[2365] | 1 | !> @file vertical_nesting_mod.f90 |
---|
| 2 | !------------------------------------------------------------------------------! |
---|
| 3 | ! This file is part of PALM. |
---|
| 4 | ! |
---|
| 5 | ! PALM is free software: you can redistribute it and/or modify it under the |
---|
| 6 | ! terms of the GNU General Public License as published by the Free Software |
---|
| 7 | ! Foundation, either version 3 of the License, or (at your option) any later |
---|
| 8 | ! version. |
---|
| 9 | ! |
---|
| 10 | ! PALM is distributed in the hope that it will be useful, but WITHOUT ANY |
---|
| 11 | ! WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR |
---|
| 12 | ! A PARTICULAR PURPOSE. See the GNU General Public License for more details. |
---|
| 13 | ! |
---|
| 14 | ! You should have received a copy of the GNU General Public License along with |
---|
| 15 | ! PALM. If not, see <http://www.gnu.org/licenses/>. |
---|
| 16 | ! |
---|
| 17 | ! Copyright 1997-2017 Leibniz Universitaet Hannover |
---|
| 18 | !------------------------------------------------------------------------------! |
---|
| 19 | ! |
---|
| 20 | ! Current revisions: |
---|
| 21 | ! ----------------- |
---|
[2514] | 22 | ! Remove tabs |
---|
[2365] | 23 | ! |
---|
| 24 | ! Former revisions: |
---|
| 25 | ! ----------------- |
---|
| 26 | ! $Id: vertical_nesting_mod.f90 2514 2017-10-04 09:52:37Z suehring $ |
---|
[2374] | 27 | ! Added todo list |
---|
| 28 | ! |
---|
| 29 | ! 2365 2017-08-21 14:59:59Z kanani |
---|
[2365] | 30 | ! Initial revision (SadiqHuq) |
---|
| 31 | ! |
---|
| 32 | ! |
---|
| 33 | ! |
---|
| 34 | ! |
---|
| 35 | ! Description: |
---|
| 36 | ! ------------ |
---|
[2374] | 37 | !> Module for vertical nesting. |
---|
| 38 | !> |
---|
| 39 | !> Definition of parameters and variables for vertical nesting |
---|
| 40 | !> |
---|
| 41 | !> @todo Ensure that code can be compiled for serial and parallel mode. Please |
---|
| 42 | !> check the placement of the directive "__parallel". |
---|
| 43 | !> @todo Add descriptions for all declared variables/parameters, one declaration |
---|
| 44 | !> statement per variable |
---|
| 45 | !> @todo Add a descriptive header above each subroutine (see land_surface_model) |
---|
| 46 | !> @todo FORTRAN language statements must not be used as names for variables |
---|
| 47 | !> (e.g. if). Please rename it. |
---|
| 48 | !> @todo Revise code according to PALM Coding Standard |
---|
[2365] | 49 | !------------------------------------------------------------------------------! |
---|
| 50 | MODULE vertical_nesting_mod |
---|
| 51 | |
---|
| 52 | USE kinds |
---|
| 53 | |
---|
| 54 | IMPLICIT NONE |
---|
| 55 | |
---|
[2374] | 56 | INTEGER(iwp),DIMENSION(3,2) :: bdims = 0 |
---|
| 57 | INTEGER(iwp),DIMENSION(3,2) :: bdims_rem = 0 !> Add description. It should not be longer than up to this point | |
---|
| 58 | !> If really necessary, a second line can be added like this. |
---|
[2365] | 59 | INTEGER(iwp) :: cg_nprocs, fg_nprocs |
---|
| 60 | INTEGER(iwp),DIMENSION(:,:,:),ALLOCATABLE:: c2f_dims_cg, f2c_dims_cg |
---|
| 61 | INTEGER(iwp),DIMENSION(:),ALLOCATABLE :: c2f_dims_fg, f2c_dims_fg |
---|
| 62 | INTEGER(iwp) :: TYPE_VNEST_BC, TYPE_VNEST_ANTER |
---|
| 63 | |
---|
| 64 | INTEGER(iwp),DIMENSION(:,:),ALLOCATABLE :: f_rnk_lst, c_rnk_lst |
---|
| 65 | INTEGER(iwp),DIMENSION(3) :: cfratio |
---|
| 66 | |
---|
| 67 | INTEGER(iwp) :: nxc, nxf, nyc, nyf, nzc, nzf |
---|
| 68 | INTEGER(iwp) :: ngp_c, ngp_f |
---|
| 69 | |
---|
| 70 | INTEGER(iwp) :: target_idex, n_cell_c, n_cell_f |
---|
| 71 | INTEGER(iwp),DIMENSION(2) :: pdims_partner |
---|
| 72 | INTEGER(iwp),DIMENSION(2) :: offset,map_coord |
---|
| 73 | |
---|
| 74 | REAL(wp) :: dxc, dyc, dxf, dyf, dzc, dzf,dtc,dtf |
---|
| 75 | |
---|
| 76 | REAL(wp),DIMENSION(:,:,:), ALLOCATABLE :: work3d |
---|
| 77 | REAL(wp),DIMENSION(:,:), ALLOCATABLE :: work2dshf |
---|
| 78 | REAL(wp),DIMENSION(:,:), ALLOCATABLE :: work2dusws |
---|
| 79 | REAL(wp),DIMENSION(:,:), ALLOCATABLE :: work2dvsws |
---|
| 80 | REAL(wp),DIMENSION(:,:), ALLOCATABLE :: work2dts |
---|
| 81 | REAL(wp),DIMENSION(:,:), ALLOCATABLE :: work2dus |
---|
| 82 | REAL(wp),DIMENSION(:,:), ALLOCATABLE :: work2dz0 |
---|
| 83 | |
---|
| 84 | |
---|
| 85 | REAL(wp), DIMENSION(:), ALLOCATABLE :: zuc, zuf, zwc, zwf |
---|
| 86 | REAL(wp), DIMENSION(:,:,:), POINTER :: interpol3d,anterpol3d |
---|
| 87 | ! REAL(wp), DIMENSION(:,:,:), ALLOCATABLE, TARGET :: interpol3d |
---|
| 88 | |
---|
| 89 | LOGICAL :: vnest_init = .FALSE., vnested = .FALSE., & |
---|
[2514] | 90 | vnest_twi = .FALSE., vnest_couple_rk3 = .FALSE. |
---|
[2365] | 91 | |
---|
| 92 | ! PARIN |
---|
| 93 | REAL(wp) :: vnest_start_time = 9999999.9 |
---|
| 94 | |
---|
| 95 | SAVE |
---|
| 96 | |
---|
| 97 | !-- Public functions |
---|
| 98 | PUBLIC vnest_init_fine, vnest_boundary_conds, vnest_anterpolate, & |
---|
[2514] | 99 | vnest_boundary_conds_khkm, vnest_anterpolate_e, & |
---|
| 100 | vnest_init_pegrid_rank, vnest_init_pegrid_domain, vnest_init_grid, & |
---|
| 101 | vnest_timestep_sync, vnest_deallocate |
---|
[2365] | 102 | |
---|
| 103 | !-- Public constants and variables |
---|
| 104 | PUBLIC vnested, vnest_init, vnest_twi, vnest_couple_rk3, & |
---|
| 105 | vnest_start_time |
---|
| 106 | |
---|
| 107 | PRIVATE bdims, bdims_rem, & |
---|
| 108 | work3d, work2dshf, work2dusws, work2dvsws, & |
---|
| 109 | work2dts, work2dus, work2dz0, & |
---|
| 110 | dxc, dyc, dxf, dyf, dzc, dzf, dtc, dtf, & |
---|
| 111 | zuc, zuf, zwc, zwf, interpol3d, anterpol3d, & |
---|
| 112 | cg_nprocs, fg_nprocs, & |
---|
| 113 | c2f_dims_cg, c2f_dims_fg, f2c_dims_cg, f2c_dims_fg, & |
---|
| 114 | f_rnk_lst, c_rnk_lst, cfratio, pdims_partner, & |
---|
| 115 | nxc, nxf, nyc, nyf, nzc, nzf, & |
---|
| 116 | ngp_c, ngp_f, target_idex, n_cell_c, n_cell_f, & |
---|
[2514] | 117 | offset, map_coord, TYPE_VNEST_BC, TYPE_VNEST_ANTER |
---|
[2365] | 118 | |
---|
| 119 | INTERFACE vnest_anterpolate |
---|
| 120 | MODULE PROCEDURE vnest_anterpolate |
---|
| 121 | END INTERFACE vnest_anterpolate |
---|
| 122 | |
---|
| 123 | INTERFACE vnest_anterpolate_e |
---|
| 124 | MODULE PROCEDURE vnest_anterpolate_e |
---|
| 125 | END INTERFACE vnest_anterpolate_e |
---|
| 126 | |
---|
| 127 | INTERFACE vnest_boundary_conds |
---|
| 128 | MODULE PROCEDURE vnest_boundary_conds |
---|
| 129 | END INTERFACE vnest_boundary_conds |
---|
| 130 | |
---|
| 131 | INTERFACE vnest_boundary_conds_khkm |
---|
| 132 | MODULE PROCEDURE vnest_boundary_conds_khkm |
---|
| 133 | END INTERFACE vnest_boundary_conds_khkm |
---|
| 134 | |
---|
| 135 | INTERFACE vnest_check_parameters |
---|
| 136 | MODULE PROCEDURE vnest_check_parameters |
---|
| 137 | END INTERFACE vnest_check_parameters |
---|
| 138 | |
---|
| 139 | INTERFACE vnest_deallocate |
---|
| 140 | MODULE PROCEDURE vnest_deallocate |
---|
| 141 | END INTERFACE vnest_deallocate |
---|
| 142 | |
---|
| 143 | INTERFACE vnest_init_fine |
---|
| 144 | MODULE PROCEDURE vnest_init_fine |
---|
| 145 | END INTERFACE vnest_init_fine |
---|
| 146 | |
---|
| 147 | INTERFACE vnest_init_grid |
---|
| 148 | MODULE PROCEDURE vnest_init_grid |
---|
| 149 | END INTERFACE vnest_init_grid |
---|
| 150 | |
---|
| 151 | INTERFACE vnest_init_pegrid_domain |
---|
| 152 | MODULE PROCEDURE vnest_init_pegrid_domain |
---|
| 153 | END INTERFACE vnest_init_pegrid_domain |
---|
| 154 | |
---|
| 155 | INTERFACE vnest_init_pegrid_rank |
---|
| 156 | MODULE PROCEDURE vnest_init_pegrid_rank |
---|
| 157 | END INTERFACE vnest_init_pegrid_rank |
---|
| 158 | |
---|
| 159 | INTERFACE vnest_timestep_sync |
---|
| 160 | MODULE PROCEDURE vnest_timestep_sync |
---|
| 161 | END INTERFACE vnest_timestep_sync |
---|
| 162 | |
---|
| 163 | CONTAINS |
---|
| 164 | |
---|
| 165 | |
---|
| 166 | |
---|
| 167 | SUBROUTINE vnest_init_fine |
---|
| 168 | |
---|
| 169 | !--------------------------------------------------------------------------------! |
---|
| 170 | ! Description: |
---|
| 171 | ! ------------ |
---|
| 172 | ! At the specified vnest_start_time initialize the Fine Grid based on the coarse |
---|
| 173 | ! grid values |
---|
| 174 | !------------------------------------------------------------------------------! |
---|
| 175 | |
---|
| 176 | |
---|
| 177 | USE arrays_3d |
---|
| 178 | USE control_parameters |
---|
| 179 | USE grid_variables |
---|
| 180 | USE indices |
---|
| 181 | USE interfaces |
---|
| 182 | USE pegrid |
---|
| 183 | USE surface_mod, & |
---|
| 184 | ONLY : surf_def_h, surf_def_v |
---|
| 185 | |
---|
| 186 | |
---|
| 187 | IMPLICIT NONE |
---|
| 188 | |
---|
| 189 | REAL(wp) :: time_since_reference_point_rem |
---|
| 190 | |
---|
| 191 | INTEGER(iwp) :: i, j, k,im,jn,ko |
---|
| 192 | INTEGER(iwp) :: if, jf, kf |
---|
| 193 | |
---|
| 194 | #if defined( __parallel ) |
---|
| 195 | |
---|
| 196 | if (myid ==0 )print *, ' TIME TO INIT FINE from COARSE', simulated_time |
---|
| 197 | |
---|
| 198 | ! |
---|
| 199 | !-- In case of model termination initiated by the remote model |
---|
| 200 | !-- (terminate_coupled_remote > 0), initiate termination of the local model. |
---|
| 201 | !-- The rest of the coupler must then be skipped because it would cause an MPI |
---|
| 202 | !-- intercomminucation hang. |
---|
| 203 | !-- If necessary, the coupler will be called at the beginning of the next |
---|
| 204 | !-- restart run. |
---|
| 205 | |
---|
| 206 | IF ( myid == 0) THEN |
---|
| 207 | CALL MPI_SENDRECV( terminate_coupled, 1, MPI_INTEGER, & |
---|
| 208 | target_id, 0, & |
---|
| 209 | terminate_coupled_remote, 1, MPI_INTEGER, & |
---|
| 210 | target_id, 0, & |
---|
| 211 | comm_inter, status, ierr ) |
---|
| 212 | ENDIF |
---|
| 213 | CALL MPI_BCAST( terminate_coupled_remote, 1, MPI_INTEGER, 0, comm2d, & |
---|
| 214 | ierr ) |
---|
| 215 | |
---|
| 216 | IF ( terminate_coupled_remote > 0 ) THEN |
---|
| 217 | WRITE( message_string, * ) 'remote model "', & |
---|
| 218 | TRIM( coupling_mode_remote ), & |
---|
| 219 | '" terminated', & |
---|
| 220 | '&with terminate_coupled_remote = ', & |
---|
| 221 | terminate_coupled_remote, & |
---|
| 222 | '&local model "', TRIM( coupling_mode ), & |
---|
| 223 | '" has', & |
---|
| 224 | '&terminate_coupled = ', & |
---|
| 225 | terminate_coupled |
---|
| 226 | CALL message( 'vnest_init_fine', 'PA0310', 1, 2, 0, 6, 0 ) |
---|
| 227 | RETURN |
---|
| 228 | ENDIF |
---|
| 229 | |
---|
| 230 | |
---|
| 231 | ! |
---|
| 232 | !-- Exchange the current simulated time between the models, |
---|
| 233 | !-- currently just for total_2ding |
---|
| 234 | IF ( myid == 0 ) THEN |
---|
| 235 | |
---|
| 236 | CALL MPI_SEND( time_since_reference_point, 1, MPI_REAL, target_id, & |
---|
| 237 | 11, comm_inter, ierr ) |
---|
| 238 | CALL MPI_RECV( time_since_reference_point_rem, 1, MPI_REAL, & |
---|
| 239 | target_id, 11, comm_inter, status, ierr ) |
---|
| 240 | |
---|
| 241 | ENDIF |
---|
| 242 | |
---|
| 243 | CALL MPI_BCAST( time_since_reference_point_rem, 1, MPI_REAL, 0, comm2d, & |
---|
| 244 | ierr ) |
---|
| 245 | |
---|
| 246 | |
---|
| 247 | IF ( coupling_mode == 'vnested_crse' ) THEN |
---|
| 248 | !-- Send data to fine grid for initialization |
---|
| 249 | |
---|
| 250 | offset(1) = ( pdims_partner(1) / pdims(1) ) * pcoord(1) |
---|
| 251 | offset(2) = ( pdims_partner(2) / pdims(2) ) * pcoord(2) |
---|
| 252 | |
---|
| 253 | do j = 0, ( pdims_partner(2) / pdims(2) ) - 1 |
---|
| 254 | do i = 0, ( pdims_partner(1) / pdims(1) ) - 1 |
---|
| 255 | map_coord(1) = i+offset(1) |
---|
| 256 | map_coord(2) = j+offset(2) |
---|
| 257 | |
---|
| 258 | target_idex = f_rnk_lst(map_coord(1),map_coord(2)) + numprocs |
---|
| 259 | |
---|
| 260 | CALL MPI_RECV( bdims_rem, 6, MPI_INTEGER, target_idex, 10, & |
---|
| 261 | comm_inter,status, ierr ) |
---|
| 262 | |
---|
| 263 | bdims (1,1) = bdims_rem (1,1) / cfratio(1) |
---|
| 264 | bdims (1,2) = bdims_rem (1,2) / cfratio(1) |
---|
| 265 | bdims (2,1) = bdims_rem (2,1) / cfratio(2) |
---|
| 266 | bdims (2,2) = bdims_rem (2,2) / cfratio(2) |
---|
| 267 | bdims (3,1) = bdims_rem (3,1) |
---|
| 268 | bdims (3,2) = bdims_rem (3,2) / cfratio(3) |
---|
| 269 | |
---|
| 270 | |
---|
| 271 | CALL MPI_SEND( bdims, 6, MPI_INTEGER, target_idex, 9, & |
---|
| 272 | comm_inter, ierr ) |
---|
| 273 | |
---|
| 274 | |
---|
| 275 | n_cell_c = (bdims(1,2)-bdims(1,1)+3) * & |
---|
| 276 | (bdims(2,2)-bdims(2,1)+3) * & |
---|
| 277 | (bdims(3,2)-bdims(3,1)+3) |
---|
| 278 | |
---|
| 279 | CALL MPI_SEND( u( bdims(3,1):bdims(3,2)+2, & |
---|
| 280 | bdims(2,1)-1:bdims(2,2)+1, & |
---|
| 281 | bdims(1,1)-1:bdims(1,2)+1),& |
---|
| 282 | n_cell_c, MPI_REAL, target_idex, & |
---|
[2514] | 283 | 101, comm_inter, ierr) |
---|
[2365] | 284 | |
---|
| 285 | CALL MPI_SEND( v( bdims(3,1):bdims(3,2)+2, & |
---|
| 286 | bdims(2,1)-1:bdims(2,2)+1, & |
---|
| 287 | bdims(1,1)-1:bdims(1,2)+1),& |
---|
| 288 | n_cell_c, MPI_REAL, target_idex, & |
---|
[2514] | 289 | 102, comm_inter, ierr) |
---|
[2365] | 290 | |
---|
| 291 | CALL MPI_SEND( w( bdims(3,1):bdims(3,2)+2, & |
---|
| 292 | bdims(2,1)-1:bdims(2,2)+1, & |
---|
| 293 | bdims(1,1)-1:bdims(1,2)+1),& |
---|
| 294 | n_cell_c, MPI_REAL, target_idex, & |
---|
[2514] | 295 | 103, comm_inter, ierr) |
---|
[2365] | 296 | |
---|
| 297 | CALL MPI_SEND( pt(bdims(3,1):bdims(3,2)+2, & |
---|
| 298 | bdims(2,1)-1:bdims(2,2)+1, & |
---|
| 299 | bdims(1,1)-1:bdims(1,2)+1),& |
---|
| 300 | n_cell_c, MPI_REAL, target_idex, & |
---|
[2514] | 301 | 105, comm_inter, ierr) |
---|
[2365] | 302 | |
---|
| 303 | IF ( humidity ) THEN |
---|
| 304 | CALL MPI_SEND( q(bdims(3,1):bdims(3,2)+2, & |
---|
| 305 | bdims(2,1)-1:bdims(2,2)+1, & |
---|
| 306 | bdims(1,1)-1:bdims(1,2)+1),& |
---|
| 307 | n_cell_c, MPI_REAL, target_idex, & |
---|
[2514] | 308 | 116, comm_inter, ierr) |
---|
[2365] | 309 | ENDIF |
---|
| 310 | |
---|
| 311 | CALL MPI_SEND( e( bdims(3,1):bdims(3,2)+2, & |
---|
| 312 | bdims(2,1)-1:bdims(2,2)+1, & |
---|
| 313 | bdims(1,1)-1:bdims(1,2)+1),& |
---|
| 314 | n_cell_c, MPI_REAL, target_idex, & |
---|
[2514] | 315 | 104, comm_inter, ierr) |
---|
[2365] | 316 | |
---|
| 317 | CALL MPI_SEND(kh( bdims(3,1):bdims(3,2)+2, & |
---|
| 318 | bdims(2,1)-1:bdims(2,2)+1, & |
---|
| 319 | bdims(1,1)-1:bdims(1,2)+1),& |
---|
| 320 | n_cell_c, MPI_REAL, target_idex, & |
---|
[2514] | 321 | 106, comm_inter, ierr) |
---|
[2365] | 322 | |
---|
| 323 | CALL MPI_SEND(km( bdims(3,1):bdims(3,2)+2, & |
---|
| 324 | bdims(2,1)-1:bdims(2,2)+1, & |
---|
| 325 | bdims(1,1)-1:bdims(1,2)+1),& |
---|
| 326 | n_cell_c, MPI_REAL, target_idex, & |
---|
[2514] | 327 | 107, comm_inter, ierr) |
---|
[2365] | 328 | |
---|
| 329 | !-- Send Surface fluxes |
---|
| 330 | IF ( use_surface_fluxes ) THEN |
---|
| 331 | |
---|
| 332 | n_cell_c = (bdims(1,2)-bdims(1,1)+3) * & |
---|
| 333 | (bdims(2,2)-bdims(2,1)+3) |
---|
| 334 | |
---|
| 335 | !-- WARNING |
---|
| 336 | !-- shf,z0 not interpolated |
---|
| 337 | !-- line commented in interpolate_to_fine_flux |
---|
| 338 | !-- FG needs to read it's own data file |
---|
| 339 | !MERGE-WIP CALL MPI_SEND(surf_def_h(0)%shf ( bdims(2,1)-1:bdims(2,2)+1, & |
---|
| 340 | !MERGE-WIP bdims(1,1)-1:bdims(1,2)+1),& |
---|
| 341 | !MERGE-WIP n_cell_c, MPI_REAL, target_idex, & |
---|
[2514] | 342 | !MERGE-WIP 109, comm_inter, ierr ) |
---|
[2365] | 343 | !MERGE-WIP |
---|
| 344 | !MERGE-WIP CALL MPI_SEND(surf_def_h(0)%usws( bdims(2,1)-1:bdims(2,2)+1, & |
---|
| 345 | !MERGE-WIP bdims(1,1)-1:bdims(1,2)+1),& |
---|
| 346 | !MERGE-WIP n_cell_c, MPI_REAL, target_idex, & |
---|
[2514] | 347 | !MERGE-WIP 110, comm_inter, ierr ) |
---|
[2365] | 348 | !MERGE-WIP |
---|
| 349 | !MERGE-WIP CALL MPI_SEND(surf_def_h(0)%vsws( bdims(2,1)-1:bdims(2,2)+1, & |
---|
| 350 | !MERGE-WIP bdims(1,1)-1:bdims(1,2)+1),& |
---|
| 351 | !MERGE-WIP n_cell_c, MPI_REAL, target_idex, & |
---|
[2514] | 352 | !MERGE-WIP 111, comm_inter, ierr ) |
---|
[2365] | 353 | !MERGE-WIP |
---|
| 354 | !MERGE CALL MPI_SEND(ts ( bdims(2,1)-1:bdims(2,2)+1, & |
---|
| 355 | !MERGE bdims(1,1)-1:bdims(1,2)+1),& |
---|
| 356 | !MERGE n_cell_c, MPI_REAL, target_idex, & |
