1 | !> @file turbulence_closure_mod.f90 |
---|
2 | !------------------------------------------------------------------------------! |
---|
3 | ! This file is part of the PALM model system. |
---|
4 | ! |
---|
5 | ! PALM is free software: you can redistribute it and/or modify it under the |
---|
6 | ! terms of the GNU General Public License as published by the Free Software |
---|
7 | ! Foundation, either version 3 of the License, or (at your option) any later |
---|
8 | ! version. |
---|
9 | ! |
---|
10 | ! PALM is distributed in the hope that it will be useful, but WITHOUT ANY |
---|
11 | ! WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR |
---|
12 | ! A PARTICULAR PURPOSE. See the GNU General Public License for more details. |
---|
13 | ! |
---|
14 | ! You should have received a copy of the GNU General Public License along with |
---|
15 | ! PALM. If not, see <http://www.gnu.org/licenses/>. |
---|
16 | ! |
---|
17 | ! Copyright 2017-2018 Leibniz Universitaet Hannover |
---|
18 | !--------------------------------------------------------------------------------! |
---|
19 | ! |
---|
20 | ! Current revisions: |
---|
21 | ! ----------------- |
---|
22 | ! |
---|
23 | ! |
---|
24 | ! Former revisions: |
---|
25 | ! ----------------- |
---|
26 | ! $Id: turbulence_closure_mod.f90 4182 2019-08-22 15:20:23Z scharf $ |
---|
27 | ! Corrected "Former revisions" section |
---|
28 | ! |
---|
29 | ! 4177 2019-08-20 14:32:34Z gronemeier |
---|
30 | ! add comment |
---|
31 | ! |
---|
32 | ! 4170 2019-08-19 17:12:31Z gronemeier |
---|
33 | ! - add performance optimizations according to K. Ketelsen |
---|
34 | ! to diffusion_e and tcm_diffusivities_default |
---|
35 | ! - bugfix in calculating l_wall for vertical walls |
---|
36 | ! - bugfix in using l_wall in initialization (consider wall_adjustment_factor) |
---|
37 | ! - always initialize diss and save the dissipation to that array |
---|
38 | ! |
---|
39 | ! 4168 2019-08-16 13:50:17Z suehring |
---|
40 | ! Replace function get_topography_top_index by topo_top_ind |
---|
41 | ! |
---|
42 | ! 4110 2019-07-22 17:05:21Z suehring |
---|
43 | ! pass integer flag array as well as boundary flags to WS scalar advection |
---|
44 | ! routine |
---|
45 | ! |
---|
46 | ! 4109 2019-07-22 17:00:34Z suehring |
---|
47 | ! - Modularize setting of boundary conditions for TKE and dissipation |
---|
48 | ! - Neumann boundary condition for TKE at model top is set also in child domain |
---|
49 | ! - Revise setting of Neumann boundary conditions at non-cyclic lateral |
---|
50 | ! boundaries |
---|
51 | ! - Bugfix, set Neumann boundary condition for TKE at vertical wall instead of |
---|
52 | ! an implicit Dirichlet boundary condition which implied a sink of TKE |
---|
53 | ! at vertical walls |
---|
54 | ! |
---|
55 | ! 4048 2019-06-21 21:00:21Z knoop |
---|
56 | ! write out preprocessor directives; remove tailing whitespaces |
---|
57 | ! |
---|
58 | ! 3775 2019-03-04 12:40:20Z gronemeier |
---|
59 | ! removed unused variables |
---|
60 | ! |
---|
61 | ! 3724 2019-02-06 16:28:23Z kanani |
---|
62 | ! Correct double-used log_point_s units |
---|
63 | ! |
---|
64 | ! 3719 2019-02-06 13:10:18Z kanani |
---|
65 | ! Changed log_point to log_point_s, otherwise this overlaps with |
---|
66 | ! 'all progn.equations' cpu measurement. |
---|
67 | ! |
---|
68 | ! 3684 2019-01-20 20:20:58Z knoop |
---|
69 | ! Remove unused variable simulated_time |
---|
70 | ! |
---|
71 | ! 2696 2017-12-14 17:12:51Z kanani |
---|
72 | ! Initial revision |
---|
73 | ! |
---|
74 | ! |
---|
75 | ! Authors: |
---|
76 | ! -------- |
---|
77 | ! @author Tobias Gronemeier |
---|
78 | ! @author Hauke Wurps |
---|
79 | ! |
---|
80 | ! Description: |
---|
81 | ! ------------ |
---|
82 | !> This module contains the available turbulence closures for PALM. |
---|
83 | !> |
---|
84 | !> |
---|
85 | !> @todo test initialization for all possibilities |
---|
86 | !> @todo add OpenMP directives whereever possible |
---|
87 | !> @todo Check for random disturbances |
---|
88 | !> @note <Enter notes on the module> |
---|
89 | !-----------------------------------------------------------------------------! |
---|
90 | MODULE turbulence_closure_mod |
---|
91 | |
---|
92 | |
---|
93 | USE arrays_3d, & |
---|
94 | ONLY: diss, diss_1, diss_2, diss_3, diss_p, dzu, e, e_1, e_2, e_3, & |
---|
95 | e_p, kh, km, mean_inflow_profiles, prho, pt, tdiss_m, & |
---|
96 | te_m, tend, u, v, vpt, w |
---|
97 | |
---|
98 | USE basic_constants_and_equations_mod, & |
---|
99 | ONLY: g, kappa, lv_d_cp, lv_d_rd, rd_d_rv |
---|
100 | |
---|
101 | USE control_parameters, & |
---|
102 | ONLY: bc_dirichlet_l, & |
---|
103 | bc_dirichlet_n, & |
---|
104 | bc_dirichlet_r, & |
---|
105 | bc_dirichlet_s, & |
---|
106 | bc_radiation_l, & |
---|
107 | bc_radiation_n, & |
---|
108 | bc_radiation_r, & |
---|
109 | bc_radiation_s, & |
---|
110 | child_domain, & |
---|
111 | constant_diffusion, dt_3d, e_init, humidity, & |
---|
112 | initializing_actions, intermediate_timestep_count, & |
---|
113 | intermediate_timestep_count_max, km_constant, & |
---|
114 | les_dynamic, les_mw, ocean_mode, plant_canopy, prandtl_number, & |
---|
115 | pt_reference, rans_mode, rans_tke_e, rans_tke_l, & |
---|
116 | timestep_scheme, turbulence_closure, & |
---|
117 | turbulent_inflow, use_upstream_for_tke, vpt_reference, & |
---|
118 | ws_scheme_sca, current_timestep_number |
---|
119 | |
---|
120 | USE advec_ws, & |
---|
121 | ONLY: advec_s_ws |
---|
122 | |
---|
123 | USE advec_s_bc_mod, & |
---|
124 | ONLY: advec_s_bc |
---|
125 | |
---|
126 | USE advec_s_pw_mod, & |
---|
127 | ONLY: advec_s_pw |
---|
128 | |
---|
129 | USE advec_s_up_mod, & |
---|
130 | ONLY: advec_s_up |
---|
131 | |
---|
132 | USE cpulog, & |
---|
133 | ONLY: cpu_log, log_point_s |
---|
134 | |
---|
135 | USE indices, & |
---|
136 | ONLY: advc_flags_s, & |
---|
137 | nbgp, nxl, nxlg, nxr, nxrg, nyn, nyng, nys, nysg, nzb, nzt, & |
---|
138 | topo_top_ind, & |
---|
139 | wall_flags_0 |
---|
140 | |
---|
141 | USE kinds |
---|
142 | |
---|
143 | USE ocean_mod, & |
---|
144 | ONLY: prho_reference |
---|
145 | |
---|
146 | USE pegrid |
---|
147 | |
---|
148 | USE plant_canopy_model_mod, & |
---|
149 | ONLY: pcm_tendency |
---|
150 | |
---|
151 | USE statistics, & |
---|
152 | ONLY: hom, hom_sum, statistic_regions |
---|
153 | |
---|
154 | USE surface_mod, & |
---|
155 | ONLY: bc_h, & |
---|
156 | bc_v, & |
---|
157 | surf_def_h, & |
---|
158 | surf_def_v, & |
---|
159 | surf_lsm_h, & |
---|
160 | surf_lsm_v, & |
---|
161 | surf_usm_h, & |
---|
162 | surf_usm_v |
---|
163 | |
---|
164 | IMPLICIT NONE |
---|
165 | |
---|
166 | |
---|
167 | REAL(wp) :: c_0 !< constant used for diffusion coefficient and dissipation (dependent on mode RANS/LES) |
---|
168 | REAL(wp) :: c_1 !< model constant for RANS mode |
---|
169 | REAL(wp) :: c_2 !< model constant for RANS mode |
---|
170 | REAL(wp) :: c_3 !< model constant for RANS mode |
---|
171 | REAL(wp) :: c_4 !< model constant for RANS mode |
---|
172 | REAL(wp) :: l_max !< maximum length scale for Blackadar mixing length |
---|
173 | REAL(wp) :: dsig_e = 1.0_wp !< factor to calculate Ke from Km (1/sigma_e) |
---|
174 | REAL(wp) :: dsig_diss = 1.0_wp !< factor to calculate K_diss from Km (1/sigma_diss) |
---|
175 | |
---|
176 | REAL(wp), DIMENSION(0:4) :: rans_const_c = & !< model constants for RANS mode (namelist param) |
---|
177 | (/ 0.55_wp, 1.44_wp, 1.92_wp, 1.44_wp, 0.0_wp /) !> default values fit for standard-tke-e closure |
---|
178 | |
---|
179 | REAL(wp), DIMENSION(2) :: rans_const_sigma = & !< model constants for RANS mode, sigma values (sigma_e, sigma_diss) (namelist param) |
---|
180 | (/ 1.0_wp, 1.30_wp /) |
---|
181 | |
---|
182 | REAL(wp), DIMENSION(:), ALLOCATABLE :: l_black !< mixing length according to Blackadar |
---|
183 | |
---|
184 | REAL(wp), DIMENSION(:), ALLOCATABLE :: l_grid !< geometric mean of grid sizes dx, dy, dz |
---|
185 | |
---|
186 | REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: l_wall !< near-wall mixing length |
---|
187 | |
---|
188 | ! |
---|
189 | !-- Public variables |
---|
190 | PUBLIC c_0, rans_const_c, rans_const_sigma |
---|
191 | |
---|
192 | SAVE |
---|
193 | |
---|
194 | PRIVATE |
---|
195 | ! |
---|
196 | !-- Public subroutines |
---|
197 | PUBLIC & |
---|
198 | tcm_boundary_conds, & |
---|
199 | tcm_check_parameters, & |
---|
200 | tcm_check_data_output, & |
---|
201 | tcm_define_netcdf_grid, & |
---|
202 | tcm_init_arrays, & |
---|
203 | tcm_init, & |
---|
204 | tcm_actions, & |
---|
205 | tcm_prognostic_equations, & |
---|
206 | tcm_swap_timelevel, & |
---|
207 | tcm_3d_data_averaging, & |
---|
208 | tcm_data_output_2d, & |
---|
209 | tcm_data_output_3d, & |
---|
210 | tcm_diffusivities |
---|
211 | |
---|
212 | ! |
---|
213 | !-- PALM interfaces: |
---|
214 | !-- Boundary conditions for subgrid TKE and dissipation |
---|
215 | INTERFACE tcm_boundary_conds |
---|
216 | MODULE PROCEDURE tcm_boundary_conds |
---|
217 | END INTERFACE tcm_boundary_conds |
---|
218 | ! |
---|
219 | !-- Input parameter checks to be done in check_parameters |
---|
220 | INTERFACE tcm_check_parameters |
---|
221 | MODULE PROCEDURE tcm_check_parameters |
---|
222 | END INTERFACE tcm_check_parameters |
---|
223 | |
---|
224 | ! |
---|
225 | !-- Data output checks for 2D/3D data to be done in check_parameters |
---|
226 | INTERFACE tcm_check_data_output |
---|
227 | MODULE PROCEDURE tcm_check_data_output |
---|
228 | END INTERFACE tcm_check_data_output |
---|
229 | |
---|
230 | ! |
---|
231 | !-- Definition of data output quantities |
---|
232 | INTERFACE tcm_define_netcdf_grid |
---|
233 | MODULE PROCEDURE tcm_define_netcdf_grid |
---|
234 | END INTERFACE tcm_define_netcdf_grid |
---|
235 | |
---|
236 | ! |
---|
237 | !-- Initialization of arrays |
---|
238 | INTERFACE tcm_init_arrays |
---|
239 | MODULE PROCEDURE tcm_init_arrays |
---|
240 | END INTERFACE tcm_init_arrays |
---|
241 | |
---|
242 | ! |
---|
243 | !-- Initialization actions |
---|
244 | INTERFACE tcm_init |
---|
245 | MODULE PROCEDURE tcm_init |
---|
246 | END INTERFACE tcm_init |
---|
247 | |
---|
248 | ! |
---|
249 | !-- Location specific actions |
---|
250 | INTERFACE tcm_actions |
---|
251 | MODULE PROCEDURE tcm_actions |
---|
252 | MODULE PROCEDURE tcm_actions_ij |
---|
253 | END INTERFACE tcm_actions |
---|
254 | |
---|
255 | ! |
---|
256 | !-- Prognostic equations for TKE and TKE dissipation rate |
---|
257 | INTERFACE tcm_prognostic_equations |
---|
258 | MODULE PROCEDURE tcm_prognostic_equations |
---|
259 | MODULE PROCEDURE tcm_prognostic_equations_ij |
---|
260 | END INTERFACE tcm_prognostic_equations |
---|
261 | |
---|
262 | ! |
---|
263 | !-- Swapping of time levels (required for prognostic variables) |
---|
264 | INTERFACE tcm_swap_timelevel |
---|
265 | MODULE PROCEDURE tcm_swap_timelevel |
---|
266 | END INTERFACE tcm_swap_timelevel |
---|
267 | |
---|
268 | ! |
---|
269 | !-- Averaging of 3D data for output |
---|
270 | INTERFACE tcm_3d_data_averaging |
---|
271 | MODULE PROCEDURE tcm_3d_data_averaging |
---|
272 | END INTERFACE tcm_3d_data_averaging |
---|
273 | |
---|
274 | ! |
---|
275 | !-- Data output of 2D quantities |
---|
276 | INTERFACE tcm_data_output_2d |
---|
277 | MODULE PROCEDURE tcm_data_output_2d |
---|
278 | END INTERFACE tcm_data_output_2d |
---|
279 | |
---|
280 | ! |
---|
281 | !-- Data output of 3D data |
---|
282 | INTERFACE tcm_data_output_3d |
---|
283 | MODULE PROCEDURE tcm_data_output_3d |
---|
284 | END INTERFACE tcm_data_output_3d |
---|
285 | |
---|
286 | ! |
---|
287 | !-- Call tcm_diffusivities_default and tcm_diffusivities_dynamic |
---|
288 | INTERFACE tcm_diffusivities |
---|
289 | MODULE PROCEDURE tcm_diffusivities |
---|
290 | END INTERFACE tcm_diffusivities |
---|
291 | |
---|
292 | |
---|
293 | CONTAINS |
---|
294 | |
---|
295 | !------------------------------------------------------------------------------! |
---|
296 | ! Description: |
---|
297 | ! ------------ |
---|
298 | !> Check parameters routine for turbulence closure module. |
---|
299 | !------------------------------------------------------------------------------! |
---|
300 | SUBROUTINE tcm_boundary_conds |
---|
301 | |
---|
302 | USE pmc_interface, & |
---|
303 | ONLY : rans_mode_parent |
---|
304 | |
---|
305 | IMPLICIT NONE |
---|
306 | |
---|
307 | INTEGER(iwp) :: i !< grid index x direction |
---|
308 | INTEGER(iwp) :: j !< grid index y direction |
---|
309 | INTEGER(iwp) :: k !< grid index z direction |
---|
310 | INTEGER(iwp) :: l !< running index boundary type, for up- and downward-facing walls |
---|
311 | INTEGER(iwp) :: m !< running index surface elements |
---|
312 | ! |
---|
313 | !-- Boundary conditions for TKE. |
---|
314 | IF ( .NOT. constant_diffusion ) THEN |
---|
315 | ! |
---|
316 | !-- In LES mode, Neumann conditions with de/x_i=0 are assumed at solid walls. |
---|
317 | !-- Note, only TKE is prognostic in this case and dissipation is only |
---|
318 | !-- a diagnostic quantity. |
---|
319 | IF ( .NOT. rans_mode ) THEN |
---|
320 | ! |
---|
321 | !-- Horizontal walls, upward- and downward-facing |
---|
322 | DO l = 0, 1 |
---|
323 | !$OMP PARALLEL DO PRIVATE( i, j, k ) |
---|
324 | !$ACC PARALLEL LOOP PRIVATE(i, j, k) & |
---|
325 | !$ACC PRESENT(bc_h, e_p) |
---|
326 | DO m = 1, bc_h(l)%ns |
---|
327 | i = bc_h(l)%i(m) |
---|
328 | j = bc_h(l)%j(m) |
---|
329 | k = bc_h(l)%k(m) |
---|
330 | e_p(k+bc_h(l)%koff,j,i) = e_p(k,j,i) |
---|
331 | ENDDO |
---|
332 | ENDDO |
---|
333 | ! |
---|
334 | !-- Vertical walls |
---|
335 | DO l = 0, 3 |
---|
336 | ! |
---|
337 | !-- Note concerning missing ACC directive for this loop: Even though |
---|
338 | !-- the data structure bc_v is present, it may not contain any |
---|
339 | !-- allocated arrays in the flat but also in a topography case, |
---|
340 | !-- leading to a runtime error. Therefore, omit ACC directives |
---|
341 | !-- for this loop, in contrast to the bc_h loop. |
---|
342 | !$OMP PARALLEL DO PRIVATE( i, j, k ) |
---|
343 | DO m = 1, bc_v(l)%ns |
---|
344 | i = bc_v(l)%i(m) |
---|
345 | j = bc_v(l)%j(m) |
---|
346 | k = bc_v(l)%k(m) |
---|
347 | e_p(k,j+bc_v(l)%joff,i+bc_v(l)%ioff) = e_p(k,j,i) |
---|
348 | ENDDO |
---|
349 | ENDDO |
---|
350 | ! |
---|
351 | !-- In RANS mode, wall function is used as boundary condition for TKE |
---|
352 | ELSE |
---|
353 | ! |
---|
354 | !-- Use wall function within constant-flux layer |
---|
355 | !-- Note, grid points listed in bc_h are not included in any calculations in RANS mode and |
---|
356 | !-- are therefore not set here. |
---|
357 | ! |
---|
358 | !-- Upward-facing surfaces |
---|
359 | !-- Default surfaces |
---|
360 | DO m = 1, surf_def_h(0)%ns |
---|
361 | i = surf_def_h(0)%i(m) |
---|
362 | j = surf_def_h(0)%j(m) |
---|
363 | k = surf_def_h(0)%k(m) |
---|
364 | e_p(k,j,i) = ( surf_def_h(0)%us(m) / c_0 )**2 |
---|
365 | ENDDO |
---|
366 | ! |
---|
367 | !-- Natural surfaces |
---|
368 | DO m = 1, surf_lsm_h%ns |
---|
369 | i = surf_lsm_h%i(m) |
---|
370 | j = surf_lsm_h%j(m) |
---|
371 | k = surf_lsm_h%k(m) |
---|
372 | e_p(k,j,i) = ( surf_lsm_h%us(m) / c_0 )**2 |
---|
373 | ENDDO |
---|
374 | ! |
---|
375 | !-- Urban surfaces |
---|
376 | DO m = 1, surf_usm_h%ns |
---|
377 | i = surf_usm_h%i(m) |
---|
378 | j = surf_usm_h%j(m) |
---|
379 | k = surf_usm_h%k(m) |
---|
380 | e_p(k,j,i) = ( surf_usm_h%us(m) / c_0 )**2 |
---|
381 | ENDDO |
---|
382 | ! |
---|
383 | !-- Vertical surfaces |
---|
384 | DO l = 0, 3 |
---|
385 | ! |
---|
386 | !-- Default surfaces |
---|
387 | DO m = 1, surf_def_v(l)%ns |
---|
388 | i = surf_def_v(l)%i(m) |
---|
389 | j = surf_def_v(l)%j(m) |
---|
390 | k = surf_def_v(l)%k(m) |
---|
391 | e_p(k,j,i) = ( surf_def_v(l)%us(m) / c_0 )**2 |
---|
392 | ENDDO |
---|
393 | ! |
---|
394 | !-- Natural surfaces |
---|
395 | DO m = 1, surf_lsm_v(l)%ns |
---|
396 | i = surf_lsm_v(l)%i(m) |
---|
397 | j = surf_lsm_v(l)%j(m) |
---|
398 | k = surf_lsm_v(l)%k(m) |
---|
399 | e_p(k,j,i) = ( surf_lsm_v(l)%us(m) / c_0 )**2 |
---|
400 | ENDDO |
---|
401 | ! |
---|
402 | !-- Urban surfaces |
---|
403 | DO m = 1, surf_usm_v(l)%ns |
---|
404 | i = surf_usm_v(l)%i(m) |
---|
405 | j = surf_usm_v(l)%j(m) |
---|
406 | k = surf_usm_v(l)%k(m) |
---|
407 | e_p(k,j,i) = ( surf_usm_v(l)%us(m) / c_0 )**2 |
---|
408 | ENDDO |
---|
409 | ENDDO |
---|
410 | ENDIF |
---|
411 | ! |
---|
412 | !-- Set Neumann boundary condition for TKE at model top. Do this also |
---|
413 | !-- in case of a nested run. |
---|
414 | !$ACC KERNELS PRESENT(e_p) |
---|
415 | e_p(nzt+1,:,:) = e_p(nzt,:,:) |
---|
416 | !$ACC END KERNELS |
---|
417 | ! |
---|
418 | !-- Nesting case: if parent operates in RANS mode and child in LES mode, |
---|
419 | !-- no TKE is transfered. This case, set Neumann conditions at lateral and |
---|
420 | !-- top child boundaries. |
---|
421 | !-- If not ( both either in RANS or in LES mode ), TKE boundary condition |
---|
422 | !-- is treated in the nesting. |
---|
423 | If ( child_domain ) THEN |
---|
424 | IF ( rans_mode_parent .AND. .NOT. rans_mode ) THEN |
---|
425 | |
---|
426 | e_p(nzt+1,:,:) = e_p(nzt,:,:) |
---|
427 | IF ( bc_dirichlet_l ) e_p(:,:,nxl-1) = e_p(:,:,nxl) |
---|
428 | IF ( bc_dirichlet_r ) e_p(:,:,nxr+1) = e_p(:,:,nxr) |
---|
429 | IF ( bc_dirichlet_s ) e_p(:,nys-1,:) = e_p(:,nys,:) |
---|
430 | IF ( bc_dirichlet_n ) e_p(:,nyn+1,:) = e_p(:,nyn,:) |
---|
431 | |
---|
432 | ENDIF |
---|
433 | ENDIF |
---|
434 | ! |
---|
435 | !-- At in- and outflow boundaries also set Neumann boundary conditions |
---|
436 | !-- for the SGS-TKE. An exception is made for the child domain if |
---|
437 | !-- both parent and child operate in RANS mode. This case no |
---|
438 | !-- lateral Neumann boundary conditions will be set but Dirichlet |
---|
439 | !-- conditions will be set in the nesting. |
---|
440 | IF ( .NOT. child_domain .AND. .NOT. rans_mode_parent .AND. & |
---|
441 | .NOT. rans_mode ) THEN |
---|
442 | IF ( bc_dirichlet_s .OR. bc_radiation_s ) THEN |
---|
443 | e_p(:,nys-1,:) = e_p(:,nys,:) |
---|
444 | IF ( rans_tke_e ) diss_p(:,nys-1,:) = diss_p(:,nys,:) |
---|
445 | ENDIF |
---|
446 | IF ( bc_dirichlet_n .OR. bc_radiation_n ) THEN |
---|
447 | e_p(:,nyn+1,:) = e_p(:,nyn,:) |
---|
448 | IF ( rans_tke_e ) diss_p(:,nyn+1,:) = diss_p(:,nyn,:) |
---|
449 | ENDIF |
---|
450 | IF ( bc_dirichlet_l .OR. bc_radiation_l ) THEN |
---|
451 | e_p(:,:,nxl-1) = e_p(:,:,nxl) |
---|
452 | IF ( rans_tke_e ) diss_p(:,nyn+1,:) = diss_p(:,nyn,:) |
---|
453 | ENDIF |
---|
454 | IF ( bc_dirichlet_r .OR. bc_radiation_r ) THEN |
---|
455 | e_p(:,:,nxr+1) = e_p(:,:,nxr) |
---|
456 | IF ( rans_tke_e ) diss_p(:,nyn+1,:) = diss_p(:,nyn,:) |
---|
457 | ENDIF |
---|
458 | ENDIF |
---|
459 | ENDIF |
---|
460 | |
---|
461 | ! |
---|
462 | !-- Boundary conditions for TKE dissipation rate in RANS mode. |
---|
463 | IF ( rans_tke_e ) THEN |
---|
464 | ! |
---|
465 | !-- Use wall function within constant-flux layer |
---|
466 | !-- Upward-facing surfaces |
---|
467 | !-- Default surfaces |
---|
468 | DO m = 1, surf_def_h(0)%ns |
---|
469 | i = surf_def_h(0)%i(m) |
---|
470 | j = surf_def_h(0)%j(m) |
---|
471 | k = surf_def_h(0)%k(m) |
---|
472 | diss_p(k,j,i) = surf_def_h(0)%us(m)**3 & |
---|
473 | / ( kappa * surf_def_h(0)%z_mo(m) ) |
---|
474 | ENDDO |
---|
475 | ! |
---|
476 | !-- Natural surfaces |
---|
477 | DO m = 1, surf_lsm_h%ns |
---|
478 | i = surf_lsm_h%i(m) |
---|
479 | j = surf_lsm_h%j(m) |
---|
480 | k = surf_lsm_h%k(m) |
---|
481 | diss_p(k,j,i) = surf_lsm_h%us(m)**3 & |
---|
482 | / ( kappa * surf_lsm_h%z_mo(m) ) |
---|
483 | ENDDO |
---|
484 | ! |
---|
485 | !-- Urban surfaces |
---|
486 | DO m = 1, surf_usm_h%ns |
---|
487 | i = surf_usm_h%i(m) |
---|
488 | j = surf_usm_h%j(m) |
---|
489 | k = surf_usm_h%k(m) |
---|
490 | diss_p(k,j,i) = surf_usm_h%us(m)**3 & |
---|
491 | / ( kappa * surf_usm_h%z_mo(m) ) |
---|
492 | ENDDO |
---|
493 | ! |
---|
494 | !-- Vertical surfaces |
---|
495 | DO l = 0, 3 |
---|
496 | ! |
---|
497 | !-- Default surfaces |
---|
498 | DO m = 1, surf_def_v(l)%ns |
---|
499 | i = surf_def_v(l)%i(m) |
---|
500 | j = surf_def_v(l)%j(m) |
---|
501 | k = surf_def_v(l)%k(m) |
---|
502 | diss_p(k,j,i) = surf_def_v(l)%us(m)**3 & |
---|
503 | / ( kappa * surf_def_v(l)%z_mo(m) ) |
---|
504 | ENDDO |
---|
505 | ! |
---|
506 | !-- Natural surfaces |
---|
507 | DO m = 1, surf_lsm_v(l)%ns |
---|
508 | i = surf_lsm_v(l)%i(m) |
---|
509 | j = surf_lsm_v(l)%j(m) |
---|
510 | k = surf_lsm_v(l)%k(m) |
---|
511 | diss_p(k,j,i) = surf_lsm_v(l)%us(m)**3 & |
---|
512 | / ( kappa * surf_lsm_v(l)%z_mo(m) ) |
---|
513 | ENDDO |
---|
514 | ! |
---|
515 | !-- Urban surfaces |
---|
516 | DO m = 1, surf_usm_v(l)%ns |
---|
517 | i = surf_usm_v(l)%i(m) |
---|
518 | j = surf_usm_v(l)%j(m) |
---|
519 | k = surf_usm_v(l)%k(m) |
---|
520 | diss_p(k,j,i) = surf_usm_v(l)%us(m)**3 & |
---|
521 | / ( kappa * surf_usm_v(l)%z_mo(m) ) |
---|
522 | ENDDO |
---|
523 | ENDDO |
---|
524 | ! |
---|
525 | !-- Limit change of diss to be between -90% and +100%. Also, set an absolute |
---|
526 | !-- minimum value |
---|
527 | DO i = nxl, nxr |
---|
528 | DO j = nys, nyn |
---|
529 | DO k = nzb, nzt+1 |
---|
530 | diss_p(k,j,i) = MAX( MIN( diss_p(k,j,i), & |
---|
531 | 2.0_wp * diss(k,j,i) ), & |
---|
532 | 0.1_wp * diss(k,j,i), & |
---|
533 | 0.0001_wp ) |
---|
534 | ENDDO |
---|
535 | ENDDO |
---|
536 | ENDDO |
---|
537 | |
---|
538 | diss_p(nzt+1,:,:) = diss_p(nzt,:,:) |
---|
539 | |
---|
540 | ENDIF |
---|
541 | |
---|
542 | END SUBROUTINE tcm_boundary_conds |
---|
543 | |
---|
544 | !------------------------------------------------------------------------------! |
---|
545 | ! Description: |
---|
546 | ! ------------ |
---|
547 | !> Check parameters routine for turbulence closure module. |
