL, TYPE_VNEST_ANTER, IERR) |
---|
| 3683 | CALL MPI_TYPE_COMMIT(TYPE_VNEST_ANTER, ierr) |
---|
| 3684 | |
---|
| 3685 | ENDIF |
---|
| 3686 | |
---|
| 3687 | END SUBROUTINE vnest_init_pegrid_domain |
---|
| 3688 | |
---|
| 3689 | |
---|
| 3690 | SUBROUTINE vnest_init_grid |
---|
| 3691 | |
---|
| 3692 | USE arrays_3d, & |
---|
| 3693 | ONLY: zu, zw |
---|
| 3694 | |
---|
| 3695 | USE control_parameters, & |
---|
| 3696 | ONLY: coupling_mode |
---|
| 3697 | |
---|
| 3698 | USE indices, & |
---|
| 3699 | ONLY: nzt |
---|
| 3700 | |
---|
| 3701 | USE kinds |
---|
| 3702 | |
---|
| 3703 | USE pegrid |
---|
| 3704 | |
---|
[2514] | 3705 | IMPLICIT NONE |
---|
[2365] | 3706 | |
---|
| 3707 | !-- Allocate and Exchange zuc and zuf, zwc and zwf |
---|
| 3708 | IF ( coupling_mode(1:8) == 'vnested_' ) THEN |
---|
| 3709 | |
---|
| 3710 | ALLOCATE( zuc(0:nzc+1), zuf(0:nzf+1) ) |
---|
| 3711 | ALLOCATE( zwc(0:nzc+1), zwf(0:nzf+1) ) |
---|
| 3712 | |
---|
| 3713 | IF ( coupling_mode == 'vnested_crse' ) THEN |
---|
| 3714 | |
---|
| 3715 | zuc = zu |
---|
| 3716 | zwc = zw |
---|
| 3717 | IF ( myid == 0 ) THEN |
---|
| 3718 | |
---|
| 3719 | CALL MPI_SEND( zuc, nzt+2, MPI_REAL, numprocs, 41, comm_inter, & |
---|
| 3720 | ierr ) |
---|
| 3721 | CALL MPI_RECV( zuf, nzf+2, MPI_REAL, numprocs, 42, comm_inter, & |
---|
| 3722 | status, ierr ) |
---|
| 3723 | |
---|
| 3724 | CALL MPI_SEND( zwc, nzt+2, MPI_REAL, numprocs, 43, comm_inter, & |
---|
| 3725 | ierr ) |
---|
| 3726 | CALL MPI_RECV( zwf, nzf+2, MPI_REAL, numprocs, 44, comm_inter, & |
---|
| 3727 | status, ierr ) |
---|
| 3728 | |
---|
| 3729 | ENDIF |
---|
| 3730 | |
---|
| 3731 | CALL MPI_BCAST( zuf,nzf+2,MPI_REAL, 0, comm2d, ierr ) |
---|
| 3732 | CALL MPI_BCAST( zwf,nzf+2,MPI_REAL, 0, comm2d, ierr ) |
---|
| 3733 | |
---|
| 3734 | ELSEIF ( coupling_mode == 'vnested_fine' ) THEN |
---|
| 3735 | |
---|
| 3736 | zuf = zu |
---|
| 3737 | zwf = zw |
---|
| 3738 | IF ( myid == 0 ) THEN |
---|
| 3739 | |
---|
| 3740 | CALL MPI_RECV( zuc,nzc+2, MPI_REAL, 0, 41, comm_inter, status, & |
---|
| 3741 | ierr ) |
---|
| 3742 | CALL MPI_SEND( zuf,nzt+2, MPI_REAL, 0, 42, comm_inter, ierr ) |
---|
| 3743 | |
---|
| 3744 | CALL MPI_RECV( zwc,nzc+2, MPI_REAL, 0, 43, comm_inter, status, & |
---|
| 3745 | ierr ) |
---|
| 3746 | CALL MPI_SEND( zwf,nzt+2, MPI_REAL, 0, 44, comm_inter, ierr ) |
---|
| 3747 | ENDIF |
---|
| 3748 | |
---|
| 3749 | CALL MPI_BCAST( zuc,nzc+2,MPI_REAL, 0, comm2d, ierr ) |
---|
| 3750 | CALL MPI_BCAST( zwc,nzc+2,MPI_REAL, 0, comm2d, ierr ) |
---|
| 3751 | |
---|
| 3752 | ENDIF |
---|
| 3753 | ENDIF |
---|
| 3754 | |
---|
| 3755 | END SUBROUTINE vnest_init_grid |
---|
| 3756 | |
---|
| 3757 | |
---|
| 3758 | SUBROUTINE vnest_check_parameters |
---|
| 3759 | |
---|
| 3760 | USE arrays_3d, & |
---|
| 3761 | ONLY: zu, zw |
---|
| 3762 | |
---|
| 3763 | USE control_parameters, & |
---|
| 3764 | ONLY: coupling_mode |
---|
| 3765 | |