---|
[2514] | 357 | !MERGE 112, comm_inter, ierr ) |
---|
[2365] | 358 | !MERGE |
---|
| 359 | !MERGE CALL MPI_SEND(us ( bdims(2,1)-1:bdims(2,2)+1, & |
---|
| 360 | !MERGE bdims(1,1)-1:bdims(1,2)+1),& |
---|
| 361 | !MERGE n_cell_c, MPI_REAL, target_idex, & |
---|
[2514] | 362 | !MERGE 113, comm_inter, ierr ) |
---|
[2365] | 363 | !MERGE |
---|
| 364 | !MERGE CALL MPI_SEND(z0 ( bdims(2,1)-1:bdims(2,2)+1, & |
---|
| 365 | !MERGE bdims(1,1)-1:bdims(1,2)+1),& |
---|
| 366 | !MERGE n_cell_c, MPI_REAL, target_idex, & |
---|
[2514] | 367 | !MERGE 114, comm_inter, ierr ) |
---|
[2365] | 368 | ENDIF |
---|
| 369 | |
---|
| 370 | |
---|
| 371 | |
---|
| 372 | |
---|
| 373 | end do |
---|
| 374 | end do |
---|
| 375 | |
---|
| 376 | ELSEIF ( coupling_mode == 'vnested_fine' ) THEN |
---|
| 377 | !-- Receive data from coarse grid for initialization |
---|
| 378 | |
---|
| 379 | offset(1) = pcoord(1) / ( pdims(1)/pdims_partner(1) ) |
---|
| 380 | offset(2) = pcoord(2) / ( pdims(2)/pdims_partner(2) ) |
---|
| 381 | map_coord(1) = offset(1) |
---|
| 382 | map_coord(2) = offset(2) |
---|
| 383 | target_idex = c_rnk_lst(map_coord(1),map_coord(2)) |
---|
| 384 | |
---|
| 385 | bdims (1,1) = nxl |
---|
| 386 | bdims (1,2) = nxr |
---|
| 387 | bdims (2,1) = nys |
---|
| 388 | bdims (2,2) = nyn |
---|
| 389 | bdims (3,1) = nzb |
---|
| 390 | bdims (3,2) = nzt |
---|
| 391 | |
---|
| 392 | CALL MPI_SEND( bdims, 6, MPI_INTEGER, target_idex, 10, & |
---|
| 393 | comm_inter, ierr ) |
---|
| 394 | |
---|
| 395 | CALL MPI_RECV( bdims_rem, 6, MPI_INTEGER, target_idex, 9, & |
---|
| 396 | comm_inter,status, ierr ) |
---|
| 397 | |
---|
| 398 | n_cell_c = (bdims_rem(1,2)-bdims_rem(1,1)+3) * & |
---|
| 399 | (bdims_rem(2,2)-bdims_rem(2,1)+3) * & |
---|
| 400 | (bdims_rem(3,2)-bdims_rem(3,1)+3) |
---|
| 401 | |
---|
| 402 | ALLOCATE( work3d ( bdims_rem(3,1) :bdims_rem(3,2)+2, & |
---|
| 403 | bdims_rem(2,1)-1:bdims_rem(2,2)+1, & |
---|
| 404 | bdims_rem(1,1)-1:bdims_rem(1,2)+1)) |
---|
| 405 | |
---|
| 406 | |
---|
| 407 | CALL MPI_RECV( work3d,n_cell_c, MPI_REAL, target_idex, 101, & |
---|
| 408 | comm_inter,status, ierr ) |
---|
| 409 | interpol3d => u |
---|
| 410 | call interpolate_to_fine_u ( 101 ) |
---|
| 411 | |
---|
| 412 | CALL MPI_RECV( work3d,n_cell_c, MPI_REAL, target_idex, 102, & |
---|
| 413 | comm_inter,status, ierr ) |
---|
| 414 | interpol3d => v |
---|
| 415 | call interpolate_to_fine_v ( 102 ) |
---|
| 416 | |
---|
| 417 | CALL MPI_RECV( work3d,n_cell_c, MPI_REAL, target_idex, 103, & |
---|
| 418 | comm_inter,status, ierr ) |
---|
| 419 | interpol3d => w |
---|
| 420 | call interpolate_to_fine_w ( 103 ) |
---|
| 421 | |
---|
| 422 | CALL MPI_RECV( work3d,n_cell_c, MPI_REAL, target_idex, 105, & |
---|
| 423 | comm_inter,status, ierr ) |
---|
| 424 | interpol3d => pt |
---|
| 425 | call interpolate_to_fine_s ( 105 ) |
---|
| 426 | |
---|
| 427 | IF ( humidity ) THEN |
---|
| 428 | CALL MPI_RECV( work3d,n_cell_c, MPI_REAL, target_idex, 116, & |
---|
| 429 | comm_inter,status, ierr ) |
---|
| 430 | interpol3d => q |
---|
| 431 | call interpolate_to_fine_s ( 116 ) |
---|
| 432 | ENDIF |
---|
| 433 | |
---|
| 434 | CALL MPI_RECV( work3d,n_cell_c, MPI_REAL, target_idex, 104, & |
---|
| 435 | comm_inter,status, ierr ) |
---|
| 436 | interpol3d => e |
---|
| 437 | call interpolate_to_fine_s ( 104 ) |
---|
| 438 | |
---|
| 439 | !-- kh,km no target attribute, use of pointer not possible |
---|
| 440 | CALL MPI_RECV( work3d,n_cell_c, MPI_REAL, target_idex, 106, & |
---|
| 441 | comm_inter,status, ierr ) |
---|
| 442 | call interpolate_to_fine_kh ( 106 ) |
---|
| 443 | |
---|
| 444 | CALL MPI_RECV( work3d,n_cell_c, MPI_REAL, target_idex, 107, & |
---|
| 445 | comm_inter,status, ierr ) |
---|
| 446 | call interpolate_to_fine_km ( 107 ) |
---|
| 447 | |
---|
| 448 | DEALLOCATE( work3d ) |
---|
| 449 | NULLIFY ( interpol3d ) |
---|
| 450 | |
---|
[2514] | 451 | !-- Recv Surface Fluxes |
---|
[2365] | 452 | IF ( use_surface_fluxes ) THEN |
---|
| 453 | n_cell_c = (bdims_rem(1,2)-bdims_rem(1,1)+3) * & |
---|
| 454 | (bdims_rem(2,2)-bdims_rem(2,1)+3) |
---|
| 455 | |
---|
| 456 | ALLOCATE( work2dshf ( bdims_rem(2,1)-1:bdims_rem(2,2)+1, & |
---|
| 457 | bdims_rem(1,1)-1:bdims_rem(1,2)+1) ) |
---|
| 458 | ALLOCATE( work2dusws ( bdims_rem(2,1)-1:bdims_rem(2,2)+1, & |
---|
| 459 | bdims_rem(1,1)-1:bdims_rem(1,2)+1) ) |
---|
| 460 | ALLOCATE( work2dvsws ( bdims_rem(2,1)-1:bdims_rem(2,2)+1, & |
---|
| 461 | bdims_rem(1,1)-1:bdims_rem(1,2)+1) ) |
---|
| 462 | ALLOCATE( work2dts ( bdims_rem(2,1)-1:bdims_rem(2,2)+1, & |
---|
| 463 | bdims_rem(1,1)-1:bdims_rem(1,2)+1) ) |
---|
| 464 | ALLOCATE( work2dus ( bdims_rem(2,1)-1:bdims_rem(2,2)+1, & |
---|
| 465 | bdims_rem(1,1)-1:bdims_rem(1,2)+1) ) |
---|
| 466 | ALLOCATE( work2dz0 ( bdims_rem(2,1)-1:bdims_rem(2,2)+1, & |
---|
| 467 | bdims_rem(1,1)-1:bdims_rem(1,2)+1) ) |
---|
| 468 | |
---|
| 469 | !MERGE-WIP CALL MPI_RECV( work2dshf ,n_cell_c, MPI_REAL, target_idex, 109, & |
---|
| 470 | !MERGE-WIP comm_inter,status, ierr ) |
---|
| 471 | !MERGE-WIP |
---|
| 472 | !MERGE-WIP CALL MPI_RECV( work2dusws,n_cell_c, MPI_REAL, target_idex, 110, & |
---|
| 473 | !MERGE-WIP comm_inter,status, ierr ) |
---|
| 474 | !MERGE-WIP |
---|
| 475 | !MERGE-WIP CALL MPI_RECV( work2dvsws,n_cell_c, MPI_REAL, target_idex, 111, & |
---|
| 476 | !MERGE-WIP comm_inter,status, ierr ) |
---|
| 477 | !MERGE-WIP |
---|
| 478 | !MERGE CALL MPI_RECV( work2dts ,n_cell_c, MPI_REAL, target_idex, 112, & |
---|
| 479 | !MERGE comm_inter,status, ierr ) |
---|
| 480 | !MERGE |
---|
| 481 | !MERGE CALL MPI_RECV( work2dus ,n_cell_c, MPI_REAL, target_idex, 113, & |
---|
| 482 | !MERGE comm_inter,status, ierr ) |
---|
| 483 | !MERGE |
---|
| 484 | !MERGE CALL MPI_RECV( work2dz0 ,n_cell_c, MPI_REAL, target_idex, 114, & |
---|
| 485 | !MERGE comm_inter,status, ierr ) |
---|
| 486 | !MERGE |
---|
| 487 | !MERGE-WIP CALL interpolate_to_fine_flux ( 108 ) |
---|
| 488 | |
---|
| 489 | DEALLOCATE( work2dshf ) |
---|
| 490 | DEALLOCATE( work2dusws ) |
---|
| 491 | DEALLOCATE( work2dvsws ) |
---|
| 492 | DEALLOCATE( work2dts ) |
---|
| 493 | DEALLOCATE( work2dus ) |
---|
| 494 | DEALLOCATE( work2dz0 ) |
---|
| 495 | ENDIF |
---|
| 496 | |
---|
| 497 | IF ( .NOT. constant_diffusion ) THEN |
---|
| 498 | DO kf = bdims(3,1)+1,bdims(3,2)+1 |
---|
| 499 | DO jf = bdims(2,1),bdims(2,2) |
---|
| 500 | DO if = bdims(1,1),bdims(1,2) |
---|
| 501 | |
---|
| 502 | IF ( e(kf,jf,if) < 0.0 ) THEN |
---|
| 503 | e(kf,jf,if) = 1E-15_wp |
---|
| 504 | END IF |
---|
| 505 | |
---|
| 506 | END DO |
---|
| 507 | END DO |
---|
| 508 | END DO |
---|
| 509 | ENDIF |
---|
| 510 | |
---|
| 511 | w(nzt+1,:,:) = w(nzt,:,:) |
---|
| 512 | |
---|
| 513 | CALL exchange_horiz( u, nbgp ) |
---|
| 514 | CALL exchange_horiz( v, nbgp ) |
---|
| 515 | CALL exchange_horiz( w, nbgp ) |
---|
| 516 | CALL exchange_horiz( pt, nbgp ) |
---|
| 517 | IF ( .NOT. constant_diffusion ) CALL exchange_horiz( e, nbgp ) |
---|
| 518 | IF ( humidity ) CALL exchange_horiz( q, nbgp ) |
---|
| 519 | |
---|
| 520 | ! |
---|
| 521 | !-- Velocity boundary conditions at the bottom boundary |
---|
| 522 | IF ( ibc_uv_b == 0 ) THEN |
---|
| 523 | u(nzb,:,:) = 0.0_wp |
---|
| 524 | v(nzb,:,:) = 0.0_wp |
---|
| 525 | ELSE |
---|
| 526 | u(nzb,:,:) = u(nzb+1,:,:) |
---|
| 527 | v(nzb,:,:) = v(nzb+1,:,:) |
---|
| 528 | END IF |
---|
| 529 | |
---|
| 530 | |
---|
| 531 | w(nzb,:,:) = 0.0_wp |
---|
| 532 | |
---|
[2514] | 533 | ! |
---|
| 534 | !-- Temperature boundary conditions at the bottom boundary |
---|
[2365] | 535 | IF ( ibc_pt_b /= 0 ) THEN |
---|
| 536 | pt(nzb,:,:) = pt(nzb+1,:,:) |
---|
| 537 | END IF |
---|
| 538 | |
---|
| 539 | ! |
---|
| 540 | !-- Bottom boundary condition for the turbulent kinetic energy |
---|
| 541 | !-- Generally a Neumann condition with de/dz=0 is assumed |
---|
| 542 | IF ( .NOT. constant_diffusion ) THEN |
---|
| 543 | e(nzb,:,:) = e(nzb+1,:,:) |
---|
| 544 | END IF |
---|
| 545 | |
---|
| 546 | ! |
---|
| 547 | !-- Bottom boundary condition for turbulent diffusion coefficients |
---|
| 548 | km(nzb,:,:) = km(nzb+1,:,:) |
---|
| 549 | kh(nzb,:,:) = kh(nzb+1,:,:) |
---|
| 550 | |
---|
| 551 | !diffusivities required |
---|
| 552 | IF ( .NOT. humidity ) THEN |
---|
| 553 | CALL diffusivities( pt, pt_reference ) |
---|
| 554 | ELSE |
---|
| 555 | CALL diffusivities( vpt, pt_reference ) |
---|
| 556 | ENDIF |
---|
| 557 | |
---|
| 558 | |
---|
| 559 | ! |
---|
| 560 | !-- Reset Fine Grid top Boundary Condition |
---|
| 561 | !-- At the top of the FG, the scalars always follow Dirichlet condition |
---|
| 562 | |
---|
| 563 | ibc_pt_t = 0 |
---|
| 564 | |
---|
| 565 | !-- Initialize old time levels |
---|
| 566 | pt_p = pt; u_p = u; v_p = v; w_p = w |
---|
| 567 | IF ( .NOT. constant_diffusion ) e_p = e |
---|
| 568 | IF ( humidity ) THEN |
---|
| 569 | ibc_q_t = 0 |
---|
| 570 | q_p = q |
---|
| 571 | ENDIF |
---|
| 572 | |
---|
| 573 | ENDIF |
---|
| 574 | |
---|
| 575 | |
---|
| 576 | if (myid==0) print *, '** Fine Initalized ** simulated_time:', simulated_time |
---|
| 577 | #endif |
---|
| 578 | CONTAINS |
---|
| 579 | |
---|
| 580 | SUBROUTINE interpolate_to_fine_w( tag ) |
---|
| 581 | |
---|
| 582 | #if defined( __parallel ) |
---|
| 583 | |
---|
| 584 | USE arrays_3d |
---|
| 585 | USE control_parameters |
---|
| 586 | USE grid_variables |
---|
| 587 | USE indices |
---|
| 588 | USE pegrid |
---|
| 589 | |
---|
| 590 | |
---|
| 591 | IMPLICIT NONE |
---|
| 592 | |
---|
| 593 | INTEGER(iwp), intent(in) :: tag |
---|
| 594 | INTEGER(iwp) :: i, j, k |
---|
| 595 | INTEGER(iwp) :: if, jf, kf |
---|
| 596 | INTEGER(iwp) :: bottomx, topx |
---|
| 597 | INTEGER(iwp) :: bottomy, topy |
---|
| 598 | INTEGER(iwp) :: bottomz, topz |
---|
| 599 | REAL(wp) :: eps, alpha, eminus, edot, eplus |
---|
| 600 | REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: wprs, wprf |
---|
| 601 | |
---|
| 602 | INTEGER(iwp) :: nzbottom, nztop |
---|
| 603 | |
---|
| 604 | |
---|
| 605 | nzbottom = bdims_rem (3,1) |
---|
| 606 | nztop = bdims_rem (3,2) |
---|
| 607 | |
---|
| 608 | ALLOCATE( wprf(nzbottom:nztop, bdims_rem(2,1)-1: bdims_rem(2,2)+1,nxl:nxr) ) |
---|
| 609 | ALLOCATE( wprs(nzbottom:nztop,nys:nyn,nxl:nxr) ) |
---|
| 610 | |
---|
| 611 | |
---|
| 612 | ! |
---|
| 613 | !-- Initialisation of the velocity component w |
---|
| 614 | ! |
---|
| 615 | !-- Interpolation in x-direction |
---|
| 616 | DO k = nzbottom, nztop |
---|
| 617 | DO j = bdims_rem(2,1)-1, bdims_rem(2,2)+1 |
---|
| 618 | DO i = bdims_rem(1,1),bdims_rem(1,2) |
---|
| 619 | |
---|
| 620 | bottomx = (nxf+1)/(nxc+1) * i |
---|
| 621 | topx = (nxf+1)/(nxc+1) * (i+1) - 1 |
---|
| 622 | |
---|
| 623 | DO if = bottomx, topx |
---|
| 624 | |
---|
| 625 | eps = ( if * dxf + 0.5 * dxf - i * dxc - 0.5 * dxc ) / dxc |
---|
| 626 | alpha = ( ( dxf / dxc )**2.0 - 1.0 ) / 24.0 |
---|
| 627 | eminus = eps * ( eps - 1.0 ) / 2.0 + alpha |
---|
| 628 | edot = ( 1.0 - eps**2.0 ) - 2.0 * alpha |
---|
| 629 | eplus = eps * ( eps + 1.0 ) / 2.0 + alpha |
---|
| 630 | |
---|
| 631 | wprf(k,j,if) = eminus * work3d(k,j,i-1) & |
---|
| 632 | + edot * work3d(k,j,i) & |
---|
| 633 | + eplus * work3d(k,j,i+1) |
---|
| 634 | END DO |
---|
| 635 | |
---|
| 636 | END DO |
---|
| 637 | END DO |
---|
| 638 | END DO |
---|
| 639 | |
---|
| 640 | ! |
---|
| 641 | !-- Interpolation in y-direction (quadratic, Clark and Farley) |
---|
| 642 | DO k = nzbottom, nztop |
---|
| 643 | DO j = bdims_rem(2,1), bdims_rem(2,2) |
---|
| 644 | |
---|
| 645 | bottomy = (nyf+1)/(nyc+1) * j |
---|
| 646 | topy = (nyf+1)/(nyc+1) * (j+1) - 1 |
---|
| 647 | |
---|
| 648 | DO if = nxl, nxr |
---|
| 649 | DO jf = bottomy, topy |
---|
| 650 | |
---|
| 651 | eps = ( jf * dyf + 0.5 * dyf - j * dyc - 0.5 * dyc ) / dyc |
---|
| 652 | alpha = ( ( dyf / dyc )**2.0 - 1.0 ) / 24.0 |
---|
| 653 | eminus = eps * ( eps - 1.0 ) / 2.0 + alpha |
---|
| 654 | edot = ( 1.0 - eps**2.0 ) - 2.0 * alpha |
---|
| 655 | eplus = eps * ( eps + 1.0 ) / 2.0 + alpha |
---|
| 656 | |
---|
| 657 | wprs(k,jf,if) = eminus * wprf(k,j-1,if) & |
---|
| 658 | + edot * wprf(k,j,if) & |
---|
| 659 | + eplus * wprf(k,j+1,if) |
---|
| 660 | |
---|
| 661 | END DO |
---|
| 662 | END DO |
---|
| 663 | |
---|
| 664 | END DO |
---|
| 665 | END DO |
---|
| 666 | |
---|
| 667 | ! |
---|
| 668 | !-- Interpolation in z-direction (linear) |
---|
| 669 | |
---|
| 670 | DO k = nzbottom, nztop-1 |
---|
| 671 | |
---|
| 672 | bottomz = (dzc/dzf) * k |
---|
| 673 | topz = (dzc/dzf) * (k+1) - 1 |
---|
| 674 | |
---|
| 675 | DO jf = nys, nyn |
---|
| 676 | DO if = nxl, nxr |
---|
| 677 | DO kf = bottomz, topz |
---|
| 678 | |
---|
| 679 | w(kf,jf,if) = wprs(k,jf,if) + ( zwf(kf) - zwc(k) ) & |
---|
| 680 | * ( wprs(k+1,jf,if) - wprs(k,jf,if) ) / dzc |
---|
| 681 | |
---|
| 682 | END DO |
---|
| 683 | END DO |
---|
| 684 | END DO |
---|
| 685 | |
---|
| 686 | END DO |
---|
| 687 | |
---|
| 688 | DO jf = nys, nyn |
---|
| 689 | DO if = nxl, nxr |
---|
| 690 | |
---|
| 691 | w(nzt,jf,if) = wprs(nztop,jf,if) |
---|
| 692 | |
---|
| 693 | END DO |
---|
| 694 | END DO |
---|
| 695 | ! |
---|
| 696 | ! w(nzb:nzt+1,nys:nyn,nxl:nxr) = 0 |
---|
| 697 | |
---|
| 698 | DEALLOCATE( wprf, wprs ) |
---|
| 699 | |
---|
| 700 | #endif |
---|
| 701 | END SUBROUTINE interpolate_to_fine_w |
---|
| 702 | |
---|
| 703 | SUBROUTINE interpolate_to_fine_u( tag ) |
---|
| 704 | |
---|
| 705 | #if defined( __parallel ) |
---|
| 706 | |
---|
| 707 | USE arrays_3d |
---|
| 708 | USE control_parameters |
---|
| 709 | USE grid_variables |
---|
| 710 | USE indices |
---|
| 711 | USE pegrid |
---|
| 712 | |
---|
| 713 | |
---|
| 714 | IMPLICIT NONE |
---|
| 715 | |
---|
| 716 | INTEGER(iwp), intent(in) :: tag |
---|
| 717 | INTEGER(iwp) :: i, j, k |
---|
| 718 | INTEGER(iwp) :: if, jf, kf |
---|
| 719 | INTEGER(iwp) :: bottomx, topx |
---|
| 720 | INTEGER(iwp) :: bottomy, topy |
---|
| 721 | INTEGER(iwp) :: bottomz, topz |
---|
| 722 | REAL(wp) :: eps, alpha, eminus, edot, eplus |
---|
| 723 | REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: uprs, uprf |
---|
| 724 | |
---|
| 725 | INTEGER(iwp) :: nzbottom, nztop |
---|
| 726 | |
---|
| 727 | |
---|
| 728 | nzbottom = bdims_rem (3,1) |
---|
| 729 | nztop = bdims_rem (3,2) |
---|
| 730 | |
---|
| 731 | ALLOCATE( uprf(nzbottom:nztop+2,nys:nyn,bdims_rem(1,1)-1:bdims_rem(1,2)+1) ) |
---|
| 732 | ALLOCATE( uprs(nzb+1:nzt+1,nys:nyn,bdims_rem(1,1)-1:bdims_rem(1,2)+1) ) |
---|
| 733 | |
---|
| 734 | ! |
---|
| 735 | !-- Initialisation of the velocity component uf |
---|
| 736 | |
---|
| 737 | ! |
---|
| 738 | !-- Interpolation in y-direction (quadratic, Clark and Farley) |
---|
| 739 | |
---|
| 740 | DO k = nzbottom, nztop+2 |
---|
| 741 | DO j = bdims_rem(2,1), bdims_rem(2,2) |
---|
| 742 | |
---|
| 743 | bottomy = (nyf+1)/(nyc+1) * j |
---|
| 744 | topy = (nyf+1)/(nyc+1) * (j+1) - 1 |
---|
| 745 | |
---|
| 746 | DO i = bdims_rem(1,1)-1, bdims_rem(1,2)+1 |
---|
| 747 | DO jf = bottomy, topy |
---|
| 748 | |
---|
| 749 | eps = ( jf * dyf + 0.5 * dyf - j * dyc - 0.5 * dyc ) / dyc |
---|
| 750 | alpha = ( ( dyf / dyc )**2.0 - 1.0 ) / 24.0 |
---|
| 751 | eminus = eps * ( eps - 1.0 ) / 2.0 + alpha |
---|
| 752 | edot = ( 1.0 - eps**2.0 ) - 2.0 * alpha |
---|
| 753 | eplus = eps * ( eps + 1.0 ) / 2.0 + alpha |
---|
| 754 | |
---|
| 755 | uprf(k,jf,i) = eminus * work3d(k,j-1,i) & |
---|
| 756 | + edot * work3d(k,j,i) & |
---|
| 757 | + eplus * work3d(k,j+1,i) |
---|
| 758 | |
---|
| 759 | END DO |
---|
| 760 | END DO |
---|
| 761 | |
---|
| 762 | END DO |
---|
| 763 | END DO |
---|
| 764 | |
---|
| 765 | ! |
---|
| 766 | !-- Interpolation in z-direction (quadratic, Clark and Farley) |
---|
| 767 | |
---|
| 768 | DO k = nzbottom+1, nztop |
---|
| 769 | |
---|
| 770 | bottomz = (dzc/dzf) * (k-1) + 1 |
---|
| 771 | topz = (dzc/dzf) * k |
---|
| 772 | |
---|
| 773 | DO jf = nys, nyn |
---|
| 774 | DO i = bdims_rem(1,1)-1, bdims_rem(1,2)+1 |
---|
| 775 | DO kf = bottomz, topz |
---|
| 776 | |
---|
| 777 | eps = ( zuf(kf) - zuc(k) ) / dzc |
---|