---|
548 | !------------------------------------------------------------------------------! |
---|
549 | SUBROUTINE tcm_check_parameters |
---|
550 | |
---|
551 | USE control_parameters, & |
---|
552 | ONLY: message_string, turbulent_inflow, turbulent_outflow |
---|
553 | |
---|
554 | IMPLICIT NONE |
---|
555 | |
---|
556 | ! |
---|
557 | !-- Define which turbulence closure is going to be used |
---|
558 | SELECT CASE ( TRIM( turbulence_closure ) ) |
---|
559 | |
---|
560 | CASE ( 'dynamic' ) |
---|
561 | les_dynamic = .TRUE. |
---|
562 | |
---|
563 | CASE ( 'Moeng_Wyngaard' ) |
---|
564 | les_mw = .TRUE. |
---|
565 | |
---|
566 | CASE ( 'TKE-l' ) |
---|
567 | rans_tke_l = .TRUE. |
---|
568 | rans_mode = .TRUE. |
---|
569 | |
---|
570 | CASE ( 'TKE-e' ) |
---|
571 | rans_tke_e = .TRUE. |
---|
572 | rans_mode = .TRUE. |
---|
573 | |
---|
574 | CASE DEFAULT |
---|
575 | message_string = 'Unknown turbulence closure: ' // & |
---|
576 | TRIM( turbulence_closure ) |
---|
577 | CALL message( 'tcm_check_parameters', 'PA0500', 1, 2, 0, 6, 0 ) |
---|
578 | |
---|
579 | END SELECT |
---|
580 | ! |
---|
581 | !-- Set variables for RANS mode or LES mode |
---|
582 | IF ( rans_mode ) THEN |
---|
583 | ! |
---|
584 | !-- Assign values to constants for RANS mode |
---|
585 | dsig_e = 1.0_wp / rans_const_sigma(1) |
---|
586 | dsig_diss = 1.0_wp / rans_const_sigma(2) |
---|
587 | |
---|
588 | c_0 = rans_const_c(0) |
---|
589 | c_1 = rans_const_c(1) |
---|
590 | c_2 = rans_const_c(2) |
---|
591 | c_3 = rans_const_c(3) !> @todo clarify how to switch between different models |
---|
592 | c_4 = rans_const_c(4) |
---|
593 | |
---|
594 | IF ( turbulent_inflow .OR. turbulent_outflow ) THEN |
---|
595 | message_string = 'turbulent inflow/outflow is not yet '// & |
---|
596 | 'implemented for RANS mode' |
---|
597 | CALL message( 'tcm_check_parameters', 'PA0501', 1, 2, 0, 6, 0 ) |
---|
598 | ENDIF |
---|
599 | |
---|
600 | message_string = 'RANS mode is still in development! ' // & |
---|
601 | '&Not all features of PALM are yet compatible '// & |
---|
602 | 'with RANS mode. &Use at own risk!' |
---|
603 | CALL message( 'tcm_check_parameters', 'PA0502', 0, 1, 0, 6, 0 ) |
---|
604 | |
---|
605 | ELSE |
---|
606 | ! |
---|
607 | !-- LES mode |
---|
608 | c_0 = 0.1_wp !according to Lilly (1967) and Deardorff (1980) |
---|
609 | |
---|
610 | dsig_e = 1.0_wp !assure to use K_m to calculate TKE instead |
---|
611 | !of K_e which is used in RANS mode |
---|
612 | |
---|
613 | ENDIF |
---|
614 | |
---|
615 | END SUBROUTINE tcm_check_parameters |
---|
616 | |
---|
617 | !------------------------------------------------------------------------------! |
---|
618 | ! Description: |
---|
619 | ! ------------ |
---|
620 | !> Check data output. |
---|
621 | !------------------------------------------------------------------------------! |
---|
622 | SUBROUTINE tcm_check_data_output( var, unit ) |
---|
623 | |
---|
624 | IMPLICIT NONE |
---|
625 | |
---|
626 | CHARACTER (LEN=*) :: unit !< unit of output variable |
---|
627 | CHARACTER (LEN=*) :: var !< name of output variable |
---|
628 | |
---|
629 | |
---|
630 | SELECT CASE ( TRIM( var ) ) |
---|
631 | |
---|
632 | CASE ( 'diss' ) |
---|
633 | unit = 'm2/s3' |
---|
634 | |
---|
635 | CASE ( 'kh', 'km' ) |
---|
636 | unit = 'm2/s' |
---|
637 | |
---|
638 | CASE DEFAULT |
---|
639 | unit = 'illegal' |
---|
640 | |
---|
641 | END SELECT |
---|
642 | |
---|
643 | END SUBROUTINE tcm_check_data_output |
---|
644 | |
---|
645 | |
---|
646 | !------------------------------------------------------------------------------! |
---|
647 | ! Description: |
---|
648 | ! ------------ |
---|
649 | !> Define appropriate grid for netcdf variables. |
---|
650 | !> It is called out from subroutine netcdf. |
---|
651 | !------------------------------------------------------------------------------! |
---|
652 | SUBROUTINE tcm_define_netcdf_grid( var, found, grid_x, grid_y, grid_z ) |
---|
653 | |
---|
654 | IMPLICIT NONE |
---|
655 | |
---|
656 | CHARACTER (LEN=*), INTENT(OUT) :: grid_x !< x grid of output variable |
---|
657 | CHARACTER (LEN=*), INTENT(OUT) :: grid_y !< y grid of output variable |
---|
658 | CHARACTER (LEN=*), INTENT(OUT) :: grid_z !< z grid of output variable |
---|
659 | CHARACTER (LEN=*), INTENT(IN) :: var !< name of output variable |
---|
660 | |
---|
661 | LOGICAL, INTENT(OUT) :: found !< flag if output variable is found |
---|
662 | |
---|
663 | found = .TRUE. |
---|
664 | |
---|
665 | ! |
---|
666 | !-- Check for the grid |
---|
667 | SELECT CASE ( TRIM( var ) ) |
---|
668 | |
---|
669 | CASE ( 'diss', 'diss_xy', 'diss_xz', 'diss_yz' ) |
---|
670 | grid_x = 'x' |
---|
671 | grid_y = 'y' |
---|
672 | grid_z = 'zu' |
---|
673 | |
---|
674 | CASE ( 'kh', 'kh_xy', 'kh_xz', 'kh_yz' ) |
---|
675 | grid_x = 'x' |
---|
676 | grid_y = 'y' |
---|
677 | grid_z = 'zu' |
---|
678 | |
---|
679 | CASE ( 'km', 'km_xy', 'km_xz', 'km_yz' ) |
---|
680 | grid_x = 'x' |
---|
681 | grid_y = 'y' |
---|
682 | grid_z = 'zu' |
---|
683 | |
---|
684 | CASE DEFAULT |
---|
685 | found = .FALSE. |
---|
686 | grid_x = 'none' |
---|
687 | grid_y = 'none' |
---|
688 | grid_z = 'none' |
---|
689 | |
---|
690 | END SELECT |
---|
691 | |
---|
692 | END SUBROUTINE tcm_define_netcdf_grid |
---|
693 | |
---|
694 | |
---|
695 | !------------------------------------------------------------------------------! |
---|
696 | ! Description: |
---|
697 | ! ------------ |
---|
698 | !> Average 3D data. |
---|
699 | !------------------------------------------------------------------------------! |
---|
700 | SUBROUTINE tcm_3d_data_averaging( mode, variable ) |
---|
701 | |
---|
702 | |
---|
703 | USE averaging, & |
---|
704 | ONLY: diss_av, kh_av, km_av |
---|
705 | |
---|
706 | USE control_parameters, & |
---|
707 | ONLY: average_count_3d |
---|
708 | |
---|
709 | IMPLICIT NONE |
---|
710 | |
---|
711 | CHARACTER (LEN=*) :: mode !< flag defining mode 'allocate', 'sum' or 'average' |
---|
712 | CHARACTER (LEN=*) :: variable !< name of variable |
---|
713 | |
---|
714 | INTEGER(iwp) :: i !< loop index |
---|
715 | INTEGER(iwp) :: j !< loop index |
---|
716 | INTEGER(iwp) :: k !< loop index |
---|
717 | |
---|
718 | IF ( mode == 'allocate' ) THEN |
---|
719 | |
---|
720 | SELECT CASE ( TRIM( variable ) ) |
---|
721 | |
---|
722 | CASE ( 'diss' ) |
---|
723 | IF ( .NOT. ALLOCATED( diss_av ) ) THEN |
---|
724 | ALLOCATE( diss_av(nzb:nzt+1,nysg:nyng,nxlg:nxrg) ) |
---|
725 | ENDIF |
---|
726 | diss_av = 0.0_wp |
---|
727 | |
---|
728 | CASE ( 'kh' ) |
---|
729 | IF ( .NOT. ALLOCATED( kh_av ) ) THEN |
---|
730 | ALLOCATE( kh_av(nzb:nzt+1,nysg:nyng,nxlg:nxrg) ) |
---|
731 | ENDIF |
---|
732 | kh_av = 0.0_wp |
---|
733 | |
---|
734 | CASE ( 'km' ) |
---|
735 | IF ( .NOT. ALLOCATED( km_av ) ) THEN |
---|
736 | ALLOCATE( km_av(nzb:nzt+1,nysg:nyng,nxlg:nxrg) ) |
---|
737 | ENDIF |
---|
738 | km_av = 0.0_wp |
---|
739 | |
---|
740 | CASE DEFAULT |
---|
741 | CONTINUE |
---|
742 | |
---|
743 | END SELECT |
---|
744 | |
---|
745 | ELSEIF ( mode == 'sum' ) THEN |
---|
746 | |
---|
747 | SELECT CASE ( TRIM( variable ) ) |
---|
748 | |
---|
749 | CASE ( 'diss' ) |
---|
750 | IF ( ALLOCATED( diss_av ) ) THEN |
---|
751 | DO i = nxlg, nxrg |
---|
752 | DO j = nysg, nyng |
---|
753 | DO k = nzb, nzt+1 |
---|
754 | diss_av(k,j,i) = diss_av(k,j,i) + diss(k,j,i) |
---|
755 | ENDDO |
---|
756 | ENDDO |
---|
757 | ENDDO |
---|
758 | ENDIF |
---|
759 | |
---|
760 | CASE ( 'kh' ) |
---|
761 | IF ( ALLOCATED( kh_av ) ) THEN |
---|
762 | DO i = nxlg, nxrg |
---|
763 | DO j = nysg, nyng |
---|
764 | DO k = nzb, nzt+1 |
---|
765 | kh_av(k,j,i) = kh_av(k,j,i) + kh(k,j,i) |
---|
766 | ENDDO |
---|
767 | ENDDO |
---|
768 | ENDDO |
---|
769 | ENDIF |
---|
770 | |
---|
771 | CASE ( 'km' ) |
---|
772 | IF ( ALLOCATED( km_av ) ) THEN |
---|
773 | DO i = nxlg, nxrg |
---|
774 | DO j = nysg, nyng |
---|
775 | DO k = nzb, nzt+1 |
---|
776 | km_av(k,j,i) = km_av(k,j,i) + km(k,j,i) |
---|
777 | ENDDO |
---|
778 | ENDDO |
---|
779 | ENDDO |
---|
780 | ENDIF |
---|
781 | |
---|
782 | CASE DEFAULT |
---|
783 | CONTINUE |
---|
784 | |
---|
785 | END SELECT |
---|
786 | |
---|
787 | ELSEIF ( mode == 'average' ) THEN |
---|
788 | |
---|
789 | SELECT CASE ( TRIM( variable ) ) |
---|
790 | |
---|
791 | CASE ( 'diss' ) |
---|
792 | IF ( ALLOCATED( diss_av ) ) THEN |
---|
793 | DO i = nxlg, nxrg |
---|
794 | DO j = nysg, nyng |
---|
795 | DO k = nzb, nzt+1 |
---|
796 | diss_av(k,j,i) = diss_av(k,j,i) & |
---|
797 | / REAL( average_count_3d, KIND=wp ) |
---|
798 | ENDDO |
---|
799 | ENDDO |
---|
800 | ENDDO |
---|
801 | ENDIF |
---|
802 | |
---|
803 | CASE ( 'kh' ) |
---|
804 | IF ( ALLOCATED( kh_av ) ) THEN |
---|
805 | DO i = nxlg, nxrg |
---|
806 | DO j = nysg, nyng |
---|
807 | DO k = nzb, nzt+1 |
---|
808 | kh_av(k,j,i) = kh_av(k,j,i) & |
---|
809 | / REAL( average_count_3d, KIND=wp ) |
---|
810 | ENDDO |
---|
811 | ENDDO |
---|
812 | ENDDO |
---|
813 | ENDIF |
---|
814 | |
---|
815 | CASE ( 'km' ) |
---|
816 | IF ( ALLOCATED( km_av ) ) THEN |
---|
817 | DO i = nxlg, nxrg |
---|
818 | DO j = nysg, nyng |
---|
819 | DO k = nzb, nzt+1 |
---|
820 | km_av(k,j,i) = km_av(k,j,i) & |
---|
821 | / REAL( average_count_3d, KIND=wp ) |
---|
822 | ENDDO |
---|
823 | ENDDO |
---|
824 | ENDDO |
---|
825 | ENDIF |
---|
826 | |
---|
827 | END SELECT |
---|
828 | |
---|
829 | ENDIF |
---|
830 | |
---|
831 | END SUBROUTINE tcm_3d_data_averaging |
---|
832 | |
---|
833 | |
---|
834 | !------------------------------------------------------------------------------! |
---|
835 | ! Description: |
---|
836 | ! ------------ |
---|
837 | !> Define 2D output variables. |
---|
838 | !------------------------------------------------------------------------------! |
---|
839 | SUBROUTINE tcm_data_output_2d( av, variable, found, grid, mode, local_pf, & |
---|
840 | nzb_do, nzt_do ) |
---|
841 | |
---|
842 | USE averaging, & |
---|
843 | ONLY: diss_av, kh_av, km_av |
---|
844 | |
---|
845 | IMPLICIT NONE |
---|
846 | |
---|
847 | CHARACTER (LEN=*) :: grid !< name of vertical grid |
---|
848 | CHARACTER (LEN=*) :: mode !< either 'xy', 'xz' or 'yz' |
---|
849 | CHARACTER (LEN=*) :: variable !< name of variable |
---|
850 | |
---|
851 | INTEGER(iwp) :: av !< flag for (non-)average output |
---|
852 | INTEGER(iwp) :: flag_nr !< number of masking flag |
---|
853 | INTEGER(iwp) :: i !< loop index |
---|
854 | INTEGER(iwp) :: j !< loop index |
---|
855 | INTEGER(iwp) :: k !< loop index |
---|
856 | INTEGER(iwp) :: nzb_do !< vertical output index (bottom) |
---|
857 | INTEGER(iwp) :: nzt_do !< vertical output index (top) |
---|
858 | |
---|
859 | LOGICAL :: found !< flag if output variable is found |
---|
860 | LOGICAL :: resorted !< flag if output is already resorted |
---|
861 | |
---|
862 | REAL(wp) :: fill_value = -9999.0_wp !< value for the _FillValue attribute |
---|
863 | |
---|
864 | REAL(wp), DIMENSION(nxl:nxr,nys:nyn,nzb_do:nzt_do) :: local_pf !< local |
---|
865 | !< array to which output data is resorted to |
---|
866 | |
---|
867 | REAL(wp), DIMENSION(:,:,:), POINTER :: to_be_resorted !< points to selected output variable |
---|
868 | |
---|
869 | found = .TRUE. |
---|
870 | resorted = .FALSE. |
---|
871 | ! |
---|
872 | !-- Set masking flag for topography for not resorted arrays |
---|
873 | flag_nr = 0 |
---|
874 | |
---|
875 | SELECT CASE ( TRIM( variable ) ) |
---|
876 | |
---|
877 | CASE ( 'diss_xy', 'diss_xz', 'diss_yz' ) |
---|
878 | IF ( av == 0 ) THEN |
---|
879 | to_be_resorted => diss |
---|
880 | ELSE |
---|
881 | IF ( .NOT. ALLOCATED( diss_av ) ) THEN |
---|
882 | ALLOCATE( diss_av(nzb:nzt+1,nysg:nyng,nxlg:nxrg) ) |
---|
883 | diss_av = REAL( fill_value, KIND = wp ) |
---|
884 | ENDIF |
---|
885 | to_be_resorted => diss_av |
---|
886 | ENDIF |
---|
887 | IF ( mode == 'xy' ) grid = 'zu' |
---|
888 | |
---|
889 | CASE ( 'kh_xy', 'kh_xz', 'kh_yz' ) |
---|
890 | IF ( av == 0 ) THEN |
---|
891 | to_be_resorted => kh |
---|
892 | ELSE |
---|
893 | IF ( .NOT. ALLOCATED( kh_av ) ) THEN |
---|
894 | ALLOCATE( kh_av(nzb:nzt+1,nysg:nyng,nxlg:nxrg) ) |
---|
895 | kh_av = REAL( fill_value, KIND = wp ) |
---|
896 | ENDIF |
---|
897 | to_be_resorted => kh_av |
---|
898 | ENDIF |
---|
899 | IF ( mode == 'xy' ) grid = 'zu' |
---|
900 | |
---|
901 | CASE ( 'km_xy', 'km_xz', 'km_yz' ) |
---|
902 | IF ( av == 0 ) THEN |
---|
903 | to_be_resorted => km |
---|
904 | ELSE |
---|
905 | IF ( .NOT. ALLOCATED( km_av ) ) THEN |
---|
906 | ALLOCATE( km_av(nzb:nzt+1,nysg:nyng,nxlg:nxrg) ) |
---|
907 | km_av = REAL( fill_value, KIND = wp ) |
---|
908 | ENDIF |
---|
909 | to_be_resorted => km_av |
---|
910 | ENDIF |
---|
911 | IF ( mode == 'xy' ) grid = 'zu' |
---|
912 | |
---|
913 | CASE DEFAULT |
---|
914 | found = .FALSE. |
---|
915 | grid = 'none' |
---|
916 | |
---|
917 | END SELECT |
---|
918 | |
---|
919 | IF ( found .AND. .NOT. resorted ) THEN |
---|
920 | DO i = nxl, nxr |
---|
921 | DO j = nys, nyn |
---|
922 | DO k = nzb_do, nzt_do |
---|
923 | local_pf(i,j,k) = MERGE( to_be_resorted(k,j,i), & |
---|
924 | REAL( fill_value, KIND = wp ), & |
---|
925 | BTEST( wall_flags_0(k,j,i), flag_nr ) ) |
---|
926 | ENDDO |
---|
927 | ENDDO |
---|
928 | ENDDO |
---|
929 | ENDIF |
---|
930 | |
---|
931 | END SUBROUTINE tcm_data_output_2d |
---|
932 | |
---|
933 | |
---|
934 | !------------------------------------------------------------------------------! |
---|
935 | ! Description: |
---|
936 | ! ------------ |
---|
937 | !> Define 3D output variables. |
---|
938 | !------------------------------------------------------------------------------! |
---|
939 | SUBROUTINE tcm_data_output_3d( av, variable, found, local_pf, nzb_do, nzt_do ) |
---|
940 | |
---|
941 | |
---|
942 | USE averaging, & |
---|
943 | ONLY: diss_av, kh_av, km_av |
---|
944 | |
---|
945 | IMPLICIT NONE |
---|
946 | |
---|
947 | CHARACTER (LEN=*) :: variable !< name of variable |
---|
948 | |
---|
949 | INTEGER(iwp) :: av !< flag for (non-)average output |
---|
950 | INTEGER(iwp) :: flag_nr !< number of masking flag |
---|
951 | INTEGER(iwp) :: i !< loop index |
---|
952 | INTEGER(iwp) :: j !< loop index |
---|
953 | INTEGER(iwp) :: k !< loop index |
---|
954 | INTEGER(iwp) :: nzb_do !< lower limit of the data output (usually 0) |
---|
955 | INTEGER(iwp) :: nzt_do !< vertical upper limit of the data output (usually nz_do3d) |
---|
956 | |
---|
957 | LOGICAL :: found !< flag if output variable is found |
---|
958 | LOGICAL :: resorted !< flag if output is already resorted |
---|
959 | |
---|
960 | REAL(wp) :: fill_value = -9999.0_wp !< value for the _FillValue attribute |
---|
961 | |
---|
962 | REAL(sp), DIMENSION(nxl:nxr,nys:nyn,nzb_do:nzt_do) :: local_pf !< local |
---|
963 | !< array to which output data is resorted to |
---|
964 | |
---|
965 | REAL(wp), DIMENSION(:,:,:), POINTER :: to_be_resorted !< points to selected output variable |
---|
966 | |
---|
967 | found = .TRUE. |
---|
968 | resorted = .FALSE. |
---|
969 | ! |
---|
970 | !-- Set masking flag for topography for not resorted arrays |
---|
971 | flag_nr = 0 |
---|
972 | |
---|
973 | SELECT CASE ( TRIM( variable ) ) |
---|
974 | |
---|
975 | CASE ( 'diss' ) |
---|
976 | IF ( av == 0 ) THEN |
---|
977 | to_be_resorted => diss |
---|
978 | ELSE |
---|
979 | IF ( .NOT. ALLOCATED( diss_av ) ) THEN |
---|
980 | ALLOCATE( diss_av(nzb:nzt+1,nysg:nyng,nxlg:nxrg) ) |
---|
981 | diss_av = REAL( fill_value, KIND = wp ) |
---|
982 | ENDIF |
---|
983 | to_be_resorted => diss_av |
---|
984 | ENDIF |
---|
985 | |
---|
986 | CASE ( 'kh' ) |
---|
987 | IF ( av == 0 ) THEN |
---|
988 | to_be_resorted => kh |
---|
989 | ELSE |
---|
990 | IF ( .NOT. ALLOCATED( kh_av ) ) THEN |
---|
991 | ALLOCATE( kh_av(nzb:nzt+1,nysg:nyng,nxlg:nxrg) ) |
---|
992 | kh_av = REAL( fill_value, KIND = wp ) |
---|
993 | ENDIF |
---|
994 | to_be_resorted => kh_av |
---|
995 | ENDIF |
---|
996 | |
---|
997 | CASE ( 'km' ) |
---|
998 | IF ( av == 0 ) THEN |
---|
999 | to_be_resorted => km |
---|
1000 | ELSE |
---|
1001 | IF ( .NOT. ALLOCATED( km_av ) ) THEN |
---|
1002 | ALLOCATE( km_av(nzb:nzt+1,nysg:nyng,nxlg:nxrg) ) |
---|
1003 | km_av = REAL( fill_value, KIND = wp ) |
---|
1004 | ENDIF |
---|
1005 | to_be_resorted => km_av |
---|
1006 | ENDIF |
---|
1007 | |
---|
1008 | CASE DEFAULT |
---|
1009 | found = .FALSE. |
---|
1010 | |
---|
1011 | END SELECT |
---|
1012 | |
---|
1013 | |
---|
1014 | IF ( found .AND. .NOT. resorted ) THEN |
---|
1015 | DO i = nxl, nxr |
---|
1016 | DO j = nys, nyn |
---|
1017 | DO k = nzb_do, nzt_do |
---|
1018 | local_pf(i,j,k) = MERGE( & |
---|
1019 | to_be_resorted(k,j,i), & |
---|
1020 | REAL( fill_value, KIND = wp ), & |
---|
1021 | BTEST( wall_flags_0(k,j,i), flag_nr ) ) |
---|
1022 | ENDDO |
---|
1023 | ENDDO |
---|
1024 | ENDDO |
---|
1025 | resorted = .TRUE. |
---|
1026 | ENDIF |
---|
1027 | |
---|
1028 | END SUBROUTINE tcm_data_output_3d |
---|
1029 | |
---|
1030 | |
---|
1031 | !------------------------------------------------------------------------------! |
---|
1032 | ! Description: |
---|
1033 | ! ------------ |
---|
1034 | !> Allocate arrays and assign pointers. |
---|
1035 | !------------------------------------------------------------------------------! |
---|
1036 | SUBROUTINE tcm_init_arrays |
---|
1037 | |
---|
1038 | USE bulk_cloud_model_mod, & |
---|
1039 | ONLY: collision_turbulence |
---|
1040 | |
---|
1041 | USE pmc_interface, & |
---|
1042 | ONLY: nested_run |
---|
1043 | |
---|
1044 | IMPLICIT NONE |
---|
1045 | |
---|
1046 | ALLOCATE( kh(nzb:nzt+1,nysg:nyng,nxlg:nxrg) ) |
---|
1047 | ALLOCATE( km(nzb:nzt+1,nysg:nyng,nxlg:nxrg) ) |
---|
1048 | |
---|
1049 | ALLOCATE( e_1(nzb:nzt+1,nysg:nyng,nxlg:nxrg) ) |
---|
1050 | ALLOCATE( e_2(nzb:nzt+1,nysg:nyng,nxlg:nxrg) ) |
---|
1051 | ALLOCATE( e_3(nzb:nzt+1,nysg:nyng,nxlg:nxrg) ) |
---|
1052 | |
---|
1053 | ! |
---|
1054 | !-- Allocate arrays required for dissipation. |
---|
1055 | !-- Please note, if it is a nested run, arrays need to be allocated even if |
---|
1056 | !-- they do not necessarily need to be transferred, which is attributed to |
---|
1057 | !-- the design of the model coupler which allocates memory for each variable. |
---|
1058 | ALLOCATE( diss_1(nzb:nzt+1,nysg:nyng,nxlg:nxrg) ) |
---|
1059 | |
---|
1060 | IF ( rans_tke_e .OR. nested_run ) THEN |
---|
1061 | ALLOCATE( diss_2(nzb:nzt+1,nysg:nyng,nxlg:nxrg) ) |
---|
1062 | ALLOCATE( diss_3(nzb:nzt+1,nysg:nyng,nxlg:nxrg) ) |
---|
1063 | ENDIF |
---|
1064 | |
---|
1065 | ! |
---|
1066 | !-- Initial assignment of pointers |
---|
1067 | e => e_1; e_p => e_2; te_m => e_3 |
---|
1068 | |
---|
1069 | diss => diss_1 |
---|
1070 | IF ( rans_tke_e .OR. nested_run ) THEN |
---|
1071 | diss_p => diss_2; tdiss_m => diss_3 |
---|
1072 | ENDIF |
---|
1073 | |
---|
1074 | END SUBROUTINE tcm_init_arrays |
---|
1075 | |
---|
1076 | |
---|
1077 | !------------------------------------------------------------------------------! |
---|
1078 | ! Description: |
---|
1079 | ! ------------ |
---|
1080 | !> Initialization of turbulence closure module. |
---|
1081 | !------------------------------------------------------------------------------! |
---|
1082 | SUBROUTINE tcm_init |
---|
1083 | |
---|
1084 | USE control_parameters, & |
---|
1085 | ONLY: bc_dirichlet_l, complex_terrain, topography |
---|
1086 | |
---|
1087 | USE model_1d_mod, & |
---|
1088 | ONLY: e1d, kh1d, km1d |
---|
1089 | |
---|
1090 | IMPLICIT NONE |
---|
1091 | |
---|
1092 | INTEGER(iwp) :: i !< loop index |
---|
1093 | INTEGER(iwp) :: j !< loop index |
---|
1094 | INTEGER(iwp) :: k !< loop index |
---|
1095 | INTEGER(iwp) :: nz_s_shift !< lower shift index for scalars |
---|
1096 | INTEGER(iwp) :: nz_s_shift_l !< local lower shift index in case of turbulent inflow |
---|
1097 | |
---|
1098 | ! |
---|
1099 | !-- Initialize mixing length |
---|
1100 | CALL tcm_init_mixing_length |
---|
1101 | |
---|
1102 | ! |
---|
1103 | !-- Actions for initial runs |
---|
1104 | IF ( TRIM( initializing_actions ) /= 'read_restart_data' .AND. & |
---|
1105 | TRIM( initializing_actions ) /= 'cyclic_fill' ) THEN |
---|
1106 | |
---|
1107 | IF ( INDEX( initializing_actions, 'set_1d-model_profiles' ) /= 0 ) THEN |
---|
1108 | |
---|
1109 | IF ( .NOT. rans_tke_e ) THEN |
---|
1110 | ! |
---|
1111 | !-- Transfer initial profiles to the arrays of the 3D model |
---|
1112 | DO i = nxlg, nxrg |
---|
1113 | DO j = nysg, nyng |
---|
1114 | e(:,j,i) = e1d |
---|
1115 | kh(:,j,i) = kh1d |
---|
1116 | km(:,j,i) = km1d |
---|
1117 | ENDDO |
---|
1118 | ENDDO |
---|
1119 | |
---|
1120 | IF ( constant_diffusion ) THEN |
---|
1121 | e = 0.0_wp |
---|
1122 | ENDIF |
---|
1123 | |
---|
1124 | diss = 0.0_wp |
---|
1125 | |
---|
1126 | ELSE |
---|
1127 | ! |
---|
1128 | !-- In case of TKE-e closure in RANS mode, do not use e, diss, and km |
---|
1129 | !-- profiles from 1D model. Instead, initialize with constant profiles |
---|
1130 | IF ( constant_diffusion ) THEN |
---|
1131 | km = km_constant |
---|
1132 | kh = km / prandtl_number |
---|
1133 | e = 0.0_wp |
---|
1134 | ELSEIF ( e_init > 0.0_wp ) THEN |
---|
1135 | DO i = nxlg, nxrg |
---|
1136 | DO j = nysg, nyng |
---|
1137 | DO k = nzb+1, nzt |
---|
1138 | km(k,j,i) = c_0 * l_wall(k,j,i) * SQRT( e_init ) |
---|
1139 | ENDDO |
---|
1140 | ENDDO |
---|
1141 | ENDDO |
---|
1142 | km(nzb,:,:) = km(nzb+1,:,:) |
---|
1143 | km(nzt+1,:,:) = km(nzt,:,:) |
---|
1144 | kh = km / prandtl_number |
---|
1145 | e = e_init |
---|
1146 | ELSE |
---|
1147 | IF ( .NOT. ocean_mode ) THEN |
---|
1148 | kh = 0.01_wp ! there must exist an initial diffusion, because |
---|
1149 | km = 0.01_wp ! otherwise no TKE would be produced by the |
---|
1150 | ! production terms, as long as not yet |
---|
1151 | ! e = (u*/cm)**2 at k=nzb+1 |