---|
| 3766 | USE indices, & |
---|
| 3767 | ONLY: nzt |
---|
| 3768 | |
---|
| 3769 | USE kinds |
---|
| 3770 | |
---|
| 3771 | USE pegrid |
---|
| 3772 | |
---|
[2514] | 3773 | IMPLICIT NONE |
---|
[2365] | 3774 | |
---|
| 3775 | |
---|
[2514] | 3776 | IF (myid==0) PRINT*, '*** vnest: check parameters not implemented yet ***' |
---|
[2365] | 3777 | |
---|
| 3778 | |
---|
| 3779 | END SUBROUTINE vnest_check_parameters |
---|
| 3780 | |
---|
| 3781 | |
---|
| 3782 | SUBROUTINE vnest_timestep_sync |
---|
| 3783 | |
---|
| 3784 | USE control_parameters, & |
---|
| 3785 | ONLY: coupling_mode, dt_3d, dt_coupling |
---|
| 3786 | |
---|
| 3787 | USE interfaces |
---|
| 3788 | |
---|
| 3789 | USE kinds |
---|
| 3790 | |
---|
| 3791 | USE pegrid |
---|
| 3792 | |
---|
| 3793 | IMPLICIT NONE |
---|
| 3794 | |
---|
| 3795 | IF ( coupling_mode == 'vnested_crse') THEN |
---|
[2514] | 3796 | dtc = dt_3d |
---|
| 3797 | if (myid == 0) then |
---|
[2365] | 3798 | CALL MPI_SEND( dt_3d, 1, MPI_REAL, target_id, & |
---|
| 3799 | 31, comm_inter, ierr ) |
---|
| 3800 | CALL MPI_RECV( dtf, 1, MPI_REAL, & |
---|
| 3801 | target_id, 32, comm_inter, status, ierr ) |
---|
| 3802 | |
---|
[2514] | 3803 | endif |
---|
| 3804 | CALL MPI_BCAST( dtf, 1, MPI_REAL, 0, comm2d, ierr ) |
---|
[2365] | 3805 | ELSE |
---|
[2514] | 3806 | dtf = dt_3d |
---|
| 3807 | if (myid == 0) then |
---|
[2365] | 3808 | CALL MPI_RECV( dtc, 1, MPI_REAL, & |
---|
| 3809 | target_id, 31, comm_inter, status, ierr ) |
---|
| 3810 | CALL MPI_SEND( dt_3d, 1, MPI_REAL, target_id, & |
---|
| 3811 | 32, comm_inter, ierr ) |
---|
| 3812 | |
---|
[2514] | 3813 | endif |
---|
| 3814 | CALL MPI_BCAST( dtc, 1, MPI_REAL, 0, comm2d, ierr ) |
---|
[2365] | 3815 | |
---|
| 3816 | ENDIF |
---|
| 3817 | !-- Identical timestep for coarse and fine grids |
---|
| 3818 | dt_3d = MIN( dtc, dtf ) |
---|
| 3819 | !-- Nest coupling at every timestep |
---|
| 3820 | dt_coupling = dt_3d |
---|
| 3821 | |
---|
| 3822 | END SUBROUTINE vnest_timestep_sync |
---|
| 3823 | |
---|
| 3824 | SUBROUTINE vnest_deallocate |
---|
| 3825 | USE control_parameters, & |
---|
| 3826 | ONLY: coupling_mode |
---|
| 3827 | |
---|
| 3828 | IMPLICIT NONE |
---|
| 3829 | |
---|
| 3830 | IF ( ALLOCATED(c_rnk_lst) ) DEALLOCATE (c_rnk_lst) |
---|
| 3831 | IF ( ALLOCATED(f_rnk_lst) ) DEALLOCATE (f_rnk_lst) |
---|
| 3832 | |
---|
| 3833 | IF ( coupling_mode == 'vnested_crse') THEN |
---|
| 3834 | IF ( ALLOCATED (c2f_dims_cg) ) DEALLOCATE (c2f_dims_cg) |
---|
| 3835 | IF ( ALLOCATED (f2c_dims_cg) ) DEALLOCATE (f2c_dims_cg) |
---|
| 3836 | ELSEIF( coupling_mode == 'vnested_fine' ) THEN |
---|
| 3837 | IF ( ALLOCATED (c2f_dims_fg) ) DEALLOCATE (c2f_dims_fg) |
---|
| 3838 | IF ( ALLOCATED (f2c_dims_fg) ) DEALLOCATE (f2c_dims_fg) |
---|
| 3839 | ENDIF |
---|
| 3840 | |
---|
| 3841 | END SUBROUTINE vnest_deallocate |
---|
| 3842 | |
---|
| 3843 | END MODULE vertical_nesting_mod |
---|