| 778 | alpha = ( ( dzf / dzc )**2.0 - 1.0 ) / 24.0 |
---|
| 779 | eminus = eps * ( eps - 1.0 ) / 2.0 + alpha |
---|
| 780 | edot = ( 1.0 - eps**2.0 ) - 2.0 * alpha |
---|
| 781 | eplus = eps * ( eps + 1.0 ) / 2.0 + alpha |
---|
| 782 | |
---|
| 783 | uprs(kf,jf,i) = eminus * uprf(k-1,jf,i) & |
---|
| 784 | + edot * uprf(k,jf,i) & |
---|
| 785 | + eplus * uprf(k+1,jf,i) |
---|
| 786 | |
---|
| 787 | END DO |
---|
| 788 | END DO |
---|
| 789 | END DO |
---|
| 790 | |
---|
| 791 | END DO |
---|
| 792 | |
---|
| 793 | DO jf = nys, nyn |
---|
| 794 | DO i = bdims_rem(1,1)-1, bdims_rem(1,2)+1 |
---|
| 795 | |
---|
| 796 | eps = ( zuf(nzt+1) - zuc(nztop+1) ) / dzc |
---|
| 797 | alpha = ( ( dzf / dzc )**2.0 - 1.0 ) / 24.0 |
---|
| 798 | eminus = eps * ( eps - 1.0 ) / 2.0 + alpha |
---|
| 799 | edot = ( 1.0 - eps**2.0 ) - 2.0 * alpha |
---|
| 800 | eplus = eps * ( eps + 1.0 ) / 2.0 + alpha |
---|
| 801 | |
---|
| 802 | uprs(nzt+1,jf,i) = eminus * uprf(nztop,jf,i) & |
---|
| 803 | + edot * uprf(nztop+1,jf,i) & |
---|
| 804 | + eplus * uprf(nztop+2,jf,i) |
---|
| 805 | |
---|
| 806 | END DO |
---|
| 807 | END DO |
---|
| 808 | |
---|
| 809 | ! |
---|
| 810 | !-- Interpolation in x-direction (linear) |
---|
| 811 | |
---|
| 812 | DO kf = nzb+1, nzt+1 |
---|
| 813 | DO jf = nys, nyn |
---|
| 814 | DO i = bdims_rem(1,1), bdims_rem(1,2) |
---|
| 815 | |
---|
| 816 | bottomx = (nxf+1)/(nxc+1) * i |
---|
| 817 | topx = (nxf+1)/(nxc+1) * (i+1) - 1 |
---|
| 818 | |
---|
| 819 | DO if = bottomx, topx |
---|
| 820 | u(kf,jf,if) = uprs(kf,jf,i) + ( if * dxf - i * dxc ) & |
---|
| 821 | * ( uprs(kf,jf,i+1) - uprs(kf,jf,i) ) / dxc |
---|
| 822 | END DO |
---|
| 823 | |
---|
| 824 | END DO |
---|
| 825 | END DO |
---|
| 826 | END DO |
---|
| 827 | ! |
---|
| 828 | !-- Determination of uf at the bottom boundary |
---|
| 829 | |
---|
| 830 | |
---|
| 831 | |
---|
| 832 | DEALLOCATE( uprf, uprs ) |
---|
| 833 | |
---|
| 834 | #endif |
---|
| 835 | END SUBROUTINE interpolate_to_fine_u |
---|
| 836 | |
---|
| 837 | |
---|
| 838 | SUBROUTINE interpolate_to_fine_v( tag ) |
---|
| 839 | |
---|
| 840 | #if defined( __parallel ) |
---|
| 841 | |
---|
| 842 | USE arrays_3d |
---|
| 843 | USE control_parameters |
---|
| 844 | USE grid_variables |
---|
| 845 | USE indices |
---|
| 846 | USE pegrid |
---|
| 847 | |
---|
| 848 | |
---|
| 849 | IMPLICIT NONE |
---|
| 850 | |
---|
| 851 | INTEGER(iwp), intent(in) :: tag |
---|
| 852 | INTEGER(iwp) :: i, j, k |
---|
| 853 | INTEGER(iwp) :: if, jf, kf |
---|
| 854 | INTEGER(iwp) :: bottomx, topx |
---|
| 855 | INTEGER(iwp) :: bottomy, topy |
---|
| 856 | INTEGER(iwp) :: bottomz, topz |
---|
| 857 | REAL(wp) :: eps, alpha, eminus, edot, eplus |
---|
| 858 | REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: vprs, vprf |
---|
| 859 | |
---|
| 860 | INTEGER(iwp) :: nzbottom, nztop |
---|
| 861 | |
---|
| 862 | |
---|
| 863 | nzbottom = bdims_rem (3,1) |
---|
| 864 | nztop = bdims_rem (3,2) |
---|
| 865 | |
---|
| 866 | ALLOCATE( vprf(nzbottom:nztop+2,bdims_rem(2,1)-1:bdims_rem(2,2)+1,nxl:nxr) ) |
---|
| 867 | ALLOCATE( vprs(nzb+1:nzt+1, bdims_rem(2,1)-1:bdims_rem(2,2)+1,nxl:nxr) ) |
---|
| 868 | ! |
---|
| 869 | !-- Initialisation of the velocity component vf |
---|
| 870 | |
---|
| 871 | ! |
---|
| 872 | !-- Interpolation in x-direction (quadratic, Clark and Farley) |
---|
| 873 | |
---|
| 874 | DO k = nzbottom, nztop+2 |
---|
| 875 | DO j = bdims_rem(2,1)-1, bdims_rem(2,2)+1 |
---|
| 876 | DO i = bdims_rem(1,1), bdims_rem(1,2) |
---|
| 877 | |
---|
| 878 | bottomx = (nxf+1)/(nxc+1) * i |
---|
| 879 | topx = (nxf+1)/(nxc+1) * (i+1) - 1 |
---|
| 880 | |
---|
| 881 | DO if = bottomx, topx |
---|
| 882 | |
---|
| 883 | eps = ( if * dxf + 0.5 * dxf - i * dxc - 0.5 * dxc ) / dxc |
---|
| 884 | alpha = ( ( dxf / dxc )**2.0 - 1.0 ) / 24.0 |
---|
| 885 | eminus = eps * ( eps - 1.0 ) / 2.0 + alpha |
---|
| 886 | edot = ( 1.0 - eps**2.0 ) - 2.0 * alpha |
---|
| 887 | eplus = eps * ( eps + 1.0 ) / 2.0 + alpha |
---|
| 888 | |
---|
| 889 | vprf(k,j,if) = eminus * work3d(k,j,i-1) & |
---|
| 890 | + edot * work3d(k,j,i) & |
---|
| 891 | + eplus * work3d(k,j,i+1) |
---|
| 892 | |
---|
| 893 | END DO |
---|
| 894 | |
---|
| 895 | END DO |
---|
| 896 | END DO |
---|
| 897 | END DO |
---|
| 898 | |
---|
| 899 | ! |
---|
| 900 | !-- Interpolation in z-direction (quadratic, Clark and Farley) |
---|
| 901 | |
---|
| 902 | DO k = nzbottom+1, nztop |
---|
| 903 | |
---|
| 904 | bottomz = (dzc/dzf) * (k-1) + 1 |
---|
| 905 | topz = (dzc/dzf) * k |
---|
| 906 | |
---|
| 907 | DO j = bdims_rem(2,1)-1, bdims_rem(2,2)+1 |
---|
| 908 | DO if = nxl, nxr |
---|
| 909 | DO kf = bottomz, topz |
---|
| 910 | |
---|
| 911 | eps = ( zuf(kf) - zuc(k) ) / dzc |
---|
| 912 | alpha = ( ( dzf / dzc )**2.0 - 1.0 ) / 24.0 |
---|
| 913 | eminus = eps * ( eps - 1.0 ) / 2.0 + alpha |
---|
| 914 | edot = ( 1.0 - eps**2.0 ) - 2.0 * alpha |
---|
| 915 | eplus = eps * ( eps + 1.0 ) / 2.0 + alpha |
---|
| 916 | |
---|
| 917 | vprs(kf,j,if) = eminus * vprf(k-1,j,if) & |
---|
| 918 | + edot * vprf(k,j,if) & |
---|
| 919 | + eplus * vprf(k+1,j,if) |
---|
| 920 | |
---|
| 921 | END DO |
---|
| 922 | END DO |
---|
| 923 | END DO |
---|
| 924 | |
---|
| 925 | END DO |
---|
| 926 | |
---|
| 927 | DO j = bdims_rem(2,1)-1, bdims_rem(2,2)+1 |
---|
| 928 | DO if = nxl, nxr |
---|
| 929 | |
---|
| 930 | eps = ( zuf(nzt+1) - zuc(nztop+1) ) / dzc |
---|
| 931 | alpha = ( ( dzf / dzc )**2.0 - 1.0 ) / 24.0 |
---|
| 932 | eminus = eps * ( eps - 1.0 ) / 2.0 + alpha |
---|
| 933 | edot = ( 1.0 - eps**2.0 ) - 2.0 * alpha |
---|
| 934 | eplus = eps * ( eps + 1.0 ) / 2.0 + alpha |
---|
| 935 | |
---|
| 936 | vprs(nzt+1,j,if) = eminus * vprf(nztop,j,if) & |
---|
| 937 | + edot * vprf(nztop+1,j,if) & |
---|
| 938 | + eplus * vprf(nztop+2,j,if) |
---|
| 939 | |
---|
| 940 | END DO |
---|
| 941 | END DO |
---|
| 942 | |
---|
| 943 | ! |
---|
| 944 | !-- Interpolation in y-direction (linear) |
---|
| 945 | |
---|
| 946 | DO kf = nzb+1, nzt+1 |
---|
| 947 | DO j = bdims_rem(2,1), bdims_rem(2,2) |
---|
| 948 | |
---|
| 949 | bottomy = (nyf+1)/(nyc+1) * j |
---|
| 950 | topy = (nyf+1)/(nyc+1) * (j+1) - 1 |
---|
| 951 | |
---|
| 952 | DO if = nxl, nxr |
---|
| 953 | DO jf = bottomy, topy |
---|
| 954 | v (kf,jf,if) = vprs(kf,j,if) + ( jf * dyf - j * dyc ) & |
---|
| 955 | * ( vprs(kf,j+1,if) - vprs(kf,j,if) ) / dyc |
---|
| 956 | END DO |
---|
| 957 | END DO |
---|
| 958 | |
---|
| 959 | END DO |
---|
| 960 | END DO |
---|
| 961 | |
---|
| 962 | ! |
---|
| 963 | !-- Determination of vf at the bottom boundary |
---|
| 964 | |
---|
| 965 | |
---|
| 966 | DEALLOCATE( vprf, vprs ) |
---|
| 967 | |
---|
| 968 | #endif |
---|
| 969 | END SUBROUTINE interpolate_to_fine_v |
---|
| 970 | |
---|
| 971 | |
---|
| 972 | SUBROUTINE interpolate_to_fine_s( tag ) |
---|
| 973 | |
---|
| 974 | #if defined( __parallel ) |
---|
| 975 | |
---|
| 976 | USE arrays_3d |
---|
| 977 | USE control_parameters |
---|
| 978 | USE grid_variables |
---|
| 979 | USE indices |
---|
| 980 | USE pegrid |
---|
| 981 | |
---|
| 982 | |
---|
| 983 | IMPLICIT NONE |
---|
| 984 | |
---|
| 985 | |
---|
| 986 | INTEGER(iwp), intent(in) :: tag |
---|
| 987 | INTEGER(iwp) :: i, j, k |
---|
| 988 | INTEGER(iwp) :: if, jf, kf |
---|
| 989 | INTEGER(iwp) :: bottomx, topx |
---|
| 990 | INTEGER(iwp) :: bottomy, topy |
---|
| 991 | INTEGER(iwp) :: bottomz, topz |
---|
| 992 | REAL(wp) :: eps, alpha, eminus, edot, eplus |
---|
| 993 | REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: ptprs, ptprf |
---|
| 994 | |
---|
| 995 | INTEGER(iwp) :: nzbottom, nztop |
---|
| 996 | |
---|
| 997 | |
---|
| 998 | nzbottom = bdims_rem (3,1) |
---|
| 999 | nztop = bdims_rem (3,2) |
---|
| 1000 | |
---|
| 1001 | ALLOCATE( ptprf(nzbottom:nztop+2,bdims_rem(2,1)-1:bdims_rem(2,2)+1,nxl:nxr) ) |
---|
| 1002 | ALLOCATE( ptprs(nzbottom:nztop+2,nys:nyn,nxl:nxr) ) |
---|
| 1003 | |
---|
| 1004 | ! |
---|
| 1005 | !-- Initialisation of scalar variables |
---|
| 1006 | |
---|
| 1007 | ! |
---|
| 1008 | !-- Interpolation in x-direction (quadratic, Clark and Farley) |
---|
| 1009 | |
---|
| 1010 | DO k = nzbottom, nztop+2 |
---|
| 1011 | DO j = bdims_rem(2,1)-1, bdims_rem(2,2)+1 |
---|
| 1012 | DO i = bdims_rem(1,1), bdims_rem(1,2) |
---|
| 1013 | |
---|
| 1014 | bottomx = (nxf+1)/(nxc+1) * i |
---|
| 1015 | topx = (nxf+1)/(nxc+1) * (i+1) - 1 |
---|
| 1016 | |
---|
| 1017 | DO if = bottomx, topx |
---|
| 1018 | |
---|
| 1019 | eps = ( if * dxf + 0.5 * dxf - i * dxc - 0.5 * dxc ) / dxc |
---|
| 1020 | alpha = ( ( dxf / dxc )**2.0 - 1.0 ) / 24.0 |
---|
| 1021 | eminus = eps * ( eps - 1.0 ) / 2.0 + alpha |
---|
| 1022 | edot = ( 1.0 - eps**2.0 ) - 2.0 * alpha |
---|
| 1023 | eplus = eps * ( eps + 1.0 ) / 2.0 + alpha |
---|
| 1024 | |
---|
| 1025 | ptprf(k,j,if) = eminus * work3d(k,j,i-1) & |
---|
| 1026 | + edot * work3d(k,j,i) & |
---|
| 1027 | + eplus * work3d(k,j,i+1) |
---|
| 1028 | END DO |
---|
| 1029 | |
---|
| 1030 | END DO |
---|
| 1031 | END DO |
---|
| 1032 | END DO |
---|
| 1033 | |
---|
| 1034 | ! |
---|
| 1035 | !-- Interpolation in y-direction (quadratic, Clark and Farley) |
---|
| 1036 | |
---|
| 1037 | DO k = nzbottom, nztop+2 |
---|
| 1038 | DO j = bdims_rem(2,1), bdims_rem(2,2) |
---|
| 1039 | |
---|
| 1040 | bottomy = (nyf+1)/(nyc+1) * j |
---|
| 1041 | topy = (nyf+1)/(nyc+1) * (j+1) - 1 |
---|
| 1042 | |
---|
| 1043 | DO if = nxl, nxr |
---|
| 1044 | DO jf = bottomy, topy |
---|
| 1045 | |
---|
| 1046 | eps = ( jf * dyf + 0.5 * dyf - j * dyc - 0.5 * dyc ) / dyc |
---|
| 1047 | alpha = ( ( dyf / dyc )**2.0 - 1.0 ) / 24.0 |
---|
| 1048 | eminus = eps * ( eps - 1.0 ) / 2.0 + alpha |
---|
| 1049 | edot = ( 1.0 - eps**2.0 ) - 2.0 * alpha |
---|
| 1050 | eplus = eps * ( eps + 1.0 ) / 2.0 + alpha |
---|
| 1051 | |
---|
| 1052 | ptprs(k,jf,if) = eminus * ptprf(k,j-1,if) & |
---|
| 1053 | + edot * ptprf(k,j,if) & |
---|
| 1054 | + eplus * ptprf(k,j+1,if) |
---|
| 1055 | |
---|
| 1056 | END DO |
---|
| 1057 | END DO |
---|
| 1058 | |
---|
| 1059 | END DO |
---|
| 1060 | END DO |
---|
| 1061 | |
---|
| 1062 | ! |
---|
| 1063 | !-- Interpolation in z-direction (quadratic, Clark and Farley) |
---|
| 1064 | |
---|
| 1065 | DO k = nzbottom+1, nztop |
---|
| 1066 | |
---|
| 1067 | bottomz = (dzc/dzf) * (k-1) + 1 |
---|
| 1068 | topz = (dzc/dzf) * k |
---|
| 1069 | |
---|
| 1070 | DO jf = nys, nyn |
---|
| 1071 | DO if = nxl, nxr |
---|
| 1072 | DO kf = bottomz, topz |
---|
| 1073 | |
---|
| 1074 | eps = ( zuf(kf) - zuc(k) ) / dzc |
---|
| 1075 | alpha = ( ( dzf / dzc )**2.0 - 1.0 ) / 24.0 |
---|
| 1076 | eminus = eps * ( eps - 1.0 ) / 2.0 + alpha |
---|
| 1077 | edot = ( 1.0 - eps**2.0 ) - 2.0 * alpha |
---|
| 1078 | eplus = eps * ( eps + 1.0 ) / 2.0 + alpha |
---|
| 1079 | |
---|
| 1080 | interpol3d(kf,jf,if) = eminus * ptprs(k-1,jf,if) & |
---|
| 1081 | + edot * ptprs(k,jf,if) & |
---|
| 1082 | + eplus * ptprs(k+1,jf,if) |
---|
| 1083 | |
---|
| 1084 | END DO |
---|
| 1085 | END DO |
---|
| 1086 | END DO |
---|
| 1087 | |
---|
| 1088 | END DO |
---|
| 1089 | |
---|
| 1090 | DO jf = nys, nyn |
---|
| 1091 | DO if = nxl, nxr |
---|
| 1092 | |
---|
| 1093 | eps = ( zuf(nzt+1) - zuc(nztop+1) ) / dzc |
---|
| 1094 | alpha = ( ( dzf / dzc )**2.0 - 1.0 ) / 24.0 |
---|
| 1095 | eminus = eps * ( eps - 1.0 ) / 2.0 + alpha |
---|
| 1096 | edot = ( 1.0 - eps**2.0 ) - 2.0 * alpha |
---|
| 1097 | eplus = eps * ( eps + 1.0 ) / 2.0 + alpha |
---|
| 1098 | |
---|
| 1099 | interpol3d(nzt+1,jf,if) = eminus * ptprs(nztop,jf,if) & |
---|
| 1100 | + edot * ptprs(nztop+1,jf,if) & |
---|
| 1101 | + eplus * ptprs(nztop+2,jf,if) |
---|
| 1102 | |
---|
| 1103 | END DO |
---|
| 1104 | END DO |
---|
| 1105 | |
---|
| 1106 | |
---|
| 1107 | DEALLOCATE( ptprf, ptprs ) |
---|
| 1108 | |
---|
| 1109 | #endif |
---|
| 1110 | END SUBROUTINE interpolate_to_fine_s |
---|
| 1111 | |
---|
| 1112 | |
---|
| 1113 | SUBROUTINE interpolate_to_fine_kh( tag ) |
---|
| 1114 | |
---|
| 1115 | #if defined( __parallel ) |
---|
| 1116 | |
---|
| 1117 | USE arrays_3d |
---|
| 1118 | USE control_parameters |
---|
| 1119 | USE grid_variables |
---|
| 1120 | USE indices |
---|
| 1121 | USE pegrid |
---|
| 1122 | |
---|
| 1123 | |
---|
| 1124 | IMPLICIT NONE |
---|
| 1125 | |
---|
| 1126 | |
---|
| 1127 | INTEGER(iwp), intent(in) :: tag |
---|
| 1128 | INTEGER(iwp) :: i, j, k |
---|
| 1129 | INTEGER(iwp) :: if, jf, kf |
---|
| 1130 | INTEGER(iwp) :: bottomx, topx |
---|
| 1131 | INTEGER(iwp) :: bottomy, topy |
---|
| 1132 | INTEGER(iwp) :: bottomz, topz |
---|
| 1133 | REAL(wp) :: eps, alpha, eminus, edot, eplus |
---|
| 1134 | REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: uprs, uprf |
---|
| 1135 | REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: vprs, vprf |
---|
| 1136 | REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: wprs, wprf |
---|
| 1137 | REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: ptprs, ptprf |
---|
| 1138 | REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: eprs, eprf |
---|
| 1139 | REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: kmprs, kmprf |
---|
| 1140 | REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: khprs, khprf |
---|
| 1141 | REAL(wp), DIMENSION(:,:), ALLOCATABLE :: shfpr, uswspr, vswspr |
---|
| 1142 | REAL(wp), DIMENSION(:,:), ALLOCATABLE :: tspr, uspr, z0pr |
---|
| 1143 | |
---|
| 1144 | INTEGER(iwp) :: nzbottom, nztop |
---|
| 1145 | |
---|
| 1146 | |
---|
| 1147 | nzbottom = bdims_rem (3,1) |
---|
| 1148 | nztop = bdims_rem (3,2) |
---|
| 1149 | ! nztop = blk_dim_rem (3,2)+1 |
---|
| 1150 | |
---|
| 1151 | |
---|
| 1152 | ALLOCATE( ptprf(nzbottom:nztop+2,bdims_rem(2,1)-1:bdims_rem(2,2)+1,nxl:nxr) ) |
---|
| 1153 | ALLOCATE( ptprs(nzbottom:nztop+2,nys:nyn,nxl:nxr) ) |
---|
| 1154 | |
---|
| 1155 | |
---|
| 1156 | ! |
---|
| 1157 | !-- Initialisation of scalar variables |
---|
| 1158 | |
---|
| 1159 | ! |
---|
| 1160 | !-- Interpolation in x-direction (quadratic, Clark and Farley) |
---|
| 1161 | |
---|
| 1162 | DO k = nzbottom, nztop+2 |
---|
| 1163 | DO j = bdims_rem(2,1)-1, bdims_rem(2,2)+1 |
---|
| 1164 | DO i = bdims_rem(1,1), bdims_rem(1,2) |
---|
| 1165 | |
---|
| 1166 | bottomx = (nxf+1)/(nxc+1) * i |
---|
| 1167 | topx = (nxf+1)/(nxc+1) * (i+1) - 1 |
---|
| 1168 | |
---|
| 1169 | DO if = bottomx, topx |
---|
| 1170 | |
---|
| 1171 | eps = ( if * dxf + 0.5 * dxf - i * dxc - 0.5 * dxc ) / dxc |
---|
| 1172 | alpha = ( ( dxf / dxc )**2.0 - 1.0 ) / 24.0 |
---|
| 1173 | eminus = eps * ( eps - 1.0 ) / 2.0 + alpha |
---|
| 1174 | edot = ( 1.0 - eps**2.0 ) - 2.0 * alpha |
---|
| 1175 | eplus = eps * ( eps + 1.0 ) / 2.0 + alpha |
---|
| 1176 | |
---|
| 1177 | ptprf(k,j,if) = eminus * work3d(k,j,i-1) & |
---|
| 1178 | + edot * work3d(k,j,i) & |
---|
| 1179 | + eplus * work3d(k,j,i+1) |
---|
| 1180 | END DO |
---|
| 1181 | |
---|
| 1182 | END DO |
---|
| 1183 | END DO |
---|
| 1184 | END DO |
---|
| 1185 | |
---|
| 1186 | ! |
---|
| 1187 | !-- Interpolation in y-direction (quadratic, Clark and Farley) |
---|
| 1188 | |
---|
| 1189 | DO k = nzbottom, nztop+2 |
---|
| 1190 | DO j = bdims_rem(2,1), bdims_rem(2,2) |
---|
| 1191 | |
---|
| 1192 | bottomy = (nyf+1)/(nyc+1) * j |
---|
| 1193 | topy = (nyf+1)/(nyc+1) * (j+1) - 1 |
---|
| 1194 | |
---|
| 1195 | DO if = nxl, nxr |
---|
| 1196 | DO jf = bottomy, topy |
---|
| 1197 | |
---|
| 1198 | eps = ( jf * dyf + 0.5 * dyf - j * dyc - 0.5 * dyc ) / dyc |
---|
| 1199 | alpha = ( ( dyf / dyc )**2.0 - 1.0 ) / 24.0 |
---|
| 1200 | eminus = eps * ( eps - 1.0 ) / 2.0 + alpha |
---|
| 1201 | edot = ( 1.0 - eps**2.0 ) - 2.0 * alpha |
---|
| 1202 | eplus = eps * ( eps + 1.0 ) / 2.0 + alpha |
---|
| 1203 | |
---|
| 1204 | ptprs(k,jf,if) = eminus * ptprf(k,j-1,if) & |
---|
| 1205 | + edot * ptprf(k,j,if) & |
---|
| 1206 | + eplus * ptprf(k,j+1,if) |
---|
| 1207 | |
---|
| 1208 | END DO |
---|
| 1209 | END DO |
---|
| 1210 | |
---|
| 1211 | END DO |
---|
| 1212 | END DO |
---|
| 1213 | |
---|
| 1214 | ! |
---|
| 1215 | !-- Interpolation in z-direction (quadratic, Clark and Farley) |
---|
| 1216 | |
---|