---|
1152 | ELSE |
---|
1153 | kh = 0.00001_wp |
---|
1154 | km = 0.00001_wp |
---|
1155 | ENDIF |
---|
1156 | e = 0.0_wp |
---|
1157 | ENDIF |
---|
1158 | |
---|
1159 | DO i = nxlg, nxrg |
---|
1160 | DO j = nysg, nyng |
---|
1161 | DO k = nzb+1, nzt |
---|
1162 | diss(k,j,i) = c_0**4 * e(k,j,i)**2 / km(k,j,i) |
---|
1163 | ENDDO |
---|
1164 | ENDDO |
---|
1165 | ENDDO |
---|
1166 | diss(nzb,:,:) = diss(nzb+1,:,:) |
---|
1167 | diss(nzt+1,:,:) = diss(nzt,:,:) |
---|
1168 | |
---|
1169 | ENDIF |
---|
1170 | |
---|
1171 | ELSEIF ( INDEX( initializing_actions, 'set_constant_profiles' ) /= 0 .OR. & |
---|
1172 | INDEX( initializing_actions, 'inifor' ) /= 0 ) THEN |
---|
1173 | |
---|
1174 | IF ( constant_diffusion ) THEN |
---|
1175 | km = km_constant |
---|
1176 | kh = km / prandtl_number |
---|
1177 | e = 0.0_wp |
---|
1178 | ELSEIF ( e_init > 0.0_wp ) THEN |
---|
1179 | DO i = nxlg, nxrg |
---|
1180 | DO j = nysg, nyng |
---|
1181 | DO k = nzb+1, nzt |
---|
1182 | km(k,j,i) = c_0 * l_wall(k,j,i) * SQRT( e_init ) |
---|
1183 | ENDDO |
---|
1184 | ENDDO |
---|
1185 | ENDDO |
---|
1186 | km(nzb,:,:) = km(nzb+1,:,:) |
---|
1187 | km(nzt+1,:,:) = km(nzt,:,:) |
---|
1188 | kh = km / prandtl_number |
---|
1189 | e = e_init |
---|
1190 | ELSE |
---|
1191 | IF ( .NOT. ocean_mode ) THEN |
---|
1192 | kh = 0.01_wp ! there must exist an initial diffusion, because |
---|
1193 | km = 0.01_wp ! otherwise no TKE would be produced by the |
---|
1194 | ! production terms, as long as not yet |
---|
1195 | ! e = (u*/cm)**2 at k=nzb+1 |
---|
1196 | ELSE |
---|
1197 | kh = 0.00001_wp |
---|
1198 | km = 0.00001_wp |
---|
1199 | ENDIF |
---|
1200 | e = 0.0_wp |
---|
1201 | ENDIF |
---|
1202 | |
---|
1203 | IF ( rans_tke_e ) THEN |
---|
1204 | DO i = nxlg, nxrg |
---|
1205 | DO j = nysg, nyng |
---|
1206 | DO k = nzb+1, nzt |
---|
1207 | diss(k,j,i) = c_0**4 * e(k,j,i)**2 / km(k,j,i) |
---|
1208 | ENDDO |
---|
1209 | ENDDO |
---|
1210 | ENDDO |
---|
1211 | diss(nzb,:,:) = diss(nzb+1,:,:) |
---|
1212 | diss(nzt+1,:,:) = diss(nzt,:,:) |
---|
1213 | ELSE |
---|
1214 | diss = 0.0_wp |
---|
1215 | ENDIF |
---|
1216 | |
---|
1217 | ENDIF |
---|
1218 | ! |
---|
1219 | !-- Store initial profiles for output purposes etc. |
---|
1220 | hom(:,1,23,:) = SPREAD( km(:,nys,nxl), 2, statistic_regions+1 ) |
---|
1221 | hom(:,1,24,:) = SPREAD( kh(:,nys,nxl), 2, statistic_regions+1 ) |
---|
1222 | ! |
---|
1223 | !-- Initialize old and new time levels. |
---|
1224 | te_m = 0.0_wp |
---|
1225 | e_p = e |
---|
1226 | IF ( rans_tke_e ) THEN |
---|
1227 | tdiss_m = 0.0_wp |
---|
1228 | diss_p = diss |
---|
1229 | ENDIF |
---|
1230 | |
---|
1231 | ELSEIF ( TRIM( initializing_actions ) == 'read_restart_data' .OR. & |
---|
1232 | TRIM( initializing_actions ) == 'cyclic_fill' ) & |
---|
1233 | THEN |
---|
1234 | |
---|
1235 | ! |
---|
1236 | !-- In case of complex terrain and cyclic fill method as initialization, |
---|
1237 | !-- shift initial data in the vertical direction for each point in the |
---|
1238 | !-- x-y-plane depending on local surface height |
---|
1239 | IF ( complex_terrain .AND. & |
---|
1240 | TRIM( initializing_actions ) == 'cyclic_fill' ) THEN |
---|
1241 | DO i = nxlg, nxrg |
---|
1242 | DO j = nysg, nyng |
---|
1243 | nz_s_shift = topo_top_ind(j,i,0) |
---|
1244 | |
---|
1245 | e(nz_s_shift:nzt+1,j,i) = e(0:nzt+1-nz_s_shift,j,i) |
---|
1246 | km(nz_s_shift:nzt+1,j,i) = km(0:nzt+1-nz_s_shift,j,i) |
---|
1247 | kh(nz_s_shift:nzt+1,j,i) = kh(0:nzt+1-nz_s_shift,j,i) |
---|
1248 | ENDDO |
---|
1249 | ENDDO |
---|
1250 | IF ( rans_tke_e ) THEN |
---|
1251 | DO i = nxlg, nxrg |
---|
1252 | DO j = nysg, nyng |
---|
1253 | nz_s_shift = topo_top_ind(j,i,0) |
---|
1254 | |
---|
1255 | diss(nz_s_shift:nzt+1,j,i) = diss(0:nzt+1-nz_s_shift,j,i) |
---|
1256 | ENDDO |
---|
1257 | ENDDO |
---|
1258 | ELSE |
---|
1259 | diss = 0.0_wp |
---|
1260 | ENDIF |
---|
1261 | ENDIF |
---|
1262 | |
---|
1263 | ! |
---|
1264 | !-- Initialization of the turbulence recycling method |
---|
1265 | IF ( TRIM( initializing_actions ) == 'cyclic_fill' .AND. & |
---|
1266 | turbulent_inflow ) THEN |
---|
1267 | mean_inflow_profiles(:,5) = hom_sum(:,8,0) ! e |
---|
1268 | ! |
---|
1269 | !-- In case of complex terrain, determine vertical displacement at inflow |
---|
1270 | !-- boundary and adjust mean inflow profiles |
---|
1271 | IF ( complex_terrain ) THEN |
---|
1272 | IF ( nxlg <= 0 .AND. nxrg >= 0 .AND. & |
---|
1273 | nysg <= 0 .AND. nyng >= 0 ) THEN |
---|
1274 | nz_s_shift_l = topo_top_ind(0,0,0) |
---|
1275 | ELSE |
---|
1276 | nz_s_shift_l = 0 |
---|
1277 | ENDIF |
---|
1278 | #if defined( __parallel ) |
---|
1279 | CALL MPI_ALLREDUCE(nz_s_shift_l, nz_s_shift, 1, MPI_INTEGER, & |
---|
1280 | MPI_MAX, comm2d, ierr) |
---|
1281 | #else |
---|
1282 | nz_s_shift = nz_s_shift_l |
---|
1283 | #endif |
---|
1284 | mean_inflow_profiles(nz_s_shift:nzt+1,5) = & |
---|
1285 | hom_sum(0:nzt+1-nz_s_shift,8,0) ! e |
---|
1286 | ENDIF |
---|
1287 | ! |
---|
1288 | !-- Use these mean profiles at the inflow (provided that Dirichlet |
---|
1289 | !-- conditions are used) |
---|
1290 | IF ( bc_dirichlet_l ) THEN |
---|
1291 | DO j = nysg, nyng |
---|
1292 | DO k = nzb, nzt+1 |
---|
1293 | e(k,j,nxlg:-1) = mean_inflow_profiles(k,5) |
---|
1294 | ENDDO |
---|
1295 | ENDDO |
---|
1296 | ENDIF |
---|
1297 | ENDIF |
---|
1298 | ! |
---|
1299 | !-- Inside buildings set TKE back to zero |
---|
1300 | IF ( TRIM( initializing_actions ) == 'cyclic_fill' .AND. & |
---|
1301 | topography /= 'flat' ) THEN |
---|
1302 | ! |
---|
1303 | !-- Inside buildings set TKE back to zero. |
---|
1304 | !-- Other scalars (km, kh,...) are ignored at present, |
---|
1305 | !-- maybe revise later. |
---|
1306 | DO i = nxlg, nxrg |
---|
1307 | DO j = nysg, nyng |
---|
1308 | DO k = nzb, nzt |
---|
1309 | e(k,j,i) = MERGE( e(k,j,i), 0.0_wp, & |
---|
1310 | BTEST( wall_flags_0(k,j,i), 0 ) ) |
---|
1311 | ENDDO |
---|
1312 | ENDDO |
---|
1313 | ENDDO |
---|
1314 | |
---|
1315 | IF ( rans_tke_e ) THEN |
---|
1316 | DO i = nxlg, nxrg |
---|
1317 | DO j = nysg, nyng |
---|
1318 | DO k = nzb, nzt |
---|
1319 | diss(k,j,i) = MERGE( diss(k,j,i), 0.0_wp, & |
---|
1320 | BTEST( wall_flags_0(k,j,i), 0 ) ) |
---|
1321 | ENDDO |
---|
1322 | ENDDO |
---|
1323 | ENDDO |
---|
1324 | ENDIF |
---|
1325 | ENDIF |
---|
1326 | ! |
---|
1327 | !-- Initialize new time levels (only done in order to set boundary values |
---|
1328 | !-- including ghost points) |
---|
1329 | e_p = e |
---|
1330 | ! |
---|
1331 | !-- Allthough tendency arrays are set in prognostic_equations, they have |
---|
1332 | !-- to be predefined here because there they are used (but multiplied with 0) |
---|
1333 | !-- before they are set. |
---|
1334 | te_m = 0.0_wp |
---|
1335 | |
---|
1336 | IF ( rans_tke_e ) THEN |
---|
1337 | diss_p = diss |
---|
1338 | tdiss_m = 0.0_wp |
---|
1339 | ENDIF |
---|
1340 | |
---|
1341 | ENDIF |
---|
1342 | |
---|
1343 | END SUBROUTINE tcm_init |
---|
1344 | |
---|
1345 | |
---|
1346 | !------------------------------------------------------------------------------! |
---|
1347 | ! Description: |
---|
1348 | ! ------------ |
---|
1349 | !> Pre-computation of grid-dependent and near-wall mixing length. |
---|
1350 | !> @todo consider walls in horizontal direction at a distance further than a |
---|
1351 | !> single grid point (RANS mode) |
---|
1352 | !------------------------------------------------------------------------------! |
---|
1353 | SUBROUTINE tcm_init_mixing_length |
---|
1354 | |
---|
1355 | USE arrays_3d, & |
---|
1356 | ONLY: dzw, ug, vg, zu, zw |
---|
1357 | |
---|
1358 | USE control_parameters, & |
---|
1359 | ONLY: f, message_string, wall_adjustment, wall_adjustment_factor |
---|
1360 | |
---|
1361 | USE grid_variables, & |
---|
1362 | ONLY: dx, dy |
---|
1363 | |
---|
1364 | USE indices, & |
---|
1365 | ONLY: nbgp, nx, nxl, nxlg, nxr, nxrg, ny, nyn, nyng, nys, nysg, nzb, & |
---|
1366 | nzt, wall_flags_0 |
---|
1367 | |
---|
1368 | USE kinds |
---|
1369 | |
---|
1370 | |
---|
1371 | IMPLICIT NONE |
---|
1372 | |
---|
1373 | INTEGER(iwp) :: dist_dx !< found distance devided by dx |
---|
1374 | INTEGER(iwp) :: i !< index variable along x |
---|
1375 | INTEGER(iwp) :: ii !< index variable along x |
---|
1376 | INTEGER(iwp) :: j !< index variable along y |
---|
1377 | INTEGER(iwp) :: k !< index variable along z |
---|
1378 | INTEGER(iwp) :: k_max_topo !< index of maximum topography height |
---|
1379 | INTEGER(iwp) :: kk !< index variable along z |
---|
1380 | INTEGER(iwp) :: rad_i !< search radius in grid points along x |
---|
1381 | INTEGER(iwp) :: rad_i_l !< possible search radius to the left |
---|
1382 | INTEGER(iwp) :: rad_i_r !< possible search radius to the right |
---|
1383 | INTEGER(iwp) :: rad_j !< search radius in grid points along y |
---|
1384 | INTEGER(iwp) :: rad_j_n !< possible search radius to north |
---|
1385 | INTEGER(iwp) :: rad_j_s !< possible search radius to south |
---|
1386 | INTEGER(iwp) :: rad_k !< search radius in grid points along z |
---|
1387 | INTEGER(iwp) :: rad_k_b !< search radius in grid points along negative z |
---|
1388 | INTEGER(iwp) :: rad_k_t !< search radius in grid points along positive z |
---|
1389 | |
---|
1390 | INTEGER(KIND=1), DIMENSION(:,:), ALLOCATABLE :: vic_yz !< contains a quarter of a single yz-slice of vicinity |
---|
1391 | |
---|
1392 | INTEGER(KIND=1), DIMENSION(:,:,:), ALLOCATABLE :: vicinity !< contains topography information of the vicinity of (i/j/k) |
---|
1393 | |
---|
1394 | REAL(wp) :: radius !< search radius in meter |
---|
1395 | |
---|
1396 | ALLOCATE( l_grid(1:nzt) ) |
---|
1397 | ALLOCATE( l_wall(nzb:nzt+1,nysg:nyng,nxlg:nxrg) ) |
---|
1398 | ! |
---|
1399 | !-- Initialize the mixing length in case of an LES-simulation |
---|
1400 | IF ( .NOT. rans_mode ) THEN |
---|
1401 | ! |
---|
1402 | !-- Compute the grid-dependent mixing length. |
---|
1403 | DO k = 1, nzt |
---|
1404 | l_grid(k) = ( dx * dy * dzw(k) )**0.33333333333333_wp |
---|
1405 | ENDDO |
---|
1406 | ! |
---|
1407 | !-- Initialize near-wall mixing length l_wall only in the vertical direction |
---|
1408 | !-- for the moment, multiplication with wall_adjustment_factor further below |
---|
1409 | l_wall(nzb,:,:) = l_grid(1) |
---|
1410 | DO k = nzb+1, nzt |
---|
1411 | l_wall(k,:,:) = l_grid(k) |
---|
1412 | ENDDO |
---|
1413 | l_wall(nzt+1,:,:) = l_grid(nzt) |
---|
1414 | |
---|
1415 | IF ( wall_adjustment ) THEN |
---|
1416 | |
---|
1417 | DO k = 1, nzt |
---|
1418 | IF ( l_grid(k) > 1.5_wp * dx * wall_adjustment_factor .OR. & |
---|
1419 | l_grid(k) > 1.5_wp * dy * wall_adjustment_factor ) THEN |
---|
1420 | WRITE( message_string, * ) 'grid anisotropy exceeds ', & |
---|
1421 | 'threshold given by only local', & |
---|
1422 | ' &horizontal reduction of near_wall ', & |
---|
1423 | 'mixing length l_wall', & |
---|
1424 | ' &starting from height level k = ', k, & |
---|
1425 | '.' |
---|
1426 | CALL message( 'init_grid', 'PA0202', 0, 1, 0, 6, 0 ) |
---|
1427 | EXIT |
---|
1428 | ENDIF |
---|
1429 | ENDDO |
---|
1430 | ! |
---|
1431 | !-- In case of topography: limit near-wall mixing length l_wall further: |
---|
1432 | !-- Go through all points of the subdomain one by one and look for the closest |
---|
1433 | !-- surface. |
---|
1434 | !-- Is this correct in the ocean case? |
---|
1435 | DO i = nxl, nxr |
---|
1436 | DO j = nys, nyn |
---|
1437 | DO k = nzb+1, nzt |
---|
1438 | ! |
---|
1439 | !-- Check if current gridpoint belongs to the atmosphere |
---|
1440 | IF ( BTEST( wall_flags_0(k,j,i), 0 ) ) THEN |
---|
1441 | ! |
---|
1442 | !-- Check for neighbouring grid-points. |
---|
1443 | !-- Vertical distance, down |
---|
1444 | IF ( .NOT. BTEST( wall_flags_0(k-1,j,i), 0 ) ) & |
---|
1445 | l_wall(k,j,i) = MIN( l_grid(k), zu(k) - zw(k-1) ) |
---|
1446 | ! |
---|
1447 | !-- Vertical distance, up |
---|
1448 | IF ( .NOT. BTEST( wall_flags_0(k+1,j,i), 0 ) ) & |
---|
1449 | l_wall(k,j,i) = MIN( l_wall(k,j,i), l_grid(k), zw(k) - zu(k) ) |
---|
1450 | ! |
---|
1451 | !-- y-distance |
---|
1452 | IF ( .NOT. BTEST( wall_flags_0(k,j-1,i), 0 ) .OR. & |
---|
1453 | .NOT. BTEST( wall_flags_0(k,j+1,i), 0 ) ) & |
---|
1454 | l_wall(k,j,i) = MIN( l_wall(k,j,i), l_grid(k), 0.5_wp * dy ) |
---|
1455 | ! |
---|
1456 | !-- x-distance |
---|
1457 | IF ( .NOT. BTEST( wall_flags_0(k,j,i-1), 0 ) .OR. & |
---|
1458 | .NOT. BTEST( wall_flags_0(k,j,i+1), 0 ) ) & |
---|
1459 | l_wall(k,j,i) = MIN( l_wall(k,j,i), l_grid(k), 0.5_wp * dx ) |
---|
1460 | ! |
---|
1461 | !-- yz-distance (vertical edges, down) |
---|
1462 | IF ( .NOT. BTEST( wall_flags_0(k-1,j-1,i), 0 ) .OR. & |
---|
1463 | .NOT. BTEST( wall_flags_0(k-1,j+1,i), 0 ) ) & |
---|
1464 | l_wall(k,j,i) = MIN( l_wall(k,j,i), l_grid(k), & |
---|
1465 | SQRT( 0.25_wp * dy**2 + & |
---|
1466 | ( zu(k) - zw(k-1) )**2 ) ) |
---|
1467 | ! |
---|
1468 | !-- yz-distance (vertical edges, up) |
---|
1469 | IF ( .NOT. BTEST( wall_flags_0(k+1,j-1,i), 0 ) .OR. & |
---|
1470 | .NOT. BTEST( wall_flags_0(k+1,j+1,i), 0 ) ) & |
---|
1471 | l_wall(k,j,i) = MIN( l_wall(k,j,i), l_grid(k), & |
---|
1472 | SQRT( 0.25_wp * dy**2 + & |
---|
1473 | ( zw(k) - zu(k) )**2 ) ) |
---|
1474 | ! |
---|
1475 | !-- xz-distance (vertical edges, down) |
---|
1476 | IF ( .NOT. BTEST( wall_flags_0(k-1,j,i-1), 0 ) .OR. & |
---|
1477 | .NOT. BTEST( wall_flags_0(k-1,j,i+1), 0 ) ) & |
---|
1478 | l_wall(k,j,i) = MIN( l_wall(k,j,i), l_grid(k), & |
---|
1479 | SQRT( 0.25_wp * dx**2 + & |
---|
1480 | ( zu(k) - zw(k-1) )**2 ) ) |
---|
1481 | ! |
---|
1482 | !-- xz-distance (vertical edges, up) |
---|
1483 | IF ( .NOT. BTEST( wall_flags_0(k+1,j,i-1), 0 ) .OR. & |
---|
1484 | .NOT. BTEST( wall_flags_0(k+1,j,i+1), 0 ) ) & |
---|
1485 | l_wall(k,j,i) = MIN( l_wall(k,j,i), l_grid(k), & |
---|
1486 | SQRT( 0.25_wp * dx**2 + & |
---|
1487 | ( zw(k) - zu(k) )**2 ) ) |
---|
1488 | ! |
---|
1489 | !-- xy-distance (horizontal edges) |
---|
1490 | IF ( .NOT. BTEST( wall_flags_0(k,j-1,i-1), 0 ) .OR. & |
---|
1491 | .NOT. BTEST( wall_flags_0(k,j+1,i-1), 0 ) .OR. & |
---|
1492 | .NOT. BTEST( wall_flags_0(k,j-1,i+1), 0 ) .OR. & |
---|
1493 | .NOT. BTEST( wall_flags_0(k,j+1,i+1), 0 ) ) & |
---|
1494 | l_wall(k,j,i) = MIN( l_wall(k,j,i), l_grid(k), & |
---|
1495 | SQRT( 0.25_wp * ( dx**2 + dy**2 ) ) ) |
---|
1496 | ! |
---|
1497 | !-- xyz distance (vertical and horizontal edges, down) |
---|
1498 | IF ( .NOT. BTEST( wall_flags_0(k-1,j-1,i-1), 0 ) .OR. & |
---|
1499 | .NOT. BTEST( wall_flags_0(k-1,j+1,i-1), 0 ) .OR. & |
---|
1500 | .NOT. BTEST( wall_flags_0(k-1,j-1,i+1), 0 ) .OR. & |
---|
1501 | .NOT. BTEST( wall_flags_0(k-1,j+1,i+1), 0 ) ) & |
---|
1502 | l_wall(k,j,i) = MIN( l_wall(k,j,i), l_grid(k), & |
---|
1503 | SQRT( 0.25_wp * ( dx**2 + dy**2 ) & |
---|
1504 | + ( zu(k) - zw(k-1) )**2 ) ) |
---|
1505 | ! |
---|
1506 | !-- xyz distance (vertical and horizontal edges, up) |
---|
1507 | IF ( .NOT. BTEST( wall_flags_0(k+1,j-1,i-1), 0 ) .OR. & |
---|
1508 | .NOT. BTEST( wall_flags_0(k+1,j+1,i-1), 0 ) .OR. & |
---|
1509 | .NOT. BTEST( wall_flags_0(k+1,j-1,i+1), 0 ) .OR. & |
---|
1510 | .NOT. BTEST( wall_flags_0(k+1,j+1,i+1), 0 ) ) & |
---|
1511 | l_wall(k,j,i) = MIN( l_wall(k,j,i), l_grid(k), & |
---|
1512 | SQRT( 0.25_wp * ( dx**2 + dy**2 ) & |
---|
1513 | + ( zw(k) - zu(k) )**2 ) ) |
---|
1514 | |
---|
1515 | ENDIF |
---|
1516 | ! |
---|
1517 | !-- Adjust mixing length by wall-adjustment factor and limit it by l_grid |
---|
1518 | l_wall(k,j,i) = MIN( l_wall(k,j,i) * wall_adjustment_factor, l_grid(k) ) |
---|
1519 | |
---|
1520 | ENDDO !k loop |
---|
1521 | ENDDO !j loop |
---|
1522 | ENDDO !i loop |
---|
1523 | |
---|
1524 | ENDIF !if wall_adjustment |
---|
1525 | |
---|
1526 | ELSE |
---|
1527 | ! |
---|
1528 | !-- Initialize the mixing length in case of a RANS simulation |
---|
1529 | ALLOCATE( l_black(nzb:nzt+1) ) |
---|
1530 | |
---|
1531 | ! |
---|
1532 | !-- Calculate mixing length according to Blackadar (1962) |
---|
1533 | IF ( f /= 0.0_wp ) THEN |
---|
1534 | l_max = 2.7E-4_wp * SQRT( ug(nzt+1)**2 + vg(nzt+1)**2 ) / & |
---|
1535 | ABS( f ) + 1.0E-10_wp |
---|
1536 | ELSE |
---|
1537 | l_max = 30.0_wp |
---|
1538 | ENDIF |
---|
1539 | |
---|
1540 | DO k = nzb, nzt |
---|
1541 | l_black(k) = kappa * zu(k) / ( 1.0_wp + kappa * zu(k) / l_max ) |
---|
1542 | ENDDO |
---|
1543 | |
---|
1544 | l_black(nzt+1) = l_black(nzt) |
---|
1545 | |
---|
1546 | ! |
---|
1547 | !-- Get height level of highest topography within local subdomain |
---|
1548 | k_max_topo = 0 |
---|
1549 | DO i = nxlg, nxrg |
---|
1550 | DO j = nysg, nyng |
---|
1551 | DO k = nzb+1, nzt-1 |
---|
1552 | IF ( .NOT. BTEST( wall_flags_0(k,j,i), 0 ) .AND. & |
---|
1553 | k > k_max_topo ) & |
---|
1554 | k_max_topo = k |
---|
1555 | ENDDO |
---|
1556 | ENDDO |
---|
1557 | ENDDO |
---|
1558 | |
---|
1559 | l_wall(nzb,:,:) = l_black(nzb) |
---|
1560 | l_wall(nzt+1,:,:) = l_black(nzt+1) |
---|
1561 | ! |
---|
1562 | !-- Limit mixing length to either nearest wall or Blackadar mixing length. |
---|
1563 | !-- For that, analyze each grid point (i/j/k) ("analysed grid point") and |
---|
1564 | !-- search within its vicinity for the shortest distance to a wall by cal- |
---|
1565 | !-- culating the distance between the analysed grid point and the "viewed |
---|
1566 | !-- grid point" if it contains a wall (belongs to topography). |
---|
1567 | DO k = nzb+1, nzt |
---|
1568 | |
---|
1569 | radius = l_black(k) ! radius within walls are searched |
---|
1570 | ! |
---|
1571 | !-- Set l_wall to its default maximum value (l_back) |
---|
1572 | l_wall(k,:,:) = radius |
---|
1573 | |
---|
1574 | ! |
---|
1575 | !-- Compute search radius as number of grid points in all directions |
---|
1576 | rad_i = CEILING( radius / dx ) |
---|
1577 | rad_j = CEILING( radius / dy ) |
---|
1578 | |
---|
1579 | DO kk = 0, nzt-k |
---|
1580 | rad_k_t = kk |
---|
1581 | ! |
---|
1582 | !-- Limit upward search radius to height of maximum topography |
---|
1583 | IF ( zu(k+kk)-zu(k) >= radius .OR. k+kk >= k_max_topo ) EXIT |
---|
1584 | ENDDO |
---|
1585 | |
---|
1586 | DO kk = 0, k |
---|
1587 | rad_k_b = kk |
---|
1588 | IF ( zu(k)-zu(k-kk) >= radius ) EXIT |
---|
1589 | ENDDO |
---|
1590 | |
---|
1591 | ! |
---|
1592 | !-- Get maximum vertical radius; necessary for defining arrays |
---|
1593 | rad_k = MAX( rad_k_b, rad_k_t ) |
---|
1594 | ! |
---|
1595 | !-- When analysed grid point lies above maximum topography, set search |
---|
1596 | !-- radius to 0 if the distance between the analysed grid point and max |
---|
1597 | !-- topography height is larger than the maximum search radius |
---|
1598 | IF ( zu(k-rad_k_b) > zu(k_max_topo) ) rad_k_b = 0 |
---|
1599 | ! |
---|
1600 | !-- Search within vicinity only if the vertical search radius is >0 |
---|
1601 | IF ( rad_k_b /= 0 .OR. rad_k_t /= 0 ) THEN |
---|
1602 | |
---|
1603 | !> @note shape of vicinity is larger in z direction |
---|
1604 | !> Shape of vicinity is two grid points larger than actual search |
---|
1605 | !> radius in vertical direction. The first and last grid point is |
---|
1606 | !> always set to 1 to asure correct detection of topography. See |
---|
1607 | !> function "shortest_distance" for details. |
---|
1608 | !> 2018-03-16, gronemeier |
---|
1609 | ALLOCATE( vicinity(-rad_k-1:rad_k+1,-rad_j:rad_j,-rad_i:rad_i) ) |
---|
1610 | ALLOCATE( vic_yz(0:rad_k+1,0:rad_j) ) |
---|
1611 | |
---|
1612 | vicinity = 1 |
---|
1613 | |
---|
1614 | DO i = nxl, nxr |
---|
1615 | DO j = nys, nyn |
---|
1616 | ! |
---|
1617 | !-- Start search only if (i/j/k) belongs to atmosphere |
---|
1618 | IF ( BTEST( wall_flags_0(k,j,i), 0 ) ) THEN |
---|
1619 | ! |
---|
1620 | !-- Reset topography within vicinity |
---|
1621 | vicinity(-rad_k:rad_k,:,:) = 0 |
---|
1622 | ! |
---|
1623 | !-- Copy area surrounding analysed grid point into vicinity. |
---|
1624 | !-- First, limit size of data copied to vicinity by the domain |
---|
1625 | !-- border |
---|
1626 | !> @note limit copied area to 1 grid point in hor. dir. |
---|
1627 | !> Ignore walls in horizontal direction which are |
---|
1628 | !> further away than a single grid point. This allows to |
---|
1629 | !> only search within local subdomain without the need |
---|
1630 | !> of global topography information. |
---|
1631 | !> The error made by this assumption are acceptable at |
---|
1632 | !> the moment. |
---|
1633 | !> 2018-10-01, gronemeier |
---|
1634 | rad_i_l = MIN( 1, rad_i, i ) |
---|
1635 | rad_i_r = MIN( 1, rad_i, nx-i ) |
---|
1636 | |
---|
1637 | rad_j_s = MIN( 1, rad_j, j ) |
---|
1638 | rad_j_n = MIN( 1, rad_j, ny-j ) |
---|
1639 | |
---|
1640 | CALL copy_into_vicinity( k, j, i, & |
---|
1641 | -rad_k_b, rad_k_t, & |
---|
1642 | -rad_j_s, rad_j_n, & |
---|
1643 | -rad_i_l, rad_i_r ) |
---|
1644 | !> @note in case of cyclic boundaries, those parts of the |
---|
1645 | !> topography which lies beyond the domain borders but |
---|
1646 | !> still within the search radius still needs to be |
---|
1647 | !> copied into 'vicinity'. As the effective search |
---|
1648 | !> radius is limited to 1 at the moment, no further |
---|
1649 | !> copying is needed. Old implementation (prior to |
---|
1650 | !> 2018-10-01) had this covered but used a global array. |
---|
1651 | !> 2018-10-01, gronemeier |
---|
1652 | |
---|
1653 | ! |
---|
1654 | !-- Search for walls only if there is any within vicinity |
---|
1655 | IF ( MAXVAL( vicinity(-rad_k:rad_k,:,:) ) /= 0 ) THEN |
---|
1656 | ! |
---|
1657 | !-- Search within first half (positive x) |
---|
1658 | dist_dx = rad_i |
---|
1659 | DO ii = 0, dist_dx |
---|
1660 | ! |
---|
1661 | !-- Search along vertical direction only if below |
---|
1662 | !-- maximum topography |
---|
1663 | IF ( rad_k_t > 0 ) THEN |
---|
1664 | ! |
---|
1665 | !-- Search for walls within octant (+++) |
---|
1666 | vic_yz = vicinity(0:rad_k+1,0:rad_j,ii) |
---|
1667 | l_wall(k,j,i) = MIN( l_wall(k,j,i), & |
---|
1668 | shortest_distance( vic_yz, .TRUE., ii ) ) |
---|
1669 | ! |
---|
1670 | !-- Search for walls within octant (+-+) |
---|
1671 | !-- Switch order of array so that the analysed grid |
---|
1672 | !-- point is always located at (0/0) (required by |
---|
1673 | !-- shortest_distance"). |
---|
1674 | vic_yz = vicinity(0:rad_k+1,0:-rad_j:-1,ii) |
---|
1675 | l_wall(k,j,i) = MIN( l_wall(k,j,i), & |
---|
1676 | shortest_distance( vic_yz, .TRUE., ii ) ) |
---|
1677 | |
---|
1678 | ENDIF |
---|
1679 | ! |
---|
1680 | !-- Search for walls within octant (+--) |
---|
1681 | vic_yz = vicinity(0:-rad_k-1:-1,0:-rad_j:-1,ii) |
---|
1682 | l_wall(k,j,i) = MIN( l_wall(k,j,i), & |
---|
1683 | shortest_distance( vic_yz, .FALSE., ii ) ) |
---|
1684 | ! |
---|
1685 | !-- Search for walls within octant (++-) |
---|
1686 | vic_yz = vicinity(0:-rad_k-1:-1,0:rad_j,ii) |
---|
1687 | l_wall(k,j,i) = MIN( l_wall(k,j,i), & |
---|
1688 | shortest_distance( vic_yz, .FALSE., ii ) ) |
---|
1689 | ! |
---|
1690 | !-- Reduce search along x by already found distance |
---|
1691 | dist_dx = CEILING( l_wall(k,j,i) / dx ) |
---|
1692 | |
---|
1693 | ENDDO |
---|
1694 | ! |
---|
1695 | !- Search within second half (negative x) |
---|
1696 | DO ii = 0, -dist_dx, -1 |
---|
1697 | ! |
---|
1698 | !-- Search along vertical direction only if below |
---|
1699 | !-- maximum topography |
---|
1700 | IF ( rad_k_t > 0 ) THEN |
---|
1701 | ! |
---|
1702 | !-- Search for walls within octant (-++) |
---|
1703 | vic_yz = vicinity(0:rad_k+1,0:rad_j,ii) |
---|
1704 | l_wall(k,j,i) = MIN( l_wall(k,j,i), & |
---|
1705 | shortest_distance( vic_yz, .TRUE., -ii ) ) |
---|
1706 | ! |
---|
1707 | !-- Search for walls within octant (--+) |
---|
1708 | !-- Switch order of array so that the analysed grid |
---|
1709 | !-- point is always located at (0/0) (required by |
---|
1710 | !-- shortest_distance"). |
---|
1711 | vic_yz = vicinity(0:rad_k+1,0:-rad_j:-1,ii) |
---|
1712 | l_wall(k,j,i) = MIN( l_wall(k,j,i), & |
---|
1713 | shortest_distance( vic_yz, .TRUE., -ii ) ) |
---|
1714 | |
---|
1715 | ENDIF |
---|
1716 | ! |
---|
1717 | !-- Search for walls within octant (---) |
---|
1718 | vic_yz = vicinity(0:-rad_k-1:-1,0:-rad_j:-1,ii) |
---|
1719 | l_wall(k,j,i) = MIN( l_wall(k,j,i), & |
---|
1720 | shortest_distance( vic_yz, .FALSE., -ii ) ) |
---|
1721 | ! |
---|
1722 | !-- Search for walls within octant (-+-) |
---|
1723 | vic_yz = vicinity(0:-rad_k-1:-1,0:rad_j,ii) |
---|
1724 | l_wall(k,j,i) = MIN( l_wall(k,j,i), & |
---|
1725 | shortest_distance( vic_yz, .FALSE., -ii ) ) |
---|
1726 | ! |
---|
1727 | !-- Reduce search along x by already found distance |
---|
1728 | dist_dx = CEILING( l_wall(k,j,i) / dx ) |
---|
1729 | |
---|
1730 | ENDDO |
---|
1731 | |
---|
1732 | ENDIF !Check for any walls within vicinity |
---|
1733 | |
---|
1734 | ELSE !Check if (i,j,k) belongs to atmosphere |
---|
1735 | |
---|
1736 | l_wall(k,j,i) = l_black(k) |
---|
1737 | |
---|
1738 | ENDIF |
---|
1739 | |
---|
1740 | ENDDO !j loop |
---|
1741 | ENDDO !i loop |
---|
1742 | |
---|
1743 | DEALLOCATE( vicinity ) |
---|
1744 | DEALLOCATE( vic_yz ) |
---|
1745 | |
---|
1746 | ENDIF !check vertical size of vicinity |
---|
1747 | |
---|
1748 | ENDDO !k loop |
---|
1749 | |
---|
1750 | !$ACC ENTER DATA COPYIN(l_black(nzb:nzt+1)) |
---|
1751 | |
---|
1752 | ENDIF !LES or RANS mode |
---|
1753 | |
---|
1754 | ! |
---|
1755 | !-- Set lateral boundary conditions for l_wall |
---|
1756 | CALL exchange_horiz( l_wall, nbgp ) |
---|
1757 | |
---|
1758 | !$ACC ENTER DATA COPYIN(l_grid(nzb:nzt+1)) & |
---|
1759 | !$ACC COPYIN(l_wall(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) |
---|
1760 | |
---|
1761 | CONTAINS |
---|
1762 | !------------------------------------------------------------------------------! |
---|
1763 | ! Description: |
---|
1764 | ! ------------ |
---|
1765 | !> Calculate the shortest distance between position (i/j/k)=(0/0/0) and |
---|
1766 | !> (pos_i/jj/kk), where (jj/kk) is the position of the maximum of 'array' |
---|
1767 | !> closest to the origin (0/0) of 'array'. |
---|
1768 | !------------------------------------------------------------------------------! |
---|
1769 | REAL(wp) FUNCTION shortest_distance( array, orientation, pos_i ) |
---|
1770 | |
---|
1771 | IMPLICIT NONE |
---|
1772 | |
---|
1773 | LOGICAL, INTENT(IN) :: orientation !< flag if array represents an array oriented upwards (true) or downwards (false) |
---|
1774 | |
---|
1775 | INTEGER(iwp), INTENT(IN) :: pos_i !< x position of the yz-plane 'array' |
---|
1776 | |
---|
1777 | INTEGER(iwp) :: a !< loop index |
---|
1778 | INTEGER(iwp) :: b !< loop index |
---|
1779 | INTEGER(iwp) :: jj !< loop index |
---|
1780 | |
---|
1781 | INTEGER(KIND=1) :: maximum !< maximum of array along z dimension |
---|
1782 | |
---|
1783 | INTEGER(iwp), DIMENSION(0:rad_j) :: loc_k !< location of closest wall along vertical dimension |
---|
1784 | |
---|
1785 | INTEGER(KIND=1), DIMENSION(0:rad_k+1,0:rad_j), INTENT(IN) :: array !< array containing a yz-plane at position pos_i |
---|
1786 | |
---|
1787 | ! |
---|
1788 | !-- Get coordinate of first maximum along vertical dimension |
---|
1789 | !-- at each y position of array (similar to function maxloc but more stable). |
---|
1790 | DO a = 0, rad_j |
---|
1791 | loc_k(a) = rad_k+1 |
---|
1792 | maximum = MAXVAL( array(:,a) ) |
---|
1793 | DO b = 0, rad_k+1 |
---|
1794 | IF ( array(b,a) == maximum ) THEN |
---|
1795 | loc_k(a) = b |
---|
1796 | EXIT |
---|
1797 | ENDIF |
---|
1798 | ENDDO |
---|
1799 | ENDDO |
---|
1800 | ! |
---|
1801 | !-- Set distance to the default maximum value (=search radius) |
---|
1802 | shortest_distance = radius |
---|
1803 | ! |
---|
1804 | !-- Calculate distance between position (0/0/0) and |
---|
1805 | !-- position (pos_i/jj/loc(jj)) and only save the shortest distance. |
---|
1806 | IF ( orientation ) THEN !if array is oriented upwards |
---|
1807 | DO jj = 0, rad_j |
---|
1808 | shortest_distance = & |
---|
1809 | MIN( shortest_distance, & |
---|
1810 | SQRT( MAX(REAL(pos_i, KIND=wp)*dx-0.5_wp*dx, 0.0_wp)**2 & |
---|
1811 | + MAX(REAL(jj, KIND=wp)*dy-0.5_wp*dy, 0.0_wp)**2 & |
---|
1812 | + MAX(zw(loc_k(jj)+k-1)-zu(k), 0.0_wp)**2 & |
---|
1813 | ) & |
---|
1814 | ) |
---|
1815 | ENDDO |
---|
1816 | ELSE !if array is oriented downwards |
---|
1817 | !> @note MAX within zw required to circumvent error at domain border |
---|
1818 | !> At the domain border, if non-cyclic boundary is present, the |
---|
1819 | !> index for zw could be -1, which will be errorneous (zw(-1) does |
---|
1820 | !> not exist). The MAX function limits the index to be at least 0. |
---|
1821 | DO jj = 0, rad_j |
---|
1822 | shortest_distance = & |
---|
1823 | MIN( shortest_distance, & |
---|
1824 | SQRT( MAX(REAL(pos_i, KIND=wp)*dx-0.5_wp*dx, 0.0_wp)**2 & |
---|
1825 | + MAX(REAL(jj, KIND=wp)*dy-0.5_wp*dy, 0.0_wp)**2 & |
---|
1826 | + MAX(zu(k)-zw(MAX(k-loc_k(jj),0_iwp)), 0.0_wp)**2 & |
---|
1827 | ) & |
---|
1828 | ) |
---|
1829 | ENDDO |
---|
1830 | ENDIF |
---|
1831 | |
---|
1832 | END FUNCTION |
---|
1833 | |
---|
1834 | !------------------------------------------------------------------------------! |
---|
1835 | ! Description: |
---|
1836 | ! ------------ |
---|
1837 | !> Copy a subarray of size (kb:kt,js:jn,il:ir) centered around grid point |
---|
1838 | !> (kp,jp,ip) containing the first bit of wall_flags_0 into the array |
---|
1839 | !> 'vicinity'. Only copy first bit as this indicates the presence of topography. |
---|
1840 | !------------------------------------------------------------------------------! |
---|
1841 | SUBROUTINE copy_into_vicinity( kp, jp, ip, kb, kt, js, jn, il, ir ) |
---|
1842 | |
---|
1843 | IMPLICIT NONE |
---|
1844 | |
---|
1845 | INTEGER(iwp), INTENT(IN) :: il !< left loop boundary |
---|
1846 | INTEGER(iwp), INTENT(IN) :: ip !< center position in x-direction |
---|
1847 | INTEGER(iwp), INTENT(IN) :: ir !< right loop boundary |
---|
1848 | INTEGER(iwp), INTENT(IN) :: jn !< northern loop boundary |
---|
1849 | INTEGER(iwp), INTENT(IN) :: jp !< center position in y-direction |
---|
1850 | INTEGER(iwp), INTENT(IN) :: js !< southern loop boundary |
---|
1851 | INTEGER(iwp), INTENT(IN) :: kb !< bottom loop boundary |
---|
1852 | INTEGER(iwp), INTENT(IN) :: kp !< center position in z-direction |
---|
1853 | INTEGER(iwp), INTENT(IN) :: kt !< top loop boundary |
---|
1854 | |
---|
1855 | INTEGER(iwp) :: i !< loop index |
---|
1856 | INTEGER(iwp) :: j !< loop index |
---|
1857 | INTEGER(iwp) :: k !< loop index |
---|
1858 | |
---|
1859 | DO i = il, ir |
---|
1860 | DO j = js, jn |
---|
1861 | DO k = kb, kt |
---|
1862 | vicinity(k,j,i) = MERGE( 0, 1, & |
---|
1863 | BTEST( wall_flags_0(kp+k,jp+j,ip+i), 0 ) ) |
---|
1864 | ENDDO |
---|
1865 | ENDDO |
---|
1866 | ENDDO |
---|
1867 | |
---|
1868 | END SUBROUTINE copy_into_vicinity |
---|
1869 | |
---|
1870 | END SUBROUTINE tcm_init_mixing_length |
---|
1871 | |
---|
1872 | |
---|
1873 | !------------------------------------------------------------------------------! |
---|
1874 | ! Description: |
---|
1875 | ! ------------ |
---|
1876 | !> Initialize virtual velocities used later in production_e. |
---|
1877 | !------------------------------------------------------------------------------! |
---|
1878 | SUBROUTINE production_e_init |
---|
1879 | |
---|
1880 | USE arrays_3d, & |
---|
1881 | ONLY: drho_air_zw, zu |
---|
1882 | |
---|
1883 | USE control_parameters, & |
---|
1884 | ONLY: constant_flux_layer |
---|
1885 | |
---|
1886 | USE surface_layer_fluxes_mod, & |
---|
1887 | ONLY: phi_m |
---|
1888 | |
---|
1889 | IMPLICIT NONE |
---|
1890 | |
---|
1891 | INTEGER(iwp) :: i !< grid index x-direction |
---|
1892 | INTEGER(iwp) :: j !< grid index y-direction |
---|
1893 | INTEGER(iwp) :: k !< grid index z-direction |
---|
1894 | INTEGER(iwp) :: m !< running index surface elements |
---|
1895 | |
---|
1896 | REAL(wp) :: km_sfc !< diffusion coefficient, used to compute virtual velocities |
---|
1897 | |
---|
1898 | IF ( constant_flux_layer ) THEN |
---|
1899 | ! |
---|
1900 | !-- Calculate a virtual velocity at the surface in a way that the |
---|
1901 | !-- vertical velocity gradient at k = 1 (u(k+1)-u_0) matches the |
---|
1902 | !-- Prandtl law (-w'u'/km). This gradient is used in the TKE shear |
---|
1903 | !-- production term at k=1 (see production_e_ij). |
---|
1904 | !-- The velocity gradient has to be limited in case of too small km |
---|
1905 | !-- (otherwise the timestep may be significantly reduced by large |
---|
1906 | !-- surface winds). |
---|
1907 | !-- not available in case of non-cyclic boundary conditions. |
---|
1908 | !-- Default surfaces, upward-facing |
---|
1909 | !$OMP PARALLEL DO PRIVATE(i,j,k,m) |
---|
1910 | !$ACC PARALLEL LOOP PRIVATE(i, j, k, m, km_sfc) & |
---|
1911 | !$ACC PRESENT(surf_def_h(0), u, v, drho_air_zw, zu) |
---|
1912 | DO m = 1, surf_def_h(0)%ns |
---|
1913 | |
---|
1914 | i = surf_def_h(0)%i(m) |
---|
1915 | j = surf_def_h(0)%j(m) |
---|
1916 | k = surf_def_h(0)%k(m) |
---|
1917 | ! |
---|
1918 | !-- Note, calculation of u_0 and v_0 is not fully accurate, as u/v |
---|
1919 | !-- and km are not on the same grid. Actually, a further |
---|
1920 | !-- interpolation of km onto the u/v-grid is necessary. However, the |
---|
1921 | !-- effect of this error is negligible. |
---|
1922 | km_sfc = kappa * surf_def_h(0)%us(m) * surf_def_h(0)%z_mo(m) / & |
---|
1923 | phi_m( surf_def_h(0)%z_mo(m) / surf_def_h(0)%ol(m) ) |
---|
1924 | |
---|
1925 | surf_def_h(0)%u_0(m) = u(k+1,j,i) + surf_def_h(0)%usws(m) * & |
---|
1926 | drho_air_zw(k-1) * & |
---|
1927 | ( zu(k+1) - zu(k-1) ) / & |
---|
1928 | ( km_sfc + 1.0E-20_wp ) |
---|
1929 | surf_def_h(0)%v_0(m) = v(k+1,j,i) + surf_def_h(0)%vsws(m) * & |
---|
1930 | drho_air_zw(k-1) * & |
---|
1931 | ( zu(k+1) - zu(k-1) ) / & |
---|
1932 | ( km_sfc + 1.0E-20_wp ) |
---|
1933 | |
---|
1934 | IF ( ABS( u(k+1,j,i) - surf_def_h(0)%u_0(m) ) > & |
---|
1935 | ABS( u(k+1,j,i) - u(k-1,j,i) ) & |
---|
1936 | ) surf_def_h(0)%u_0(m) = u(k-1,j,i) |
---|
1937 | |
---|
1938 | IF ( ABS( v(k+1,j,i) - surf_def_h(0)%v_0(m) ) > & |
---|
1939 | ABS( v(k+1,j,i) - v(k-1,j,i) ) & |
---|
1940 | ) surf_def_h(0)%v_0(m) = v(k-1,j,i) |
---|
1941 | |
---|
1942 | ENDDO |
---|
1943 | ! |
---|
1944 | !-- Default surfaces, downward-facing surfaces |
---|
1945 | !$OMP PARALLEL DO PRIVATE(i,j,k,m) |
---|
1946 | !$ACC PARALLEL LOOP PRIVATE(i, j, k, m, km_sfc) & |
---|
1947 | !$ACC PRESENT(surf_def_h(1), u, v, drho_air_zw, zu, km) |
---|
1948 | DO m = 1, surf_def_h(1)%ns |
---|
1949 | |
---|
1950 | i = surf_def_h(1)%i(m) |
---|
1951 | j = surf_def_h(1)%j(m) |
---|
1952 | k = surf_def_h(1)%k(m) |
---|
1953 | ! |
---|
1954 | !-- Note, calculation of u_0 and v_0 is not fully accurate, as u/v |
---|
1955 | !-- and km are not on the same grid. Actually, a further |
---|
1956 | !-- interpolation of km onto the u/v-grid is necessary. However, the |
---|
1957 | !-- effect of this error is negligible. |
---|
1958 | surf_def_h(1)%u_0(m) = u(k-1,j,i) - surf_def_h(1)%usws(m) * & |
---|
1959 | drho_air_zw(k-1) * & |
---|
1960 | ( zu(k+1) - zu(k-1) ) / & |
---|
1961 | ( km(k,j,i) + 1.0E-20_wp ) |
---|
1962 | surf_def_h(1)%v_0(m) = v(k-1,j,i) - surf_def_h(1)%vsws(m) * & |
---|
1963 | drho_air_zw(k-1) * & |
---|
1964 | ( zu(k+1) - zu(k-1) ) / & |
---|
1965 | ( km(k,j,i) + 1.0E-20_wp ) |
---|
1966 | |
---|
1967 | IF ( ABS( surf_def_h(1)%u_0(m) - u(k-1,j,i) ) > & |
---|
1968 | ABS( u(k+1,j,i) - u(k-1,j,i) ) & |
---|
1969 | ) surf_def_h(1)%u_0(m) = u(k+1,j,i) |
---|
1970 | |
---|
1971 | IF ( ABS( surf_def_h(1)%v_0(m) - v(k-1,j,i) ) > & |
---|
1972 | ABS( v(k+1,j,i) - v(k-1,j,i) ) & |
---|
1973 | ) surf_def_h(1)%v_0(m) = v(k+1,j,i) |
---|
1974 | |
---|
1975 | ENDDO |
---|
1976 | ! |
---|
1977 | !-- Natural surfaces, upward-facing |
---|
1978 | !$OMP PARALLEL DO PRIVATE(i,j,k,m) |
---|
1979 | !$ACC PARALLEL LOOP PRIVATE(i, j, k, m, km_sfc) & |
---|
1980 | !$ACC PRESENT(surf_lsm_h, u, v, drho_air_zw, zu) |
---|
1981 | DO m = 1, surf_lsm_h%ns |
---|
1982 | |
---|
1983 | i = surf_lsm_h%i(m) |
---|
1984 | j = surf_lsm_h%j(m) |
---|
1985 | k = surf_lsm_h%k(m) |
---|
1986 | ! |
---|
1987 | !-- Note, calculation of u_0 and v_0 is not fully accurate, as u/v |
---|
1988 | !-- and km are not on the same grid. Actually, a further |
---|
1989 | !-- interpolation of km onto the u/v-grid is necessary. However, the |
---|
1990 | !-- effect of this error is negligible. |
---|
1991 | km_sfc = kappa * surf_lsm_h%us(m) * surf_lsm_h%z_mo(m) / & |
---|
1992 | phi_m( surf_lsm_h%z_mo(m) / surf_lsm_h%ol(m) ) |
---|
1993 | |
---|
1994 | surf_lsm_h%u_0(m) = u(k+1,j,i) + surf_lsm_h%usws(m) * & |
---|
1995 | drho_air_zw(k-1) * & |
---|
1996 | ( zu(k+1) - zu(k-1) ) / & |
---|
1997 | ( km_sfc + 1.0E-20_wp ) |
---|
1998 | surf_lsm_h%v_0(m) = v(k+1,j,i) + surf_lsm_h%vsws(m) * & |
---|
1999 | drho_air_zw(k-1) * & |
---|
2000 | ( zu(k+1) - zu(k-1) ) / & |
---|
2001 | ( km_sfc + 1.0E-20_wp ) |
---|
2002 | |
---|
2003 | IF ( ABS( u(k+1,j,i) - surf_lsm_h%u_0(m) ) > & |
---|
2004 | ABS( u(k+1,j,i) - u(k-1,j,i) ) & |
---|
2005 | ) surf_lsm_h%u_0(m) = u(k-1,j,i) |
---|
2006 | |
---|
2007 | IF ( ABS( v(k+1,j,i) - surf_lsm_h%v_0(m) ) > & |
---|
2008 | ABS( v(k+1,j,i) - v(k-1,j,i) ) & |
---|
2009 | ) surf_lsm_h%v_0(m) = v(k-1,j,i) |
---|
2010 | |
---|
2011 | ENDDO |
---|
2012 | ! |
---|
2013 | !-- Urban surfaces, upward-facing |
---|
2014 | !$OMP PARALLEL DO PRIVATE(i,j,k,m) |
---|
2015 | !$ACC PARALLEL LOOP PRIVATE(i, j, k, m, km_sfc) & |
---|
2016 | !$ACC PRESENT(surf_usm_h, u, v, drho_air_zw, zu) |
---|
2017 | DO m = 1, surf_usm_h%ns |
---|
2018 | |
---|
2019 | i = surf_usm_h%i(m) |
---|
2020 | j = surf_usm_h%j(m) |
---|
2021 | k = surf_usm_h%k(m) |
---|
2022 | ! |
---|
2023 | !-- Note, calculation of u_0 and v_0 is not fully accurate, as u/v |
---|
2024 | !-- and km are not on the same grid. Actually, a further |
---|
2025 | !-- interpolation of km onto the u/v-grid is necessary. However, the |
---|
2026 | !-- effect of this error is negligible. |
---|
2027 | km_sfc = kappa * surf_usm_h%us(m) * surf_usm_h%z_mo(m) / & |
---|
2028 | phi_m( surf_usm_h%z_mo(m) / surf_usm_h%ol(m) ) |
---|
2029 | |
---|
2030 | surf_usm_h%u_0(m) = u(k+1,j,i) + surf_usm_h%usws(m) * & |
---|
2031 | drho_air_zw(k-1) * & |
---|
2032 | ( zu(k+1) - zu(k-1) ) / & |
---|
2033 | ( km_sfc + 1.0E-20_wp ) |
---|
2034 | surf_usm_h%v_0(m) = v(k+1,j,i) + surf_usm_h%vsws(m) * & |
---|
2035 | drho_air_zw(k-1) * & |
---|
2036 | ( zu(k+1) - zu(k-1) ) / & |
---|
2037 | ( km_sfc + 1.0E-20_wp ) |
---|
2038 | |
---|
2039 | IF ( ABS( u(k+1,j,i) - surf_usm_h%u_0(m) ) > & |
---|
2040 | ABS( u(k+1,j,i) - u(k-1,j,i) ) & |
---|
2041 | ) surf_usm_h%u_0(m) = u(k-1,j,i) |
---|
2042 | |
---|
2043 | IF ( ABS( v(k+1,j,i) - surf_usm_h%v_0(m) ) > & |
---|
2044 | ABS( v(k+1,j,i) - v(k-1,j,i) ) & |
---|
2045 | ) surf_usm_h%v_0(m) = v(k-1,j,i) |
---|
2046 | |
---|
2047 | ENDDO |
---|
2048 | |
---|
2049 | ENDIF |
---|
2050 | |
---|
2051 | END SUBROUTINE production_e_init |
---|
2052 | |
---|
2053 | |
---|
2054 | !--------------------------------------------------------------------------------------------------! |
---|
2055 | ! Description: |
---|
2056 | ! ------------ |
---|
2057 | !> Execute module-specific actions for all grid points |
---|
2058 | !--------------------------------------------------------------------------------------------------! |
---|
2059 | SUBROUTINE tcm_actions( location ) |
---|
2060 | |
---|
2061 | |
---|
2062 | CHARACTER (LEN=*) :: location !< |
---|
2063 | |
---|
2064 | ! INTEGER(iwp) :: i !< |
---|
2065 | ! INTEGER(iwp) :: j !< |
---|
2066 | ! INTEGER(iwp) :: k !< |
---|
2067 | |
---|
2068 | ! |
---|
2069 | !-- Here the module-specific actions follow |
---|
2070 | !-- No calls for single grid points are allowed at locations before and |
---|
2071 | !-- after the timestep, since these calls are not within an i,j-loop |
---|
2072 | SELECT CASE ( location ) |
---|
2073 | |
---|
2074 | CASE ( 'before_timestep' ) |
---|
2075 | |
---|
2076 | |
---|
2077 | CASE ( 'before_prognostic_equations' ) |
---|
2078 | |
---|
2079 | IF ( .NOT. constant_diffusion ) CALL production_e_init |
---|
2080 | |
---|
2081 | |
---|
2082 | CASE ( 'after_integration' ) |
---|
2083 | |
---|
2084 | |
---|
2085 | CASE ( 'after_timestep' ) |
---|
2086 | |
---|
2087 | |
---|
2088 | CASE ( 'u-tendency' ) |
---|
2089 | |
---|
2090 | |
---|
2091 | CASE ( 'v-tendency' ) |
---|
2092 | |
---|
2093 | |
---|
2094 | CASE ( 'w-tendency' ) |
---|
2095 | |
---|
2096 | |
---|
2097 | CASE ( 'pt-tendency' ) |
---|
2098 | |
---|
2099 | |
---|
2100 | CASE ( 'sa-tendency' ) |
---|
2101 | |
---|
2102 | |
---|
2103 | CASE ( 'e-tendency' ) |
---|
2104 | |
---|
2105 | |
---|
2106 | CASE ( 'q-tendency' ) |
---|
2107 | |
---|
2108 | |
---|
2109 | CASE ( 's-tendency' ) |
---|
2110 | |
---|
2111 | |
---|
2112 | CASE DEFAULT |
---|
2113 | CONTINUE |
---|
2114 | |
---|
2115 | END SELECT |
---|
2116 | |
---|
2117 | END SUBROUTINE tcm_actions |
---|
2118 | |
---|
2119 | |
---|
2120 | !--------------------------------------------------------------------------------------------------! |
---|
2121 | ! Description: |
---|
2122 | ! ------------ |
---|
2123 | !> Execute module-specific actions for grid point i,j |
---|
2124 | !--------------------------------------------------------------------------------------------------! |
---|
2125 | SUBROUTINE tcm_actions_ij( i, j, location ) |
---|
2126 | |
---|
2127 | |
---|
2128 | CHARACTER (LEN=*) :: location |
---|
2129 | |
---|
2130 | INTEGER(iwp) :: i |
---|
2131 | INTEGER(iwp) :: j |
---|
2132 | |
---|
2133 | ! |
---|
2134 | !-- Here the module-specific actions follow |
---|
2135 | SELECT CASE ( location ) |
---|
2136 | |
---|
2137 | CASE ( 'u-tendency' ) |
---|
2138 | |
---|
2139 | !-- Next line is to avoid compiler warning about unused variables. Please remove. |
---|
2140 | IF ( i + j < 0 ) CONTINUE |
---|
2141 | |
---|
2142 | CASE ( 'v-tendency' ) |
---|
2143 | |
---|
2144 | |
---|
2145 | CASE ( 'w-tendency' ) |
---|
2146 | |
---|
2147 | |
---|
2148 | CASE ( 'pt-tendency' ) |
---|
2149 | |
---|
2150 | |
---|
2151 | CASE ( 'sa-tendency' ) |
---|
2152 | |
---|
2153 | |
---|
2154 | CASE ( 'e-tendency' ) |
---|
2155 | |
---|
2156 | |
---|
2157 | CASE ( 'q-tendency' ) |
---|
2158 | |
---|
2159 | |
---|
2160 | CASE ( 's-tendency' ) |
---|
2161 | |
---|
2162 | |
---|
2163 | CASE DEFAULT |
---|
2164 | CONTINUE |
---|
2165 | |
---|
2166 | END SELECT |
---|
2167 | |
---|
2168 | END SUBROUTINE tcm_actions_ij |
---|
2169 | |
---|
2170 | |
---|
2171 | !------------------------------------------------------------------------------! |
---|
2172 | ! Description: |
---|
2173 | ! ------------ |
---|
2174 | !> Prognostic equation for subgrid-scale TKE and TKE dissipation rate. |
---|
2175 | !> Vector-optimized version |
---|
2176 | !------------------------------------------------------------------------------! |
---|
2177 | SUBROUTINE tcm_prognostic_equations |
---|
2178 | |
---|
2179 | USE control_parameters, & |
---|
2180 | ONLY: scalar_advec, tsc |
---|
2181 | |
---|
2182 | IMPLICIT NONE |
---|
2183 | |
---|
2184 | INTEGER(iwp) :: i !< loop index |
---|
2185 | INTEGER(iwp) :: j !< loop index |
---|
2186 | INTEGER(iwp) :: k !< loop index |
---|
2187 | |
---|
2188 | REAL(wp) :: sbt !< wheighting factor for sub-time step |
---|
2189 | |
---|
2190 | ! |
---|
2191 | !-- If required, compute prognostic equation for turbulent kinetic |
---|
2192 | !-- energy (TKE) |
---|
2193 | IF ( .NOT. constant_diffusion ) THEN |