| 1217 | DO k = nzbottom+1, nztop |
---|
| 1218 | |
---|
| 1219 | bottomz = (dzc/dzf) * (k-1) + 1 |
---|
| 1220 | topz = (dzc/dzf) * k |
---|
| 1221 | |
---|
| 1222 | DO jf = nys, nyn |
---|
| 1223 | DO if = nxl, nxr |
---|
| 1224 | DO kf = bottomz, topz |
---|
| 1225 | |
---|
| 1226 | eps = ( zuf(kf) - zuc(k) ) / dzc |
---|
| 1227 | alpha = ( ( dzf / dzc )**2.0 - 1.0 ) / 24.0 |
---|
| 1228 | eminus = eps * ( eps - 1.0 ) / 2.0 + alpha |
---|
| 1229 | edot = ( 1.0 - eps**2.0 ) - 2.0 * alpha |
---|
| 1230 | eplus = eps * ( eps + 1.0 ) / 2.0 + alpha |
---|
| 1231 | |
---|
| 1232 | kh(kf,jf,if) = eminus * ptprs(k-1,jf,if) & |
---|
| 1233 | + edot * ptprs(k,jf,if) & |
---|
| 1234 | + eplus * ptprs(k+1,jf,if) |
---|
| 1235 | |
---|
| 1236 | END DO |
---|
| 1237 | END DO |
---|
| 1238 | END DO |
---|
| 1239 | |
---|
| 1240 | END DO |
---|
| 1241 | |
---|
| 1242 | DO jf = nys, nyn |
---|
| 1243 | DO if = nxl, nxr |
---|
| 1244 | |
---|
| 1245 | eps = ( zuf(nzt+1) - zuc(nztop+1) ) / dzc |
---|
| 1246 | alpha = ( ( dzf / dzc )**2.0 - 1.0 ) / 24.0 |
---|
| 1247 | eminus = eps * ( eps - 1.0 ) / 2.0 + alpha |
---|
| 1248 | edot = ( 1.0 - eps**2.0 ) - 2.0 * alpha |
---|
| 1249 | eplus = eps * ( eps + 1.0 ) / 2.0 + alpha |
---|
| 1250 | |
---|
| 1251 | kh(nzt+1,jf,if) = eminus * ptprs(nztop,jf,if) & |
---|
| 1252 | + edot * ptprs(nztop+1,jf,if) & |
---|
| 1253 | + eplus * ptprs(nztop+2,jf,if) |
---|
| 1254 | |
---|
| 1255 | END DO |
---|
| 1256 | END DO |
---|
| 1257 | |
---|
| 1258 | |
---|
| 1259 | DEALLOCATE( ptprf, ptprs ) |
---|
| 1260 | |
---|
| 1261 | #endif |
---|
| 1262 | END SUBROUTINE interpolate_to_fine_kh |
---|
| 1263 | |
---|
| 1264 | SUBROUTINE interpolate_to_fine_km( tag ) |
---|
| 1265 | |
---|
| 1266 | #if defined( __parallel ) |
---|
| 1267 | |
---|
| 1268 | USE arrays_3d |
---|
| 1269 | USE control_parameters |
---|
| 1270 | USE grid_variables |
---|
| 1271 | USE indices |
---|
| 1272 | USE pegrid |
---|
| 1273 | |
---|
| 1274 | |
---|
| 1275 | IMPLICIT NONE |
---|
| 1276 | |
---|
| 1277 | |
---|
| 1278 | INTEGER(iwp), intent(in) :: tag |
---|
| 1279 | INTEGER(iwp) :: i, j, k |
---|
| 1280 | INTEGER(iwp) :: if, jf, kf |
---|
| 1281 | INTEGER(iwp) :: bottomx, topx |
---|
| 1282 | INTEGER(iwp) :: bottomy, topy |
---|
| 1283 | INTEGER(iwp) :: bottomz, topz |
---|
| 1284 | REAL(wp) :: eps, alpha, eminus, edot, eplus |
---|
| 1285 | REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: uprs, uprf |
---|
| 1286 | REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: vprs, vprf |
---|
| 1287 | REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: wprs, wprf |
---|
| 1288 | REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: ptprs, ptprf |
---|
| 1289 | REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: eprs, eprf |
---|
| 1290 | REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: kmprs, kmprf |
---|
| 1291 | REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: khprs, khprf |
---|
| 1292 | REAL(wp), DIMENSION(:,:), ALLOCATABLE :: shfpr, uswspr, vswspr |
---|
| 1293 | REAL(wp), DIMENSION(:,:), ALLOCATABLE :: tspr, uspr, z0pr |
---|
| 1294 | |
---|
| 1295 | INTEGER(iwp) :: nzbottom, nztop |
---|
| 1296 | |
---|
| 1297 | |
---|
| 1298 | nzbottom = bdims_rem (3,1) |
---|
| 1299 | nztop = bdims_rem (3,2) |
---|
| 1300 | ! nztop = blk_dim_rem (3,2)+1 |
---|
| 1301 | |
---|
| 1302 | |
---|
| 1303 | ALLOCATE( ptprf(nzbottom:nztop+2,bdims_rem(2,1)-1:bdims_rem(2,2)+1,nxl:nxr) ) |
---|
| 1304 | ALLOCATE( ptprs(nzbottom:nztop+2,nys:nyn,nxl:nxr) ) |
---|
| 1305 | |
---|
| 1306 | |
---|
| 1307 | ! |
---|
| 1308 | !-- Initialisation of scalar variables |
---|
| 1309 | |
---|
| 1310 | ! |
---|
| 1311 | !-- Interpolation in x-direction (quadratic, Clark and Farley) |
---|
| 1312 | |
---|
| 1313 | DO k = nzbottom, nztop+2 |
---|
| 1314 | DO j = bdims_rem(2,1)-1, bdims_rem(2,2)+1 |
---|
| 1315 | DO i = bdims_rem(1,1), bdims_rem(1,2) |
---|
| 1316 | |
---|
| 1317 | bottomx = (nxf+1)/(nxc+1) * i |
---|
| 1318 | topx = (nxf+1)/(nxc+1) * (i+1) - 1 |
---|
| 1319 | |
---|
| 1320 | DO if = bottomx, topx |
---|
| 1321 | |
---|
| 1322 | eps = ( if * dxf + 0.5 * dxf - i * dxc - 0.5 * dxc ) / dxc |
---|
| 1323 | alpha = ( ( dxf / dxc )**2.0 - 1.0 ) / 24.0 |
---|
| 1324 | eminus = eps * ( eps - 1.0 ) / 2.0 + alpha |
---|
| 1325 | edot = ( 1.0 - eps**2.0 ) - 2.0 * alpha |
---|
| 1326 | eplus = eps * ( eps + 1.0 ) / 2.0 + alpha |
---|
| 1327 | |
---|
| 1328 | ptprf(k,j,if) = eminus * work3d(k,j,i-1) & |
---|
| 1329 | + edot * work3d(k,j,i) & |
---|
| 1330 | + eplus * work3d(k,j,i+1) |
---|
| 1331 | END DO |
---|
| 1332 | |
---|
| 1333 | END DO |
---|
| 1334 | END DO |
---|
| 1335 | END DO |
---|
| 1336 | |
---|
| 1337 | ! |
---|
| 1338 | !-- Interpolation in y-direction (quadratic, Clark and Farley) |
---|
| 1339 | |
---|
| 1340 | DO k = nzbottom, nztop+2 |
---|
| 1341 | DO j = bdims_rem(2,1), bdims_rem(2,2) |
---|
| 1342 | |
---|
| 1343 | bottomy = (nyf+1)/(nyc+1) * j |
---|
| 1344 | topy = (nyf+1)/(nyc+1) * (j+1) - 1 |
---|
| 1345 | |
---|
| 1346 | DO if = nxl, nxr |
---|
| 1347 | DO jf = bottomy, topy |
---|
| 1348 | |
---|
| 1349 | eps = ( jf * dyf + 0.5 * dyf - j * dyc - 0.5 * dyc ) / dyc |
---|
| 1350 | alpha = ( ( dyf / dyc )**2.0 - 1.0 ) / 24.0 |
---|
| 1351 | eminus = eps * ( eps - 1.0 ) / 2.0 + alpha |
---|
| 1352 | edot = ( 1.0 - eps**2.0 ) - 2.0 * alpha |
---|
| 1353 | eplus = eps * ( eps + 1.0 ) / 2.0 + alpha |
---|
| 1354 | |
---|
| 1355 | ptprs(k,jf,if) = eminus * ptprf(k,j-1,if) & |
---|
| 1356 | + edot * ptprf(k,j,if) & |
---|
| 1357 | + eplus * ptprf(k,j+1,if) |
---|
| 1358 | |
---|
| 1359 | END DO |
---|
| 1360 | END DO |
---|
| 1361 | |
---|
| 1362 | END DO |
---|
| 1363 | END DO |
---|
| 1364 | |
---|
| 1365 | ! |
---|
| 1366 | !-- Interpolation in z-direction (quadratic, Clark and Farley) |
---|
| 1367 | |
---|
| 1368 | DO k = nzbottom+1, nztop |
---|
| 1369 | |
---|
| 1370 | bottomz = (dzc/dzf) * (k-1) + 1 |
---|
| 1371 | topz = (dzc/dzf) * k |
---|
| 1372 | |
---|
| 1373 | DO jf = nys, nyn |
---|
| 1374 | DO if = nxl, nxr |
---|
| 1375 | DO kf = bottomz, topz |
---|
| 1376 | |
---|
| 1377 | eps = ( zuf(kf) - zuc(k) ) / dzc |
---|
| 1378 | alpha = ( ( dzf / dzc )**2.0 - 1.0 ) / 24.0 |
---|
| 1379 | eminus = eps * ( eps - 1.0 ) / 2.0 + alpha |
---|
| 1380 | edot = ( 1.0 - eps**2.0 ) - 2.0 * alpha |
---|
| 1381 | eplus = eps * ( eps + 1.0 ) / 2.0 + alpha |
---|
| 1382 | |
---|
| 1383 | km(kf,jf,if) = eminus * ptprs(k-1,jf,if) & |
---|
| 1384 | + edot * ptprs(k,jf,if) & |
---|
| 1385 | + eplus * ptprs(k+1,jf,if) |
---|
| 1386 | |
---|
| 1387 | END DO |
---|
| 1388 | END DO |
---|
| 1389 | END DO |
---|
| 1390 | |
---|
| 1391 | END DO |
---|
| 1392 | |
---|
| 1393 | DO jf = nys, nyn |
---|
| 1394 | DO if = nxl, nxr |
---|
| 1395 | |
---|
| 1396 | eps = ( zuf(nzt+1) - zuc(nztop+1) ) / dzc |
---|
| 1397 | alpha = ( ( dzf / dzc )**2.0 - 1.0 ) / 24.0 |
---|
| 1398 | eminus = eps * ( eps - 1.0 ) / 2.0 + alpha |
---|
| 1399 | edot = ( 1.0 - eps**2.0 ) - 2.0 * alpha |
---|
| 1400 | eplus = eps * ( eps + 1.0 ) / 2.0 + alpha |
---|
| 1401 | |
---|
| 1402 | km(nzt+1,jf,if) = eminus * ptprs(nztop,jf,if) & |
---|
| 1403 | + edot * ptprs(nztop+1,jf,if) & |
---|
| 1404 | + eplus * ptprs(nztop+2,jf,if) |
---|
| 1405 | |
---|
| 1406 | END DO |
---|
| 1407 | END DO |
---|
| 1408 | |
---|
| 1409 | |
---|
| 1410 | DEALLOCATE( ptprf, ptprs ) |
---|
| 1411 | |
---|
| 1412 | #endif |
---|
| 1413 | END SUBROUTINE interpolate_to_fine_km |
---|
| 1414 | |
---|
| 1415 | |
---|
| 1416 | |
---|
| 1417 | |
---|
| 1418 | SUBROUTINE interpolate_to_fine_flux( tag ) |
---|
| 1419 | |
---|
| 1420 | #if defined( __parallel ) |
---|
| 1421 | |
---|
| 1422 | USE arrays_3d |
---|
| 1423 | USE control_parameters |
---|
| 1424 | USE grid_variables |
---|
| 1425 | USE indices |
---|
| 1426 | USE pegrid |
---|
| 1427 | |
---|
| 1428 | |
---|
| 1429 | IMPLICIT NONE |
---|
| 1430 | |
---|
| 1431 | |
---|
| 1432 | INTEGER(iwp), intent(in) :: tag |
---|
| 1433 | INTEGER(iwp) :: i, j, k |
---|
| 1434 | INTEGER(iwp) :: if, jf, kf |
---|
| 1435 | INTEGER(iwp) :: bottomx, topx |
---|
| 1436 | INTEGER(iwp) :: bottomy, topy |
---|
| 1437 | INTEGER(iwp) :: bottomz, topz |
---|
| 1438 | REAL(wp) :: eps, alpha, eminus, edot, eplus |
---|
| 1439 | REAL(wp), DIMENSION(:,:), ALLOCATABLE :: shfpr, uswspr, vswspr |
---|
| 1440 | REAL(wp), DIMENSION(:,:), ALLOCATABLE :: tspr, uspr, z0pr |
---|
| 1441 | |
---|
| 1442 | |
---|
| 1443 | INTEGER(iwp) :: nzbottom, nztop |
---|
| 1444 | |
---|
| 1445 | ALLOCATE( shfpr (bdims_rem(2,1)-1:bdims_rem(2,2)+1,nxl:nxr) ) |
---|
| 1446 | ALLOCATE( uswspr(bdims_rem(2,1)-1:bdims_rem(2,2)+1,nxl:nxr) ) |
---|
| 1447 | ALLOCATE( vswspr(bdims_rem(2,1)-1:bdims_rem(2,2)+1,nxl:nxr) ) |
---|
| 1448 | ALLOCATE( tspr (bdims_rem(2,1)-1:bdims_rem(2,2)+1,nxl:nxr) ) |
---|
| 1449 | ALLOCATE( uspr (bdims_rem(2,1)-1:bdims_rem(2,2)+1,nxl:nxr) ) |
---|
| 1450 | ALLOCATE( z0pr (bdims_rem(2,1)-1:bdims_rem(2,2)+1,nxl:nxr) ) |
---|
| 1451 | |
---|
| 1452 | ! |
---|
| 1453 | !-- Initialisation of scalar variables (2D) |
---|
| 1454 | |
---|
| 1455 | ! |
---|
| 1456 | !-- Interpolation in x-direction (quadratic, Clark and Farley) |
---|
| 1457 | |
---|
| 1458 | DO j = bdims_rem(2,1)-1, bdims_rem(2,2)+1 |
---|
| 1459 | DO i = bdims_rem(1,1), bdims_rem(1,2) |
---|
| 1460 | |
---|
| 1461 | bottomx = (nxf+1)/(nxc+1) * i |
---|
| 1462 | topx = (nxf+1)/(nxc+1) * (i+1) - 1 |
---|
| 1463 | |
---|
| 1464 | DO if = bottomx, topx |
---|
| 1465 | |
---|
| 1466 | eps = ( if * dxf + 0.5 * dxf - i * dxc - 0.5 * dxc ) / dxc |
---|
| 1467 | alpha = ( ( dxf / dxc )**2.0 - 1.0 ) / 24.0 |
---|
| 1468 | eminus = eps * ( eps - 1.0 ) / 2.0 + alpha |
---|
| 1469 | edot = ( 1.0 - eps**2.0 ) - 2.0 * alpha |
---|
| 1470 | eplus = eps * ( eps + 1.0 ) / 2.0 + alpha |
---|
| 1471 | |
---|
| 1472 | shfpr(j,if) = eminus * work2dshf(j,i-1) & |
---|
| 1473 | + edot * work2dshf(j,i) & |
---|
| 1474 | + eplus * work2dshf(j,i+1) |
---|
| 1475 | |
---|
| 1476 | uswspr(j,if) = eminus * work2dusws(j,i-1) & |
---|
| 1477 | + edot * work2dusws(j,i) & |
---|
| 1478 | + eplus * work2dusws(j,i+1) |
---|
| 1479 | |
---|
| 1480 | vswspr(j,if) = eminus * work2dvsws(j,i-1) & |
---|
| 1481 | + edot * work2dvsws(j,i) & |
---|
| 1482 | + eplus * work2dvsws(j,i+1) |
---|
| 1483 | |
---|
| 1484 | tspr(j,if) = eminus * work2dts(j,i-1) & |
---|
| 1485 | + edot * work2dts(j,i) & |
---|
| 1486 | + eplus * work2dts(j,i+1) |
---|
| 1487 | |
---|
| 1488 | uspr(j,if) = eminus * work2dus(j,i-1) & |
---|
| 1489 | + edot * work2dus(j,i) & |
---|
| 1490 | + eplus * work2dus(j,i+1) |
---|
| 1491 | |
---|
| 1492 | z0pr(j,if) = eminus * work2dz0(j,i-1) & |
---|
| 1493 | + edot * work2dz0(j,i) & |
---|
| 1494 | + eplus * work2dz0(j,i+1) |
---|
| 1495 | |
---|
| 1496 | END DO |
---|
| 1497 | |
---|
| 1498 | END DO |
---|
| 1499 | END DO |
---|
| 1500 | |
---|
| 1501 | ! |
---|
| 1502 | !-- Interpolation in y-direction (quadratic, Clark and Farley) |
---|
| 1503 | |
---|
| 1504 | DO j = bdims_rem(2,1), bdims_rem(2,2) |
---|
| 1505 | |
---|
| 1506 | bottomy = (nyf+1)/(nyc+1) * j |
---|
| 1507 | topy = (nyf+1)/(nyc+1) * (j+1) - 1 |
---|
| 1508 | |
---|
| 1509 | DO if = nxl, nxr |
---|
| 1510 | DO jf = bottomy, topy |
---|
| 1511 | |
---|
| 1512 | eps = ( jf * dyf + 0.5 * dyf - j * dyc - 0.5 * dyc ) / dyc |
---|
| 1513 | alpha = ( ( dyf / dyc )**2.0 - 1.0 ) / 24.0 |
---|
| 1514 | eminus = eps * ( eps - 1.0 ) / 2.0 + alpha |
---|
| 1515 | edot = ( 1.0 - eps**2.0 ) - 2.0 * alpha |
---|
| 1516 | eplus = eps * ( eps + 1.0 ) / 2.0 + alpha |
---|
| 1517 | |
---|
| 1518 | !-- WARNING |
---|
| 1519 | !-- shf,z0 not interpolated |
---|
| 1520 | !-- line commented in interpolate_to_fine_flux |
---|
| 1521 | !-- FG needs to read it's own data file |
---|
| 1522 | !MERGE-WIP! surf_def_h(0)%shf(jf,if) = eminus * shfpr(j-1,if) & |
---|
| 1523 | !MERGE-WIP! + edot * shfpr(j,if) & |
---|
| 1524 | !MERGE-WIP! + eplus * shfpr(j+1,if) |
---|
| 1525 | !MERGE-WIP |
---|
| 1526 | !MERGE-WIP surf_def_h(0)%usws(jf,if) = eminus * uswspr(j-1,if) & |
---|
| 1527 | !MERGE-WIP + edot * uswspr(j,if) & |
---|
| 1528 | !MERGE-WIP + eplus * uswspr(j+1,if) |
---|
| 1529 | !MERGE-WIP |
---|
| 1530 | !MERGE-WIP surf_def_h(0)%vsws(jf,if) = eminus * vswspr(j-1,if) & |
---|
| 1531 | !MERGE-WIP + edot * vswspr(j,if) & |
---|
| 1532 | !MERGE-WIP + eplus * vswspr(j+1,if) |
---|
| 1533 | !MERGE-WIP |
---|
| 1534 | !MERGE ts(jf,if) = eminus * tspr(j-1,if) & |
---|
| 1535 | !MERGE + edot * tspr(j,if) & |
---|
| 1536 | !MERGE + eplus * tspr(j+1,if) |
---|
| 1537 | !MERGE |
---|
| 1538 | !MERGE us(jf,if) = eminus * uspr(j-1,if) & |
---|
| 1539 | !MERGE + edot * uspr(j,if) & |
---|
| 1540 | !MERGE + eplus * uspr(j+1,if) |
---|
| 1541 | !MERGE |
---|
| 1542 | !MERGE! z0(jf,if) = eminus * z0pr(j-1,if) & |
---|
| 1543 | !MERGE! + edot * z0pr(j,if) & |
---|
| 1544 | !MERGE! + eplus * z0pr(j+1,if) |
---|
| 1545 | |
---|
| 1546 | END DO |
---|
| 1547 | END DO |
---|
| 1548 | |
---|
| 1549 | END DO |
---|
| 1550 | |
---|
| 1551 | |
---|
| 1552 | DEALLOCATE( shfpr, uswspr, vswspr ) |
---|
| 1553 | DEALLOCATE( tspr, uspr, z0pr ) |
---|
| 1554 | |
---|
| 1555 | |
---|
| 1556 | #endif |
---|
| 1557 | END SUBROUTINE interpolate_to_fine_flux |
---|
| 1558 | |
---|
| 1559 | |
---|
| 1560 | END SUBROUTINE vnest_init_fine |
---|
| 1561 | |
---|
| 1562 | SUBROUTINE vnest_boundary_conds |
---|
| 1563 | !------------------------------------------------------------------------------! |
---|
| 1564 | ! Description: |
---|
| 1565 | ! ------------ |
---|
| 1566 | ! Boundary conditions for the prognostic quantities. |
---|
| 1567 | ! One additional bottom boundary condition is applied for the TKE (=(u*)**2) |
---|
| 1568 | ! in prandtl_fluxes. The cyclic lateral boundary conditions are implicitly |
---|
| 1569 | ! handled in routine exchange_horiz. Pressure boundary conditions are |
---|
| 1570 | ! explicitly set in routines pres, poisfft, poismg and sor. |
---|
| 1571 | !------------------------------------------------------------------------------! |
---|
| 1572 | |
---|
| 1573 | USE arrays_3d |
---|
| 1574 | USE control_parameters |
---|
| 1575 | USE grid_variables |
---|
| 1576 | USE indices |
---|
| 1577 | USE pegrid |
---|
| 1578 | |
---|
| 1579 | |
---|
| 1580 | IMPLICIT NONE |
---|
| 1581 | |
---|
| 1582 | INTEGER(iwp) :: i, j, k |
---|
| 1583 | INTEGER(iwp) :: if, jf |
---|
| 1584 | |
---|
| 1585 | REAL(wp) :: c_max, denom |
---|
| 1586 | |
---|
| 1587 | #if defined( __parallel ) |
---|
| 1588 | |
---|
| 1589 | ! |
---|
| 1590 | !-- vnest: top boundary conditions |
---|
| 1591 | |
---|
| 1592 | IF ( coupling_mode == 'vnested_crse' ) THEN |
---|
| 1593 | !-- Send data to fine grid for TOP BC |
---|
| 1594 | |
---|
| 1595 | offset(1) = ( pdims_partner(1) / pdims(1) ) * pcoord(1) |
---|
| 1596 | offset(2) = ( pdims_partner(2) / pdims(2) ) * pcoord(2) |
---|
| 1597 | |
---|
| 1598 | do j = 0, ( pdims_partner(2) / pdims(2) ) - 1 |
---|
| 1599 | do i = 0, ( pdims_partner(1) / pdims(1) ) - 1 |
---|
| 1600 | map_coord(1) = i+offset(1) |
---|
| 1601 | map_coord(2) = j+offset(2) |
---|
| 1602 | |
---|
| 1603 | target_idex = f_rnk_lst(map_coord(1),map_coord(2)) + numprocs |
---|
| 1604 | |
---|
| 1605 | bdims (1,1) = c2f_dims_cg (0,map_coord(1),map_coord(2)) |
---|
| 1606 | bdims (1,2) = c2f_dims_cg (1,map_coord(1),map_coord(2)) |
---|
| 1607 | bdims (2,1) = c2f_dims_cg (2,map_coord(1),map_coord(2)) |
---|
| 1608 | bdims (2,2) = c2f_dims_cg (3,map_coord(1),map_coord(2)) |
---|
| 1609 | bdims (3,1) = c2f_dims_cg (4,map_coord(1),map_coord(2)) |
---|
| 1610 | bdims (3,2) = c2f_dims_cg (5,map_coord(1),map_coord(2)) |
---|
| 1611 | |
---|
| 1612 | n_cell_c = ( (bdims(1,2)-bdims(1,1)) + 3 ) * & |
---|
| 1613 | ( (bdims(2,2)-bdims(2,1)) + 3 ) * & |
---|
| 1614 | ( (bdims(3,2)-bdims(3,1)) + 1 ) |
---|
| 1615 | |
---|
| 1616 | CALL MPI_SEND(u (bdims(3,1), bdims(2,1)-1, bdims(1,1)-1), & |
---|
| 1617 | 1, TYPE_VNEST_BC, target_idex, & |
---|
| 1618 | 201, comm_inter, ierr) |
---|
| 1619 | |
---|
| 1620 | CALL MPI_SEND(v(bdims(3,1), bdims(2,1)-1, bdims(1,1)-1),& |