---|
2194 | |
---|
2195 | CALL cpu_log( log_point_s(67), 'tke-equation', 'start' ) |
---|
2196 | |
---|
2197 | sbt = tsc(2) |
---|
2198 | IF ( .NOT. use_upstream_for_tke ) THEN |
---|
2199 | IF ( scalar_advec == 'bc-scheme' ) THEN |
---|
2200 | |
---|
2201 | IF ( timestep_scheme(1:5) /= 'runge' ) THEN |
---|
2202 | ! |
---|
2203 | !-- Bott-Chlond scheme always uses Euler time step. Thus: |
---|
2204 | sbt = 1.0_wp |
---|
2205 | ENDIF |
---|
2206 | tend = 0.0_wp |
---|
2207 | CALL advec_s_bc( e, 'e' ) |
---|
2208 | |
---|
2209 | ENDIF |
---|
2210 | ENDIF |
---|
2211 | |
---|
2212 | ! |
---|
2213 | !-- TKE-tendency terms with no communication |
---|
2214 | IF ( scalar_advec /= 'bc-scheme' .OR. use_upstream_for_tke ) THEN |
---|
2215 | IF ( use_upstream_for_tke ) THEN |
---|
2216 | tend = 0.0_wp |
---|
2217 | CALL advec_s_up( e ) |
---|
2218 | ELSE |
---|
2219 | !$ACC KERNELS PRESENT(tend) |
---|
2220 | tend = 0.0_wp |
---|
2221 | !$ACC END KERNELS |
---|
2222 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
2223 | IF ( ws_scheme_sca ) THEN |
---|
2224 | CALL advec_s_ws( advc_flags_s, e, 'e', & |
---|
2225 | bc_dirichlet_l .OR. bc_radiation_l, & |
---|
2226 | bc_dirichlet_n .OR. bc_radiation_n, & |
---|
2227 | bc_dirichlet_r .OR. bc_radiation_r, & |
---|
2228 | bc_dirichlet_s .OR. bc_radiation_s ) |
---|
2229 | ELSE |
---|
2230 | CALL advec_s_pw( e ) |
---|
2231 | ENDIF |
---|
2232 | ELSE |
---|
2233 | CALL advec_s_up( e ) |
---|
2234 | ENDIF |
---|
2235 | ENDIF |
---|
2236 | ENDIF |
---|
2237 | |
---|
2238 | CALL production_e( .FALSE. ) |
---|
2239 | |
---|
2240 | IF ( .NOT. humidity ) THEN |
---|
2241 | IF ( ocean_mode ) THEN |
---|
2242 | CALL diffusion_e( prho, prho_reference ) |
---|
2243 | ELSE |
---|
2244 | CALL diffusion_e( pt, pt_reference ) |
---|
2245 | ENDIF |
---|
2246 | ELSE |
---|
2247 | CALL diffusion_e( vpt, pt_reference ) |
---|
2248 | ENDIF |
---|
2249 | |
---|
2250 | ! |
---|
2251 | !-- Additional sink term for flows through plant canopies |
---|
2252 | IF ( plant_canopy ) CALL pcm_tendency( 6 ) |
---|
2253 | |
---|
2254 | ! CALL user_actions( 'e-tendency' ) ToDo: find general solution for circular dependency between modules |
---|
2255 | |
---|
2256 | ! |
---|
2257 | !-- Prognostic equation for TKE. |
---|
2258 | !-- Eliminate negative TKE values, which can occur due to numerical |
---|
2259 | !-- reasons in the course of the integration. In such cases the old TKE |
---|
2260 | !-- value is reduced by 90%. |
---|
2261 | !$ACC PARALLEL LOOP COLLAPSE(3) PRIVATE(i, j, k) & |
---|
2262 | !$ACC PRESENT(e, tend, te_m, wall_flags_0) & |
---|
2263 | !$ACC PRESENT(tsc(3:3)) & |
---|
2264 | !$ACC PRESENT(e_p) |
---|
2265 | DO i = nxl, nxr |
---|
2266 | DO j = nys, nyn |
---|
2267 | DO k = nzb+1, nzt |
---|
2268 | e_p(k,j,i) = e(k,j,i) + ( dt_3d * ( sbt * tend(k,j,i) + & |
---|
2269 | tsc(3) * te_m(k,j,i) ) & |
---|
2270 | ) & |
---|
2271 | * MERGE( 1.0_wp, 0.0_wp, & |
---|
2272 | BTEST( wall_flags_0(k,j,i), 0 ) & |
---|
2273 | ) |
---|
2274 | IF ( e_p(k,j,i) < 0.0_wp ) e_p(k,j,i) = 0.1_wp * e(k,j,i) |
---|
2275 | ENDDO |
---|
2276 | ENDDO |
---|
2277 | ENDDO |
---|
2278 | |
---|
2279 | ! |
---|
2280 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
2281 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
2282 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
2283 | !$ACC PARALLEL LOOP COLLAPSE(3) PRIVATE(i, j, k) & |
---|
2284 | !$ACC PRESENT(tend, te_m) |
---|
2285 | DO i = nxl, nxr |
---|
2286 | DO j = nys, nyn |
---|
2287 | DO k = nzb+1, nzt |
---|
2288 | te_m(k,j,i) = tend(k,j,i) |
---|
2289 | ENDDO |
---|
2290 | ENDDO |
---|
2291 | ENDDO |
---|
2292 | ELSEIF ( intermediate_timestep_count < & |
---|
2293 | intermediate_timestep_count_max ) THEN |
---|
2294 | !$ACC PARALLEL LOOP COLLAPSE(3) PRIVATE(i, j, k) & |
---|
2295 | !$ACC PRESENT(tend, te_m) |
---|
2296 | DO i = nxl, nxr |
---|
2297 | DO j = nys, nyn |
---|
2298 | DO k = nzb+1, nzt |
---|
2299 | te_m(k,j,i) = -9.5625_wp * tend(k,j,i) & |
---|
2300 | + 5.3125_wp * te_m(k,j,i) |
---|
2301 | ENDDO |
---|
2302 | ENDDO |
---|
2303 | ENDDO |
---|
2304 | ENDIF |
---|
2305 | ENDIF |
---|
2306 | |
---|
2307 | CALL cpu_log( log_point_s(67), 'tke-equation', 'stop' ) |
---|
2308 | |
---|
2309 | ENDIF ! TKE equation |
---|
2310 | |
---|
2311 | ! |
---|
2312 | !-- If required, compute prognostic equation for TKE dissipation rate |
---|
2313 | IF ( rans_tke_e ) THEN |
---|
2314 | |
---|
2315 | CALL cpu_log( log_point_s(64), 'diss-equation', 'start' ) |
---|
2316 | |
---|
2317 | sbt = tsc(2) |
---|
2318 | IF ( .NOT. use_upstream_for_tke ) THEN |
---|
2319 | IF ( scalar_advec == 'bc-scheme' ) THEN |
---|
2320 | |
---|
2321 | IF ( timestep_scheme(1:5) /= 'runge' ) THEN |
---|
2322 | ! |
---|
2323 | !-- Bott-Chlond scheme always uses Euler time step. Thus: |
---|
2324 | sbt = 1.0_wp |
---|
2325 | ENDIF |
---|
2326 | tend = 0.0_wp |
---|
2327 | CALL advec_s_bc( diss, 'diss' ) |
---|
2328 | |
---|
2329 | ENDIF |
---|
2330 | ENDIF |
---|
2331 | |
---|
2332 | ! |
---|
2333 | !-- dissipation-tendency terms with no communication |
---|
2334 | IF ( scalar_advec /= 'bc-scheme' .OR. use_upstream_for_tke ) THEN |
---|
2335 | IF ( use_upstream_for_tke ) THEN |
---|
2336 | tend = 0.0_wp |
---|
2337 | CALL advec_s_up( diss ) |
---|
2338 | ELSE |
---|
2339 | tend = 0.0_wp |
---|
2340 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
2341 | IF ( ws_scheme_sca ) THEN |
---|
2342 | CALL advec_s_ws( advc_flags_s, diss, 'diss', & |
---|
2343 | bc_dirichlet_l .OR. bc_radiation_l, & |
---|
2344 | bc_dirichlet_n .OR. bc_radiation_n, & |
---|
2345 | bc_dirichlet_r .OR. bc_radiation_r, & |
---|
2346 | bc_dirichlet_s .OR. bc_radiation_s ) |
---|
2347 | ELSE |
---|
2348 | CALL advec_s_pw( diss ) |
---|
2349 | ENDIF |
---|
2350 | ELSE |
---|
2351 | CALL advec_s_up( diss ) |
---|
2352 | ENDIF |
---|
2353 | ENDIF |
---|
2354 | ENDIF |
---|
2355 | ! |
---|
2356 | !-- Production of TKE dissipation rate |
---|
2357 | CALL production_e( .TRUE. ) |
---|
2358 | ! |
---|
2359 | !-- Diffusion term of TKE dissipation rate |
---|
2360 | CALL diffusion_diss |
---|
2361 | ! |
---|
2362 | !-- Additional sink term for flows through plant canopies |
---|
2363 | ! IF ( plant_canopy ) CALL pcm_tendency( ? ) !> @todo not yet implemented |
---|
2364 | |
---|
2365 | ! CALL user_actions( 'e-tendency' ) ToDo: find general solution for circular dependency between modules |
---|
2366 | |
---|
2367 | ! |
---|
2368 | !-- Prognostic equation for TKE dissipation. |
---|
2369 | !-- Eliminate negative dissipation values, which can occur due to numerical |
---|
2370 | !-- reasons in the course of the integration. In such cases the old |
---|
2371 | !-- dissipation value is reduced by 90%. |
---|
2372 | DO i = nxl, nxr |
---|
2373 | DO j = nys, nyn |
---|
2374 | DO k = nzb+1, nzt |
---|
2375 | diss_p(k,j,i) = diss(k,j,i) + ( dt_3d * ( sbt * tend(k,j,i) + & |
---|
2376 | tsc(3) * tdiss_m(k,j,i) ) & |
---|
2377 | ) & |
---|
2378 | * MERGE( 1.0_wp, 0.0_wp, & |
---|
2379 | BTEST( wall_flags_0(k,j,i), 0 ) & |
---|
2380 | ) |
---|
2381 | IF ( diss_p(k,j,i) < 0.0_wp ) & |
---|
2382 | diss_p(k,j,i) = 0.1_wp * diss(k,j,i) |
---|
2383 | ENDDO |
---|
2384 | ENDDO |
---|
2385 | ENDDO |
---|
2386 | |
---|
2387 | ! |
---|
2388 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
2389 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
2390 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
2391 | DO i = nxl, nxr |
---|
2392 | DO j = nys, nyn |
---|
2393 | DO k = nzb+1, nzt |
---|
2394 | tdiss_m(k,j,i) = tend(k,j,i) |
---|
2395 | ENDDO |
---|
2396 | ENDDO |
---|
2397 | ENDDO |
---|
2398 | ELSEIF ( intermediate_timestep_count < & |
---|
2399 | intermediate_timestep_count_max ) THEN |
---|
2400 | DO i = nxl, nxr |
---|
2401 | DO j = nys, nyn |
---|
2402 | DO k = nzb+1, nzt |
---|
2403 | tdiss_m(k,j,i) = -9.5625_wp * tend(k,j,i) & |
---|
2404 | + 5.3125_wp * tdiss_m(k,j,i) |
---|
2405 | ENDDO |
---|
2406 | ENDDO |
---|
2407 | ENDDO |
---|
2408 | ENDIF |
---|
2409 | ENDIF |
---|
2410 | |
---|
2411 | CALL cpu_log( log_point_s(64), 'diss-equation', 'stop' ) |
---|
2412 | |
---|
2413 | ENDIF |
---|
2414 | |
---|
2415 | END SUBROUTINE tcm_prognostic_equations |
---|
2416 | |
---|
2417 | |
---|
2418 | !------------------------------------------------------------------------------! |
---|
2419 | ! Description: |
---|
2420 | ! ------------ |
---|
2421 | !> Prognostic equation for subgrid-scale TKE and TKE dissipation rate. |
---|
2422 | !> Cache-optimized version |
---|
2423 | !------------------------------------------------------------------------------! |
---|
2424 | SUBROUTINE tcm_prognostic_equations_ij( i, j, i_omp, tn ) |
---|
2425 | |
---|
2426 | USE arrays_3d, & |
---|
2427 | ONLY: diss_l_diss, diss_l_e, diss_s_diss, diss_s_e, flux_l_diss, & |
---|
2428 | flux_l_e, flux_s_diss, flux_s_e |
---|
2429 | |
---|
2430 | USE control_parameters, & |
---|
2431 | ONLY: tsc |
---|
2432 | |
---|
2433 | IMPLICIT NONE |
---|
2434 | |
---|
2435 | INTEGER(iwp) :: i !< loop index x direction |
---|
2436 | INTEGER(iwp) :: i_omp !< first loop index of i-loop in prognostic_equations |
---|
2437 | INTEGER(iwp) :: j !< loop index y direction |
---|
2438 | INTEGER(iwp) :: k !< loop index z direction |
---|
2439 | INTEGER(iwp) :: tn !< task number of openmp task |
---|
2440 | |
---|
2441 | ! |
---|
2442 | !-- If required, compute prognostic equation for turbulent kinetic |
---|
2443 | !-- energy (TKE) |
---|
2444 | IF ( .NOT. constant_diffusion ) THEN |
---|
2445 | |
---|
2446 | ! |
---|
2447 | !-- Tendency-terms for TKE |
---|
2448 | tend(:,j,i) = 0.0_wp |
---|
2449 | IF ( timestep_scheme(1:5) == 'runge' & |
---|
2450 | .AND. .NOT. use_upstream_for_tke ) THEN |
---|
2451 | IF ( ws_scheme_sca ) THEN |
---|
2452 | CALL advec_s_ws( advc_flags_s, & |
---|
2453 | i, j, e, 'e', flux_s_e, diss_s_e, & |
---|
2454 | flux_l_e, diss_l_e , i_omp, tn, & |
---|
2455 | bc_dirichlet_l .OR. bc_radiation_l, & |
---|
2456 | bc_dirichlet_n .OR. bc_radiation_n, & |
---|
2457 | bc_dirichlet_r .OR. bc_radiation_r, & |
---|
2458 | bc_dirichlet_s .OR. bc_radiation_s ) |
---|
2459 | ELSE |
---|
2460 | CALL advec_s_pw( i, j, e ) |
---|
2461 | ENDIF |
---|
2462 | ELSE |
---|
2463 | CALL advec_s_up( i, j, e ) |
---|
2464 | ENDIF |
---|
2465 | |
---|
2466 | CALL production_e_ij( i, j, .FALSE. ) |
---|
2467 | |
---|
2468 | IF ( .NOT. humidity ) THEN |
---|
2469 | IF ( ocean_mode ) THEN |
---|
2470 | CALL diffusion_e_ij( i, j, prho, prho_reference ) |
---|
2471 | ELSE |
---|
2472 | CALL diffusion_e_ij( i, j, pt, pt_reference ) |
---|
2473 | ENDIF |
---|
2474 | ELSE |
---|
2475 | CALL diffusion_e_ij( i, j, vpt, pt_reference ) |
---|
2476 | ENDIF |
---|
2477 | |
---|
2478 | ! |
---|
2479 | !-- Additional sink term for flows through plant canopies |
---|
2480 | IF ( plant_canopy ) CALL pcm_tendency( i, j, 6 ) |
---|
2481 | |
---|
2482 | ! CALL user_actions( i, j, 'e-tendency' ) ToDo: find general solution for circular dependency between modules |
---|
2483 | |
---|
2484 | ! |
---|
2485 | !-- Prognostic equation for TKE. |
---|
2486 | !-- Eliminate negative TKE values, which can occur due to numerical |
---|
2487 | !-- reasons in the course of the integration. In such cases the old |
---|
2488 | !-- TKE value is reduced by 90%. |
---|
2489 | DO k = nzb+1, nzt |
---|
2490 | e_p(k,j,i) = e(k,j,i) + ( dt_3d * ( tsc(2) * tend(k,j,i) + & |
---|
2491 | tsc(3) * te_m(k,j,i) ) & |
---|
2492 | ) & |
---|
2493 | * MERGE( 1.0_wp, 0.0_wp, & |
---|
2494 | BTEST( wall_flags_0(k,j,i), 0 ) & |
---|
2495 | ) |
---|
2496 | IF ( e_p(k,j,i) <= 0.0_wp ) e_p(k,j,i) = 0.1_wp * e(k,j,i) |
---|
2497 | ENDDO |
---|
2498 | |
---|
2499 | ! |
---|
2500 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
2501 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
2502 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
2503 | DO k = nzb+1, nzt |
---|
2504 | te_m(k,j,i) = tend(k,j,i) |
---|
2505 | ENDDO |
---|
2506 | ELSEIF ( intermediate_timestep_count < & |
---|
2507 | intermediate_timestep_count_max ) THEN |
---|
2508 | DO k = nzb+1, nzt |
---|
2509 | te_m(k,j,i) = -9.5625_wp * tend(k,j,i) + & |
---|
2510 | 5.3125_wp * te_m(k,j,i) |
---|
2511 | ENDDO |
---|
2512 | ENDIF |
---|
2513 | ENDIF |
---|
2514 | |
---|
2515 | ENDIF ! TKE equation |
---|
2516 | |
---|
2517 | ! |
---|
2518 | !-- If required, compute prognostic equation for TKE dissipation rate |
---|
2519 | IF ( rans_tke_e ) THEN |
---|
2520 | ! |
---|
2521 | !-- Tendency-terms for dissipation |
---|
2522 | tend(:,j,i) = 0.0_wp |
---|
2523 | IF ( timestep_scheme(1:5) == 'runge' & |
---|
2524 | .AND. .NOT. use_upstream_for_tke ) THEN |
---|
2525 | IF ( ws_scheme_sca ) THEN |
---|
2526 | CALL advec_s_ws( advc_flags_s, & |
---|
2527 | i, j, diss, 'diss', flux_s_diss, diss_s_diss, & |
---|
2528 | flux_l_diss, diss_l_diss, i_omp, tn, & |
---|
2529 | bc_dirichlet_l .OR. bc_radiation_l, & |
---|
2530 | bc_dirichlet_n .OR. bc_radiation_n, & |
---|
2531 | bc_dirichlet_r .OR. bc_radiation_r, & |
---|
2532 | bc_dirichlet_s .OR. bc_radiation_s ) |
---|
2533 | ELSE |
---|
2534 | CALL advec_s_pw( i, j, diss ) |
---|
2535 | ENDIF |
---|
2536 | ELSE |
---|
2537 | CALL advec_s_up( i, j, diss ) |
---|
2538 | ENDIF |
---|
2539 | ! |
---|
2540 | !-- Production of TKE dissipation rate |
---|
2541 | CALL production_e_ij( i, j, .TRUE. ) |
---|
2542 | ! |
---|
2543 | !-- Diffusion term of TKE dissipation rate |
---|
2544 | CALL diffusion_diss_ij( i, j ) |
---|
2545 | ! |
---|
2546 | !-- Additional sink term for flows through plant canopies |
---|
2547 | ! IF ( plant_canopy ) CALL pcm_tendency( i, j, ? ) !> @todo not yet implemented |
---|
2548 | |
---|
2549 | ! CALL user_actions( i, j, 'diss-tendency' ) ToDo: find general solution for circular dependency between modules |
---|
2550 | |
---|
2551 | ! |
---|
2552 | !-- Prognostic equation for TKE dissipation |
---|
2553 | !-- Eliminate negative dissipation values, which can occur due to |
---|
2554 | !-- numerical reasons in the course of the integration. In such cases |
---|
2555 | !-- the old dissipation value is reduced by 90%. |
---|
2556 | DO k = nzb+1, nzt |
---|
2557 | diss_p(k,j,i) = diss(k,j,i) + ( dt_3d * ( tsc(2) * tend(k,j,i) + & |
---|
2558 | tsc(3) * tdiss_m(k,j,i) ) & |
---|
2559 | ) & |
---|
2560 | * MERGE( 1.0_wp, 0.0_wp, & |
---|
2561 | BTEST( wall_flags_0(k,j,i), 0 )& |
---|
2562 | ) |
---|
2563 | ENDDO |
---|
2564 | |
---|
2565 | ! |
---|
2566 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
2567 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
2568 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
2569 | DO k = nzb+1, nzt |
---|
2570 | tdiss_m(k,j,i) = tend(k,j,i) |
---|
2571 | ENDDO |
---|
2572 | ELSEIF ( intermediate_timestep_count < & |
---|
2573 | intermediate_timestep_count_max ) THEN |
---|
2574 | DO k = nzb+1, nzt |
---|
2575 | tdiss_m(k,j,i) = -9.5625_wp * tend(k,j,i) + & |
---|
2576 | 5.3125_wp * tdiss_m(k,j,i) |
---|
2577 | ENDDO |
---|
2578 | ENDIF |
---|
2579 | ENDIF |
---|
2580 | |
---|
2581 | ENDIF ! dissipation equation |
---|
2582 | |
---|
2583 | END SUBROUTINE tcm_prognostic_equations_ij |
---|
2584 | |
---|
2585 | |
---|
2586 | !------------------------------------------------------------------------------! |
---|
2587 | ! Description: |
---|
2588 | ! ------------ |
---|
2589 | !> Production terms (shear + buoyancy) of the TKE. |
---|
2590 | !> Vector-optimized version |
---|
2591 | !> @warning The case with constant_flux_layer = F and use_surface_fluxes = T is |
---|
2592 | !> not considered well! |
---|
2593 | !------------------------------------------------------------------------------! |
---|
2594 | SUBROUTINE production_e( diss_production ) |
---|
2595 | |
---|
2596 | USE arrays_3d, & |
---|
2597 | ONLY: ddzw, dd2zu, drho_air_zw, q, ql, d_exner, exner |
---|
2598 | |
---|
2599 | USE control_parameters, & |
---|
2600 | ONLY: cloud_droplets, constant_flux_layer, neutral, & |
---|
2601 | rho_reference, use_single_reference_value, use_surface_fluxes, & |
---|
2602 | use_top_fluxes |
---|
2603 | |
---|
2604 | USE grid_variables, & |
---|
2605 | ONLY: ddx, dx, ddy, dy |
---|
2606 | |
---|
2607 | USE bulk_cloud_model_mod, & |
---|
2608 | ONLY: bulk_cloud_model |
---|
2609 | |
---|
2610 | IMPLICIT NONE |
---|
2611 | |
---|
2612 | LOGICAL :: diss_production |
---|
2613 | |
---|
2614 | INTEGER(iwp) :: i !< running index x-direction |
---|
2615 | INTEGER(iwp) :: j !< running index y-direction |
---|
2616 | INTEGER(iwp) :: k !< running index z-direction |
---|
2617 | INTEGER(iwp) :: l !< running index for different surface type orientation |
---|
2618 | INTEGER(iwp) :: m !< running index surface elements |
---|
2619 | INTEGER(iwp) :: surf_e !< end index of surface elements at given i-j position |
---|
2620 | INTEGER(iwp) :: surf_s !< start index of surface elements at given i-j position |
---|
2621 | INTEGER(iwp) :: flag_nr !< number of masking flag |
---|
2622 | |
---|
2623 | REAL(wp) :: def !< ( du_i/dx_j + du_j/dx_i ) * du_i/dx_j |
---|
2624 | REAL(wp) :: flag !< flag to mask topography |
---|
2625 | REAL(wp) :: k1 !< temporary factor |
---|
2626 | REAL(wp) :: k2 !< temporary factor |
---|
2627 | REAL(wp) :: km_neutral !< diffusion coefficient assuming neutral conditions - used to compute shear production at surfaces |
---|
2628 | REAL(wp) :: theta !< virtual potential temperature |
---|
2629 | REAL(wp) :: temp !< theta * Exner-function |
---|
2630 | REAL(wp) :: sign_dir !< sign of wall-tke flux, depending on wall orientation |
---|
2631 | REAL(wp) :: usvs !< momentum flux u"v" |
---|
2632 | REAL(wp) :: vsus !< momentum flux v"u" |
---|
2633 | REAL(wp) :: wsus !< momentum flux w"u" |
---|
2634 | REAL(wp) :: wsvs !< momentum flux w"v" |
---|
2635 | |
---|
2636 | REAL(wp), DIMENSION(nzb+1:nzt) :: dudx !< Gradient of u-component in x-direction |
---|
2637 | REAL(wp), DIMENSION(nzb+1:nzt) :: dudy !< Gradient of u-component in y-direction |
---|
2638 | REAL(wp), DIMENSION(nzb+1:nzt) :: dudz !< Gradient of u-component in z-direction |
---|
2639 | REAL(wp), DIMENSION(nzb+1:nzt) :: dvdx !< Gradient of v-component in x-direction |
---|
2640 | REAL(wp), DIMENSION(nzb+1:nzt) :: dvdy !< Gradient of v-component in y-direction |
---|
2641 | REAL(wp), DIMENSION(nzb+1:nzt) :: dvdz !< Gradient of v-component in z-direction |
---|
2642 | REAL(wp), DIMENSION(nzb+1:nzt) :: dwdx !< Gradient of w-component in x-direction |
---|
2643 | REAL(wp), DIMENSION(nzb+1:nzt) :: dwdy !< Gradient of w-component in y-direction |
---|
2644 | REAL(wp), DIMENSION(nzb+1:nzt) :: dwdz !< Gradient of w-component in z-direction |
---|
2645 | REAL(wp), DIMENSION(nzb+1:nzt) :: tmp_flux !< temporary flux-array in z-direction |
---|
2646 | |
---|
2647 | |
---|
2648 | |
---|
2649 | ! |
---|
2650 | !-- Calculate TKE production by shear. Calculate gradients at all grid |
---|
2651 | !-- points first, gradients at surface-bounded grid points will be |
---|
2652 | !-- overwritten further below. |
---|
2653 | !$ACC PARALLEL LOOP COLLAPSE(2) PRIVATE(i, j, l) & |
---|
2654 | !$ACC PRIVATE(surf_s, surf_e) & |
---|
2655 | !$ACC PRIVATE(dudx(:), dudy(:), dudz(:), dvdx(:), dvdy(:), dvdz(:), dwdx(:), dwdy(:), dwdz(:)) & |
---|
2656 | !$ACC PRESENT(e, u, v, w, diss, dd2zu, ddzw, km, wall_flags_0) & |
---|
2657 | !$ACC PRESENT(tend) & |
---|
2658 | !$ACC PRESENT(surf_def_h(0:1), surf_def_v(0:3)) & |
---|
2659 | !$ACC PRESENT(surf_lsm_h, surf_lsm_v(0:3)) & |
---|
2660 | !$ACC PRESENT(surf_usm_h, surf_usm_v(0:3)) |
---|
2661 | DO i = nxl, nxr |
---|
2662 | DO j = nys, nyn |
---|
2663 | !$ACC LOOP PRIVATE(k) |
---|
2664 | DO k = nzb+1, nzt |
---|
2665 | |
---|
2666 | dudx(k) = ( u(k,j,i+1) - u(k,j,i) ) * ddx |
---|
2667 | dudy(k) = 0.25_wp * ( u(k,j+1,i) + u(k,j+1,i+1) - & |
---|
2668 | u(k,j-1,i) - u(k,j-1,i+1) ) * ddy |
---|
2669 | dudz(k) = 0.5_wp * ( u(k+1,j,i) + u(k+1,j,i+1) - & |
---|
2670 | u(k-1,j,i) - u(k-1,j,i+1) ) * dd2zu(k) |
---|
2671 | |
---|
2672 | dvdx(k) = 0.25_wp * ( v(k,j,i+1) + v(k,j+1,i+1) - & |
---|
2673 | v(k,j,i-1) - v(k,j+1,i-1) ) * ddx |
---|
2674 | dvdy(k) = ( v(k,j+1,i) - v(k,j,i) ) * ddy |
---|
2675 | dvdz(k) = 0.5_wp * ( v(k+1,j,i) + v(k+1,j+1,i) - & |
---|
2676 | v(k-1,j,i) - v(k-1,j+1,i) ) * dd2zu(k) |
---|
2677 | |
---|
2678 | dwdx(k) = 0.25_wp * ( w(k,j,i+1) + w(k-1,j,i+1) - & |
---|
2679 | w(k,j,i-1) - w(k-1,j,i-1) ) * ddx |
---|
2680 | dwdy(k) = 0.25_wp * ( w(k,j+1,i) + w(k-1,j+1,i) - & |
---|
2681 | w(k,j-1,i) - w(k-1,j-1,i) ) * ddy |
---|
2682 | dwdz(k) = ( w(k,j,i) - w(k-1,j,i) ) * ddzw(k) |
---|
2683 | |
---|
2684 | ENDDO |
---|
2685 | |
---|
2686 | |
---|
2687 | flag_nr = 29 |
---|
2688 | |
---|
2689 | |
---|
2690 | IF ( constant_flux_layer ) THEN |
---|
2691 | ! |
---|
2692 | |
---|
2693 | flag_nr = 0 |
---|
2694 | |
---|
2695 | !-- Position beneath wall |
---|
2696 | !-- (2) - Will allways be executed. |
---|
2697 | !-- 'bottom and wall: use u_0,v_0 and wall functions' |
---|
2698 | ! |
---|
2699 | !-- Compute gradients at north- and south-facing surfaces. |
---|
2700 | !-- First, for default surfaces, then for urban surfaces. |
---|
2701 | !-- Note, so far no natural vertical surfaces implemented |
---|
2702 | DO l = 0, 1 |
---|
2703 | surf_s = surf_def_v(l)%start_index(j,i) |
---|
2704 | surf_e = surf_def_v(l)%end_index(j,i) |
---|
2705 | !$ACC LOOP PRIVATE(m, k, usvs, wsvs, km_neutral, sign_dir) |
---|
2706 | DO m = surf_s, surf_e |
---|
2707 | k = surf_def_v(l)%k(m) |
---|
2708 | usvs = surf_def_v(l)%mom_flux_tke(0,m) |
---|
2709 | wsvs = surf_def_v(l)%mom_flux_tke(1,m) |
---|
2710 | |
---|
2711 | km_neutral = kappa * ( usvs**2 + wsvs**2 )**0.25_wp & |
---|
2712 | * 0.5_wp * dy |
---|
2713 | ! |
---|
2714 | !-- -1.0 for right-facing wall, 1.0 for left-facing wall |
---|