---|
| 1621 | 1, TYPE_VNEST_BC, target_idex, & |
---|
| 1622 | 202, comm_inter, ierr) |
---|
| 1623 | |
---|
| 1624 | CALL MPI_SEND(w(bdims(3,1), bdims(2,1)-1, bdims(1,1)-1),& |
---|
| 1625 | 1, TYPE_VNEST_BC, target_idex, & |
---|
| 1626 | 203, comm_inter, ierr) |
---|
| 1627 | |
---|
| 1628 | CALL MPI_SEND(pt(bdims(3,1), bdims(2,1)-1, bdims(1,1)-1),& |
---|
| 1629 | 1, TYPE_VNEST_BC, target_idex, & |
---|
| 1630 | 205, comm_inter, ierr) |
---|
| 1631 | |
---|
| 1632 | IF ( humidity ) THEN |
---|
| 1633 | CALL MPI_SEND(q(bdims(3,1), bdims(2,1)-1, bdims(1,1)-1),& |
---|
| 1634 | 1, TYPE_VNEST_BC, target_idex, & |
---|
| 1635 | 209, comm_inter, ierr) |
---|
| 1636 | ENDIF |
---|
| 1637 | |
---|
| 1638 | end do |
---|
| 1639 | end do |
---|
| 1640 | |
---|
| 1641 | ELSEIF ( coupling_mode == 'vnested_fine' ) THEN |
---|
| 1642 | !-- Receive data from coarse grid for TOP BC |
---|
| 1643 | |
---|
| 1644 | offset(1) = pcoord(1) / ( pdims(1)/pdims_partner(1) ) |
---|
| 1645 | offset(2) = pcoord(2) / ( pdims(2)/pdims_partner(2) ) |
---|
| 1646 | map_coord(1) = offset(1) |
---|
| 1647 | map_coord(2) = offset(2) |
---|
| 1648 | target_idex = c_rnk_lst(map_coord(1),map_coord(2)) |
---|
| 1649 | |
---|
| 1650 | bdims_rem (1,1) = c2f_dims_fg(0) |
---|
| 1651 | bdims_rem (1,2) = c2f_dims_fg(1) |
---|
| 1652 | bdims_rem (2,1) = c2f_dims_fg(2) |
---|
| 1653 | bdims_rem (2,2) = c2f_dims_fg(3) |
---|
| 1654 | bdims_rem (3,1) = c2f_dims_fg(4) |
---|
| 1655 | bdims_rem (3,2) = c2f_dims_fg(5) |
---|
| 1656 | |
---|
| 1657 | n_cell_c = & |
---|
| 1658 | ( (bdims_rem(1,2)-bdims_rem(1,1)) + 3 ) * & |
---|
| 1659 | ( (bdims_rem(2,2)-bdims_rem(2,1)) + 3 ) * & |
---|
| 1660 | ( (bdims_rem(3,2)-bdims_rem(3,1)) + 1 ) |
---|
| 1661 | |
---|
| 1662 | ALLOCATE( work3d ( & |
---|
| 1663 | bdims_rem(3,1) :bdims_rem(3,2) , & |
---|
| 1664 | bdims_rem(2,1)-1:bdims_rem(2,2)+1, & |
---|
| 1665 | bdims_rem(1,1)-1:bdims_rem(1,2)+1)) |
---|
| 1666 | |
---|
| 1667 | |
---|
| 1668 | CALL MPI_RECV( work3d ,n_cell_c, MPI_REAL, target_idex, 201, & |
---|
| 1669 | comm_inter,status, ierr ) |
---|
| 1670 | interpol3d => u |
---|
| 1671 | call vnest_set_topbc_u |
---|
| 1672 | |
---|
| 1673 | CALL MPI_RECV( work3d ,n_cell_c, MPI_REAL, target_idex, 202, & |
---|
| 1674 | comm_inter,status, ierr ) |
---|
| 1675 | interpol3d => v |
---|
| 1676 | call vnest_set_topbc_v |
---|
| 1677 | |
---|
| 1678 | CALL MPI_RECV( work3d ,n_cell_c, MPI_REAL, target_idex, 203, & |
---|
| 1679 | comm_inter,status, ierr ) |
---|
| 1680 | interpol3d => w |
---|
| 1681 | call vnest_set_topbc_w |
---|
| 1682 | |
---|
| 1683 | CALL MPI_RECV( work3d,n_cell_c, MPI_REAL, target_idex, 205, & |
---|
| 1684 | comm_inter,status, ierr ) |
---|
| 1685 | interpol3d => pt |
---|
| 1686 | call vnest_set_topbc_s |
---|
| 1687 | |
---|
| 1688 | IF ( humidity ) THEN |
---|
[2514] | 1689 | CALL MPI_RECV( work3d,n_cell_c, MPI_REAL, target_idex, 209, & |
---|
[2365] | 1690 | comm_inter,status, ierr ) |
---|
| 1691 | interpol3d => q |
---|
| 1692 | call vnest_set_topbc_s |
---|
| 1693 | |
---|
| 1694 | CALL exchange_horiz_2d(q (nzt+1,:,:) ) |
---|
| 1695 | ENDIF |
---|
| 1696 | |
---|
| 1697 | !-- TKE Neumann BC for FG top |
---|
| 1698 | DO jf = nys, nyn |
---|
| 1699 | DO if = nxl, nxr |
---|
| 1700 | e(nzt+1,jf,if) = e(nzt,jf,if) |
---|
| 1701 | END DO |
---|
| 1702 | END DO |
---|
| 1703 | |
---|
| 1704 | ! |
---|
| 1705 | !-- w level nzt+1 does not impact results. Only to avoid jumps while |
---|
| 1706 | !-- plotting profiles |
---|
| 1707 | w(nzt+1,:,:) = w(nzt,:,:) |
---|
| 1708 | |
---|
| 1709 | CALL exchange_horiz_2d(u (nzt+1,:,:) ) |
---|
| 1710 | CALL exchange_horiz_2d(v (nzt+1,:,:) ) |
---|
| 1711 | CALL exchange_horiz_2d(pt(nzt+1,:,:) ) |
---|
| 1712 | CALL exchange_horiz_2d(e (nzt+1,:,:) ) |
---|
| 1713 | CALL exchange_horiz_2d(w (nzt+1,:,:) ) |
---|
| 1714 | CALL exchange_horiz_2d(w (nzt ,:,:) ) |
---|
| 1715 | |
---|
| 1716 | NULLIFY ( interpol3d ) |
---|
| 1717 | DEALLOCATE ( work3d ) |
---|
| 1718 | |
---|
| 1719 | ENDIF |
---|
| 1720 | |
---|
| 1721 | |
---|
| 1722 | #endif |
---|
| 1723 | CONTAINS |
---|
| 1724 | |
---|
| 1725 | SUBROUTINE vnest_set_topbc_w |
---|
| 1726 | |
---|
| 1727 | #if defined( __parallel ) |
---|
| 1728 | |
---|
| 1729 | USE arrays_3d |
---|
| 1730 | USE control_parameters |
---|
| 1731 | USE grid_variables |
---|
| 1732 | USE indices |
---|
| 1733 | USE pegrid |
---|
| 1734 | |
---|
| 1735 | |
---|
| 1736 | IMPLICIT NONE |
---|
| 1737 | |
---|
| 1738 | INTEGER(iwp) :: i, j, k |
---|
| 1739 | INTEGER(iwp) :: if, jf |
---|
| 1740 | INTEGER(iwp) :: bottomx, topx |
---|
| 1741 | INTEGER(iwp) :: bottomy, topy |
---|
| 1742 | REAL(wp) :: eps, alpha, eminus, edot, eplus |
---|
| 1743 | REAL(wp), DIMENSION(:,:), ALLOCATABLE :: wprf |
---|
| 1744 | |
---|
| 1745 | |
---|
| 1746 | ALLOCATE( wprf(bdims_rem(2,1)-1:bdims_rem(2,2)+1,nxl:nxr) ) |
---|
| 1747 | |
---|
| 1748 | ! |
---|
| 1749 | !-- Determination of a boundary condition for the vertical velocity component w: |
---|
| 1750 | !-- In this case only interpolation in x- and y- direction is necessary, as the |
---|
| 1751 | !-- boundary w-node of the fine grid coincides with a w-node in the coarse grid. |
---|
| 1752 | !-- For both interpolations the scheme of Clark and Farley is used. |
---|
| 1753 | |
---|
| 1754 | ! |
---|
| 1755 | !-- Interpolation in x-direction |
---|
| 1756 | |
---|
| 1757 | DO j = bdims_rem(2,1)-1, bdims_rem(2,2)+1 |
---|
| 1758 | |
---|
| 1759 | DO i = bdims_rem(1,1), bdims_rem(1,2) |
---|
| 1760 | |
---|
| 1761 | bottomx = (nxf+1)/(nxc+1) * i |
---|
| 1762 | topx = (nxf+1)/(nxc+1) * (i+1) - 1 |
---|
| 1763 | |
---|
| 1764 | DO if = bottomx, topx |
---|
| 1765 | |
---|
| 1766 | eps = (if * dxf + 0.5 * dxf - i * dxc - 0.5 * dxc) / dxc |
---|
| 1767 | alpha = ( (dxf/dxc)**2.0 - 1.0) / 24.0 |
---|
| 1768 | eminus = eps * ( eps - 1.0 ) / 2.0 + alpha |
---|
| 1769 | edot = ( 1.0 - eps**2.0 ) - 2.0 * alpha |
---|
| 1770 | eplus = eps * ( eps + 1.0 ) / 2.0 + alpha |
---|
| 1771 | wprf(j,if) = eminus * work3d(bdims_rem(3,1),j,i-1) & |
---|
| 1772 | + edot * work3d(bdims_rem(3,1),j,i) & |
---|
| 1773 | + eplus * work3d(bdims_rem(3,1),j,i+1) |
---|
| 1774 | |
---|
| 1775 | END DO |
---|
| 1776 | |
---|
| 1777 | END DO |
---|
| 1778 | |
---|
| 1779 | END DO |
---|
| 1780 | |
---|
| 1781 | ! |
---|
| 1782 | !-- Interpolation in y-direction |
---|
| 1783 | |
---|
| 1784 | DO j = bdims_rem(2,1), bdims_rem(2,2) |
---|
| 1785 | |
---|
| 1786 | bottomy = (nyf+1)/(nyc+1) * j |
---|
| 1787 | topy = (nyf+1)/(nyc+1) * (j+1) - 1 |
---|
| 1788 | |
---|
| 1789 | DO if = nxl, nxr |
---|
| 1790 | |
---|
| 1791 | DO jf = bottomy, topy |
---|
| 1792 | |
---|
| 1793 | eps = (jf * dyf + 0.5 * dyf - j * dyc - 0.5 * dyc) / dyc |
---|
| 1794 | |
---|
| 1795 | alpha = ( (dyf/dyc)**2.0 - 1.0) / 24.0 |
---|
| 1796 | |
---|
| 1797 | eminus = eps * ( eps - 1.0 ) / 2.0 + alpha |
---|
| 1798 | |
---|
| 1799 | edot = ( 1.0 - eps**2.0 ) - 2.0 * alpha |
---|
| 1800 | |
---|
| 1801 | eplus = eps * ( eps + 1.0 ) / 2.0 + alpha |
---|
| 1802 | |
---|
| 1803 | w(nzt,jf,if) = eminus * wprf(j-1,if) & |
---|
| 1804 | + edot * wprf(j,if) & |
---|
| 1805 | + eplus * wprf(j+1,if) |
---|
| 1806 | |
---|
| 1807 | END DO |
---|
| 1808 | |
---|
| 1809 | END DO |
---|
| 1810 | |
---|
| 1811 | END DO |
---|
| 1812 | |
---|
| 1813 | DEALLOCATE( wprf ) |
---|
| 1814 | #endif |
---|
| 1815 | |
---|
| 1816 | END SUBROUTINE vnest_set_topbc_w |
---|
| 1817 | |
---|
| 1818 | |
---|
| 1819 | SUBROUTINE vnest_set_topbc_u |
---|
| 1820 | |
---|
| 1821 | #if defined( __parallel ) |
---|
| 1822 | |
---|
| 1823 | USE arrays_3d |
---|
| 1824 | USE control_parameters |
---|
| 1825 | USE grid_variables |
---|
| 1826 | USE indices |
---|
| 1827 | USE pegrid |
---|
| 1828 | |
---|
| 1829 | |
---|
| 1830 | IMPLICIT NONE |
---|
| 1831 | |
---|
| 1832 | INTEGER(iwp) :: i, j, k |
---|
| 1833 | INTEGER(iwp) :: if, jf |
---|
| 1834 | INTEGER(iwp) :: bottomx, topx |
---|
| 1835 | INTEGER(iwp) :: bottomy, topy |
---|
| 1836 | REAL(wp) :: eps, alpha, eminus, edot, eplus |
---|
| 1837 | REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: uprf |
---|
| 1838 | REAL(wp), DIMENSION(:,:), ALLOCATABLE :: uprs |
---|
| 1839 | |
---|
| 1840 | |
---|
| 1841 | |
---|
| 1842 | ALLOCATE( uprf(bdims_rem(3,1):bdims_rem(3,2),nys:nyn,bdims_rem(1,1)-1:bdims_rem(1,2)+1) ) |
---|
| 1843 | ALLOCATE( uprs(nys:nyn,bdims_rem(1,1)-1:bdims_rem(1,2)+1) ) |
---|
| 1844 | |
---|
| 1845 | |
---|
| 1846 | ! |
---|
| 1847 | !-- Interpolation in y-direction |
---|
| 1848 | |
---|
| 1849 | DO k = bdims_rem(3,1), bdims_rem(3,2) |
---|
| 1850 | DO j = bdims_rem(2,1), bdims_rem(2,2) |
---|
| 1851 | |
---|
| 1852 | bottomy = (nyf+1)/(nyc+1) * j |
---|
| 1853 | topy = (nyf+1)/(nyc+1) * (j+1) - 1 |
---|
| 1854 | |
---|
| 1855 | DO i = bdims_rem(1,1)-1, bdims_rem(1,2)+1 |
---|
| 1856 | DO jf = bottomy, topy |
---|
| 1857 | |
---|
| 1858 | eps = (jf * dyf + 0.5 * dyf - j * dyc - 0.5 * dyc) / dyc |
---|
| 1859 | alpha = ( (dyf/dyc)**2.0 - 1.0) / 24.0 |
---|
| 1860 | eminus = eps * ( eps - 1.0 ) / 2.0 + alpha |
---|
| 1861 | edot = ( 1.0 - eps**2.0 ) - 2.0 * alpha |
---|
| 1862 | eplus = eps * ( eps + 1.0 ) / 2.0 + alpha |
---|
| 1863 | |
---|
| 1864 | uprf(k,jf,i) = eminus * work3d(k,j-1,i) & |
---|
| 1865 | + edot * work3d(k,j,i) & |
---|
| 1866 | + eplus * work3d(k,j+1,i) |
---|
| 1867 | END DO |
---|
| 1868 | END DO |
---|
| 1869 | |
---|
| 1870 | END DO |
---|
| 1871 | END DO |
---|
| 1872 | |
---|
| 1873 | ! |
---|
| 1874 | !-- Interpolation in z-direction |
---|
| 1875 | |
---|
| 1876 | DO jf = nys, nyn |
---|
| 1877 | DO i = bdims_rem(1,1)-1, bdims_rem(1,2)+1 |
---|
| 1878 | eps = ( zuf(nzt+1) - zuc(bdims_rem(3,1)+1) ) / dzc |
---|
| 1879 | alpha = ( (dzf/dzc)**2.0 - 1.0) / 24.0 |
---|
| 1880 | eminus = eps * ( eps - 1.0 ) / 2.0 + alpha |
---|
| 1881 | edot = ( 1.0 - eps**2.0 ) - 2.0 * alpha |
---|
| 1882 | eplus = eps * ( eps + 1.0 ) / 2.0 + alpha |
---|
| 1883 | uprs(jf,i) = eminus * uprf(bdims_rem(3,1),jf,i) & |
---|
| 1884 | + edot * uprf(bdims_rem(3,1)+1,jf,i) & |
---|
| 1885 | + eplus * uprf(bdims_rem(3,1)+2,jf,i) |
---|
| 1886 | END DO |
---|
| 1887 | END DO |
---|
| 1888 | |
---|
| 1889 | ! |
---|
| 1890 | !-- Interpolation in x-direction |
---|
| 1891 | |
---|
| 1892 | DO jf = nys, nyn |
---|
| 1893 | DO i = bdims_rem(1,1), bdims_rem(1,2) |
---|
| 1894 | |
---|
| 1895 | bottomx = (nxf+1)/(nxc+1) * i |
---|
| 1896 | topx = (nxf+1)/(nxc+1) * (i+1) - 1 |
---|
| 1897 | |
---|
| 1898 | DO if = bottomx, topx |
---|
| 1899 | u(nzt+1,jf,if) = uprs(jf,i) + ( if * dxf - i * dxc ) * ( uprs(jf,i+1) - uprs(jf,i) ) / dxc |
---|
| 1900 | END DO |
---|
| 1901 | |
---|
| 1902 | END DO |
---|
| 1903 | END DO |
---|
| 1904 | |
---|
| 1905 | |
---|
| 1906 | |
---|
| 1907 | DEALLOCATE ( uprf, uprs ) |
---|
| 1908 | #endif |
---|
| 1909 | |
---|
| 1910 | END SUBROUTINE vnest_set_topbc_u |
---|
| 1911 | |
---|
| 1912 | |
---|
| 1913 | SUBROUTINE vnest_set_topbc_v |
---|
| 1914 | |
---|
| 1915 | #if defined( __parallel ) |
---|
| 1916 | |
---|
| 1917 | USE arrays_3d |
---|
| 1918 | USE control_parameters |
---|
| 1919 | USE grid_variables |
---|
| 1920 | USE indices |
---|
| 1921 | USE pegrid |
---|
| 1922 | |
---|
| 1923 | |
---|
| 1924 | IMPLICIT NONE |
---|
| 1925 | |
---|
| 1926 | INTEGER(iwp) :: i, j, k |
---|
| 1927 | INTEGER(iwp) :: if, jf |
---|
| 1928 | INTEGER(iwp) :: bottomx, topx |
---|
| 1929 | INTEGER(iwp) :: bottomy, topy |
---|
| 1930 | REAL(wp) :: eps, alpha, eminus, edot, eplus |
---|
| 1931 | REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: vprf |
---|
| 1932 | REAL(wp), DIMENSION(:,:), ALLOCATABLE :: vprs |
---|
| 1933 | |
---|
| 1934 | |
---|
| 1935 | |
---|
| 1936 | ALLOCATE( vprf(bdims_rem(3,1):bdims_rem(3,2),bdims_rem(2,1)-1:bdims_rem(2,2)+1,nxl:nxr) ) |
---|
| 1937 | ALLOCATE( vprs(bdims_rem(2,1)-1:bdims_rem(2,2)+1,nxl:nxr) ) |
---|
| 1938 | ! |
---|
| 1939 | !-- Determination of a boundary condition for the horizontal velocity component v: |
---|
| 1940 | !-- Interpolation in x- and z-direction is carried out by using the scheme, |
---|
| 1941 | !-- which was derived by Clark and Farley (1984). In y-direction a |
---|
| 1942 | !-- linear interpolation is carried out. |
---|
| 1943 | |
---|
| 1944 | ! |
---|
| 1945 | !-- Interpolation in x-direction |
---|
| 1946 | |
---|
| 1947 | DO k = bdims_rem(3,1), bdims_rem(3,2) |
---|
| 1948 | DO j = bdims_rem(2,1)-1, bdims_rem(2,2)+1 |
---|
| 1949 | DO i = bdims_rem(1,1), bdims_rem(1,2) |
---|
| 1950 | |
---|
| 1951 | bottomx = (nxf+1)/(nxc+1) * i |
---|
| 1952 | topx = (nxf+1)/(nxc+1) * (i+1) - 1 |
---|
| 1953 | |
---|
| 1954 | DO if = bottomx, topx |
---|
| 1955 | |
---|
| 1956 | eps = (if * dxf + 0.5 * dxf - i * dxc - 0.5 * dxc) / dxc |
---|
| 1957 | alpha = ( (dxf/dxc)**2.0 - 1.0) / 24.0 |
---|
| 1958 | eminus = eps * ( eps - 1.0 ) / 2.0 + alpha |
---|
| 1959 | edot = ( 1.0 - eps**2.0 ) - 2.0 * alpha |
---|
| 1960 | eplus = eps * ( eps + 1.0 ) / 2.0 + alpha |
---|
| 1961 | vprf(k,j,if) = eminus * work3d(k,j,i-1) & |
---|
| 1962 | + edot * work3d(k,j,i) & |
---|
| 1963 | + eplus * work3d(k,j,i+1) |
---|
| 1964 | END DO |
---|
| 1965 | |
---|
| 1966 | END DO |
---|
| 1967 | END DO |
---|
| 1968 | END DO |
---|
| 1969 | |
---|
| 1970 | ! |
---|
| 1971 | !-- Interpolation in z-direction |
---|
| 1972 | |
---|
| 1973 | DO j = bdims_rem(2,1)-1, bdims_rem(2,2)+1 |
---|
| 1974 | DO if = nxl, nxr |
---|
| 1975 | |
---|
| 1976 | eps = ( zuf(nzt+1) - zuc(bdims_rem(3,1)+1) ) / dzc |
---|
| 1977 | alpha = ( (dzf/dzc)**2.0 - 1.0) / 24.0 |
---|
| 1978 | eminus = eps * ( eps - 1.0 ) / 2.0 + alpha |
---|
| 1979 | edot = ( 1.0 - eps**2.0 ) - 2.0 * alpha |
---|
| 1980 | eplus = eps * ( eps + 1.0 ) / 2.0 + alpha |
---|
| 1981 | vprs(j,if) = eminus * vprf(bdims_rem(3,1),j,if) & |
---|
| 1982 | + edot * vprf(bdims_rem(3,1)+1,j,if) & |
---|
| 1983 | + eplus * vprf(bdims_rem(3,1)+2,j,if) |
---|
| 1984 | |
---|
| 1985 | END DO |
---|
| 1986 | END DO |
---|
| 1987 | |
---|
| 1988 | ! |
---|
| 1989 | !-- Interpolation in y-direction |
---|
| 1990 | |
---|
| 1991 | DO j = bdims_rem(2,1), bdims_rem(2,2) |
---|
| 1992 | DO if = nxl, nxr |
---|
| 1993 | |
---|
| 1994 | bottomy = (nyf+1)/(nyc+1) * j |
---|
| 1995 | topy = (nyf+1)/(nyc+1) * (j+1) - 1 |
---|
| 1996 | |
---|
| 1997 | DO jf = bottomy, topy |
---|
| 1998 | |
---|
| 1999 | v(nzt+1,jf,if) = vprs(j,if) + ( jf * dyf - j * dyc ) * ( vprs(j+1,if) - vprs(j,if) ) / dyc |
---|
| 2000 | |
---|
| 2001 | END DO |
---|
| 2002 | END DO |
---|
| 2003 | END DO |
---|
| 2004 | |
---|
| 2005 | |
---|
| 2006 | DEALLOCATE ( vprf, vprs) |
---|
| 2007 | |
---|
| 2008 | |
---|
| 2009 | #endif |
---|
| 2010 | |
---|
| 2011 | END SUBROUTINE vnest_set_topbc_v |
---|
| 2012 | |
---|
| 2013 | |
---|
| 2014 | SUBROUTINE vnest_set_topbc_s |
---|
| 2015 | |
---|
| 2016 | #if defined( __parallel ) |
---|
| 2017 | |
---|
| 2018 | USE arrays_3d |
---|
| 2019 | USE control_parameters |
---|
| 2020 | USE grid_variables |
---|
| 2021 | USE indices |
---|
| 2022 | USE pegrid |
---|
| 2023 | |
---|
| 2024 | |
---|
| 2025 | IMPLICIT NONE |
---|
| 2026 | |
---|
| 2027 | INTEGER(iwp) :: i, j, k |
---|
| 2028 | INTEGER(iwp) :: if, jf |
---|
| 2029 | INTEGER(iwp) :: bottomx, topx |
---|
| 2030 | INTEGER(iwp) :: bottomy, topy |
---|
| 2031 | REAL(wp) :: eps, alpha, eminus, edot, eplus |
---|
| 2032 | REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: ptprf, ptprs |
---|
| 2033 | |
---|
| 2034 | |
---|
| 2035 | |
---|
| 2036 | ALLOCATE( ptprf(bdims_rem(3,1):bdims_rem(3,2),bdims_rem(2,1)-1:bdims_rem(2,2)+1,nxl:nxr) ) |
---|
| 2037 | ALLOCATE( ptprs(bdims_rem(3,1):bdims_rem(3,2),nys:nyn,nxl:nxr) ) |
---|
| 2038 | |
---|
| 2039 | ! |
---|
| 2040 | !-- Determination of a boundary condition for the potential temperature pt: |
---|
| 2041 | !-- The scheme derived by Clark and Farley can be used in all three dimensions. |
---|
| 2042 | |
---|
| 2043 | ! |
---|
| 2044 | !-- Interpolation in x-direction |
---|
| 2045 | |
---|
| 2046 | DO k = bdims_rem(3,1), bdims_rem(3,2) |
---|
| 2047 | |
---|
| 2048 | DO j = bdims_rem(2,1)-1, bdims_rem(2,2)+1 |
---|
| 2049 | |
---|
| 2050 | DO i = bdims_rem(1,1), bdims_rem(1,2) |
---|
| 2051 | |
---|
| 2052 | bottomx = (nxf+1)/(nxc+1) * i |
---|
| 2053 | topx = (nxf+1)/(nxc+1) *(i+1) - 1 |
---|
| 2054 | |
---|
| 2055 | DO if = bottomx, topx |
---|
| 2056 | |
---|
| 2057 | eps = (if * dxf + 0.5 * dxf - i * dxc - 0.5 * dxc) / dxc |
---|
| 2058 | |
---|
| 2059 | alpha = ( (dxf/dxc)**2.0 - 1.0) / 24.0 |
---|
| 2060 | |
---|
| 2061 | eminus = eps * (eps - 1.0 ) / 2.0 + alpha |
---|
| 2062 | |
---|
| 2063 | edot = ( 1.0 - eps**2.0 ) - 2.0 * alpha |
---|
| 2064 | |
---|
| 2065 | eplus = eps * ( eps + 1.0 ) / 2.0 + alpha |
---|
| 2066 | |
---|
| 2067 | ptprf(k,j,if) = eminus * work3d(k,j,i-1) & |
---|
| 2068 | + edot * work3d(k,j,i) & |
---|
| 2069 | + eplus * work3d(k,j,i+1) |
---|
| 2070 | END DO |
---|
| 2071 | |
---|
| 2072 | END DO |
---|
| 2073 | |
---|
| 2074 | END DO |
---|
| 2075 | |
---|
| 2076 | END DO |
---|
| 2077 | |
---|
| 2078 | ! |
---|
| 2079 | !-- Interpolation in y-direction |
---|
| 2080 | |
---|
| 2081 | DO k = bdims_rem(3,1), bdims_rem(3,2) |
---|
| 2082 | |
---|
| 2083 | DO j = bdims_rem(2,1), bdims_rem(2,2) |
---|
| 2084 | |
---|
| 2085 | bottomy = (nyf+1)/(nyc+1) * j |
---|
| 2086 | topy = (nyf+1)/(nyc+1) * (j+1) - 1 |
---|
| 2087 | |
---|
| 2088 | DO if = nxl, nxr |
---|
| 2089 | |
---|
| 2090 | DO jf = bottomy, topy |
---|
| 2091 | |
---|
| 2092 | eps = (jf * dyf + 0.5 * dyf - j * dyc - 0.5 * dyc) / dyc |
---|
| 2093 | |
---|
| 2094 | alpha = ( (dyf/dyc)**2.0 - 1.0) / 24.0 |
---|
| 2095 | |
---|
| 2096 | eminus = eps * (eps - 1.0) / 2.0 + alpha |
---|
| 2097 | |
---|
| 2098 | edot = ( 1.0 - eps**2.0 ) - 2.0 * alpha |
---|
| 2099 | |
---|
| 2100 | eplus = eps * ( eps + 1.0 ) / 2.0 + alpha |
---|
| 2101 | |
---|
| 2102 | ptprs(k,jf,if) = eminus * ptprf(k,j-1,if) & |
---|
| 2103 | + edot * ptprf(k,j,if) & |
---|
| 2104 | + eplus * ptprf(k,j+1,if) |
---|
| 2105 | END DO |
---|
| 2106 | |
---|
| 2107 | END DO |
---|
| 2108 | |
---|
| 2109 | END DO |
---|
| 2110 | |
---|
| 2111 | END DO |
---|
| 2112 | |
---|
| 2113 | ! |
---|
| 2114 | !-- Interpolation in z-direction |
---|
| 2115 | |
---|
| 2116 | DO jf = nys, nyn |
---|
| 2117 | DO if = nxl, nxr |
---|
| 2118 | |
---|
| 2119 | eps = ( zuf(nzt+1) - zuc(bdims_rem(3,1)+1) ) / dzc |
---|
| 2120 | |
---|
| 2121 | alpha = ( (dzf/dzc)**2.0 - 1.0) / 24.0 |
---|
| 2122 | |
---|
| 2123 | eminus = eps * ( eps - 1.0 ) / 2.0 + alpha |
---|
| 2124 | |
---|
| 2125 | edot = ( 1.0 - eps**2.0 ) - 2.0 * alpha |
---|
| 2126 | |
---|
| 2127 | eplus = eps * ( eps + 1.0 ) / 2.0 + alpha |
---|
| 2128 | |
---|
| 2129 | interpol3d (nzt+1,jf,if) = eminus * ptprs(bdims_rem(3,1),jf,if) & |
---|
| 2130 | + edot * ptprs(bdims_rem(3,1)+1,jf,if) & |
---|
| 2131 | + eplus * ptprs(bdims_rem(3,1)+2,jf,if) |
---|
| 2132 | |
---|
| 2133 | END DO |
---|
| 2134 | END DO |
---|
| 2135 | |
---|
| 2136 | DEALLOCATE ( ptprf, ptprs ) |
---|
| 2137 | |
---|
| 2138 | |
---|
| 2139 | #endif |
---|
| 2140 | |
---|
| 2141 | END SUBROUTINE vnest_set_topbc_s |
---|
| 2142 | END SUBROUTINE vnest_boundary_conds |
---|
| 2143 | |
---|
| 2144 | |
---|
| 2145 | SUBROUTINE vnest_boundary_conds_khkm |
---|
| 2146 | |
---|
| 2147 | !--------------------------------------------------------------------------------! |
---|
| 2148 | ! Description: |
---|
| 2149 | ! ------------ |
---|
| 2150 | ! Boundary conditions for the prognostic quantities. |
---|
| 2151 | ! One additional bottom boundary condition is applied for the TKE (=(u*)**2) |
---|
| 2152 | ! in prandtl_fluxes. The cyclic lateral boundary conditions are implicitly |
---|
| 2153 | ! handled in routine exchange_horiz. Pressure boundary conditions are |
---|
| 2154 | ! explicitly set in routines pres, poisfft, poismg and sor. |
---|
| 2155 | !------------------------------------------------------------------------------! |
---|
| 2156 | |
---|
| 2157 | USE arrays_3d |
---|
| 2158 | USE control_parameters |
---|
| 2159 | USE grid_variables |
---|
| 2160 | USE indices |
---|
| 2161 | USE pegrid |
---|
| 2162 | |
---|
| 2163 | |
---|
| 2164 | IMPLICIT NONE |
---|
| 2165 | |
---|
| 2166 | INTEGER(iwp) :: i, j, k |
---|
| 2167 | INTEGER(iwp) :: if, jf |
---|
| 2168 | |
---|
| 2169 | REAL(wp) :: c_max, denom |
---|
| 2170 | |
---|
| 2171 | #if defined( __parallel ) |
---|
| 2172 | |
---|
| 2173 | IF ( coupling_mode == 'vnested_crse' ) THEN |
---|
| 2174 | ! Send data to fine grid for TOP BC |
---|
| 2175 | |
---|
| 2176 | offset(1) = ( pdims_partner(1) / pdims(1) ) * pcoord(1) |
---|
| 2177 | offset(2) = ( pdims_partner(2) / pdims(2) ) * pcoord(2) |
---|
| 2178 | |
---|
| 2179 | do j = 0, ( pdims_partner(2) / pdims(2) ) - 1 |
---|
| 2180 | do i = 0, ( pdims_partner(1) / pdims(1) ) - 1 |
---|
| 2181 | map_coord(1) = i+offset(1) |
---|
| 2182 | map_coord(2) = j+offset(2) |
---|
| 2183 | |
---|
| 2184 | target_idex = f_rnk_lst(map_coord(1),map_coord(2)) + numprocs |
---|
| 2185 | |
---|
| 2186 | CALL MPI_RECV( bdims_rem, 6, MPI_INTEGER, target_idex, 10, & |
---|
| 2187 | comm_inter,status, ierr ) |
---|
| 2188 | |
---|
| 2189 | bdims (1,1) = bdims_rem (1,1) / cfratio(1) |
---|
| 2190 | bdims (1,2) = bdims_rem (1,2) / cfratio(1) |
---|
| 2191 | bdims (2,1) = bdims_rem (2,1) / cfratio(2) |
---|
| 2192 | bdims (2,2) = bdims_rem (2,2) / cfratio(2) |
---|
| 2193 | bdims (3,1) = bdims_rem (3,2) / cfratio(3) |
---|
| 2194 | bdims (3,2) = bdims (3,1) + 2 |
---|
| 2195 | |
---|
| 2196 | CALL MPI_SEND( bdims, 6, MPI_INTEGER, target_idex, 9, & |
---|
| 2197 | comm_inter, ierr ) |
---|
| 2198 | |
---|
| 2199 | |
---|
| 2200 | n_cell_c = ( (bdims(1,2)-bdims(1,1)) + 3 ) * & |
---|
| 2201 | ( (bdims(2,2)-bdims(2,1)) + 3 ) * & |
---|
| 2202 | ( (bdims(3,2)-bdims(3,1)) + 1 ) |
---|
| 2203 | |
---|
| 2204 | CALL MPI_SEND(kh(bdims(3,1) :bdims(3,2) , & |
---|
| 2205 | bdims(2,1)-1:bdims(2,2)+1, & |
---|
| 2206 | bdims(1,1)-1:bdims(1,2)+1),& |
---|
| 2207 | n_cell_c, MPI_REAL, target_idex, & |
---|
[2514] | 2208 | 207, comm_inter, ierr) |
---|
[2365] | 2209 | |
---|
| 2210 | CALL MPI_SEND(km(bdims(3,1) :bdims(3,2) , & |
---|
| 2211 | bdims(2,1)-1:bdims(2,2)+1, & |
---|
| 2212 | bdims(1,1)-1:bdims(1,2)+1),& |
---|
| 2213 | n_cell_c, MPI_REAL, target_idex, & |
---|
[2514] | 2214 | 208, comm_inter, ierr) |
---|
[2365] | 2215 | |
---|
| 2216 | |
---|
| 2217 | |
---|
| 2218 | end do |
---|
| 2219 | end do |
---|
| 2220 | |
---|
| 2221 | ELSEIF ( coupling_mode == 'vnested_fine' ) THEN |
---|
| 2222 | ! Receive data from coarse grid for TOP BC |
---|
| 2223 | |
---|
| 2224 | offset(1) = pcoord(1) / ( pdims(1)/pdims_partner(1) ) |
---|
| 2225 | offset(2) = pcoord(2) / ( pdims(2)/pdims_partner(2) ) |
---|
| 2226 | map_coord(1) = offset(1) |
---|
| 2227 | map_coord(2) = offset(2) |
---|
| 2228 | target_idex = c_rnk_lst(map_coord(1),map_coord(2)) |
---|
| 2229 | |
---|
| 2230 | bdims (1,1) = nxl |
---|
| 2231 | bdims (1,2) = nxr |
---|
| 2232 | bdims (2,1) = nys |
---|
| 2233 | bdims (2,2) = nyn |
---|
| 2234 | bdims (3,1) = nzb |
---|
| 2235 | bdims (3,2) = nzt |
---|
| 2236 | |
---|
| 2237 | CALL MPI_SEND( bdims, 6, MPI_INTEGER, target_idex, 10, & |
---|
| 2238 | comm_inter, ierr ) |
---|
| 2239 | |
---|
| 2240 | CALL MPI_RECV( bdims_rem, 6, MPI_INTEGER, target_idex, 9, & |
---|
| 2241 | comm_inter,status, ierr ) |
---|
| 2242 | |
---|
| 2243 | n_cell_c = ( (bdims_rem(1,2)-bdims_rem(1,1)) + 3 ) * & |
---|
| 2244 | ( (bdims_rem(2,2)-bdims_rem(2,1)) + 3 ) * & |
---|
| 2245 | ( (bdims_rem(3,2)-bdims_rem(3,1)) + 1 ) |
---|
| 2246 | |
---|
| 2247 | ALLOCATE( work3d ( bdims_rem(3,1) :bdims_rem(3,2) , & |
---|
| 2248 | bdims_rem(2,1)-1:bdims_rem(2,2)+1, & |
---|
| 2249 | bdims_rem(1,1)-1:bdims_rem(1,2)+1)) |
---|
| 2250 | |
---|
| 2251 | |
---|
| 2252 | CALL MPI_RECV( work3d,n_cell_c, MPI_REAL, target_idex, 207, & |
---|
| 2253 | comm_inter,status, ierr ) |
---|
| 2254 | |
---|
| 2255 | ! Neumann BC for FG kh |
---|
| 2256 | DO jf = nys, nyn |
---|
| 2257 | DO if = nxl, nxr |
---|
| 2258 | kh(nzt+1,jf,if) = kh(nzt,jf,if) |
---|
| 2259 | END DO |
---|
| 2260 | END DO |
---|
| 2261 | |
---|
| 2262 | CALL MPI_RECV( work3d,n_cell_c, MPI_REAL, target_idex, 208, & |
---|
| 2263 | comm_inter,status, ierr ) |
---|
| 2264 | |
---|
| 2265 | ! Neumann BC for FG kh |
---|
| 2266 | DO jf = nys, nyn |
---|
| 2267 | DO if = nxl, nxr |
---|
| 2268 | km(nzt+1,jf,if) = km(nzt,jf,if) |
---|
| 2269 | END DO |
---|
| 2270 | END DO |
---|
| 2271 | |
---|
| 2272 | |
---|
| 2273 | ! |
---|
| 2274 | !-- The following evaluation can only be performed, if the fine grid is situated below the inversion |
---|
| 2275 | !! DO jf = nys-1, nyn+1 |
---|
| 2276 | !! DO if = nxl-1, nxr+1 |
---|
| 2277 | !! |
---|
| 2278 | !! km(nzt+1,jf,if) = 0.1 * l_grid(nzt+1) * SQRT( e(nzt+1,jf,if) ) |
---|
| 2279 | !! kh(nzt+1,jf,if) = 3.0 * km(nzt+1,jf,if) |
---|
| 2280 | !! |
---|
| 2281 | !! END DO |
---|
| 2282 | !! END DO |
---|
| 2283 | |
---|
| 2284 | CALL exchange_horiz_2d(km(nzt+1,:,:) ) |
---|
| 2285 | CALL exchange_horiz_2d(kh(nzt+1,:,:) ) |
---|
| 2286 | |
---|
| 2287 | DEALLOCATE ( work3d ) |
---|
| 2288 | |
---|
| 2289 | ENDIF |
---|
| 2290 | |
---|
| 2291 | #endif |
---|
| 2292 | |
---|
| 2293 | CONTAINS |
---|
| 2294 | |
---|
| 2295 | SUBROUTINE vnest_set_topbc_kh |
---|
| 2296 | |
---|
| 2297 | #if defined( __parallel ) |
---|
| 2298 | |
---|
| 2299 | USE arrays_3d |
---|
| 2300 | USE control_parameters |
---|
| 2301 | USE grid_variables |
---|
| 2302 | USE indices |
---|
| 2303 | USE pegrid |
---|
| 2304 | |
---|
| 2305 | |
---|
| 2306 | IMPLICIT NONE |
---|
| 2307 | |
---|
| 2308 | INTEGER(iwp) :: i, j, k |
---|
| 2309 | INTEGER(iwp) :: if, jf |
---|
| 2310 | INTEGER(iwp) :: bottomx, topx |
---|
| 2311 | INTEGER(iwp) :: bottomy, topy |
---|
| 2312 | REAL(wp) :: eps, alpha, eminus, edot, eplus |
---|
| 2313 | REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: ptprf, ptprs |
---|
| 2314 | |
---|
| 2315 | |
---|
| 2316 | |
---|
| 2317 | ALLOCATE( ptprf(bdims_rem(3,1):bdims_rem(3,2),bdims_rem(2,1)-1:bdims_rem(2,2)+1,nxl:nxr) ) |
---|
| 2318 | ALLOCATE( ptprs(bdims_rem(3,1):bdims_rem(3,2),nys:nyn,nxl:nxr) ) |
---|
| 2319 | |
---|
| 2320 | ! |
---|
| 2321 | !-- Determination of a boundary condition for the potential temperature pt: |
---|
| 2322 | !-- The scheme derived by Clark and Farley can be used in all three dimensions. |
---|
| 2323 | |
---|
| 2324 | ! |
---|
| 2325 | !-- Interpolation in x-direction |
---|
| 2326 | |
---|
| 2327 | DO k = bdims_rem(3,1), bdims_rem(3,2) |
---|
| 2328 | |
---|
| 2329 | DO j = bdims_rem(2,1)-1, bdims_rem(2,2)+1 |
---|
| 2330 | |
---|
| 2331 | DO i = bdims_rem(1,1), bdims_rem(1,2) |
---|
| 2332 | |
---|
| 2333 | bottomx = (nxf+1)/(nxc+1) * i |
---|
| 2334 | topx = (nxf+1)/(nxc+1) *(i+1) - 1 |
---|
| 2335 | |
---|
| 2336 | DO if = bottomx, topx |
---|
| 2337 | |
---|
| 2338 | eps = (if * dxf + 0.5 * dxf - i * dxc - 0.5 * dxc) / dxc |
---|
| 2339 | |
---|
| 2340 | alpha = ( (dxf/dxc)**2.0 - 1.0) / 24.0 |
---|
| 2341 | |
---|
| 2342 | eminus = eps * (eps - 1.0 ) / 2.0 + alpha |
---|
| 2343 | |
---|
| 2344 | edot = ( 1.0 - eps**2.0 ) - 2.0 * alpha |
---|
| 2345 | |
---|
| 2346 | eplus = eps * ( eps + 1.0 ) / 2.0 + alpha |
---|
| 2347 | |
---|
| 2348 | ptprf(k,j,if) = eminus * work3d(k,j,i-1) & |
---|
| 2349 | + edot * work3d(k,j,i) & |
---|
| 2350 | + eplus * work3d(k,j,i+1) |
---|
| 2351 | END DO |
---|
| 2352 | |
---|
| 2353 | END DO |
---|
| 2354 | |
---|
| 2355 | END DO |
---|
| 2356 | |
---|
| 2357 | END DO |
---|
| 2358 | |
---|
| 2359 | ! |
---|
| 2360 | !-- Interpolation in y-direction |
---|
| 2361 | |
---|
| 2362 | DO k = bdims_rem(3,1), bdims_rem(3,2) |
---|
| 2363 | |
---|
| 2364 | DO j = bdims_rem(2,1), bdims_rem(2,2) |
---|
| 2365 | |
---|
| 2366 | bottomy = (nyf+1)/(nyc+1) * j |
---|
| 2367 | topy = (nyf+1)/(nyc+1) * (j+1) - 1 |
---|
| 2368 | |
---|
| 2369 | DO if = nxl, nxr |
---|
| 2370 | |
---|
| 2371 | DO jf = bottomy, topy |
---|
| 2372 | |
---|
| 2373 | eps = (jf * dyf + 0.5 * dyf - j * dyc - 0.5 * dyc) / dyc |
---|
| 2374 | |
---|
| 2375 | alpha = ( (dyf/dyc)**2.0 - 1.0) / 24.0 |
---|
| 2376 | |
---|
| 2377 | eminus = eps * (eps - 1.0) / 2.0 + alpha |
---|
| 2378 | |
---|
| 2379 | edot = ( 1.0 - eps**2.0 ) - 2.0 * alpha |
---|
| 2380 | |
---|
| 2381 | eplus = eps * ( eps + 1.0 ) / 2.0 + alpha |
---|
| 2382 | |
---|
| 2383 | ptprs(k,jf,if) = eminus * ptprf(k,j-1,if) & |
---|
| 2384 | + edot * ptprf(k,j,if) & |
---|
| 2385 | + eplus * ptprf(k,j+1,if) |
---|
| 2386 | END DO |
---|
| 2387 | |
---|
| 2388 | END DO |
---|
| 2389 | |
---|
| 2390 | END DO |
---|
| 2391 | |
---|
| 2392 | END DO |
---|
| 2393 | |
---|
| 2394 | ! |
---|
| 2395 | !-- Interpolation in z-direction |
---|
| 2396 | |
---|
| 2397 | DO jf = nys, nyn |
---|
| 2398 | DO if = nxl, nxr |
---|
| 2399 | |
---|
| 2400 | eps = ( zuf(nzt+1) - zuc(bdims_rem(3,1)+1) ) / dzc |
---|
| 2401 | |
---|
| 2402 | alpha = ( (dzf/dzc)**2.0 - 1.0) / 24.0 |
---|
| 2403 | |
---|
| 2404 | eminus = eps * ( eps - 1.0 ) / 2.0 + alpha |
---|
| 2405 | |
---|
| 2406 | edot = ( 1.0 - eps**2.0 ) - 2.0 * alpha |
---|
| 2407 | |
---|
| 2408 | eplus = eps * ( eps + 1.0 ) / 2.0 + alpha |
---|
| 2409 | |
---|
| 2410 | kh (nzt+1,jf,if) = eminus * ptprs(bdims_rem(3,1),jf,if) & |
---|
| 2411 | + edot * ptprs(bdims_rem(3,1)+1,jf,if) & |
---|
| 2412 | + eplus * ptprs(bdims_rem(3,1)+2,jf,if) |
---|
| 2413 | |
---|
| 2414 | END DO |
---|
| 2415 | END DO |
---|
| 2416 | |
---|
| 2417 | DEALLOCATE ( ptprf, ptprs ) |
---|
| 2418 | |
---|
| 2419 | |
---|
| 2420 | #endif |
---|
| 2421 | |
---|
| 2422 | END SUBROUTINE vnest_set_topbc_kh |
---|
| 2423 | |
---|
| 2424 | SUBROUTINE vnest_set_topbc_km |
---|
| 2425 | |
---|
| 2426 | #if defined( __parallel ) |
---|
| 2427 | |
---|
| 2428 | USE arrays_3d |
---|
| 2429 | USE control_parameters |
---|
| 2430 | USE grid_variables |
---|
| 2431 | USE indices |
---|
| 2432 | USE pegrid |
---|
| 2433 | |
---|
| 2434 | |
---|
| 2435 | IMPLICIT NONE |
---|
| 2436 | |
---|
| 2437 | INTEGER(iwp) :: i, j, k |
---|
| 2438 | INTEGER(iwp) :: if, jf |
---|
| 2439 | INTEGER(iwp) :: bottomx, topx |
---|
| 2440 | INTEGER(iwp) :: bottomy, topy |
---|
| 2441 | REAL(wp) :: eps, alpha, eminus, edot, eplus |
---|
| 2442 | REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: ptprf, ptprs |
---|
| 2443 | |
---|
| 2444 | |
---|
| 2445 | |
---|
| 2446 | ALLOCATE( ptprf(bdims_rem(3,1):bdims_rem(3,2),bdims_rem(2,1)-1:bdims_rem(2,2)+1,nxl:nxr) ) |
---|
| 2447 | ALLOCATE( ptprs(bdims_rem(3,1):bdims_rem(3,2),nys:nyn,nxl:nxr) ) |
---|
| 2448 | |
---|
| 2449 | ! |
---|
| 2450 | !-- Determination of a boundary condition for the potential temperature pt: |
---|
| 2451 | !-- The scheme derived by Clark and Farley can be used in all three dimensions. |
---|
| 2452 | |
---|
| 2453 | ! |
---|
| 2454 | !-- Interpolation in x-direction |
---|
| 2455 | |
---|
| 2456 | DO k = bdims_rem(3,1), bdims_rem(3,2) |
---|
| 2457 | |
---|
| 2458 | DO j = bdims_rem(2,1)-1, bdims_rem(2,2)+1 |
---|
| 2459 | |
---|
| 2460 | DO i = bdims_rem(1,1), bdims_rem(1,2) |
---|
| 2461 | |
---|
| 2462 | bottomx = (nxf+1)/(nxc+1) * i |
---|
| 2463 | topx = (nxf+1)/(nxc+1) *(i+1) - 1 |
---|
| 2464 | |
---|
| 2465 | DO if = bottomx, topx |
---|
| 2466 | |
---|
| 2467 | eps = (if * dxf + 0.5 * dxf - i * dxc - 0.5 * dxc) / dxc |
---|
| 2468 | |
---|
| 2469 | alpha = ( (dxf/dxc)**2.0 - 1.0) / 24.0 |
---|
| 2470 | |
---|
| 2471 | eminus = eps * (eps - 1.0 ) / 2.0 + alpha |
---|
| 2472 | |
---|
| 2473 | edot = ( 1.0 - eps**2.0 ) - 2.0 * alpha |
---|
| 2474 | |
---|
| 2475 | eplus = eps * ( eps + 1.0 ) / 2.0 + alpha |
---|
| 2476 | |
---|
| 2477 | ptprf(k,j,if) = eminus * work3d(k,j,i-1) & |
---|
| 2478 | + edot * work3d(k,j,i) & |
---|
| 2479 | + eplus * work3d(k,j,i+1) |
---|
| 2480 | END DO |
---|
| 2481 | |
---|
| 2482 | END DO |
---|
| 2483 | |
---|
| 2484 | END DO |
---|
| 2485 | |
---|
| 2486 | END DO |
---|
| 2487 | |
---|
| 2488 | ! |
---|
| 2489 | !-- Interpolation in y-direction |
---|
| 2490 | |
---|