2715 | sign_dir = MERGE( 1.0_wp, -1.0_wp, & |
---|
2716 | BTEST( wall_flags_0(k,j-1,i), flag_nr ) ) |
---|
2717 | dudy(k) = sign_dir * usvs / ( km_neutral + 1E-10_wp ) |
---|
2718 | dwdy(k) = sign_dir * wsvs / ( km_neutral + 1E-10_wp ) |
---|
2719 | ENDDO |
---|
2720 | ! |
---|
2721 | !-- Natural surfaces |
---|
2722 | surf_s = surf_lsm_v(l)%start_index(j,i) |
---|
2723 | surf_e = surf_lsm_v(l)%end_index(j,i) |
---|
2724 | !$ACC LOOP PRIVATE(m, k, usvs, wsvs, km_neutral, sign_dir) |
---|
2725 | DO m = surf_s, surf_e |
---|
2726 | k = surf_lsm_v(l)%k(m) |
---|
2727 | usvs = surf_lsm_v(l)%mom_flux_tke(0,m) |
---|
2728 | wsvs = surf_lsm_v(l)%mom_flux_tke(1,m) |
---|
2729 | |
---|
2730 | km_neutral = kappa * ( usvs**2 + wsvs**2 )**0.25_wp & |
---|
2731 | * 0.5_wp * dy |
---|
2732 | ! |
---|
2733 | !-- -1.0 for right-facing wall, 1.0 for left-facing wall |
---|
2734 | sign_dir = MERGE( 1.0_wp, -1.0_wp, & |
---|
2735 | BTEST( wall_flags_0(k,j-1,i), flag_nr ) ) |
---|
2736 | dudy(k) = sign_dir * usvs / ( km_neutral + 1E-10_wp ) |
---|
2737 | dwdy(k) = sign_dir * wsvs / ( km_neutral + 1E-10_wp ) |
---|
2738 | ENDDO |
---|
2739 | ! |
---|
2740 | !-- Urban surfaces |
---|
2741 | surf_s = surf_usm_v(l)%start_index(j,i) |
---|
2742 | surf_e = surf_usm_v(l)%end_index(j,i) |
---|
2743 | !$ACC LOOP PRIVATE(m, k, usvs, wsvs, km_neutral, sign_dir) |
---|
2744 | DO m = surf_s, surf_e |
---|
2745 | k = surf_usm_v(l)%k(m) |
---|
2746 | usvs = surf_usm_v(l)%mom_flux_tke(0,m) |
---|
2747 | wsvs = surf_usm_v(l)%mom_flux_tke(1,m) |
---|
2748 | |
---|
2749 | km_neutral = kappa * ( usvs**2 + wsvs**2 )**0.25_wp & |
---|
2750 | * 0.5_wp * dy |
---|
2751 | ! |
---|
2752 | !-- -1.0 for right-facing wall, 1.0 for left-facing wall |
---|
2753 | sign_dir = MERGE( 1.0_wp, -1.0_wp, & |
---|
2754 | BTEST( wall_flags_0(k,j-1,i), flag_nr ) ) |
---|
2755 | dudy(k) = sign_dir * usvs / ( km_neutral + 1E-10_wp ) |
---|
2756 | dwdy(k) = sign_dir * wsvs / ( km_neutral + 1E-10_wp ) |
---|
2757 | ENDDO |
---|
2758 | ENDDO |
---|
2759 | ! |
---|
2760 | !-- Compute gradients at east- and west-facing walls |
---|
2761 | DO l = 2, 3 |
---|
2762 | surf_s = surf_def_v(l)%start_index(j,i) |
---|
2763 | surf_e = surf_def_v(l)%end_index(j,i) |
---|
2764 | !$ACC LOOP PRIVATE(m, k, vsus, wsus, km_neutral, sign_dir) |
---|
2765 | DO m = surf_s, surf_e |
---|
2766 | k = surf_def_v(l)%k(m) |
---|
2767 | vsus = surf_def_v(l)%mom_flux_tke(0,m) |
---|
2768 | wsus = surf_def_v(l)%mom_flux_tke(1,m) |
---|
2769 | |
---|
2770 | km_neutral = kappa * ( vsus**2 + wsus**2 )**0.25_wp & |
---|
2771 | * 0.5_wp * dx |
---|
2772 | ! |
---|
2773 | !-- -1.0 for right-facing wall, 1.0 for left-facing wall |
---|
2774 | sign_dir = MERGE( 1.0_wp, -1.0_wp, & |
---|
2775 | BTEST( wall_flags_0(k,j,i-1), flag_nr ) ) |
---|
2776 | dvdx(k) = sign_dir * vsus / ( km_neutral + 1E-10_wp ) |
---|
2777 | dwdx(k) = sign_dir * wsus / ( km_neutral + 1E-10_wp ) |
---|
2778 | ENDDO |
---|
2779 | ! |
---|
2780 | !-- Natural surfaces |
---|
2781 | surf_s = surf_lsm_v(l)%start_index(j,i) |
---|
2782 | surf_e = surf_lsm_v(l)%end_index(j,i) |
---|
2783 | !$ACC LOOP PRIVATE(m, k, vsus, wsus, km_neutral, sign_dir) |
---|
2784 | DO m = surf_s, surf_e |
---|
2785 | k = surf_lsm_v(l)%k(m) |
---|
2786 | vsus = surf_lsm_v(l)%mom_flux_tke(0,m) |
---|
2787 | wsus = surf_lsm_v(l)%mom_flux_tke(1,m) |
---|
2788 | |
---|
2789 | km_neutral = kappa * ( vsus**2 + wsus**2 )**0.25_wp & |
---|
2790 | * 0.5_wp * dx |
---|
2791 | ! |
---|
2792 | !-- -1.0 for right-facing wall, 1.0 for left-facing wall |
---|
2793 | sign_dir = MERGE( 1.0_wp, -1.0_wp, & |
---|
2794 | BTEST( wall_flags_0(k,j,i-1), flag_nr ) ) |
---|
2795 | dvdx(k) = sign_dir * vsus / ( km_neutral + 1E-10_wp ) |
---|
2796 | dwdx(k) = sign_dir * wsus / ( km_neutral + 1E-10_wp ) |
---|
2797 | ENDDO |
---|
2798 | ! |
---|
2799 | !-- Urban surfaces |
---|
2800 | surf_s = surf_usm_v(l)%start_index(j,i) |
---|
2801 | surf_e = surf_usm_v(l)%end_index(j,i) |
---|
2802 | !$ACC LOOP PRIVATE(m, k, vsus, wsus, km_neutral, sign_dir) |
---|
2803 | DO m = surf_s, surf_e |
---|
2804 | k = surf_usm_v(l)%k(m) |
---|
2805 | vsus = surf_usm_v(l)%mom_flux_tke(0,m) |
---|
2806 | wsus = surf_usm_v(l)%mom_flux_tke(1,m) |
---|
2807 | |
---|
2808 | km_neutral = kappa * ( vsus**2 + wsus**2 )**0.25_wp & |
---|
2809 | * 0.5_wp * dx |
---|
2810 | ! |
---|
2811 | !-- -1.0 for right-facing wall, 1.0 for left-facing wall |
---|
2812 | sign_dir = MERGE( 1.0_wp, -1.0_wp, & |
---|
2813 | BTEST( wall_flags_0(k,j,i-1), flag_nr ) ) |
---|
2814 | dvdx(k) = sign_dir * vsus / ( km_neutral + 1E-10_wp ) |
---|
2815 | dwdx(k) = sign_dir * wsus / ( km_neutral + 1E-10_wp ) |
---|
2816 | ENDDO |
---|
2817 | ENDDO |
---|
2818 | ! |
---|
2819 | !-- Compute gradients at upward-facing surfaces |
---|
2820 | surf_s = surf_def_h(0)%start_index(j,i) |
---|
2821 | surf_e = surf_def_h(0)%end_index(j,i) |
---|
2822 | !$ACC LOOP PRIVATE(m, k) |
---|
2823 | DO m = surf_s, surf_e |
---|
2824 | k = surf_def_h(0)%k(m) |
---|
2825 | ! |
---|
2826 | !-- Please note, actually, an interpolation of u_0 and v_0 |
---|
2827 | !-- onto the grid center would be required. However, this |
---|
2828 | !-- would require several data transfers between 2D-grid and |
---|
2829 | !-- wall type. The effect of this missing interpolation is |
---|
2830 | !-- negligible. (See also production_e_init). |
---|
2831 | dudz(k) = ( u(k+1,j,i) - surf_def_h(0)%u_0(m) ) * dd2zu(k) |
---|
2832 | dvdz(k) = ( v(k+1,j,i) - surf_def_h(0)%v_0(m) ) * dd2zu(k) |
---|
2833 | |
---|
2834 | ENDDO |
---|
2835 | ! |
---|
2836 | !-- Natural surfaces |
---|
2837 | surf_s = surf_lsm_h%start_index(j,i) |
---|
2838 | surf_e = surf_lsm_h%end_index(j,i) |
---|
2839 | !$ACC LOOP PRIVATE(m, k) |
---|
2840 | DO m = surf_s, surf_e |
---|
2841 | k = surf_lsm_h%k(m) |
---|
2842 | |
---|
2843 | dudz(k) = ( u(k+1,j,i) - surf_lsm_h%u_0(m) ) * dd2zu(k) |
---|
2844 | dvdz(k) = ( v(k+1,j,i) - surf_lsm_h%v_0(m) ) * dd2zu(k) |
---|
2845 | |
---|
2846 | ENDDO |
---|
2847 | ! |
---|
2848 | !-- Urban surfaces |
---|
2849 | surf_s = surf_usm_h%start_index(j,i) |
---|
2850 | surf_e = surf_usm_h%end_index(j,i) |
---|
2851 | !$ACC LOOP PRIVATE(m, k) |
---|
2852 | DO m = surf_s, surf_e |
---|
2853 | k = surf_usm_h%k(m) |
---|
2854 | |
---|
2855 | dudz(k) = ( u(k+1,j,i) - surf_usm_h%u_0(m) ) * dd2zu(k) |
---|
2856 | dvdz(k) = ( v(k+1,j,i) - surf_usm_h%v_0(m) ) * dd2zu(k) |
---|
2857 | |
---|
2858 | ENDDO |
---|
2859 | ! |
---|
2860 | !-- Compute gradients at downward-facing walls, only for |
---|
2861 | !-- non-natural default surfaces |
---|
2862 | surf_s = surf_def_h(1)%start_index(j,i) |
---|
2863 | surf_e = surf_def_h(1)%end_index(j,i) |
---|
2864 | !$ACC LOOP PRIVATE(m, k) |
---|
2865 | DO m = surf_s, surf_e |
---|
2866 | k = surf_def_h(1)%k(m) |
---|
2867 | |
---|
2868 | dudz(k) = ( surf_def_h(1)%u_0(m) - u(k-1,j,i) ) * dd2zu(k) |
---|
2869 | dvdz(k) = ( surf_def_h(1)%v_0(m) - v(k-1,j,i) ) * dd2zu(k) |
---|
2870 | |
---|
2871 | ENDDO |
---|
2872 | |
---|
2873 | |
---|
2874 | ENDIF |
---|
2875 | |
---|
2876 | |
---|
2877 | !$ACC LOOP PRIVATE(k, def, flag) |
---|
2878 | DO k = nzb+1, nzt |
---|
2879 | |
---|
2880 | def = 2.0_wp * ( dudx(k)**2 + dvdy(k)**2 + dwdz(k)**2 ) + & |
---|
2881 | dudy(k)**2 + dvdx(k)**2 + dwdx(k)**2 + & |
---|
2882 | dwdy(k)**2 + dudz(k)**2 + dvdz(k)**2 + & |
---|
2883 | 2.0_wp * ( dvdx(k)*dudy(k) + dwdx(k)*dudz(k) + & |
---|
2884 | dwdy(k)*dvdz(k) ) |
---|
2885 | |
---|
2886 | IF ( def < 0.0_wp ) def = 0.0_wp |
---|
2887 | |
---|
2888 | flag = MERGE( 1.0_wp, 0.0_wp, BTEST(wall_flags_0(k,j,i),flag_nr) ) |
---|
2889 | |
---|
2890 | IF ( .NOT. diss_production ) THEN |
---|
2891 | |
---|
2892 | !-- Compute tendency for TKE-production from shear |
---|
2893 | tend(k,j,i) = tend(k,j,i) + km(k,j,i) * def * flag |
---|
2894 | |
---|
2895 | ELSE |
---|
2896 | |
---|
2897 | !-- RANS mode: Compute tendency for dissipation-rate-production from shear |
---|
2898 | tend(k,j,i) = tend(k,j,i) + km(k,j,i) * def * flag * & |
---|
2899 | diss(k,j,i)/( e(k,j,i) + 1.0E-20_wp ) * c_1 |
---|
2900 | |
---|
2901 | ENDIF |
---|
2902 | |
---|
2903 | ENDDO |
---|
2904 | |
---|
2905 | |
---|
2906 | ENDDO |
---|
2907 | ENDDO |
---|
2908 | |
---|
2909 | ! |
---|
2910 | !-- If required, calculate TKE production by buoyancy |
---|
2911 | IF ( .NOT. neutral ) THEN |
---|
2912 | |
---|
2913 | IF ( .NOT. humidity ) THEN |
---|
2914 | |
---|
2915 | IF ( ocean_mode ) THEN |
---|
2916 | ! |
---|
2917 | !-- So far in the ocean no special treatment of density flux |
---|
2918 | !-- in the bottom and top surface layer |
---|
2919 | DO i = nxl, nxr |
---|
2920 | DO j = nys, nyn |
---|
2921 | |
---|
2922 | DO k = nzb+1, nzt |
---|
2923 | tmp_flux(k) = kh(k,j,i) * ( prho(k+1,j,i) - prho(k-1,j,i) ) * dd2zu(k) |
---|
2924 | ENDDO |
---|
2925 | ! |
---|
2926 | !-- Treatment of near-surface grid points, at up- and down- |
---|
2927 | !-- ward facing surfaces |
---|
2928 | IF ( use_surface_fluxes ) THEN |
---|
2929 | DO l = 0, 1 |
---|
2930 | surf_s = surf_def_h(l)%start_index(j,i) |
---|
2931 | surf_e = surf_def_h(l)%end_index(j,i) |
---|
2932 | DO m = surf_s, surf_e |
---|
2933 | k = surf_def_h(l)%k(m) |
---|
2934 | tmp_flux(k) = drho_air_zw(k-1) * surf_def_h(l)%shf(m) |
---|
2935 | ENDDO |
---|
2936 | ENDDO |
---|
2937 | ENDIF |
---|
2938 | |
---|
2939 | IF ( use_top_fluxes ) THEN |
---|
2940 | surf_s = surf_def_h(2)%start_index(j,i) |
---|
2941 | surf_e = surf_def_h(2)%end_index(j,i) |
---|
2942 | DO m = surf_s, surf_e |
---|
2943 | k = surf_def_h(2)%k(m) |
---|
2944 | tmp_flux(k) = drho_air_zw(k) * surf_def_h(2)%shf(m) |
---|
2945 | ENDDO |
---|
2946 | ENDIF |
---|
2947 | |
---|
2948 | IF ( .NOT. diss_production ) THEN |
---|
2949 | |
---|
2950 | !-- Compute tendency for TKE-production from shear |
---|
2951 | DO k = nzb+1, nzt |
---|
2952 | flag = MERGE( 1.0_wp, 0.0_wp, BTEST(wall_flags_0(k,j,i),0) ) |
---|
2953 | tend(k,j,i) = tend(k,j,i) + flag * tmp_flux(k) * ( g / & |
---|
2954 | MERGE( rho_reference, prho(k,j,i), & |
---|
2955 | use_single_reference_value ) ) |
---|
2956 | ENDDO |
---|
2957 | |
---|
2958 | ELSE |
---|
2959 | |
---|
2960 | !-- RANS mode: Compute tendency for dissipation-rate-production from shear |
---|
2961 | DO k = nzb+1, nzt |
---|
2962 | flag = MERGE( 1.0_wp, 0.0_wp, BTEST(wall_flags_0(k,j,i),0) ) |
---|
2963 | tend(k,j,i) = tend(k,j,i) + flag * tmp_flux(k) * ( g / & |
---|
2964 | MERGE( rho_reference, prho(k,j,i), & |
---|
2965 | use_single_reference_value ) ) * & |
---|
2966 | diss(k,j,i)/( e(k,j,i) + 1.0E-20_wp ) * & |
---|
2967 | c_3 |
---|
2968 | ENDDO |
---|
2969 | |
---|
2970 | ENDIF |
---|
2971 | |
---|
2972 | ENDDO |
---|
2973 | ENDDO |
---|
2974 | |
---|
2975 | ELSE ! or IF ( .NOT. ocean_mode ) THEN |
---|
2976 | |
---|
2977 | !$ACC PARALLEL LOOP COLLAPSE(2) PRIVATE(i, j) & |
---|
2978 | !$ACC PRIVATE(surf_s, surf_e) & |
---|
2979 | !$ACC PRIVATE(tmp_flux(nzb+1:nzt)) & |
---|
2980 | !$ACC PRESENT(e, diss, kh, pt, dd2zu, drho_air_zw, wall_flags_0) & |
---|
2981 | !$ACC PRESENT(tend) & |
---|
2982 | !$ACC PRESENT(surf_def_h(0:2)) & |
---|
2983 | !$ACC PRESENT(surf_lsm_h) & |
---|
2984 | !$ACC PRESENT(surf_usm_h) |
---|
2985 | DO i = nxl, nxr |
---|
2986 | DO j = nys, nyn |
---|
2987 | |
---|
2988 | !$ACC LOOP PRIVATE(k) |
---|
2989 | DO k = nzb+1, nzt |
---|
2990 | tmp_flux(k) = -1.0_wp * kh(k,j,i) * ( pt(k+1,j,i) - pt(k-1,j,i) ) * dd2zu(k) |
---|
2991 | ENDDO |
---|
2992 | |
---|
2993 | IF ( use_surface_fluxes ) THEN |
---|
2994 | ! |
---|
2995 | !-- Default surfaces, up- and downward-facing |
---|
2996 | DO l = 0, 1 |
---|
2997 | surf_s = surf_def_h(l)%start_index(j,i) |
---|
2998 | surf_e = surf_def_h(l)%end_index(j,i) |
---|
2999 | !$ACC LOOP PRIVATE(m, k) |
---|
3000 | DO m = surf_s, surf_e |
---|
3001 | k = surf_def_h(l)%k(m) |
---|
3002 | tmp_flux(k) = drho_air_zw(k-1) * surf_def_h(l)%shf(m) |
---|
3003 | ENDDO |
---|
3004 | ENDDO |
---|
3005 | ! |
---|
3006 | !-- Natural surfaces |
---|
3007 | surf_s = surf_lsm_h%start_index(j,i) |
---|
3008 | surf_e = surf_lsm_h%end_index(j,i) |
---|
3009 | !$ACC LOOP PRIVATE(m, k) |
---|
3010 | DO m = surf_s, surf_e |
---|
3011 | k = surf_lsm_h%k(m) |
---|
3012 | tmp_flux(k) = drho_air_zw(k-1) * surf_lsm_h%shf(m) |
---|
3013 | ENDDO |
---|
3014 | ! |
---|
3015 | !-- Urban surfaces |
---|
3016 | surf_s = surf_usm_h%start_index(j,i) |
---|
3017 | surf_e = surf_usm_h%end_index(j,i) |
---|
3018 | !$ACC LOOP PRIVATE(m, k) |
---|
3019 | DO m = surf_s, surf_e |
---|
3020 | k = surf_usm_h%k(m) |
---|
3021 | tmp_flux(k) = drho_air_zw(k-1) * surf_usm_h%shf(m) |
---|
3022 | ENDDO |
---|
3023 | ENDIF |
---|
3024 | |
---|
3025 | IF ( use_top_fluxes ) THEN |
---|
3026 | surf_s = surf_def_h(2)%start_index(j,i) |
---|
3027 | surf_e = surf_def_h(2)%end_index(j,i) |
---|
3028 | !$ACC LOOP PRIVATE(m, k) |
---|
3029 | DO m = surf_s, surf_e |
---|
3030 | k = surf_def_h(2)%k(m) |
---|
3031 | tmp_flux(k) = drho_air_zw(k) * surf_def_h(2)%shf(m) |
---|
3032 | ENDDO |
---|
3033 | ENDIF |
---|
3034 | |
---|
3035 | IF ( .NOT. diss_production ) THEN |
---|
3036 | |
---|
3037 | !-- Compute tendency for TKE-production from shear |
---|
3038 | !$ACC LOOP PRIVATE(k, flag) |
---|
3039 | DO k = nzb+1, nzt |
---|
3040 | flag = MERGE( 1.0_wp, 0.0_wp, BTEST(wall_flags_0(k,j,i),0) ) |
---|
3041 | tend(k,j,i) = tend(k,j,i) + flag * tmp_flux(k) * ( g / & |
---|
3042 | MERGE( pt_reference, pt(k,j,i), & |
---|
3043 | use_single_reference_value ) ) |
---|
3044 | ENDDO |
---|
3045 | |
---|
3046 | ELSE |
---|
3047 | |
---|
3048 | !-- RANS mode: Compute tendency for dissipation-rate-production from shear |
---|
3049 | DO k = nzb+1, nzt |
---|
3050 | flag = MERGE( 1.0_wp, 0.0_wp, BTEST(wall_flags_0(k,j,i),0) ) |
---|
3051 | tend(k,j,i) = tend(k,j,i) + flag * tmp_flux(k) * ( g / & |
---|
3052 | MERGE( pt_reference, pt(k,j,i), & |
---|
3053 | use_single_reference_value ) ) * & |
---|
3054 | diss(k,j,i)/( e(k,j,i) + 1.0E-20_wp ) * & |
---|
3055 | c_3 |
---|
3056 | ENDDO |
---|
3057 | |
---|
3058 | ENDIF |
---|
3059 | |
---|
3060 | ENDDO |
---|
3061 | ENDDO |
---|
3062 | |
---|
3063 | ENDIF ! from IF ( .NOT. ocean_mode ) |
---|
3064 | |
---|
3065 | ELSE ! or IF ( humidity ) THEN |
---|
3066 | |
---|
3067 | DO i = nxl, nxr |
---|
3068 | DO j = nys, nyn |
---|
3069 | |
---|
3070 | DO k = nzb+1, nzt |
---|
3071 | |
---|
3072 | IF ( .NOT. bulk_cloud_model .AND. .NOT. cloud_droplets ) THEN |
---|
3073 | k1 = 1.0_wp + 0.61_wp * q(k,j,i) |
---|
3074 | k2 = 0.61_wp * pt(k,j,i) |
---|
3075 | tmp_flux(k) = -1.0_wp * kh(k,j,i) * & |
---|
3076 | ( k1 * ( pt(k+1,j,i) - pt(k-1,j,i) ) + & |
---|
3077 | k2 * ( q(k+1,j,i) - q(k-1,j,i) ) & |
---|
3078 | ) * dd2zu(k) |
---|
3079 | ELSE IF ( bulk_cloud_model ) THEN |
---|
3080 | IF ( ql(k,j,i) == 0.0_wp ) THEN |
---|
3081 | k1 = 1.0_wp + 0.61_wp * q(k,j,i) |
---|
3082 | k2 = 0.61_wp * pt(k,j,i) |
---|
3083 | ELSE |
---|
3084 | theta = pt(k,j,i) + d_exner(k) * lv_d_cp * ql(k,j,i) |
---|
3085 | temp = theta * exner(k) |
---|
3086 | k1 = ( 1.0_wp - q(k,j,i) + 1.61_wp * & |
---|
3087 | ( q(k,j,i) - ql(k,j,i) ) * & |
---|
3088 | ( 1.0_wp + rd_d_rv * lv_d_rd / temp ) ) / & |
---|
3089 | ( 1.0_wp + rd_d_rv * lv_d_rd * lv_d_cp * & |
---|
3090 | ( q(k,j,i) - ql(k,j,i) ) / ( temp * temp ) ) |
---|
3091 | k2 = theta * ( lv_d_cp / temp * k1 - 1.0_wp ) |
---|
3092 | ENDIF |
---|
3093 | tmp_flux(k) = -1.0_wp * kh(k,j,i) * & |
---|
3094 | ( k1 * ( pt(k+1,j,i) - pt(k-1,j,i) ) + & |
---|
3095 | k2 * ( q(k+1,j,i) - q(k-1,j,i) ) & |
---|
3096 | ) * dd2zu(k) |
---|
3097 | ELSE IF ( cloud_droplets ) THEN |
---|
3098 | k1 = 1.0_wp + 0.61_wp * q(k,j,i) - ql(k,j,i) |
---|
3099 | k2 = 0.61_wp * pt(k,j,i) |
---|
3100 | tmp_flux(k) = -1.0_wp * kh(k,j,i) * & |
---|
3101 | ( k1 * ( pt(k+1,j,i) - pt(k-1,j,i) ) + & |
---|
3102 | k2 * ( q(k+1,j,i) - q(k-1,j,i) ) - & |
---|
3103 | pt(k,j,i) * ( ql(k+1,j,i) - & |
---|
3104 | ql(k-1,j,i) ) ) * dd2zu(k) |
---|
3105 | ENDIF |
---|
3106 | |
---|
3107 | ENDDO |
---|
3108 | |
---|
3109 | IF ( use_surface_fluxes ) THEN |
---|
3110 | ! |
---|
3111 | !-- Treat horizontal default surfaces |
---|
3112 | DO l = 0, 1 |
---|
3113 | surf_s = surf_def_h(l)%start_index(j,i) |
---|
3114 | surf_e = surf_def_h(l)%end_index(j,i) |
---|
3115 | DO m = surf_s, surf_e |
---|
3116 | k = surf_def_h(l)%k(m) |
---|
3117 | |
---|
3118 | IF ( .NOT. bulk_cloud_model .AND. .NOT. cloud_droplets ) THEN |
---|
3119 | k1 = 1.0_wp + 0.61_wp * q(k,j,i) |
---|
3120 | k2 = 0.61_wp * pt(k,j,i) |
---|
3121 | ELSE IF ( bulk_cloud_model ) THEN |
---|
3122 | IF ( ql(k,j,i) == 0.0_wp ) THEN |
---|
3123 | k1 = 1.0_wp + 0.61_wp * q(k,j,i) |
---|
3124 | k2 = 0.61_wp * pt(k,j,i) |
---|
3125 | ELSE |
---|
3126 | theta = pt(k,j,i) + d_exner(k) * lv_d_cp * ql(k,j,i) |
---|
3127 | temp = theta * exner(k) |
---|
3128 | k1 = ( 1.0_wp - q(k,j,i) + 1.61_wp * & |
---|
3129 | ( q(k,j,i) - ql(k,j,i) ) * & |
---|
3130 | ( 1.0_wp + rd_d_rv * lv_d_rd / temp ) ) / & |
---|
3131 | ( 1.0_wp + rd_d_rv * lv_d_rd * lv_d_cp * & |
---|
3132 | ( q(k,j,i) - ql(k,j,i) ) / ( temp * temp ) ) |
---|
3133 | k2 = theta * ( lv_d_cp / temp * k1 - 1.0_wp ) |
---|
3134 | ENDIF |
---|
3135 | ELSE IF ( cloud_droplets ) THEN |
---|
3136 | k1 = 1.0_wp + 0.61_wp * q(k,j,i) - ql(k,j,i) |
---|
3137 | k2 = 0.61_wp * pt(k,j,i) |
---|
3138 | ENDIF |
---|
3139 | |
---|
3140 | tmp_flux(k) = ( k1 * surf_def_h(l)%shf(m) + & |
---|
3141 | k2 * surf_def_h(l)%qsws(m) & |
---|
3142 | ) * drho_air_zw(k-1) |
---|
3143 | ENDDO |
---|
3144 | ENDDO |
---|
3145 | ! |
---|
3146 | !-- Treat horizontal natural surfaces |
---|
3147 | surf_s = surf_lsm_h%start_index(j,i) |
---|
3148 | surf_e = surf_lsm_h%end_index(j,i) |
---|
3149 | DO m = surf_s, surf_e |
---|
3150 | k = surf_lsm_h%k(m) |
---|
3151 | |
---|
3152 | IF ( .NOT. bulk_cloud_model .AND. .NOT. cloud_droplets ) THEN |
---|
3153 | k1 = 1.0_wp + 0.61_wp * q(k,j,i) |
---|
3154 | k2 = 0.61_wp * pt(k,j,i) |
---|
3155 | ELSE IF ( bulk_cloud_model ) THEN |
---|
3156 | IF ( ql(k,j,i) == 0.0_wp ) THEN |
---|
3157 | k1 = 1.0_wp + 0.61_wp * q(k,j,i) |
---|
3158 | k2 = 0.61_wp * pt(k,j,i) |
---|
3159 | ELSE |
---|
3160 | theta = pt(k,j,i) + d_exner(k) * lv_d_cp * ql(k,j,i) |
---|
3161 | temp = theta * exner(k) |
---|
3162 | k1 = ( 1.0_wp - q(k,j,i) + 1.61_wp * & |
---|
3163 | ( q(k,j,i) - ql(k,j,i) ) * & |
---|
3164 | ( 1.0_wp + rd_d_rv * lv_d_rd / temp ) ) / & |
---|
3165 | ( 1.0_wp + rd_d_rv * lv_d_rd * lv_d_cp * & |
---|
3166 | ( q(k,j,i) - ql(k,j,i) ) / ( temp * temp ) ) |
---|
3167 | k2 = theta * ( lv_d_cp / temp * k1 - 1.0_wp ) |
---|
3168 | ENDIF |
---|
3169 | ELSE IF ( cloud_droplets ) THEN |
---|
3170 | k1 = 1.0_wp + 0.61_wp * q(k,j,i) - ql(k,j,i) |
---|
3171 | k2 = 0.61_wp * pt(k,j,i) |
---|
3172 | ENDIF |
---|
3173 | |
---|
3174 | tmp_flux(k) = ( k1 * surf_lsm_h%shf(m) + & |
---|
3175 | k2 * surf_lsm_h%qsws(m) & |
---|
3176 | ) * drho_air_zw(k-1) |
---|
3177 | ENDDO |
---|
3178 | ! |
---|
3179 | !-- Treat horizontal urban surfaces |
---|
3180 | surf_s = surf_usm_h%start_index(j,i) |
---|
3181 | surf_e = surf_usm_h%end_index(j,i) |
---|
3182 | DO m = surf_s, surf_e |
---|
3183 | k = surf_usm_h%k(m) |
---|
3184 | |
---|
3185 | IF ( .NOT. bulk_cloud_model .AND. .NOT. cloud_droplets ) THEN |
---|
3186 | k1 = 1.0_wp + 0.61_wp * q(k,j,i) |
---|
3187 | k2 = 0.61_wp * pt(k,j,i) |
---|
3188 | ELSE IF ( bulk_cloud_model ) THEN |
---|
3189 | IF ( ql(k,j,i) == 0.0_wp ) THEN |
---|
3190 | k1 = 1.0_wp + 0.61_wp * q(k,j,i) |
---|
3191 | k2 = 0.61_wp * pt(k,j,i) |
---|
3192 | ELSE |
---|
3193 | theta = pt(k,j,i) + d_exner(k) * lv_d_cp * ql(k,j,i) |
---|
3194 | temp = theta * exner(k) |
---|
3195 | k1 = ( 1.0_wp - q(k,j,i) + 1.61_wp * & |
---|
3196 | ( q(k,j,i) - ql(k,j,i) ) * & |
---|
3197 | ( 1.0_wp + rd_d_rv * lv_d_rd / temp ) ) / & |
---|
3198 | ( 1.0_wp + rd_d_rv * lv_d_rd * lv_d_cp * & |
---|
3199 | ( q(k,j,i) - ql(k,j,i) ) / ( temp * temp ) ) |
---|
3200 | k2 = theta * ( lv_d_cp / temp * k1 - 1.0_wp ) |
---|
3201 | ENDIF |
---|
3202 | ELSE IF ( cloud_droplets ) THEN |
---|
3203 | k1 = 1.0_wp + 0.61_wp * q(k,j,i) - ql(k,j,i) |
---|
3204 | k2 = 0.61_wp * pt(k,j,i) |
---|
3205 | ENDIF |
---|
3206 | |
---|
3207 | tmp_flux(k) = ( k1 * surf_usm_h%shf(m) + & |
---|
3208 | k2 * surf_usm_h%qsws(m) & |
---|
3209 | ) * drho_air_zw(k-1) |
---|
3210 | ENDDO |
---|
3211 | |
---|
3212 | ENDIF ! from IF ( use_surface_fluxes ) THEN |
---|
3213 | |
---|
3214 | IF ( use_top_fluxes ) THEN |
---|
3215 | |
---|
3216 | surf_s = surf_def_h(2)%start_index(j,i) |
---|
3217 | surf_e = surf_def_h(2)%end_index(j,i) |
---|
3218 | DO m = surf_s, surf_e |
---|
3219 | k = surf_def_h(2)%k(m) |
---|
3220 | |
---|
3221 | IF ( .NOT. bulk_cloud_model .AND. .NOT. cloud_droplets ) THEN |
---|
3222 | k1 = 1.0_wp + 0.61_wp * q(k,j,i) |
---|
3223 | k2 = 0.61_wp * pt(k,j,i) |
---|
3224 | ELSE IF ( bulk_cloud_model ) THEN |
---|
3225 | IF ( ql(k,j,i) == 0.0_wp ) THEN |
---|
3226 | k1 = 1.0_wp + 0.61_wp * q(k,j,i) |
---|
3227 | k2 = 0.61_wp * pt(k,j,i) |
---|
3228 | ELSE |
---|
3229 | theta = pt(k,j,i) + d_exner(k) * lv_d_cp * ql(k,j,i) |
---|
3230 | temp = theta * exner(k) |
---|
3231 | k1 = ( 1.0_wp - q(k,j,i) + 1.61_wp * & |
---|
3232 | ( q(k,j,i) - ql(k,j,i) ) * & |
---|
3233 | ( 1.0_wp + rd_d_rv * lv_d_rd / temp ) ) / & |
---|
3234 | ( 1.0_wp + rd_d_rv * lv_d_rd * lv_d_cp * & |
---|
3235 | ( q(k,j,i) - ql(k,j,i) ) / ( temp * temp ) ) |
---|
3236 | k2 = theta * ( lv_d_cp / temp * k1 - 1.0_wp ) |
---|
3237 | ENDIF |
---|
3238 | ELSE IF ( cloud_droplets ) THEN |
---|
3239 | k1 = 1.0_wp + 0.61_wp * q(k,j,i) - ql(k,j,i) |
---|
3240 | k2 = 0.61_wp * pt(k,j,i) |
---|
3241 | ENDIF |
---|
3242 | |
---|
3243 | tmp_flux(k) = ( k1 * surf_def_h(2)%shf(m) + & |
---|
3244 | k2 * surf_def_h(2)%qsws(m) & |
---|
3245 | ) * drho_air_zw(k) |
---|
3246 | |
---|
3247 | ENDDO |
---|
3248 | |
---|
3249 | ENDIF ! from IF ( use_top_fluxes ) THEN |
---|
3250 | |
---|
3251 | IF ( .NOT. diss_production ) THEN |
---|
3252 | |
---|
3253 | !-- Compute tendency for TKE-production from shear |
---|
3254 | DO k = nzb+1, nzt |
---|
3255 | flag = MERGE( 1.0_wp, 0.0_wp, BTEST(wall_flags_0(k,j,i),0) ) |
---|
3256 | tend(k,j,i) = tend(k,j,i) + flag * tmp_flux(k) * ( g / & |
---|
3257 | MERGE( vpt_reference, vpt(k,j,i), & |
---|
3258 | use_single_reference_value ) ) |
---|
3259 | ENDDO |
---|
3260 | |
---|
3261 | ELSE |
---|
3262 | |
---|
3263 | !-- RANS mode: Compute tendency for dissipation-rate-production from shear |
---|
3264 | DO k = nzb+1, nzt |
---|
3265 | flag = MERGE( 1.0_wp, 0.0_wp, BTEST(wall_flags_0(k,j,i),0) ) |
---|
3266 | tend(k,j,i) = tend(k,j,i) + flag * tmp_flux(k) * ( g / & |
---|
3267 | MERGE( vpt_reference, vpt(k,j,i), & |
---|
3268 | use_single_reference_value ) ) * & |
---|
3269 | diss(k,j,i)/( e(k,j,i) + 1.0E-20_wp ) * & |
---|
3270 | c_3 |
---|
3271 | ENDDO |
---|
3272 | |
---|
3273 | ENDIF |
---|
3274 | |
---|
3275 | ENDDO |
---|
3276 | ENDDO |
---|
3277 | |
---|
3278 | ENDIF |
---|
3279 | |
---|
3280 | ENDIF |
---|
3281 | |
---|
3282 | END SUBROUTINE production_e |
---|
3283 | |
---|
3284 | |
---|
3285 | !------------------------------------------------------------------------------! |
---|
3286 | ! Description: |
---|
3287 | ! ------------ |
---|
3288 | !> Production terms (shear + buoyancy) of the TKE. |
---|
3289 | !> Cache-optimized version |
---|
3290 | !> @warning The case with constant_flux_layer = F and use_surface_fluxes = T is |
---|
3291 | !> not considered well! |
---|
3292 | !------------------------------------------------------------------------------! |
---|
3293 | SUBROUTINE production_e_ij( i, j, diss_production ) |
---|
3294 | |
---|
3295 | USE arrays_3d, & |
---|
3296 | ONLY: ddzw, dd2zu, drho_air_zw, q, ql, d_exner, exner |
---|
3297 | |
---|
3298 | USE control_parameters, & |
---|
3299 | ONLY: cloud_droplets, constant_flux_layer, neutral, & |
---|
3300 | rho_reference, use_single_reference_value, use_surface_fluxes, & |
---|
3301 | use_top_fluxes |
---|
3302 | |
---|
3303 | USE grid_variables, & |
---|
3304 | ONLY: ddx, dx, ddy, dy |
---|
3305 | |
---|
3306 | USE bulk_cloud_model_mod, & |
---|
3307 | ONLY: bulk_cloud_model |
---|
3308 | |
---|
3309 | IMPLICIT NONE |
---|
3310 | |
---|
3311 | LOGICAL :: diss_production |
---|
3312 | |
---|
3313 | INTEGER(iwp) :: i !< running index x-direction |
---|
3314 | INTEGER(iwp) :: j !< running index y-direction |
---|
3315 | INTEGER(iwp) :: k !< running index z-direction |
---|
3316 | INTEGER(iwp) :: l !< running index for different surface type orientation |
---|
3317 | INTEGER(iwp) :: m !< running index surface elements |
---|
3318 | INTEGER(iwp) :: surf_e !< end index of surface elements at given i-j position |
---|
3319 | INTEGER(iwp) :: surf_s !< start index of surface elements at given i-j position |
---|
3320 | INTEGER(iwp) :: flag_nr !< number of masking flag |
---|
3321 | |
---|
3322 | REAL(wp) :: def !< ( du_i/dx_j + du_j/dx_i ) * du_i/dx_j |
---|
3323 | REAL(wp) :: flag !< flag to mask topography |
---|
3324 | REAL(wp) :: k1 !< temporary factor |
---|
3325 | REAL(wp) :: k2 !< temporary factor |
---|
3326 | REAL(wp) :: km_neutral !< diffusion coefficient assuming neutral conditions - used to compute shear production at surfaces |
---|
3327 | REAL(wp) :: theta !< virtual potential temperature |
---|
3328 | REAL(wp) :: temp !< theta * Exner-function |
---|
3329 | REAL(wp) :: sign_dir !< sign of wall-tke flux, depending on wall orientation |
---|
3330 | REAL(wp) :: usvs !< momentum flux u"v" |
---|
3331 | REAL(wp) :: vsus !< momentum flux v"u" |
---|
3332 | REAL(wp) :: wsus !< momentum flux w"u" |
---|
3333 | REAL(wp) :: wsvs !< momentum flux w"v" |
---|
3334 | |
---|
3335 | REAL(wp), DIMENSION(nzb+1:nzt) :: dudx !< Gradient of u-component in x-direction |
---|
3336 | REAL(wp), DIMENSION(nzb+1:nzt) :: dudy !< Gradient of u-component in y-direction |
---|
3337 | REAL(wp), DIMENSION(nzb+1:nzt) :: dudz !< Gradient of u-component in z-direction |
---|
3338 | REAL(wp), DIMENSION(nzb+1:nzt) :: dvdx !< Gradient of v-component in x-direction |
---|
3339 | REAL(wp), DIMENSION(nzb+1:nzt) :: dvdy !< Gradient of v-component in y-direction |
---|
3340 | REAL(wp), DIMENSION(nzb+1:nzt) :: dvdz !< Gradient of v-component in z-direction |
---|
3341 | REAL(wp), DIMENSION(nzb+1:nzt) :: dwdx !< Gradient of w-component in x-direction |
---|
3342 | REAL(wp), DIMENSION(nzb+1:nzt) :: dwdy !< Gradient of w-component in y-direction |
---|
3343 | REAL(wp), DIMENSION(nzb+1:nzt) :: dwdz !< Gradient of w-component in z-direction |
---|
3344 | REAL(wp), DIMENSION(nzb+1:nzt) :: tmp_flux !< temporary flux-array in z-direction |
---|
3345 | |
---|
3346 | |
---|
3347 | |
---|
3348 | ! |
---|
3349 | !-- Calculate TKE production by shear. Calculate gradients at all grid |
---|
3350 | !-- points first, gradients at surface-bounded grid points will be |
---|
3351 | !-- overwritten further below. |
---|
3352 | DO k = nzb+1, nzt |
---|
3353 | |
---|
3354 | dudx(k) = ( u(k,j,i+1) - u(k,j,i) ) * ddx |
---|
3355 | dudy(k) = 0.25_wp * ( u(k,j+1,i) + u(k,j+1,i+1) - & |
---|
3356 | u(k,j-1,i) - u(k,j-1,i+1) ) * ddy |
---|
3357 | dudz(k) = 0.5_wp * ( u(k+1,j,i) + u(k+1,j,i+1) - & |
---|
3358 | u(k-1,j,i) - u(k-1,j,i+1) ) * dd2zu(k) |
---|
3359 | |
---|
3360 | dvdx(k) = 0.25_wp * ( v(k,j,i+1) + v(k,j+1,i+1) - & |
---|
3361 | v(k,j,i-1) - v(k,j+1,i-1) ) * ddx |
---|
3362 | dvdy(k) = ( v(k,j+1,i) - v(k,j,i) ) * ddy |
---|
3363 | dvdz(k) = 0.5_wp * ( v(k+1,j,i) + v(k+1,j+1,i) - & |
---|
3364 | v(k-1,j,i) - v(k-1,j+1,i) ) * dd2zu(k) |
---|
3365 | |
---|
3366 | dwdx(k) = 0.25_wp * ( w(k,j,i+1) + w(k-1,j,i+1) - & |
---|
3367 | w(k,j,i-1) - w(k-1,j,i-1) ) * ddx |
---|
3368 | dwdy(k) = 0.25_wp * ( w(k,j+1,i) + w(k-1,j+1,i) - & |
---|
3369 | w(k,j-1,i) - w(k-1,j-1,i) ) * ddy |
---|
3370 | dwdz(k) = ( w(k,j,i) - w(k-1,j,i) ) * ddzw(k) |
---|
3371 | |
---|
3372 | ENDDO |
---|
3373 | |
---|
3374 | flag_nr = 29 |
---|
3375 | |
---|
3376 | IF ( constant_flux_layer ) THEN |
---|
3377 | |
---|
3378 | flag_nr = 0 |
---|
3379 | |
---|
3380 | !-- Position beneath wall |
---|
3381 | !-- (2) - Will allways be executed. |
---|
3382 | !-- 'bottom and wall: use u_0,v_0 and wall functions' |
---|
3383 | ! |
---|
3384 | !-- Compute gradients at north- and south-facing surfaces. |
---|
3385 | !-- First, for default surfaces, then for urban surfaces. |
---|
3386 | !-- Note, so far no natural vertical surfaces implemented |
---|
3387 | DO l = 0, 1 |
---|
3388 | surf_s = surf_def_v(l)%start_index(j,i) |
---|
3389 | surf_e = surf_def_v(l)%end_index(j,i) |
---|
3390 | DO m = surf_s, surf_e |
---|
3391 | k = surf_def_v(l)%k(m) |
---|
3392 | usvs = surf_def_v(l)%mom_flux_tke(0,m) |
---|
3393 | wsvs = surf_def_v(l)%mom_flux_tke(1,m) |
---|
3394 | |
---|
3395 | km_neutral = kappa * ( usvs**2 + wsvs**2 )**0.25_wp & |
---|
3396 | * 0.5_wp * dy |
---|
3397 | ! |
---|
3398 | !-- -1.0 for right-facing wall, 1.0 for left-facing wall |
---|
3399 | sign_dir = MERGE( 1.0_wp, -1.0_wp, & |
---|
3400 | BTEST( wall_flags_0(k,j-1,i), flag_nr ) ) |
---|
3401 | dudy(k) = sign_dir * usvs / ( km_neutral + 1E-10_wp ) |
---|
3402 | dwdy(k) = sign_dir * wsvs / ( km_neutral + 1E-10_wp ) |
---|
3403 | ENDDO |
---|
3404 | ! |
---|
3405 | !-- Natural surfaces |
---|
3406 | surf_s = surf_lsm_v(l)%start_index(j,i) |
---|
3407 | surf_e = surf_lsm_v(l)%end_index(j,i) |
---|
3408 | DO m = surf_s, surf_e |
---|
3409 | k = surf_lsm_v(l)%k(m) |
---|
3410 | usvs = surf_lsm_v(l)%mom_flux_tke(0,m) |
---|
3411 | wsvs = surf_lsm_v(l)%mom_flux_tke(1,m) |
---|
3412 | |
---|
3413 | km_neutral = kappa * ( usvs**2 + wsvs**2 )**0.25_wp & |
---|
3414 | * 0.5_wp * dy |
---|
3415 | ! |
---|
3416 | !-- -1.0 for right-facing wall, 1.0 for left-facing wall |
---|
3417 | sign_dir = MERGE( 1.0_wp, -1.0_wp, & |
---|
3418 | BTEST( wall_flags_0(k,j-1,i), flag_nr ) ) |
---|
3419 | dudy(k) = sign_dir * usvs / ( km_neutral + 1E-10_wp ) |
---|
3420 | dwdy(k) = sign_dir * wsvs / ( km_neutral + 1E-10_wp ) |
---|
3421 | ENDDO |
---|
3422 | ! |
---|
3423 | !-- Urban surfaces |
---|
3424 | surf_s = surf_usm_v(l)%start_index(j,i) |
---|
3425 | surf_e = surf_usm_v(l)%end_index(j,i) |
---|
3426 | DO m = surf_s, surf_e |
---|
3427 | k = surf_usm_v(l)%k(m) |
---|
3428 | usvs = surf_usm_v(l)%mom_flux_tke(0,m) |
---|
3429 | wsvs = surf_usm_v(l)%mom_flux_tke(1,m) |
---|
3430 | |
---|
3431 | km_neutral = kappa * ( usvs**2 + wsvs**2 )**0.25_wp & |
---|
3432 | * 0.5_wp * dy |
---|
3433 | ! |
---|
3434 | !-- -1.0 for right-facing wall, 1.0 for left-facing wall |
---|
3435 | sign_dir = MERGE( 1.0_wp, -1.0_wp, & |
---|
3436 | BTEST( wall_flags_0(k,j-1,i), flag_nr ) ) |
---|
3437 | dudy(k) = sign_dir * usvs / ( km_neutral + 1E-10_wp ) |
---|
3438 | dwdy(k) = sign_dir * wsvs / ( km_neutral + 1E-10_wp ) |
---|
3439 | ENDDO |
---|
3440 | ENDDO |
---|
3441 | ! |
---|
3442 | !-- Compute gradients at east- and west-facing walls |
---|
3443 | DO l = 2, 3 |
---|
3444 | surf_s = surf_def_v(l)%start_index(j,i) |
---|
3445 | surf_e = surf_def_v(l)%end_index(j,i) |
---|
3446 | DO m = surf_s, surf_e |
---|
3447 | k = surf_def_v(l)%k(m) |
---|
3448 | vsus = surf_def_v(l)%mom_flux_tke(0,m) |
---|
3449 | wsus = surf_def_v(l)%mom_flux_tke(1,m) |
---|
3450 | |
---|
3451 | km_neutral = kappa * ( vsus**2 + wsus**2 )**0.25_wp & |
---|
3452 | * 0.5_wp * dx |
---|
3453 | ! |
---|
3454 | !-- -1.0 for right-facing wall, 1.0 for left-facing wall |
---|
3455 | sign_dir = MERGE( 1.0_wp, -1.0_wp, & |
---|
3456 | BTEST( wall_flags_0(k,j,i-1), flag_nr ) ) |
---|
3457 | dvdx(k) = sign_dir * vsus / ( km_neutral + 1E-10_wp ) |
---|
3458 | dwdx(k) = sign_dir * wsus / ( km_neutral + 1E-10_wp ) |
---|
3459 | ENDDO |
---|
3460 | ! |
---|
3461 | !-- Natural surfaces |
---|
3462 | surf_s = surf_lsm_v(l)%start_index(j,i) |
---|
3463 | surf_e = surf_lsm_v(l)%end_index(j,i) |
---|
3464 | DO m = surf_s, surf_e |
---|
3465 | k = surf_lsm_v(l)%k(m) |
---|
3466 | vsus = surf_lsm_v(l)%mom_flux_tke(0,m) |
---|
3467 | wsus = surf_lsm_v(l)%mom_flux_tke(1,m) |
---|
3468 | |
---|
3469 | km_neutral = kappa * ( vsus**2 + wsus**2 )**0.25_wp & |
---|
3470 | * 0.5_wp * dx |
---|
3471 | ! |
---|
3472 | !-- -1.0 for right-facing wall, 1.0 for left-facing wall |
---|
3473 | sign_dir = MERGE( 1.0_wp, -1.0_wp, & |
---|
3474 | BTEST( wall_flags_0(k,j,i-1), flag_nr ) ) |
---|
3475 | dvdx(k) = sign_dir * vsus / ( km_neutral + 1E-10_wp ) |
---|
3476 | dwdx(k) = sign_dir * wsus / ( km_neutral + 1E-10_wp ) |
---|
3477 | ENDDO |
---|
3478 | ! |
---|
3479 | !-- Urban surfaces |
---|
3480 | surf_s = surf_usm_v(l)%start_index(j,i) |
---|
3481 | surf_e = surf_usm_v(l)%end_index(j,i) |
---|
3482 | DO m = surf_s, surf_e |
---|
3483 | k = surf_usm_v(l)%k(m) |
---|
3484 | vsus = surf_usm_v(l)%mom_flux_tke(0,m) |
---|
3485 | wsus = surf_usm_v(l)%mom_flux_tke(1,m) |
---|
3486 | |
---|
3487 | km_neutral = kappa * ( vsus**2 + wsus**2 )**0.25_wp & |
---|
3488 | * 0.5_wp * dx |
---|
3489 | ! |
---|
3490 | !-- -1.0 for right-facing wall, 1.0 for left-facing wall |
---|
3491 | sign_dir = MERGE( 1.0_wp, -1.0_wp, & |
---|
3492 | BTEST( wall_flags_0(k,j,i-1), flag_nr ) ) |
---|
3493 | dvdx(k) = sign_dir * vsus / ( km_neutral + 1E-10_wp ) |
---|
3494 | dwdx(k) = sign_dir * wsus / ( km_neutral + 1E-10_wp ) |
---|
3495 | ENDDO |
---|
3496 | ENDDO |
---|
3497 | ! |
---|
3498 | !-- Compute gradients at upward-facing surfaces |
---|
3499 | surf_s = surf_def_h(0)%start_index(j,i) |
---|
3500 | surf_e = surf_def_h(0)%end_index(j,i) |
---|
3501 | DO m = surf_s, surf_e |
---|
3502 | k = surf_def_h(0)%k(m) |
---|
3503 | ! |
---|
3504 | !-- Please note, actually, an interpolation of u_0 and v_0 |
---|
3505 | !-- onto the grid center would be required. However, this |
---|
3506 | !-- would require several data transfers between 2D-grid and |
---|
3507 | !-- wall type. The effect of this missing interpolation is |
---|
3508 | !-- negligible. (See also production_e_init). |
---|
3509 | dudz(k) = ( u(k+1,j,i) - surf_def_h(0)%u_0(m) ) * dd2zu(k) |
---|
3510 | dvdz(k) = ( v(k+1,j,i) - surf_def_h(0)%v_0(m) ) * dd2zu(k) |
---|
3511 | |
---|
3512 | ENDDO |
---|
3513 | ! |
---|
3514 | !-- Natural surfaces |
---|
3515 | surf_s = surf_lsm_h%start_index(j,i) |
---|
3516 | surf_e = surf_lsm_h%end_index(j,i) |
---|
3517 | DO m = surf_s, surf_e |
---|
3518 | k = surf_lsm_h%k(m) |
---|
3519 | |
---|
3520 | dudz(k) = ( u(k+1,j,i) - surf_lsm_h%u_0(m) ) * dd2zu(k) |
---|
3521 | dvdz(k) = ( v(k+1,j,i) - surf_lsm_h%v_0(m) ) * dd2zu(k) |
---|
3522 | |
---|
3523 | ENDDO |
---|
3524 | ! |
---|
3525 | !-- Urban surfaces |
---|
3526 | surf_s = surf_usm_h%start_index(j,i) |
---|
3527 | surf_e = surf_usm_h%end_index(j,i) |
---|
3528 | DO m = surf_s, surf_e |
---|
3529 | k = surf_usm_h%k(m) |
---|
3530 | |
---|
3531 | dudz(k) = ( u(k+1,j,i) - surf_usm_h%u_0(m) ) * dd2zu(k) |
---|
3532 | dvdz(k) = ( v(k+1,j,i) - surf_usm_h%v_0(m) ) * dd2zu(k) |
---|
3533 | |
---|
3534 | ENDDO |
---|
3535 | ! |
---|
3536 | !-- Compute gradients at downward-facing walls, only for |
---|
3537 | !-- non-natural default surfaces |
---|
3538 | surf_s = surf_def_h(1)%start_index(j,i) |
---|
3539 | surf_e = surf_def_h(1)%end_index(j,i) |
---|
3540 | DO m = surf_s, surf_e |
---|
3541 | k = surf_def_h(1)%k(m) |
---|
3542 | |
---|
3543 | dudz(k) = ( surf_def_h(1)%u_0(m) - u(k-1,j,i) ) * dd2zu(k) |
---|
3544 | dvdz(k) = ( surf_def_h(1)%v_0(m) - v(k-1,j,i) ) * dd2zu(k) |
---|
3545 | |
---|
3546 | ENDDO |
---|
3547 | |
---|
3548 | ENDIF |
---|
3549 | |
---|
3550 | DO k = nzb+1, nzt |
---|
3551 | |
---|
3552 | def = 2.0_wp * ( dudx(k)**2 + dvdy(k)**2 + dwdz(k)**2 ) + & |
---|
3553 | dudy(k)**2 + dvdx(k)**2 + dwdx(k)**2 + & |
---|
3554 | dwdy(k)**2 + dudz(k)**2 + dvdz(k)**2 + & |
---|
3555 | 2.0_wp * ( dvdx(k)*dudy(k) + dwdx(k)*dudz(k) + & |
---|
3556 | dwdy(k)*dvdz(k) ) |
---|
3557 | |
---|
3558 | IF ( def < 0.0_wp ) def = 0.0_wp |
---|
3559 | |
---|
3560 | flag = MERGE( 1.0_wp, 0.0_wp, BTEST(wall_flags_0(k,j,i),flag_nr) ) |
---|
3561 | |
---|
3562 | IF ( .NOT. diss_production ) THEN |
---|
3563 | |
---|
3564 | !-- Compute tendency for TKE-production from shear |
---|
3565 | tend(k,j,i) = tend(k,j,i) + km(k,j,i) * def * flag |
---|
3566 | |
---|
3567 | ELSE |
---|
3568 | |
---|
3569 | !-- RANS mode: Compute tendency for dissipation-rate-production from shear |
---|
3570 | tend(k,j,i) = tend(k,j,i) + km(k,j,i) * def * flag * & |
---|
3571 | diss(k,j,i)/( e(k,j,i) + 1.0E-20_wp ) * c_1 |
---|
3572 | |
---|
3573 | ENDIF |
---|
3574 | |
---|
3575 | ENDDO |
---|
3576 | |
---|
3577 | ! |
---|
3578 | !-- If required, calculate TKE production by buoyancy |
---|
3579 | IF ( .NOT. neutral ) THEN |
---|
3580 | |
---|
3581 | IF ( .NOT. humidity ) THEN |
---|
3582 | |
---|
3583 | IF ( ocean_mode ) THEN |
---|
3584 | ! |
---|
3585 | !-- So far in the ocean no special treatment of density flux |
---|
3586 | !-- in the bottom and top surface layer |
---|
3587 | DO k = nzb+1, nzt |
---|
3588 | tmp_flux(k) = kh(k,j,i) * ( prho(k+1,j,i) - prho(k-1,j,i) ) * dd2zu(k) |
---|
3589 | ENDDO |
---|
3590 | ! |
---|
3591 | !-- Treatment of near-surface grid points, at up- and down- |
---|
3592 | !-- ward facing surfaces |
---|
3593 | IF ( use_surface_fluxes ) THEN |
---|
3594 | DO l = 0, 1 |
---|
3595 | surf_s = surf_def_h(l)%start_index(j,i) |
---|
3596 | surf_e = surf_def_h(l)%end_index(j,i) |
---|
3597 | DO m = surf_s, surf_e |
---|
3598 | k = surf_def_h(l)%k(m) |
---|
3599 | tmp_flux(k) = drho_air_zw(k-1) * surf_def_h(l)%shf(m) |
---|
3600 | ENDDO |
---|
3601 | ENDDO |
---|
3602 | ENDIF |
---|
3603 | |
---|
3604 | IF ( use_top_fluxes ) THEN |
---|
3605 | surf_s = surf_def_h(2)%start_index(j,i) |
---|
3606 | surf_e = surf_def_h(2)%end_index(j,i) |
---|
3607 | DO m = surf_s, surf_e |
---|
3608 | k = surf_def_h(2)%k(m) |
---|
3609 | tmp_flux(k) = drho_air_zw(k) * surf_def_h(2)%shf(m) |
---|
3610 | ENDDO |
---|
3611 | ENDIF |
---|
3612 | |
---|
3613 | IF ( .NOT. diss_production ) THEN |
---|
3614 | |
---|
3615 | !-- Compute tendency for TKE-production from shear |
---|
3616 | DO k = nzb+1, nzt |
---|
3617 | flag = MERGE( 1.0_wp, 0.0_wp, BTEST(wall_flags_0(k,j,i),0) ) |
---|
3618 | tend(k,j,i) = tend(k,j,i) + flag * tmp_flux(k) * ( g / & |
---|
3619 | MERGE( rho_reference, prho(k,j,i), & |
---|
3620 | use_single_reference_value ) ) |
---|
3621 | ENDDO |
---|
3622 | |
---|
3623 | ELSE |
---|
3624 | |
---|
3625 | !-- RANS mode: Compute tendency for dissipation-rate-production from shear |
---|
3626 | DO k = nzb+1, nzt |
---|
3627 | flag = MERGE( 1.0_wp, 0.0_wp, BTEST(wall_flags_0(k,j,i),0) ) |
---|
3628 | tend(k,j,i) = tend(k,j,i) + flag * tmp_flux(k) * ( g / & |
---|
3629 | MERGE( rho_reference, prho(k,j,i), & |
---|
3630 | use_single_reference_value ) ) * & |
---|
3631 | diss(k,j,i)/( e(k,j,i) + 1.0E-20_wp ) * & |
---|
3632 | c_3 |
---|
3633 | ENDDO |
---|
3634 | |
---|
3635 | ENDIF |
---|
3636 | |
---|
3637 | |
---|
3638 | ELSE ! or IF ( .NOT. ocean_mode ) THEN |
---|
3639 | |
---|
3640 | DO k = nzb+1, nzt |
---|
3641 | tmp_flux(k) = -1.0_wp * kh(k,j,i) * ( pt(k+1,j,i) - pt(k-1,j,i) ) * dd2zu(k) |
---|
3642 | ENDDO |
---|
3643 | |
---|
3644 | IF ( use_surface_fluxes ) THEN |
---|
3645 | ! |
---|
3646 | !-- Default surfaces, up- and downward-facing |
---|
3647 | DO l = 0, 1 |
---|
3648 | surf_s = surf_def_h(l)%start_index(j,i) |
---|
3649 | surf_e = surf_def_h(l)%end_index(j,i) |
---|
3650 | DO m = surf_s, surf_e |
---|
3651 | k = surf_def_h(l)%k(m) |
---|
3652 | tmp_flux(k) = drho_air_zw(k-1) * surf_def_h(l)%shf(m) |
---|
3653 | ENDDO |
---|
3654 | ENDDO |
---|
3655 | ! |
---|
3656 | !-- Natural surfaces |
---|
3657 | surf_s = surf_lsm_h%start_index(j,i) |
---|
3658 | surf_e = surf_lsm_h%end_index(j,i) |
---|
3659 | DO m = surf_s, surf_e |
---|
3660 | k = surf_lsm_h%k(m) |
---|
3661 | tmp_flux(k) = drho_air_zw(k-1) * surf_lsm_h%shf(m) |
---|
3662 | ENDDO |
---|
3663 | ! |
---|
3664 | !-- Urban surfaces |
---|
3665 | surf_s = surf_usm_h%start_index(j,i) |
---|
3666 | surf_e = surf_usm_h%end_index(j,i) |
---|
3667 | DO m = surf_s, surf_e |
---|
3668 | k = surf_usm_h%k(m) |
---|
3669 | tmp_flux(k) = drho_air_zw(k-1) * surf_usm_h%shf(m) |
---|
3670 | ENDDO |
---|
3671 | ENDIF |
---|
3672 | |
---|
3673 | IF ( use_top_fluxes ) THEN |
---|
3674 | surf_s = surf_def_h(2)%start_index(j,i) |
---|
3675 | surf_e = surf_def_h(2)%end_index(j,i) |
---|
3676 | DO m = surf_s, surf_e |
---|
3677 | k = surf_def_h(2)%k(m) |
---|
3678 | tmp_flux(k) = drho_air_zw(k) * surf_def_h(2)%shf(m) |
---|
3679 | ENDDO |
---|
3680 | ENDIF |
---|
3681 | |
---|
3682 | IF ( .NOT. diss_production ) THEN |
---|
3683 | |
---|
3684 | !-- Compute tendency for TKE-production from shear |
---|
3685 | DO k = nzb+1, nzt |
---|
3686 | flag = MERGE( 1.0_wp, 0.0_wp, BTEST(wall_flags_0(k,j,i),0) ) |
---|
3687 | tend(k,j,i) = tend(k,j,i) + flag * tmp_flux(k) * ( g / & |
---|
3688 | MERGE( pt_reference, pt(k,j,i), & |
---|
3689 | use_single_reference_value ) ) |
---|
3690 | ENDDO |
---|
3691 | |
---|
3692 | ELSE |
---|
3693 | |
---|
3694 | !-- RANS mode: Compute tendency for dissipation-rate-production from shear |
---|
3695 | DO k = nzb+1, nzt |
---|
3696 | flag = MERGE( 1.0_wp, 0.0_wp, BTEST(wall_flags_0(k,j,i),0) ) |
---|
3697 | tend(k,j,i) = tend(k,j,i) + flag * tmp_flux(k) * ( g / & |
---|
3698 | MERGE( pt_reference, pt(k,j,i), & |
---|
3699 | use_single_reference_value ) ) * & |
---|
3700 | diss(k,j,i)/( e(k,j,i) + 1.0E-20_wp ) * & |
---|
3701 | c_3 |
---|
3702 | ENDDO |
---|
3703 | |
---|
3704 | ENDIF |
---|
3705 | |
---|
3706 | ENDIF ! from IF ( .NOT. ocean_mode ) |
---|
3707 | |
---|
3708 | ELSE ! or IF ( humidity ) THEN |
---|
3709 | |
---|
3710 | DO k = nzb+1, nzt |
---|
3711 | |
---|
3712 | IF ( .NOT. bulk_cloud_model .AND. .NOT. cloud_droplets ) THEN |
---|
3713 | k1 = 1.0_wp + 0.61_wp * q(k,j,i) |
---|
3714 | k2 = 0.61_wp * pt(k,j,i) |
---|
3715 | tmp_flux(k) = -1.0_wp * kh(k,j,i) * & |
---|
3716 | ( k1 * ( pt(k+1,j,i) - pt(k-1,j,i) ) + & |
---|
3717 | k2 * ( q(k+1,j,i) - q(k-1,j,i) ) & |
---|
3718 | ) * dd2zu(k) |
---|
3719 | ELSE IF ( bulk_cloud_model ) THEN |
---|
3720 | IF ( ql(k,j,i) == 0.0_wp ) THEN |
---|
3721 | k1 = 1.0_wp + 0.61_wp * q(k,j,i) |
---|
3722 | k2 = 0.61_wp * pt(k,j,i) |
---|
3723 | ELSE |
---|
3724 | theta = pt(k,j,i) + d_exner(k) * lv_d_cp * ql(k,j,i) |
---|
3725 | temp = theta * exner(k) |
---|
3726 | k1 = ( 1.0_wp - q(k,j,i) + 1.61_wp * & |
---|
3727 | ( q(k,j,i) - ql(k,j,i) ) * & |
---|
3728 | ( 1.0_wp + rd_d_rv * lv_d_rd / temp ) ) / & |
---|
3729 | ( 1.0_wp + rd_d_rv * lv_d_rd * lv_d_cp * & |
---|
3730 | ( q(k,j,i) - ql(k,j,i) ) / ( temp * temp ) ) |
---|
3731 | k2 = theta * ( lv_d_cp / temp * k1 - 1.0_wp ) |
---|
3732 | ENDIF |
---|
3733 | tmp_flux(k) = -1.0_wp * kh(k,j,i) * & |
---|
3734 | ( k1 * ( pt(k+1,j,i) - pt(k-1,j,i) ) + & |
---|
3735 | k2 * ( q(k+1,j,i) - q(k-1,j,i) ) & |
---|
3736 | ) * dd2zu(k) |
---|
3737 | ELSE IF ( cloud_droplets ) THEN |
---|
3738 | k1 = 1.0_wp + 0.61_wp * q(k,j,i) - ql(k,j,i) |
---|
3739 | k2 = 0.61_wp * pt(k,j,i) |
---|
3740 | tmp_flux(k) = -1.0_wp * kh(k,j,i) * & |
---|
3741 | ( k1 * ( pt(k+1,j,i) - pt(k-1,j,i) ) + & |
---|
3742 | k2 * ( q(k+1,j,i) - q(k-1,j,i) ) - & |
---|
3743 | pt(k,j,i) * ( ql(k+1,j,i) - & |
---|
3744 | ql(k-1,j,i) ) ) * dd2zu(k) |
---|
3745 | ENDIF |
---|
3746 | |
---|
3747 | ENDDO |
---|
3748 | |
---|
3749 | IF ( use_surface_fluxes ) THEN |
---|
3750 | ! |
---|
3751 | !-- Treat horizontal default surfaces |
---|
3752 | DO l = 0, 1 |
---|
3753 | surf_s = surf_def_h(l)%start_index(j,i) |
---|
3754 | surf_e = surf_def_h(l)%end_index(j,i) |
---|
3755 | DO m = surf_s, surf_e |
---|