| 2491 | DO k = bdims_rem(3,1), bdims_rem(3,2) |
---|
| 2492 | |
---|
| 2493 | DO j = bdims_rem(2,1), bdims_rem(2,2) |
---|
| 2494 | |
---|
| 2495 | bottomy = (nyf+1)/(nyc+1) * j |
---|
| 2496 | topy = (nyf+1)/(nyc+1) * (j+1) - 1 |
---|
| 2497 | |
---|
| 2498 | DO if = nxl, nxr |
---|
| 2499 | |
---|
| 2500 | DO jf = bottomy, topy |
---|
| 2501 | |
---|
| 2502 | eps = (jf * dyf + 0.5 * dyf - j * dyc - 0.5 * dyc) / dyc |
---|
| 2503 | |
---|
| 2504 | alpha = ( (dyf/dyc)**2.0 - 1.0) / 24.0 |
---|
| 2505 | |
---|
| 2506 | eminus = eps * (eps - 1.0) / 2.0 + alpha |
---|
| 2507 | |
---|
| 2508 | edot = ( 1.0 - eps**2.0 ) - 2.0 * alpha |
---|
| 2509 | |
---|
| 2510 | eplus = eps * ( eps + 1.0 ) / 2.0 + alpha |
---|
| 2511 | |
---|
| 2512 | ptprs(k,jf,if) = eminus * ptprf(k,j-1,if) & |
---|
| 2513 | + edot * ptprf(k,j,if) & |
---|
| 2514 | + eplus * ptprf(k,j+1,if) |
---|
| 2515 | END DO |
---|
| 2516 | |
---|
| 2517 | END DO |
---|
| 2518 | |
---|
| 2519 | END DO |
---|
| 2520 | |
---|
| 2521 | END DO |
---|
| 2522 | |
---|
| 2523 | ! |
---|
| 2524 | !-- Interpolation in z-direction |
---|
| 2525 | |
---|
| 2526 | DO jf = nys, nyn |
---|
| 2527 | DO if = nxl, nxr |
---|
| 2528 | |
---|
| 2529 | eps = ( zuf(nzt+1) - zuc(bdims_rem(3,1)+1) ) / dzc |
---|
| 2530 | |
---|
| 2531 | alpha = ( (dzf/dzc)**2.0 - 1.0) / 24.0 |
---|
| 2532 | |
---|
| 2533 | eminus = eps * ( eps - 1.0 ) / 2.0 + alpha |
---|
| 2534 | |
---|
| 2535 | edot = ( 1.0 - eps**2.0 ) - 2.0 * alpha |
---|
| 2536 | |
---|
| 2537 | eplus = eps * ( eps + 1.0 ) / 2.0 + alpha |
---|
| 2538 | |
---|
| 2539 | km (nzt+1,jf,if) = eminus * ptprs(bdims_rem(3,1),jf,if) & |
---|
| 2540 | + edot * ptprs(bdims_rem(3,1)+1,jf,if) & |
---|
| 2541 | + eplus * ptprs(bdims_rem(3,1)+2,jf,if) |
---|
| 2542 | |
---|
| 2543 | END DO |
---|
| 2544 | END DO |
---|
| 2545 | |
---|
| 2546 | DEALLOCATE ( ptprf, ptprs ) |
---|
| 2547 | |
---|
| 2548 | |
---|
| 2549 | #endif |
---|
| 2550 | |
---|
| 2551 | END SUBROUTINE vnest_set_topbc_km |
---|
| 2552 | |
---|
| 2553 | |
---|
| 2554 | END SUBROUTINE vnest_boundary_conds_khkm |
---|
| 2555 | |
---|
| 2556 | |
---|
| 2557 | |
---|
| 2558 | SUBROUTINE vnest_anterpolate |
---|
| 2559 | |
---|
| 2560 | !--------------------------------------------------------------------------------! |
---|
| 2561 | ! Description: |
---|
| 2562 | ! ------------ |
---|
| 2563 | ! Anterpolate data from fine grid to coarse grid. |
---|
| 2564 | !------------------------------------------------------------------------------! |
---|
| 2565 | |
---|
| 2566 | USE arrays_3d |
---|
| 2567 | USE control_parameters |
---|
| 2568 | USE grid_variables |
---|
| 2569 | USE indices |
---|
| 2570 | USE interfaces |
---|
| 2571 | USE pegrid |
---|
| 2572 | USE surface_mod, & |
---|
| 2573 | ONLY : bc_h |
---|
| 2574 | |
---|
| 2575 | |
---|
| 2576 | IMPLICIT NONE |
---|
| 2577 | |
---|
| 2578 | REAL(wp) :: time_since_reference_point_rem |
---|
| 2579 | INTEGER(iwp) :: i, j, k, im, jn, ko |
---|
| 2580 | |
---|
| 2581 | !--- INTEGER(iwp) :: j !< grid index y direction |
---|
| 2582 | !-- INTEGER(iwp) :: k !< grid index z direction |
---|
| 2583 | INTEGER(iwp) :: kb !< variable to set respective boundary value, depends on facing. |
---|
| 2584 | INTEGER(iwp) :: l !< running index boundary type, for up- and downward-facing walls |
---|
| 2585 | INTEGER(iwp) :: m !< running index surface elements |
---|
| 2586 | |
---|
| 2587 | #if defined( __parallel ) |
---|
| 2588 | |
---|
| 2589 | |
---|
| 2590 | ! |
---|
| 2591 | !-- In case of model termination initiated by the remote model |
---|
| 2592 | !-- (terminate_coupled_remote > 0), initiate termination of the local model. |
---|
| 2593 | !-- The rest of the coupler must then be skipped because it would cause an MPI |
---|
| 2594 | !-- intercomminucation hang. |
---|
| 2595 | !-- If necessary, the coupler will be called at the beginning of the next |
---|
| 2596 | !-- restart run. |
---|
| 2597 | |
---|
| 2598 | IF ( myid == 0) THEN |
---|
| 2599 | CALL MPI_SENDRECV( terminate_coupled, 1, MPI_INTEGER, & |
---|
| 2600 | target_id, 0, & |
---|
| 2601 | terminate_coupled_remote, 1, MPI_INTEGER, & |
---|
| 2602 | target_id, 0, & |
---|
| 2603 | comm_inter, status, ierr ) |
---|
| 2604 | ENDIF |
---|
| 2605 | CALL MPI_BCAST( terminate_coupled_remote, 1, MPI_INTEGER, 0, comm2d, & |
---|
| 2606 | ierr ) |
---|
| 2607 | |
---|
| 2608 | IF ( terminate_coupled_remote > 0 ) THEN |
---|
| 2609 | WRITE( message_string, * ) 'remote model "', & |
---|
| 2610 | TRIM( coupling_mode_remote ), & |
---|
| 2611 | '" terminated', & |
---|
| 2612 | '&with terminate_coupled_remote = ', & |
---|
| 2613 | terminate_coupled_remote, & |
---|
| 2614 | '&local model "', TRIM( coupling_mode ), & |
---|
| 2615 | '" has', & |
---|
| 2616 | '&terminate_coupled = ', & |
---|
| 2617 | terminate_coupled |
---|
| 2618 | CALL message( 'vnest_anterpolate', 'PA0310', 1, 2, 0, 6, 0 ) |
---|
| 2619 | RETURN |
---|
| 2620 | ENDIF |
---|
| 2621 | |
---|
| 2622 | |
---|
| 2623 | ! |
---|
| 2624 | !-- Exchange the current simulated time between the models |
---|
| 2625 | |
---|
| 2626 | IF ( myid == 0 ) THEN |
---|
| 2627 | |
---|
| 2628 | CALL MPI_SEND( time_since_reference_point, 1, MPI_REAL, target_id, & |
---|
| 2629 | 11, comm_inter, ierr ) |
---|
| 2630 | CALL MPI_RECV( time_since_reference_point_rem, 1, MPI_REAL, & |
---|
| 2631 | target_id, 11, comm_inter, status, ierr ) |
---|
| 2632 | |
---|
| 2633 | ENDIF |
---|
| 2634 | |
---|
| 2635 | CALL MPI_BCAST( time_since_reference_point_rem, 1, MPI_REAL, 0, comm2d, & |
---|
| 2636 | ierr ) |
---|
| 2637 | |
---|
| 2638 | IF ( coupling_mode == 'vnested_crse' ) THEN |
---|
| 2639 | ! Receive data from fine grid for anterpolation |
---|
| 2640 | |
---|
| 2641 | offset(1) = ( pdims_partner(1) / pdims(1) ) * pcoord(1) |
---|
| 2642 | offset(2) = ( pdims_partner(2) / pdims(2) ) * pcoord(2) |
---|
| 2643 | |
---|
| 2644 | do j = 0, ( pdims_partner(2) / pdims(2) ) - 1 |
---|
| 2645 | do i = 0, ( pdims_partner(1) / pdims(1) ) - 1 |
---|
| 2646 | map_coord(1) = i+offset(1) |
---|
| 2647 | map_coord(2) = j+offset(2) |
---|
| 2648 | |
---|
| 2649 | target_idex = f_rnk_lst(map_coord(1),map_coord(2)) + numprocs |
---|
| 2650 | |
---|
| 2651 | CALL MPI_RECV( bdims_rem, 6, MPI_INTEGER, target_idex, 10, & |
---|
| 2652 | comm_inter,status, ierr ) |
---|
| 2653 | |
---|
| 2654 | bdims (1,1) = bdims_rem (1,1) / cfratio(1) |
---|
| 2655 | bdims (1,2) = bdims_rem (1,2) / cfratio(1) |
---|
| 2656 | bdims (2,1) = bdims_rem (2,1) / cfratio(2) |
---|
| 2657 | bdims (2,2) = bdims_rem (2,2) / cfratio(2) |
---|
| 2658 | bdims (3,1) = bdims_rem (3,1) |
---|
| 2659 | bdims (3,2) = bdims_rem (3,2) / cfratio(3) |
---|
| 2660 | |
---|
| 2661 | CALL MPI_SEND( bdims, 6, MPI_INTEGER, target_idex, 9, & |
---|
| 2662 | comm_inter, ierr ) |
---|
| 2663 | |
---|
| 2664 | n_cell_c = & |
---|
| 2665 | (bdims(1,2)-bdims(1,1)+1) * & |
---|
| 2666 | (bdims(2,2)-bdims(2,1)+1) * & |
---|
| 2667 | (bdims(3,2)-bdims(3,1)+0) |
---|
| 2668 | |
---|
| 2669 | CALL MPI_RECV( u( & |
---|
| 2670 | bdims(3,1)+1:bdims(3,2), & |
---|
| 2671 | bdims(2,1) :bdims(2,2), & |
---|
| 2672 | bdims(1,1) :bdims(1,2)),& |
---|
| 2673 | n_cell_c, MPI_REAL, target_idex, 101, & |
---|
| 2674 | comm_inter,status, ierr ) |
---|
| 2675 | |
---|
| 2676 | CALL MPI_RECV( v( & |
---|
| 2677 | bdims(3,1)+1:bdims(3,2), & |
---|
| 2678 | bdims(2,1) :bdims(2,2), & |
---|
| 2679 | bdims(1,1) :bdims(1,2)),& |
---|
| 2680 | n_cell_c, MPI_REAL, target_idex, 102, & |
---|
| 2681 | comm_inter,status, ierr ) |
---|
| 2682 | |
---|
| 2683 | CALL MPI_RECV(pt( & |
---|
| 2684 | bdims(3,1)+1:bdims(3,2), & |
---|
| 2685 | bdims(2,1) :bdims(2,2), & |
---|
| 2686 | bdims(1,1) :bdims(1,2)),& |
---|
| 2687 | n_cell_c, MPI_REAL, target_idex, 105, & |
---|
| 2688 | comm_inter,status, ierr ) |
---|
| 2689 | |
---|
[2514] | 2690 | IF ( humidity ) THEN |
---|
[2365] | 2691 | CALL MPI_RECV(q( & |
---|
| 2692 | bdims(3,1)+1:bdims(3,2), & |
---|
| 2693 | bdims(2,1) :bdims(2,2), & |
---|
| 2694 | bdims(1,1) :bdims(1,2)),& |
---|
| 2695 | n_cell_c, MPI_REAL, target_idex, 106, & |
---|
| 2696 | comm_inter,status, ierr ) |
---|
[2514] | 2697 | ENDIF |
---|
[2365] | 2698 | |
---|
| 2699 | CALL MPI_RECV( w( & |
---|
| 2700 | bdims(3,1) :bdims(3,2)-1, & |
---|
| 2701 | bdims(2,1) :bdims(2,2), & |
---|
| 2702 | bdims(1,1) :bdims(1,2)), & |
---|
| 2703 | n_cell_c, MPI_REAL, target_idex, 103, & |
---|
| 2704 | comm_inter,status, ierr ) |
---|
| 2705 | |
---|
| 2706 | end do |
---|
| 2707 | end do |
---|
| 2708 | |
---|
| 2709 | |
---|
| 2710 | |
---|
| 2711 | ! |
---|
| 2712 | !-- Boundary conditions for the velocity components u and v |
---|
| 2713 | |
---|
| 2714 | |
---|
| 2715 | IF ( ibc_uv_b == 0 ) THEN |
---|
| 2716 | u(nzb,:,:) = 0.0_wp |
---|
| 2717 | v(nzb,:,:) = 0.0_wp |
---|
| 2718 | ELSE |
---|
| 2719 | u(nzb,:,:) = u(nzb+1,:,:) |
---|
| 2720 | v(nzb,:,:) = v(nzb+1,:,:) |
---|
| 2721 | END IF |
---|
| 2722 | ! |
---|
| 2723 | !-- Boundary conditions for the velocity components w |
---|
| 2724 | |
---|
| 2725 | w(nzb,:,:) = 0.0_wp |
---|
| 2726 | |
---|
| 2727 | ! |
---|
| 2728 | !-- Temperature at bottom boundary. |
---|
| 2729 | !-- Neumann, zero-gradient |
---|
| 2730 | IF ( ibc_pt_b == 1 ) THEN |
---|
| 2731 | DO l = 0, 1 |
---|
| 2732 | ! |
---|
| 2733 | !-- Set kb, for upward-facing surfaces value at topography top (k-1) is set, |
---|
| 2734 | !-- for downward-facing surfaces at topography bottom (k+1). |
---|
| 2735 | kb = MERGE( -1, 1, l == 0 ) |
---|
| 2736 | DO m = 1, bc_h(l)%ns |
---|
| 2737 | i = bc_h(l)%i(m) |
---|
| 2738 | j = bc_h(l)%j(m) |
---|
| 2739 | k = bc_h(l)%k(m) |
---|
| 2740 | pt(k+kb,j,i) = pt(k,j,i) |
---|
| 2741 | ENDDO |
---|
| 2742 | ENDDO |
---|
| 2743 | ENDIF |
---|
| 2744 | |
---|
| 2745 | |
---|
| 2746 | CALL exchange_horiz( u, nbgp ) |
---|
| 2747 | CALL exchange_horiz( v, nbgp ) |
---|
| 2748 | CALL exchange_horiz( w, nbgp ) |
---|
| 2749 | CALL exchange_horiz( pt, nbgp ) |
---|
| 2750 | |
---|
| 2751 | |
---|
| 2752 | ELSEIF ( coupling_mode == 'vnested_fine' ) THEN |
---|
| 2753 | ! Send data to coarse grid for anterpolation |
---|
| 2754 | |
---|
| 2755 | offset(1) = pcoord(1) / ( pdims(1)/pdims_partner(1) ) |
---|
| 2756 | offset(2) = pcoord(2) / ( pdims(2)/pdims_partner(2) ) |
---|
| 2757 | map_coord(1) = offset(1) |
---|
| 2758 | map_coord(2) = offset(2) |
---|
| 2759 | target_idex = c_rnk_lst(map_coord(1),map_coord(2)) |
---|
| 2760 | |
---|
| 2761 | !-- Limit anterpolation level to nzt - z nesting ratio (a pseudo-buffer layer) |
---|
| 2762 | bdims (1,1) = nxl |
---|
| 2763 | bdims (1,2) = nxr |
---|
| 2764 | bdims (2,1) = nys |
---|
| 2765 | bdims (2,2) = nyn |
---|
| 2766 | bdims (3,1) = nzb |
---|
| 2767 | bdims (3,2) = nzt-cfratio(3) |
---|
| 2768 | |
---|
| 2769 | CALL MPI_SEND( bdims, 6, MPI_INTEGER, target_idex, 10, & |
---|
| 2770 | comm_inter, ierr ) |
---|
| 2771 | |
---|
| 2772 | CALL MPI_RECV( bdims_rem, 6, MPI_INTEGER, target_idex, 9, & |
---|
| 2773 | comm_inter,status, ierr ) |
---|
| 2774 | |
---|
| 2775 | |
---|
| 2776 | ALLOCATE( work3d ( & |
---|
| 2777 | bdims_rem(3,1)+1:bdims_rem(3,2), & |
---|
| 2778 | bdims_rem(2,1) :bdims_rem(2,2), & |
---|
| 2779 | bdims_rem(1,1) :bdims_rem(1,2))) |
---|
| 2780 | |
---|
| 2781 | |
---|
| 2782 | anterpol3d => u |
---|
[2514] | 2783 | |
---|
[2365] | 2784 | CALL anterpolate_to_crse_u ( 101 ) |
---|
| 2785 | CALL MPI_SEND( work3d, 1, TYPE_VNEST_ANTER, target_idex, & |
---|
[2514] | 2786 | 101, comm_inter, ierr) |
---|
[2365] | 2787 | |
---|
| 2788 | anterpol3d => v |
---|
| 2789 | |
---|
| 2790 | CALL anterpolate_to_crse_v ( 102 ) |
---|
| 2791 | CALL MPI_SEND( work3d, 1, TYPE_VNEST_ANTER, target_idex, & |
---|
[2514] | 2792 | 102, comm_inter, ierr) |
---|
[2365] | 2793 | |
---|
| 2794 | anterpol3d => pt |
---|
| 2795 | |
---|
| 2796 | CALL anterpolate_to_crse_s ( 105 ) |
---|
| 2797 | CALL MPI_SEND( work3d, 1, TYPE_VNEST_ANTER, target_idex, & |
---|
[2514] | 2798 | 105, comm_inter, ierr) |
---|
[2365] | 2799 | |
---|
| 2800 | |
---|
| 2801 | IF ( humidity ) THEN |
---|
| 2802 | |
---|
| 2803 | anterpol3d => q |
---|
| 2804 | |
---|
| 2805 | CALL anterpolate_to_crse_s ( 106 ) |
---|
| 2806 | CALL MPI_SEND( work3d, 1, TYPE_VNEST_ANTER, target_idex, & |
---|
[2514] | 2807 | 106, comm_inter, ierr) |
---|
[2365] | 2808 | ENDIF |
---|
| 2809 | |
---|
| 2810 | |
---|
| 2811 | DEALLOCATE( work3d ) |
---|
| 2812 | ALLOCATE( work3d ( bdims_rem(3,1) :bdims_rem(3,2)-1, & |
---|
| 2813 | bdims_rem(2,1) :bdims_rem(2,2), & |
---|
| 2814 | bdims_rem(1,1) :bdims_rem(1,2))) |
---|
| 2815 | anterpol3d => w |
---|
| 2816 | CALL anterpolate_to_crse_w ( 103 ) |
---|
| 2817 | CALL MPI_SEND( work3d, 1, TYPE_VNEST_ANTER, target_idex, & |
---|
[2514] | 2818 | 103, comm_inter, ierr) |
---|
[2365] | 2819 | |
---|
| 2820 | NULLIFY ( anterpol3d ) |
---|
| 2821 | DEALLOCATE( work3d ) |
---|
| 2822 | |
---|
| 2823 | ENDIF |
---|
| 2824 | |
---|
| 2825 | |
---|
| 2826 | #endif |
---|
| 2827 | |
---|
| 2828 | CONTAINS |
---|
| 2829 | SUBROUTINE anterpolate_to_crse_u( tag ) |
---|
| 2830 | |
---|
| 2831 | #if defined( __parallel ) |
---|
| 2832 | |
---|
| 2833 | USE arrays_3d |
---|
| 2834 | USE control_parameters |
---|
| 2835 | USE grid_variables |
---|
| 2836 | USE indices |
---|
| 2837 | USE pegrid |
---|
| 2838 | |
---|
| 2839 | |
---|
| 2840 | IMPLICIT NONE |
---|
| 2841 | |
---|
| 2842 | INTEGER(iwp) :: i, j, k |
---|
| 2843 | INTEGER(iwp) :: if, jf, kf |
---|
| 2844 | INTEGER(iwp) :: bottomx, topx |
---|
| 2845 | INTEGER(iwp) :: bottomy, topy |
---|
| 2846 | INTEGER(iwp) :: bottomz, topz |
---|
| 2847 | REAL(wp) :: aweight |
---|
| 2848 | INTEGER(iwp), intent(in) :: tag |
---|
| 2849 | |
---|
| 2850 | ! |
---|
| 2851 | !-- Anterpolation of the velocity components u |
---|
| 2852 | !-- only values in yz-planes that coincide in the fine and |
---|
| 2853 | !-- the coarse grid are considered |
---|
| 2854 | |
---|
| 2855 | DO k = bdims_rem(3,1)+1, bdims_rem(3,2) |
---|
| 2856 | |
---|
| 2857 | bottomz = (dzc/dzf) * (k-1) + 1 |
---|
| 2858 | topz = (dzc/dzf) * k |
---|
| 2859 | |
---|
| 2860 | DO j = bdims_rem(2,1),bdims_rem(2,2) |
---|
| 2861 | |
---|
| 2862 | bottomy = (nyf+1) / (nyc+1) * j |
---|
| 2863 | topy = (nyf+1) / (nyc+1) * (j+1) - 1 |
---|
| 2864 | |
---|
| 2865 | DO i = bdims_rem(1,1),bdims_rem(1,2) |
---|
| 2866 | |
---|
| 2867 | if = (nxf+1) / (nxc+1) * i |
---|
| 2868 | |
---|
| 2869 | aweight = 0.0 |
---|
| 2870 | |
---|
| 2871 | DO kf = bottomz, topz |
---|
| 2872 | DO jf = bottomy, topy |
---|
| 2873 | |
---|
| 2874 | aweight = aweight + anterpol3d(kf,jf,if) * & |
---|
| 2875 | (dzf/dzc) * (dyf/dyc) |
---|
| 2876 | |
---|
| 2877 | END DO |
---|
| 2878 | END DO |
---|
| 2879 | |
---|
| 2880 | work3d(k,j,i) = aweight |
---|
| 2881 | |
---|
| 2882 | END DO |
---|
| 2883 | |
---|
| 2884 | END DO |
---|
| 2885 | |
---|
| 2886 | END DO |
---|
| 2887 | |
---|
| 2888 | |
---|
| 2889 | #endif |
---|
| 2890 | |
---|
| 2891 | END SUBROUTINE anterpolate_to_crse_u |
---|
| 2892 | |
---|
| 2893 | |
---|
| 2894 | SUBROUTINE anterpolate_to_crse_v( tag ) |
---|
| 2895 | |
---|
| 2896 | #if defined( __parallel ) |
---|
| 2897 | |
---|
| 2898 | USE arrays_3d |
---|
| 2899 | USE control_parameters |
---|
| 2900 | USE grid_variables |
---|
| 2901 | USE indices |
---|
| 2902 | USE pegrid |
---|
| 2903 | |
---|
| 2904 | |
---|
| 2905 | IMPLICIT NONE |
---|
| 2906 | |
---|
| 2907 | INTEGER(iwp) :: i, j, k |
---|
| 2908 | INTEGER(iwp) :: if, jf, kf |
---|
| 2909 | INTEGER(iwp) :: bottomx, topx |
---|
| 2910 | INTEGER(iwp) :: bottomy, topy |
---|
| 2911 | INTEGER(iwp) :: bottomz, topz |
---|
| 2912 | REAL(wp) :: aweight |
---|
| 2913 | INTEGER(iwp), intent(in) :: tag |
---|
| 2914 | ! |
---|
| 2915 | !-- Anterpolation of the velocity components v |
---|
| 2916 | !-- only values in xz-planes that coincide in the fine and |
---|
| 2917 | !-- the coarse grid are considered |
---|
| 2918 | |
---|
| 2919 | DO k = bdims_rem(3,1)+1, bdims_rem(3,2) |
---|
| 2920 | |
---|
| 2921 | bottomz = (dzc/dzf) * (k-1) + 1 |
---|
| 2922 | topz = (dzc/dzf) * k |
---|
| 2923 | |
---|
| 2924 | DO j = bdims_rem(2,1), bdims_rem(2,2) |
---|
| 2925 | |
---|
| 2926 | jf = (nyf+1) / (nyc+1) * j |
---|
| 2927 | |
---|
| 2928 | DO i = bdims_rem(1,1), bdims_rem(1,2) |
---|
| 2929 | |
---|
| 2930 | bottomx = (nxf+1) / (nxc+1) * i |
---|
| 2931 | topx = (nxf+1) / (nxc+1) * (i+1) - 1 |
---|
| 2932 | |
---|
| 2933 | aweight = 0.0 |
---|
| 2934 | |
---|
| 2935 | DO kf = bottomz, topz |
---|
| 2936 | DO if = bottomx, topx |
---|
| 2937 | |
---|
| 2938 | aweight = aweight + anterpol3d(kf,jf,if) * & |
---|
| 2939 | (dzf/dzc) * (dxf/dxc) |
---|
| 2940 | |
---|
| 2941 | |
---|
| 2942 | END DO |
---|
| 2943 | END DO |
---|
| 2944 | |
---|
| 2945 | work3d(k,j,i) = aweight |
---|
| 2946 | |
---|
| 2947 | END DO |
---|
| 2948 | END DO |
---|
| 2949 | END DO |
---|
| 2950 | |
---|
| 2951 | |
---|
| 2952 | #endif |
---|
| 2953 | |
---|
| 2954 | END SUBROUTINE anterpolate_to_crse_v |
---|
| 2955 | |
---|
| 2956 | |
---|
| 2957 | SUBROUTINE anterpolate_to_crse_w( tag ) |
---|
| 2958 | |
---|
| 2959 | #if defined( __parallel ) |
---|
| 2960 | |
---|
| 2961 | USE arrays_3d |
---|
| 2962 | USE control_parameters |
---|
| 2963 | USE grid_variables |
---|
| 2964 | USE indices |
---|
| 2965 | USE pegrid |
---|
| 2966 | |
---|
| 2967 | |
---|
| 2968 | IMPLICIT NONE |
---|
| 2969 | |
---|
| 2970 | INTEGER(iwp) :: i, j, k |
---|
| 2971 | INTEGER(iwp) :: if, jf, kf |
---|
| 2972 | INTEGER(iwp) :: bottomx, topx |
---|
| 2973 | INTEGER(iwp) :: bottomy, topy |
---|
| 2974 | INTEGER(iwp) :: bottomz, topz |
---|
| 2975 | REAL(wp) :: aweight |
---|
| 2976 | INTEGER(iwp), intent(in) :: tag |
---|
| 2977 | ! |
---|
| 2978 | !-- Anterpolation of the velocity components w |
---|
| 2979 | !-- only values in xy-planes that coincide in the fine and |
---|
| 2980 | !-- the coarse grid are considered |
---|
| 2981 | |
---|
| 2982 | DO k = bdims_rem(3,1), bdims_rem(3,2)-1 |
---|
| 2983 | |
---|
| 2984 | kf = cfratio(3) * k |
---|
| 2985 | |
---|
| 2986 | DO j = bdims_rem(2,1), bdims_rem(2,2) |
---|
| 2987 | |
---|
| 2988 | bottomy = (nyf+1) / (nyc+1) * j |
---|
| 2989 | topy = (nyf+1) / (nyc+1) * (j+1) - 1 |
---|
| 2990 | |
---|
| 2991 | DO i = bdims_rem(1,1), bdims_rem(1,2) |
---|
| 2992 | |
---|
| 2993 | bottomx = (nxf+1) / (nxc+1) * i |
---|
| 2994 | topx = (nxf+1) / (nxc+1) * (i+1) - 1 |
---|
| 2995 | |
---|
| 2996 | aweight = 0.0 |
---|
| 2997 | |
---|
| 2998 | DO jf = bottomy, topy |
---|
| 2999 | DO if = bottomx, topx |
---|
| 3000 | |
---|
| 3001 | aweight = aweight + anterpol3d (kf,jf,if) * & |
---|
| 3002 | (dxf/dxc) * (dyf/dyc) |
---|
| 3003 | |
---|
| 3004 | END DO |
---|
| 3005 | END DO |
---|
| 3006 | |
---|
| 3007 | work3d(k,j,i) = aweight |
---|
| 3008 | |
---|
| 3009 | END DO |
---|
| 3010 | |
---|
| 3011 | END DO |
---|
| 3012 | |
---|
| 3013 | END DO |
---|
| 3014 | |
---|
| 3015 | #endif |
---|
| 3016 | |
---|
| 3017 | END SUBROUTINE anterpolate_to_crse_w |
---|
| 3018 | |
---|
| 3019 | |
---|
| 3020 | SUBROUTINE anterpolate_to_crse_s( tag ) |
---|
| 3021 | |
---|
| 3022 | #if defined( __parallel ) |
---|
| 3023 | |
---|
| 3024 | USE arrays_3d |
---|
| 3025 | USE control_parameters |
---|
| 3026 | USE grid_variables |
---|
| 3027 | USE indices |
---|
| 3028 | USE pegrid |
---|
| 3029 | |
---|
| 3030 | |
---|
| 3031 | IMPLICIT NONE |
---|
| 3032 | |
---|
| 3033 | INTEGER(iwp) :: i, j, k |
---|
| 3034 | INTEGER(iwp) :: if, jf, kf |
---|
| 3035 | INTEGER(iwp) :: bottomx, topx |
---|
| 3036 | INTEGER(iwp) :: bottomy, topy |
---|
| 3037 | INTEGER(iwp) :: bottomz, topz |
---|
| 3038 | REAL(wp) :: aweight |
---|
| 3039 | INTEGER(iwp), intent(in) :: tag |
---|
| 3040 | |
---|
| 3041 | ! |
---|
| 3042 | !-- Anterpolation of the potential temperature pt |
---|
| 3043 | !-- all fine grid values are considered |
---|
| 3044 | |
---|
| 3045 | DO k = bdims_rem(3,1)+1, bdims_rem(3,2) |
---|
| 3046 | |
---|
| 3047 | bottomz = (dzc/dzf) * (k-1) + 1 |
---|
| 3048 | topz = (dzc/dzf) * k |
---|
| 3049 | |
---|
| 3050 | DO j = bdims_rem(2,1), bdims_rem(2,2) |
---|
| 3051 | |
---|
| 3052 | bottomy = (nyf+1) / (nyc+1) * j |
---|
| 3053 | topy = (nyf+1) / (nyc+1) * (j+1) - 1 |
---|
| 3054 | |
---|
| 3055 | DO i = bdims_rem(1,1), bdims_rem(1,2) |
---|
| 3056 | |
---|
| 3057 | bottomx = (nxf+1) / (nxc+1) * i |
---|
| 3058 | topx = (nxf+1) / (nxc+1) * (i+1) - 1 |
---|
| 3059 | |
---|
| 3060 | aweight = 0.0 |
---|
| 3061 | |
---|
| 3062 | DO kf = bottomz, topz |
---|
| 3063 | DO jf = bottomy, topy |
---|
| 3064 | DO if = bottomx, topx |
---|
| 3065 | |
---|
| 3066 | aweight = aweight + anterpol3d(kf,jf,if) * & |
---|
| 3067 | (dzf/dzc) * (dyf/dyc) * (dxf/dxc) |
---|
| 3068 | |
---|
| 3069 | END DO |
---|
| 3070 | END DO |
---|
| 3071 | END DO |
---|
| 3072 | |
---|
| 3073 | work3d(k,j,i) = aweight |
---|
| 3074 | |
---|
| 3075 | END DO |
---|
| 3076 | |
---|
| 3077 | END DO |
---|
| 3078 | |
---|
| 3079 | END DO |
---|
| 3080 | |
---|
| 3081 | #endif |
---|
| 3082 | |
---|
| 3083 | END SUBROUTINE anterpolate_to_crse_s |
---|
| 3084 | END SUBROUTINE vnest_anterpolate |
---|
| 3085 | |
---|
| 3086 | |
---|
| 3087 | |
---|
| 3088 | SUBROUTINE vnest_anterpolate_e |
---|
| 3089 | |
---|
| 3090 | !--------------------------------------------------------------------------------! |
---|
| 3091 | ! Description: |
---|
| 3092 | ! ------------ |
---|
| 3093 | ! Anterpolate TKE from fine grid to coarse grid. |
---|
| 3094 | !------------------------------------------------------------------------------! |
---|
| 3095 | |
---|
| 3096 | USE arrays_3d |
---|
| 3097 | USE control_parameters |
---|
| 3098 | USE grid_variables |
---|
| 3099 | USE indices |
---|
| 3100 | USE interfaces |
---|
| 3101 | USE pegrid |
---|
| 3102 | |
---|
| 3103 | |
---|
| 3104 | IMPLICIT NONE |
---|
| 3105 | |
---|
| 3106 | REAL(wp) :: time_since_reference_point_rem |
---|
| 3107 | INTEGER(iwp) :: i, j, k, im, jn, ko |
---|
| 3108 | |
---|
| 3109 | #if defined( __parallel ) |
---|
| 3110 | |
---|
| 3111 | ! |
---|
| 3112 | !-- In case of model termination initiated by the remote model |
---|
| 3113 | !-- (terminate_coupled_remote > 0), initiate termination of the local model. |
---|
| 3114 | !-- The rest of the coupler must then be skipped because it would cause an MPI |
---|
| 3115 | !-- intercomminucation hang. |
---|
| 3116 | !-- If necessary, the coupler will be called at the beginning of the next |
---|
| 3117 | !-- restart run. |
---|
| 3118 | |
---|
| 3119 | IF ( myid == 0) THEN |
---|
| 3120 | CALL MPI_SENDRECV( terminate_coupled, 1, MPI_INTEGER, & |
---|
| 3121 | target_id, 0, & |
---|
| 3122 | terminate_coupled_remote, 1, MPI_INTEGER, & |
---|
| 3123 | target_id, 0, & |
---|
| 3124 | comm_inter, status, ierr ) |
---|
| 3125 | ENDIF |
---|
| 3126 | CALL MPI_BCAST( terminate_coupled_remote, 1, MPI_INTEGER, 0, comm2d, & |
---|
| 3127 | ierr ) |
---|
| 3128 | |
---|
| 3129 | IF ( terminate_coupled_remote > 0 ) THEN |
---|
| 3130 | WRITE( message_string, * ) 'remote model "', & |
---|
| 3131 | TRIM( coupling_mode_remote ), & |
---|
| 3132 | '" terminated', & |
---|
| 3133 | '&with terminate_coupled_remote = ', & |
---|
| 3134 | terminate_coupled_remote, & |
---|
| 3135 | '&local model "', TRIM( coupling_mode ), & |
---|
| 3136 | '" has', & |
---|
| 3137 | '&terminate_coupled = ', & |
---|
| 3138 | terminate_coupled |
---|
| 3139 | CALL message( 'vnest_anterpolate_e', 'PA0310', 1, 2, 0, 6, 0 ) |
---|
| 3140 | RETURN |
---|
| 3141 | ENDIF |
---|
| 3142 | |
---|
| 3143 | |
---|
| 3144 | ! |
---|
| 3145 | !-- Exchange the current simulated time between the models |
---|
| 3146 | IF ( myid == 0 ) THEN |
---|
| 3147 | |
---|
| 3148 | CALL MPI_SEND( time_since_reference_point, 1, MPI_REAL, target_id, & |
---|
| 3149 | 11, comm_inter, ierr ) |
---|
| 3150 | CALL MPI_RECV( time_since_reference_point_rem, 1, MPI_REAL, & |
---|
| 3151 | target_id, 11, comm_inter, status, ierr ) |
---|
| 3152 | |
---|
| 3153 | ENDIF |
---|
| 3154 | |
---|
| 3155 | CALL MPI_BCAST( time_since_reference_point_rem, 1, MPI_REAL, 0, comm2d, & |
---|
| 3156 | ierr ) |
---|
| 3157 | |
---|
| 3158 | IF ( coupling_mode == 'vnested_crse' ) THEN |
---|
| 3159 | ! Receive data from fine grid for anterpolation |
---|
| 3160 | |
---|
| 3161 | offset(1) = ( pdims_partner(1) / pdims(1) ) * pcoord(1) |
---|
| 3162 | offset(2) = ( pdims_partner(2) / pdims(2) ) * pcoord(2) |
---|
| 3163 | |
---|
| 3164 | do j = 0, ( pdims_partner(2) / pdims(2) ) - 1 |
---|
| 3165 | do i = 0, ( pdims_partner(1) / pdims(1) ) - 1 |
---|
| 3166 | map_coord(1) = i+offset(1) |
---|
| 3167 | map_coord(2) = j+offset(2) |
---|
| 3168 | |
---|
| 3169 | target_idex = f_rnk_lst(map_coord(1),map_coord(2)) + numprocs |
---|
| 3170 | |
---|
| 3171 | bdims (1,1) = f2c_dims_cg (0,map_coord(1),map_coord(2)) |
---|
| 3172 | bdims (1,2) = f2c_dims_cg (1,map_coord(1),map_coord(2)) |
---|
| 3173 | bdims (2,1) = f2c_dims_cg (2,map_coord(1),map_coord(2)) |
---|
| 3174 | bdims (2,2) = f2c_dims_cg (3,map_coord(1),map_coord(2)) |
---|
| 3175 | bdims (3,1) = f2c_dims_cg (4,map_coord(1),map_coord(2)) |
---|
| 3176 | bdims (3,2) = f2c_dims_cg (5,map_coord(1),map_coord(2)) |
---|
| 3177 | |
---|
| 3178 | |
---|
| 3179 | n_cell_c = (bdims(1,2)-bdims(1,1)+1) * & |
---|
| 3180 | (bdims(2,2)-bdims(2,1)+1) * & |
---|
| 3181 | (bdims(3,2)-bdims(3,1)+0) |
---|
| 3182 | |
---|
| 3183 | |
---|
| 3184 | CALL MPI_RECV( e( bdims(3,1)+1:bdims(3,2), & |
---|
| 3185 | bdims(2,1) :bdims(2,2), & |
---|
| 3186 | bdims(1,1) :bdims(1,2)),& |
---|
| 3187 | n_cell_c, MPI_REAL, target_idex, 104, & |
---|
| 3188 | comm_inter,status, ierr ) |
---|
| 3189 | end do |
---|
| 3190 | end do |
---|
| 3191 | |
---|
| 3192 | |
---|
| 3193 | ! |
---|
| 3194 | !-- Boundary conditions |
---|
| 3195 | |
---|
| 3196 | IF ( .NOT. constant_diffusion ) THEN |
---|
| 3197 | e(nzb,:,:) = e(nzb+1,:,:) |
---|
| 3198 | END IF |
---|
| 3199 | |
---|
| 3200 | IF ( .NOT. constant_diffusion ) CALL exchange_horiz( e, nbgp ) |
---|
| 3201 | |
---|
| 3202 | ELSEIF ( coupling_mode == 'vnested_fine' ) THEN |
---|
| 3203 | ! Send data to coarse grid for anterpolation |
---|
| 3204 | |
---|
| 3205 | offset(1) = pcoord(1) / ( pdims(1)/pdims_partner(1) ) |
---|
| 3206 | offset(2) = pcoord(2) / ( pdims(2)/pdims_partner(2) ) |
---|
| 3207 | map_coord(1) = offset(1) |
---|
| 3208 | map_coord(2) = offset(2) |
---|
| 3209 | target_idex = c_rnk_lst(map_coord(1),map_coord(2)) |
---|
| 3210 | |
---|
| 3211 | bdims_rem (1,1) = f2c_dims_fg (0) |
---|
| 3212 | bdims_rem (1,2) = f2c_dims_fg (1) |
---|
| 3213 | bdims_rem (2,1) = f2c_dims_fg (2) |
---|
| 3214 | bdims_rem (2,2) = f2c_dims_fg (3) |
---|
| 3215 | bdims_rem (3,1) = f2c_dims_fg (4) |
---|
| 3216 | bdims_rem (3,2) = f2c_dims_fg (5) |
---|
| 3217 | |
---|
| 3218 | ALLOCATE( work3d ( & |
---|
| 3219 | bdims_rem(3,1)+1:bdims_rem(3,2), & |
---|
| 3220 | bdims_rem(2,1) :bdims_rem(2,2), & |
---|
| 3221 | bdims_rem(1,1) :bdims_rem(1,2))) |
---|
| 3222 | |
---|
| 3223 | anterpol3d => e |
---|
| 3224 | |
---|
| 3225 | CALL anterpolate_to_crse_e ( 104 ) |
---|
| 3226 | |
---|
| 3227 | CALL MPI_SEND( work3d, 1, TYPE_VNEST_ANTER, target_idex, & |
---|
[2514] | 3228 | 104, comm_inter, ierr) |
---|
[2365] | 3229 | |
---|
| 3230 | NULLIFY ( anterpol3d ) |
---|
| 3231 | DEALLOCATE( work3d ) |
---|
| 3232 | ENDIF |
---|
| 3233 | |
---|
| 3234 | #endif |
---|
| 3235 | |
---|
| 3236 | CONTAINS |
---|
| 3237 | |
---|
| 3238 | |
---|
| 3239 | |
---|
| 3240 | |
---|
| 3241 | |
---|
| 3242 | SUBROUTINE anterpolate_to_crse_e( tag ) |
---|
| 3243 | |
---|
| 3244 | #if defined( __parallel ) |
---|
| 3245 | |
---|
| 3246 | USE arrays_3d |
---|
| 3247 | USE control_parameters |
---|
| 3248 | USE grid_variables |
---|
| 3249 | USE indices |
---|
| 3250 | USE pegrid |
---|
| 3251 | |
---|
| 3252 | |
---|
| 3253 | IMPLICIT NONE |
---|
| 3254 | |
---|
| 3255 | INTEGER(iwp) :: i, j, k |
---|
| 3256 | INTEGER(iwp) :: if, jf, kf |
---|
| 3257 | INTEGER(iwp) :: bottomx, topx |
---|
| 3258 | INTEGER(iwp) :: bottomy, topy |
---|
| 3259 | INTEGER(iwp) :: bottomz, topz |
---|
| 3260 | REAL(wp) :: aweight_a, aweight_b, aweight_c, aweight_d, aweight_e |
---|
| 3261 | REAL(wp) :: energ |
---|
| 3262 | INTEGER(iwp), intent(in) :: tag |
---|
| 3263 | |
---|
| 3264 | |
---|
| 3265 | DO k = bdims_rem(3,1)+1, bdims_rem(3,2) |
---|
| 3266 | |
---|
| 3267 | bottomz = (dzc/dzf) * (k-1) + 1 |
---|
| 3268 | topz = (dzc/dzf) * k |
---|
| 3269 | |
---|
| 3270 | DO j = bdims_rem(2,1), bdims_rem(2,2) |
---|
| 3271 | |
---|
| 3272 | bottomy = (nyf+1) / (nyc+1) * j |
---|
| 3273 | topy = (nyf+1) / (nyc+1) * (j+1) - 1 |
---|
| 3274 | |
---|
| 3275 | DO i = bdims_rem(1,1), bdims_rem(1,2) |
---|
| 3276 | |
---|
| 3277 | bottomx = (nxf+1) / (nxc+1) * i |
---|
| 3278 | topx = (nxf+1) / (nxc+1) * (i+1) - 1 |
---|
| 3279 | |
---|
| 3280 | aweight_a = 0.0 |
---|
| 3281 | aweight_b = 0.0 |
---|
| 3282 | aweight_c = 0.0 |
---|
| 3283 | aweight_d = 0.0 |
---|
| 3284 | aweight_e = 0.0 |
---|
| 3285 | |
---|
| 3286 | DO kf = bottomz, topz |
---|
| 3287 | DO jf = bottomy, topy |
---|
| 3288 | DO if = bottomx, topx |
---|
| 3289 | |
---|
| 3290 | aweight_a = aweight_a + anterpol3d(kf,jf,if) * & |
---|
| 3291 | (dzf/dzc) * (dyf/dyc) * (dxf/dxc) |
---|
| 3292 | |
---|
| 3293 | |
---|
| 3294 | energ = ( 0.5 * ( u(kf,jf,if) + u(kf,jf,if+1) ) )**2.0 + & |
---|
| 3295 | ( 0.5 * ( v(kf,jf,if) + v(kf,jf+1,if) ) )**2.0 + & |
---|
| 3296 | ( 0.5 * ( w(kf-1,jf,if) + w(kf,jf,if) ) )**2.0 |
---|
| 3297 | |
---|
| 3298 | aweight_b = aweight_b + energ * & |
---|
| 3299 | (dzf/dzc) * (dyf/dyc) * (dxf/dxc) |
---|
| 3300 | |
---|
| 3301 | aweight_c = aweight_c + 0.5 * ( u(kf,jf,if) + u(kf,jf,if+1) ) * & |
---|
| 3302 | (dzf/dzc) * (dyf/dyc) * (dxf/dxc) |
---|
| 3303 | |
---|
| 3304 | aweight_d = aweight_d + 0.5 * ( v(kf,jf,if) + v(kf,jf+1,if) ) * & |
---|
| 3305 | (dzf/dzc) * (dyf/dyc) * (dxf/dxc) |
---|
| 3306 | |
---|
| 3307 | aweight_e = aweight_e + 0.5 * ( w(kf-1,jf,if) + w(kf,jf,if) ) * & |
---|
| 3308 | (dzf/dzc) * (dyf/dyc) * (dxf/dxc) |
---|
| 3309 | |
---|
| 3310 | |
---|
| 3311 | END DO |
---|
| 3312 | END DO |
---|
| 3313 | END DO |
---|
| 3314 | |
---|
| 3315 | work3d(k,j,i) = aweight_a + 0.5 * ( aweight_b - & |
---|
| 3316 | aweight_c**2.0 - & |
---|
| 3317 | aweight_d**2.0 - & |
---|
| 3318 | aweight_e**2.0 ) |
---|
| 3319 | |
---|
| 3320 | END DO |
---|
| 3321 | |
---|
| 3322 | END DO |
---|
| 3323 | |
---|
| 3324 | END DO |
---|
| 3325 | |
---|
| 3326 | |
---|
| 3327 | #endif |
---|
| 3328 | |
---|
| 3329 | END SUBROUTINE anterpolate_to_crse_e |
---|
| 3330 | END SUBROUTINE vnest_anterpolate_e |
---|
| 3331 | |
---|
| 3332 | SUBROUTINE vnest_init_pegrid_rank |
---|
| 3333 | ! Domain decomposition and exchange of grid variables between coarse and fine |
---|
| 3334 | ! Given processor coordinates as index f_rnk_lst(pcoord(1), pcoord(2)) |
---|
| 3335 | ! returns the rank. A single coarse block will have to send data to multiple |
---|
| 3336 | ! fine blocks. In the coarse grid the pcoords of the remote block is first found and then using |
---|
| 3337 | ! f_rnk_lst the target_idex is identified. |
---|
| 3338 | ! blk_dim stores the index limits of a given block. blk_dim_remote is received |
---|
| 3339 | ! from the asscoiated nest partner. |
---|
| 3340 | ! cf_ratio(1:3) is the ratio between fine and coarse grid: nxc/nxf, nyc/nyf and |
---|
| 3341 | ! ceiling(dxc/dxf) |
---|
| 3342 | |
---|
| 3343 | |
---|
| 3344 | USE control_parameters, & |
---|
| 3345 | ONLY: coupling_mode, coupling_mode_remote, coupling_topology, dz |
---|
| 3346 | |
---|
| 3347 | USE grid_variables, & |
---|
| 3348 | ONLY: dx, dy |
---|
| 3349 | |
---|
| 3350 | USE indices, & |
---|
[2514] | 3351 | ONLY: nbgp, nx, ny, nz |
---|
[2365] | 3352 | |
---|
| 3353 | USE kinds |
---|
| 3354 | |
---|
| 3355 | USE pegrid |
---|
| 3356 | |
---|
| 3357 | |
---|
| 3358 | IMPLICIT NONE |
---|
| 3359 | |
---|
| 3360 | INTEGER(iwp) :: dest_rnk |
---|
| 3361 | INTEGER(iwp) :: i !< |
---|
| 3362 | |
---|
| 3363 | IF (myid == 0) THEN |
---|
| 3364 | IF ( coupling_mode == 'vnested_crse') THEN |
---|