3756 | k = surf_def_h(l)%k(m) |
---|
3757 | |
---|
3758 | IF ( .NOT. bulk_cloud_model .AND. .NOT. cloud_droplets ) THEN |
---|
3759 | k1 = 1.0_wp + 0.61_wp * q(k,j,i) |
---|
3760 | k2 = 0.61_wp * pt(k,j,i) |
---|
3761 | ELSE IF ( bulk_cloud_model ) THEN |
---|
3762 | IF ( ql(k,j,i) == 0.0_wp ) THEN |
---|
3763 | k1 = 1.0_wp + 0.61_wp * q(k,j,i) |
---|
3764 | k2 = 0.61_wp * pt(k,j,i) |
---|
3765 | ELSE |
---|
3766 | theta = pt(k,j,i) + d_exner(k) * lv_d_cp * ql(k,j,i) |
---|
3767 | temp = theta * exner(k) |
---|
3768 | k1 = ( 1.0_wp - q(k,j,i) + 1.61_wp * & |
---|
3769 | ( q(k,j,i) - ql(k,j,i) ) * & |
---|
3770 | ( 1.0_wp + rd_d_rv * lv_d_rd / temp ) ) / & |
---|
3771 | ( 1.0_wp + rd_d_rv * lv_d_rd * lv_d_cp * & |
---|
3772 | ( q(k,j,i) - ql(k,j,i) ) / ( temp * temp ) ) |
---|
3773 | k2 = theta * ( lv_d_cp / temp * k1 - 1.0_wp ) |
---|
3774 | ENDIF |
---|
3775 | ELSE IF ( cloud_droplets ) THEN |
---|
3776 | k1 = 1.0_wp + 0.61_wp * q(k,j,i) - ql(k,j,i) |
---|
3777 | k2 = 0.61_wp * pt(k,j,i) |
---|
3778 | ENDIF |
---|
3779 | |
---|
3780 | tmp_flux(k) = ( k1 * surf_def_h(l)%shf(m) + & |
---|
3781 | k2 * surf_def_h(l)%qsws(m) & |
---|
3782 | ) * drho_air_zw(k-1) |
---|
3783 | ENDDO |
---|
3784 | ENDDO |
---|
3785 | ! |
---|
3786 | !-- Treat horizontal natural surfaces |
---|
3787 | surf_s = surf_lsm_h%start_index(j,i) |
---|
3788 | surf_e = surf_lsm_h%end_index(j,i) |
---|
3789 | DO m = surf_s, surf_e |
---|
3790 | k = surf_lsm_h%k(m) |
---|
3791 | |
---|
3792 | IF ( .NOT. bulk_cloud_model .AND. .NOT. cloud_droplets ) THEN |
---|
3793 | k1 = 1.0_wp + 0.61_wp * q(k,j,i) |
---|
3794 | k2 = 0.61_wp * pt(k,j,i) |
---|
3795 | ELSE IF ( bulk_cloud_model ) THEN |
---|
3796 | IF ( ql(k,j,i) == 0.0_wp ) THEN |
---|
3797 | k1 = 1.0_wp + 0.61_wp * q(k,j,i) |
---|
3798 | k2 = 0.61_wp * pt(k,j,i) |
---|
3799 | ELSE |
---|
3800 | theta = pt(k,j,i) + d_exner(k) * lv_d_cp * ql(k,j,i) |
---|
3801 | temp = theta * exner(k) |
---|
3802 | k1 = ( 1.0_wp - q(k,j,i) + 1.61_wp * & |
---|
3803 | ( q(k,j,i) - ql(k,j,i) ) * & |
---|
3804 | ( 1.0_wp + rd_d_rv * lv_d_rd / temp ) ) / & |
---|
3805 | ( 1.0_wp + rd_d_rv * lv_d_rd * lv_d_cp * & |
---|
3806 | ( q(k,j,i) - ql(k,j,i) ) / ( temp * temp ) ) |
---|
3807 | k2 = theta * ( lv_d_cp / temp * k1 - 1.0_wp ) |
---|
3808 | ENDIF |
---|
3809 | ELSE IF ( cloud_droplets ) THEN |
---|
3810 | k1 = 1.0_wp + 0.61_wp * q(k,j,i) - ql(k,j,i) |
---|
3811 | k2 = 0.61_wp * pt(k,j,i) |
---|
3812 | ENDIF |
---|
3813 | |
---|
3814 | tmp_flux(k) = ( k1 * surf_lsm_h%shf(m) + & |
---|
3815 | k2 * surf_lsm_h%qsws(m) & |
---|
3816 | ) * drho_air_zw(k-1) |
---|
3817 | ENDDO |
---|
3818 | ! |
---|
3819 | !-- Treat horizontal urban surfaces |
---|
3820 | surf_s = surf_usm_h%start_index(j,i) |
---|
3821 | surf_e = surf_usm_h%end_index(j,i) |
---|
3822 | DO m = surf_s, surf_e |
---|
3823 | k = surf_usm_h%k(m) |
---|
3824 | |
---|
3825 | IF ( .NOT. bulk_cloud_model .AND. .NOT. cloud_droplets ) THEN |
---|
3826 | k1 = 1.0_wp + 0.61_wp * q(k,j,i) |
---|
3827 | k2 = 0.61_wp * pt(k,j,i) |
---|
3828 | ELSE IF ( bulk_cloud_model ) THEN |
---|
3829 | IF ( ql(k,j,i) == 0.0_wp ) THEN |
---|
3830 | k1 = 1.0_wp + 0.61_wp * q(k,j,i) |
---|
3831 | k2 = 0.61_wp * pt(k,j,i) |
---|
3832 | ELSE |
---|
3833 | theta = pt(k,j,i) + d_exner(k) * lv_d_cp * ql(k,j,i) |
---|
3834 | temp = theta * exner(k) |
---|
3835 | k1 = ( 1.0_wp - q(k,j,i) + 1.61_wp * & |
---|
3836 | ( q(k,j,i) - ql(k,j,i) ) * & |
---|
3837 | ( 1.0_wp + rd_d_rv * lv_d_rd / temp ) ) / & |
---|
3838 | ( 1.0_wp + rd_d_rv * lv_d_rd * lv_d_cp * & |
---|
3839 | ( q(k,j,i) - ql(k,j,i) ) / ( temp * temp ) ) |
---|
3840 | k2 = theta * ( lv_d_cp / temp * k1 - 1.0_wp ) |
---|
3841 | ENDIF |
---|
3842 | ELSE IF ( cloud_droplets ) THEN |
---|
3843 | k1 = 1.0_wp + 0.61_wp * q(k,j,i) - ql(k,j,i) |
---|
3844 | k2 = 0.61_wp * pt(k,j,i) |
---|
3845 | ENDIF |
---|
3846 | |
---|
3847 | tmp_flux(k) = ( k1 * surf_usm_h%shf(m) + & |
---|
3848 | k2 * surf_usm_h%qsws(m) & |
---|
3849 | ) * drho_air_zw(k-1) |
---|
3850 | ENDDO |
---|
3851 | |
---|
3852 | ENDIF ! from IF ( use_surface_fluxes ) THEN |
---|
3853 | |
---|
3854 | IF ( use_top_fluxes ) THEN |
---|
3855 | |
---|
3856 | surf_s = surf_def_h(2)%start_index(j,i) |
---|
3857 | surf_e = surf_def_h(2)%end_index(j,i) |
---|
3858 | DO m = surf_s, surf_e |
---|
3859 | k = surf_def_h(2)%k(m) |
---|
3860 | |
---|
3861 | IF ( .NOT. bulk_cloud_model .AND. .NOT. cloud_droplets ) THEN |
---|
3862 | k1 = 1.0_wp + 0.61_wp * q(k,j,i) |
---|
3863 | k2 = 0.61_wp * pt(k,j,i) |
---|
3864 | ELSE IF ( bulk_cloud_model ) THEN |
---|
3865 | IF ( ql(k,j,i) == 0.0_wp ) THEN |
---|
3866 | k1 = 1.0_wp + 0.61_wp * q(k,j,i) |
---|
3867 | k2 = 0.61_wp * pt(k,j,i) |
---|
3868 | ELSE |
---|
3869 | theta = pt(k,j,i) + d_exner(k) * lv_d_cp * ql(k,j,i) |
---|
3870 | temp = theta * exner(k) |
---|
3871 | k1 = ( 1.0_wp - q(k,j,i) + 1.61_wp * & |
---|
3872 | ( q(k,j,i) - ql(k,j,i) ) * & |
---|
3873 | ( 1.0_wp + rd_d_rv * lv_d_rd / temp ) ) / & |
---|
3874 | ( 1.0_wp + rd_d_rv * lv_d_rd * lv_d_cp * & |
---|
3875 | ( q(k,j,i) - ql(k,j,i) ) / ( temp * temp ) ) |
---|
3876 | k2 = theta * ( lv_d_cp / temp * k1 - 1.0_wp ) |
---|
3877 | ENDIF |
---|
3878 | ELSE IF ( cloud_droplets ) THEN |
---|
3879 | k1 = 1.0_wp + 0.61_wp * q(k,j,i) - ql(k,j,i) |
---|
3880 | k2 = 0.61_wp * pt(k,j,i) |
---|
3881 | ENDIF |
---|
3882 | |
---|
3883 | tmp_flux(k) = ( k1 * surf_def_h(2)%shf(m) + & |
---|
3884 | k2 * surf_def_h(2)%qsws(m) & |
---|
3885 | ) * drho_air_zw(k) |
---|
3886 | |
---|
3887 | ENDDO |
---|
3888 | |
---|
3889 | ENDIF ! from IF ( use_top_fluxes ) THEN |
---|
3890 | |
---|
3891 | IF ( .NOT. diss_production ) THEN |
---|
3892 | |
---|
3893 | !-- Compute tendency for TKE-production from shear |
---|
3894 | DO k = nzb+1, nzt |
---|
3895 | flag = MERGE( 1.0_wp, 0.0_wp, BTEST(wall_flags_0(k,j,i),0) ) |
---|
3896 | tend(k,j,i) = tend(k,j,i) + flag * tmp_flux(k) * ( g / & |
---|
3897 | MERGE( vpt_reference, vpt(k,j,i), & |
---|
3898 | use_single_reference_value ) ) |
---|
3899 | ENDDO |
---|
3900 | |
---|
3901 | ELSE |
---|
3902 | |
---|
3903 | !-- RANS mode: Compute tendency for dissipation-rate-production from shear |
---|
3904 | DO k = nzb+1, nzt |
---|
3905 | flag = MERGE( 1.0_wp, 0.0_wp, BTEST(wall_flags_0(k,j,i),0) ) |
---|
3906 | tend(k,j,i) = tend(k,j,i) + flag * tmp_flux(k) * ( g / & |
---|
3907 | MERGE( vpt_reference, vpt(k,j,i), & |
---|
3908 | use_single_reference_value ) ) * & |
---|
3909 | diss(k,j,i)/( e(k,j,i) + 1.0E-20_wp ) * & |
---|
3910 | c_3 |
---|
3911 | ENDDO |
---|
3912 | |
---|
3913 | ENDIF |
---|
3914 | |
---|
3915 | ENDIF |
---|
3916 | |
---|
3917 | ENDIF |
---|
3918 | |
---|
3919 | END SUBROUTINE production_e_ij |
---|
3920 | |
---|
3921 | |
---|
3922 | !------------------------------------------------------------------------------! |
---|
3923 | ! Description: |
---|
3924 | ! ------------ |
---|
3925 | !> Diffusion and dissipation terms for the TKE. |
---|
3926 | !> Vector-optimized version |
---|
3927 | !> @todo Try to avoid the usage of the 3d-array 'diss' where possible (case les |
---|
3928 | !> and rans_tke_l if not wang_kernel, use_sgs_for_particles, or |
---|
3929 | !> collision_turbulence). |
---|
3930 | !------------------------------------------------------------------------------! |
---|
3931 | SUBROUTINE diffusion_e( var, var_reference ) |
---|
3932 | |
---|
3933 | USE arrays_3d, & |
---|
3934 | ONLY: dd2zu, ddzu, ddzw, drho_air, rho_air_zw |
---|
3935 | |
---|
3936 | USE control_parameters, & |
---|
3937 | ONLY: atmos_ocean_sign, use_single_reference_value |
---|
3938 | |
---|
3939 | USE grid_variables, & |
---|
3940 | ONLY: ddx2, ddy2 |
---|
3941 | |
---|
3942 | USE bulk_cloud_model_mod, & |
---|
3943 | ONLY: collision_turbulence |
---|
3944 | |
---|
3945 | USE particle_attributes, & |
---|
3946 | ONLY: use_sgs_for_particles, wang_kernel |
---|
3947 | |
---|
3948 | IMPLICIT NONE |
---|
3949 | |
---|
3950 | INTEGER(iwp) :: i !< running index x direction |
---|
3951 | INTEGER(iwp) :: j !< running index y direction |
---|
3952 | INTEGER(iwp) :: k !< running index z direction |
---|
3953 | INTEGER(iwp) :: m !< running index surface elements |
---|
3954 | |
---|
3955 | REAL(wp) :: duv2_dz2 !< squared vertical gradient of wind vector |
---|
3956 | REAL(wp) :: dvar_dz !< vertical gradient of var |
---|
3957 | REAL(wp) :: l !< mixing length |
---|
3958 | REAL(wp) :: var_reference !< reference temperature |
---|
3959 | |
---|
3960 | REAL(wp), DIMENSION(nzb+1:nzt) :: l_stable !< mixing length according to stratification |
---|
3961 | REAL(wp), DIMENSION(nzb+1:nzt) :: rif !< Richardson flux number |
---|
3962 | |
---|
3963 | REAL(wp), DIMENSION(nzb:nzt+1,nysg:nyng,nxlg:nxrg), INTENT(IN) :: var !< temperature |
---|
3964 | |
---|
3965 | ! |
---|
3966 | !-- Calculate the dissipation |
---|
3967 | IF ( les_dynamic .OR. les_mw ) THEN |
---|
3968 | |
---|
3969 | !$ACC PARALLEL LOOP COLLAPSE(2) PRIVATE(i, j) & |
---|
3970 | !$ACC PRIVATE(l, l_stable, dvar_dz) & |
---|
3971 | !$ACC PRESENT(diss, e, var, wall_flags_0) & |
---|
3972 | !$ACC PRESENT(dd2zu, l_grid, l_wall) |
---|
3973 | DO i = nxl, nxr |
---|
3974 | DO j = nys, nyn |
---|
3975 | !$ACC LOOP PRIVATE(k) |
---|
3976 | DO k = nzb+1, nzt |
---|
3977 | |
---|
3978 | dvar_dz = atmos_ocean_sign * ( var(k+1,j,i) - var(k-1,j,i) ) * dd2zu(k) |
---|
3979 | IF ( dvar_dz > 0.0_wp ) THEN |
---|
3980 | IF ( use_single_reference_value ) THEN |
---|
3981 | l_stable(k) = 0.76_wp * SQRT( e(k,j,i) ) & |
---|
3982 | / SQRT( g / var_reference * dvar_dz ) + 1E-5_wp |
---|
3983 | ELSE |
---|
3984 | l_stable(k) = 0.76_wp * SQRT( e(k,j,i) ) & |
---|
3985 | / SQRT( g / var(k,j,i) * dvar_dz ) + 1E-5_wp |
---|
3986 | ENDIF |
---|
3987 | ELSE |
---|
3988 | l_stable(k) = l_grid(k) |
---|
3989 | ENDIF |
---|
3990 | |
---|
3991 | ENDDO |
---|
3992 | |
---|
3993 | !$ACC LOOP PRIVATE(k) |
---|
3994 | !DIR$ IVDEP |
---|
3995 | DO k = nzb+1, nzt |
---|
3996 | |
---|
3997 | l = MIN( l_wall(k,j,i), l_stable(k) ) |
---|
3998 | |
---|
3999 | diss(k,j,i) = ( 0.19_wp + 0.74_wp * l / l_wall(k,j,i) ) & |
---|
4000 | * e(k,j,i) * SQRT( e(k,j,i) ) / l & |
---|
4001 | * MERGE( 1.0_wp, 0.0_wp, BTEST( wall_flags_0(k,j,i), 0 ) ) |
---|
4002 | |
---|
4003 | ENDDO |
---|
4004 | |
---|
4005 | ENDDO |
---|
4006 | ENDDO |
---|
4007 | |
---|
4008 | ELSEIF ( rans_tke_l ) THEN |
---|
4009 | |
---|
4010 | !$ACC PARALLEL LOOP COLLAPSE(2) PRIVATE(i, j) & |
---|
4011 | !$ACC PRIVATE(l_stable, duv2_dz2, rif, dvar_dz) & |
---|
4012 | !$ACC PRESENT(diss, e, u, v, var, wall_flags_0) & |
---|
4013 | !$ACC PRESENT(dd2zu, l_black, l_wall) |
---|
4014 | DO i = nxl, nxr |
---|
4015 | DO j = nys, nyn |
---|
4016 | ! |
---|
4017 | !-- Calculate Richardson-flux number |
---|
4018 | IF ( use_single_reference_value ) THEN |
---|
4019 | !$ACC LOOP PRIVATE(k) |
---|
4020 | DO k = nzb+1, nzt |
---|
4021 | |
---|
4022 | dvar_dz = atmos_ocean_sign * ( var(k+1,j,i) - var(k-1,j,i) ) * dd2zu(k) |
---|
4023 | |
---|
4024 | duv2_dz2 = ( ( u(k+1,j,i) - u(k-1,j,i) ) * dd2zu(k) )**2 & |
---|
4025 | + ( ( v(k+1,j,i) - v(k-1,j,i) ) * dd2zu(k) )**2 & |
---|
4026 | + 1E-30_wp |
---|
4027 | |
---|
4028 | rif(k) = MIN( MAX( g / var_reference * dvar_dz / duv2_dz2, -5.0_wp ), 1.0_wp ) |
---|
4029 | ENDDO |
---|
4030 | ELSE |
---|
4031 | !$ACC LOOP PRIVATE(k) |
---|
4032 | DO k = nzb+1, nzt |
---|
4033 | |
---|
4034 | dvar_dz = atmos_ocean_sign * ( var(k+1,j,i) - var(k-1,j,i) ) * dd2zu(k) |
---|
4035 | |
---|
4036 | duv2_dz2 = ( ( u(k+1,j,i) - u(k-1,j,i) ) * dd2zu(k) )**2 & |
---|
4037 | + ( ( v(k+1,j,i) - v(k-1,j,i) ) * dd2zu(k) )**2 & |
---|
4038 | + 1E-30_wp |
---|
4039 | |
---|
4040 | rif(k) = MIN( MAX( g / var(k,j,i) * dvar_dz / duv2_dz2, -5.0_wp ), 1.0_wp ) |
---|
4041 | ENDDO |
---|
4042 | ENDIF |
---|
4043 | ! |
---|
4044 | !-- Calculate diabatic mixing length using Dyer-profile functions |
---|
4045 | !$ACC LOOP PRIVATE(k) |
---|
4046 | DO k = nzb+1, nzt |
---|
4047 | IF ( rif(k) >= 0.0_wp ) THEN |
---|
4048 | l_stable(k) = MIN( l_black(k) / ( 1.0_wp + 5.0_wp * rif(k) ), l_wall(k,j,i) ) |
---|
4049 | ELSE |
---|
4050 | l_stable(k) = l_wall(k,j,i) * SQRT( 1.0_wp - 16.0_wp * rif(k) ) |
---|
4051 | ENDIF |
---|
4052 | ENDDO |
---|
4053 | |
---|
4054 | !$ACC LOOP PRIVATE(k) |
---|
4055 | !DIR$ IVDEP |
---|
4056 | DO k = nzb+1, nzt |
---|
4057 | |
---|
4058 | diss(k,j,i) = c_0**3 * e(k,j,i) * SQRT( e(k,j,i) ) / l_stable(k) & |
---|
4059 | * MERGE( 1.0_wp, 0.0_wp, BTEST( wall_flags_0(k,j,i), 0 ) ) |
---|
4060 | |
---|
4061 | ENDDO |
---|
4062 | |
---|
4063 | ENDDO |
---|
4064 | ENDDO |
---|
4065 | |
---|
4066 | !-- Note, in case of rans_tke_e, the dissipation is already calculated |
---|
4067 | !-- in prognostic_equations |
---|
4068 | ENDIF |
---|
4069 | |
---|
4070 | !$ACC PARALLEL LOOP COLLAPSE(3) PRIVATE(i, j, k) & |
---|
4071 | !$ACC PRESENT(diss, e, km, tend, wall_flags_0) & |
---|
4072 | !$ACC PRESENT(ddzu, ddzw, rho_air_zw, drho_air) |
---|
4073 | DO i = nxl, nxr |
---|
4074 | DO j = nys, nyn |
---|
4075 | DO k = nzb+1, nzt |
---|
4076 | |
---|
4077 | tend(k,j,i) = tend(k,j,i) + ( & |
---|
4078 | ( & |
---|
4079 | ( km(k,j,i)+km(k,j,i+1) ) * ( e(k,j,i+1)-e(k,j,i) ) & |
---|
4080 | - ( km(k,j,i)+km(k,j,i-1) ) * ( e(k,j,i)-e(k,j,i-1) ) & |
---|
4081 | ) * ddx2 & |
---|
4082 | + ( & |
---|
4083 | ( km(k,j,i)+km(k,j+1,i) ) * ( e(k,j+1,i)-e(k,j,i) ) & |
---|
4084 | - ( km(k,j,i)+km(k,j-1,i) ) * ( e(k,j,i)-e(k,j-1,i) ) & |
---|
4085 | ) * ddy2 & |
---|
4086 | + ( & |
---|
4087 | ( km(k,j,i)+km(k+1,j,i) ) * ( e(k+1,j,i)-e(k,j,i) ) * ddzu(k+1) & |
---|
4088 | * rho_air_zw(k) & |
---|
4089 | - ( km(k,j,i)+km(k-1,j,i) ) * ( e(k,j,i)-e(k-1,j,i) ) * ddzu(k) & |
---|
4090 | * rho_air_zw(k-1) & |
---|
4091 | ) * ddzw(k) * drho_air(k) & |
---|
4092 | ) * dsig_e & |
---|
4093 | * MERGE( 1.0_wp, 0.0_wp, & |
---|
4094 | BTEST( wall_flags_0(k,j,i), 0 ) ) & |
---|
4095 | - diss(k,j,i) |
---|
4096 | |
---|
4097 | ENDDO |
---|
4098 | ENDDO |
---|
4099 | ENDDO |
---|
4100 | |
---|
4101 | ! |
---|
4102 | !-- Neumann boundary condition for dissipation diss(nzb,:,:) = diss(nzb+1,:,:). |
---|
4103 | !-- Note, bc cannot be set in tcm_boundary conditions as the dissipation |
---|
4104 | !-- in LES mode is only a diagnostic quantity. |
---|
4105 | IF ( .NOT. rans_tke_e .AND. ( use_sgs_for_particles .OR. & |
---|
4106 | wang_kernel .OR. collision_turbulence ) ) THEN |
---|
4107 | ! |
---|
4108 | !-- Upward facing surfaces |
---|
4109 | DO m = 1, bc_h(0)%ns |
---|
4110 | i = bc_h(0)%i(m) |
---|
4111 | j = bc_h(0)%j(m) |
---|
4112 | k = bc_h(0)%k(m) |
---|
4113 | diss(k-1,j,i) = diss(k,j,i) |
---|
4114 | ENDDO |
---|
4115 | ! |
---|
4116 | !-- Downward facing surfaces |
---|
4117 | DO m = 1, bc_h(1)%ns |
---|
4118 | i = bc_h(1)%i(m) |
---|
4119 | j = bc_h(1)%j(m) |
---|
4120 | k = bc_h(1)%k(m) |
---|
4121 | diss(k+1,j,i) = diss(k,j,i) |
---|
4122 | ENDDO |
---|
4123 | |
---|
4124 | ENDIF |
---|
4125 | |
---|
4126 | END SUBROUTINE diffusion_e |
---|
4127 | |
---|
4128 | |
---|
4129 | !------------------------------------------------------------------------------! |
---|
4130 | ! Description: |
---|
4131 | ! ------------ |
---|
4132 | !> Diffusion and dissipation terms for the TKE. |
---|
4133 | !> Cache-optimized version |
---|
4134 | !> @todo Try to avoid the usage of the 3d-array 'diss' where possible (case les |
---|
4135 | !> and rans_tke_l if not wang_kernel, use_sgs_for_particles, or |
---|
4136 | !> collision_turbulence). |
---|
4137 | !------------------------------------------------------------------------------! |
---|
4138 | SUBROUTINE diffusion_e_ij( i, j, var, var_reference ) |
---|
4139 | |
---|
4140 | USE arrays_3d, & |
---|
4141 | ONLY: dd2zu, ddzu, ddzw, drho_air, rho_air_zw |
---|
4142 | |
---|
4143 | USE control_parameters, & |
---|
4144 | ONLY: atmos_ocean_sign, use_single_reference_value |
---|
4145 | |
---|
4146 | USE grid_variables, & |
---|
4147 | ONLY: ddx2, ddy2 |
---|
4148 | |
---|
4149 | USE bulk_cloud_model_mod, & |
---|
4150 | ONLY: collision_turbulence |
---|
4151 | |
---|
4152 | USE particle_attributes, & |
---|
4153 | ONLY: use_sgs_for_particles, wang_kernel |
---|
4154 | |
---|
4155 | IMPLICIT NONE |
---|
4156 | |
---|
4157 | INTEGER(iwp) :: i !< running index x direction |
---|
4158 | INTEGER(iwp) :: j !< running index y direction |
---|
4159 | INTEGER(iwp) :: k !< running index z direction |
---|
4160 | INTEGER(iwp) :: m !< running index surface elements |
---|
4161 | INTEGER(iwp) :: surf_e !< End index of surface elements at (j,i)-gridpoint |
---|
4162 | INTEGER(iwp) :: surf_s !< Start index of surface elements at (j,i)-gridpoint |
---|
4163 | |
---|
4164 | REAL(wp) :: duv2_dz2 !< squared vertical gradient of wind vector |
---|
4165 | REAL(wp) :: dvar_dz !< vertical gradient of var |
---|
4166 | REAL(wp) :: l !< mixing length |
---|
4167 | REAL(wp) :: var_reference !< reference temperature |
---|
4168 | |
---|
4169 | REAL(wp), DIMENSION(nzb+1:nzt) :: l_stable !< mixing length according to stratification |
---|
4170 | REAL(wp), DIMENSION(nzb+1:nzt) :: rif !< Richardson flux number |
---|
4171 | |
---|
4172 | REAL(wp), DIMENSION(nzb:nzt+1,nysg:nyng,nxlg:nxrg), INTENT(IN) :: var !< temperature |
---|
4173 | |
---|
4174 | ! |
---|
4175 | !-- Calculate the mixing length and dissipation... |
---|
4176 | !-- ...in case of LES |
---|
4177 | IF ( les_dynamic .OR. les_mw ) THEN |
---|
4178 | |
---|
4179 | DO k = nzb+1, nzt |
---|
4180 | dvar_dz = atmos_ocean_sign * ( var(k+1,j,i) - var(k-1,j,i) ) * dd2zu(k) |
---|
4181 | IF ( dvar_dz > 0.0_wp ) THEN |
---|
4182 | IF ( use_single_reference_value ) THEN |
---|
4183 | l_stable(k) = 0.76_wp * SQRT( e(k,j,i) ) & |
---|
4184 | / SQRT( g / var_reference * dvar_dz ) + 1E-5_wp |
---|
4185 | ELSE |
---|
4186 | l_stable(k) = 0.76_wp * SQRT( e(k,j,i) ) & |
---|
4187 | / SQRT( g / var(k,j,i) * dvar_dz ) + 1E-5_wp |
---|
4188 | ENDIF |
---|
4189 | ELSE |
---|
4190 | l_stable(k) = l_grid(k) |
---|
4191 | ENDIF |
---|
4192 | ENDDO |
---|
4193 | |
---|
4194 | !DIR$ IVDEP |
---|
4195 | DO k = nzb+1, nzt |
---|
4196 | l = MIN( l_wall(k,j,i), l_stable(k) ) |
---|
4197 | |
---|
4198 | diss(k,j,i) = ( 0.19_wp + 0.74_wp * l / l_wall(k,j,i) ) & |
---|
4199 | * e(k,j,i) * SQRT( e(k,j,i) ) / l & |
---|
4200 | * MERGE( 1.0_wp, 0.0_wp, BTEST( wall_flags_0(k,j,i), 0 ) ) |
---|
4201 | ENDDO |
---|
4202 | |
---|
4203 | ! |
---|
4204 | !-- ...in case of RANS |
---|
4205 | ELSEIF ( rans_tke_l ) THEN |
---|
4206 | |
---|
4207 | ! |
---|
4208 | !-- Calculate Richardson-flux number |
---|
4209 | IF ( use_single_reference_value ) THEN |
---|
4210 | DO k = nzb+1, nzt |
---|
4211 | dvar_dz = atmos_ocean_sign * ( var(k+1,j,i) - var(k-1,j,i) ) * dd2zu(k) |
---|
4212 | |
---|
4213 | duv2_dz2 = ( ( u(k+1,j,i) - u(k-1,j,i) ) * dd2zu(k) )**2 & |
---|
4214 | + ( ( v(k+1,j,i) - v(k-1,j,i) ) * dd2zu(k) )**2 & |
---|
4215 | + 1E-30_wp |
---|
4216 | |
---|
4217 | rif(k) = MIN( MAX( g / var_reference * dvar_dz / duv2_dz2, -5.0_wp ), 1.0_wp ) |
---|
4218 | ENDDO |
---|
4219 | ELSE |
---|
4220 | DO k = nzb+1, nzt |
---|
4221 | dvar_dz = atmos_ocean_sign * ( var(k+1,j,i) - var(k-1,j,i) ) * dd2zu(k) |
---|
4222 | |
---|
4223 | duv2_dz2 = ( ( u(k+1,j,i) - u(k-1,j,i) ) * dd2zu(k) )**2 & |
---|
4224 | + ( ( v(k+1,j,i) - v(k-1,j,i) ) * dd2zu(k) )**2 & |
---|
4225 | + 1E-30_wp |
---|
4226 | |
---|
4227 | rif(k) = MIN( MAX( g / var(k,j,i) * dvar_dz / duv2_dz2, -5.0_wp ), 1.0_wp ) |
---|
4228 | ENDDO |
---|
4229 | ENDIF |
---|
4230 | ! |
---|
4231 | !-- Calculate diabatic mixing length using Dyer-profile functions |
---|
4232 | DO k = nzb+1, nzt |
---|
4233 | IF ( rif(k) >= 0.0_wp ) THEN |
---|
4234 | l_stable(k) = MIN( l_black(k) / ( 1.0_wp + 5.0_wp * rif(k) ), l_wall(k,j,i) ) |
---|
4235 | ELSE |
---|
4236 | l_stable(k) = l_wall(k,j,i) * SQRT( 1.0_wp - 16.0_wp * rif(k) ) |
---|
4237 | ENDIF |
---|
4238 | |
---|
4239 | ENDDO |
---|
4240 | |
---|
4241 | !DIR$ IVDEP |
---|
4242 | DO k = nzb+1, nzt |
---|
4243 | diss(k,j,i) = c_0**3 * e(k,j,i) * SQRT( e(k,j,i) ) / l_stable(k) & |
---|
4244 | * MERGE( 1.0_wp, 0.0_wp, BTEST( wall_flags_0(k,j,i), 0 ) ) |
---|
4245 | ENDDO |
---|
4246 | |
---|
4247 | !-- Note, in case of rans_tke_e, the dissipation is already calculated |
---|
4248 | !-- in prognostic_equations |
---|
4249 | ENDIF |
---|
4250 | |
---|
4251 | ! |
---|
4252 | !-- Calculate the tendency term |
---|
4253 | !DIR$ IVDEP |
---|
4254 | DO k = nzb+1, nzt |
---|
4255 | |
---|
4256 | tend(k,j,i) = tend(k,j,i) + ( & |
---|
4257 | ( & |
---|
4258 | ( km(k,j,i)+km(k,j,i+1) ) * ( e(k,j,i+1)-e(k,j,i) ) & |
---|
4259 | - ( km(k,j,i)+km(k,j,i-1) ) * ( e(k,j,i)-e(k,j,i-1) ) & |
---|
4260 | ) * ddx2 & |
---|
4261 | + ( & |
---|
4262 | ( km(k,j,i)+km(k,j+1,i) ) * ( e(k,j+1,i)-e(k,j,i) ) & |
---|
4263 | - ( km(k,j,i)+km(k,j-1,i) ) * ( e(k,j,i)-e(k,j-1,i) ) & |
---|
4264 | ) * ddy2 & |
---|
4265 | + ( & |
---|
4266 | ( km(k,j,i)+km(k+1,j,i) ) * ( e(k+1,j,i)-e(k,j,i) ) * ddzu(k+1) & |
---|
4267 | * rho_air_zw(k) & |
---|
4268 | - ( km(k,j,i)+km(k-1,j,i) ) * ( e(k,j,i)-e(k-1,j,i) ) * ddzu(k) & |
---|
4269 | * rho_air_zw(k-1) & |
---|
4270 | ) * ddzw(k) * drho_air(k) & |
---|
4271 | ) * dsig_e & |
---|
4272 | * MERGE( 1.0_wp, 0.0_wp, & |
---|
4273 | BTEST( wall_flags_0(k,j,i), 0 ) )& |
---|
4274 | - diss(k,j,i) |
---|
4275 | |
---|
4276 | ENDDO |
---|
4277 | |
---|
4278 | ! |
---|
4279 | !-- Set boundary conditions of dissipation if needed for calculating the sgs |
---|
4280 | !-- particle velocities. |
---|
4281 | !-- Neumann boundary condition for dissipation diss(nzb,:,:) = diss(nzb+1,:,:) |
---|
4282 | !-- For each surface type determine start and end index (in case of elevated |
---|
4283 | !-- topography several up/downward facing surfaces may exist. |
---|
4284 | !-- Note, bc cannot be set in tcm_boundary conditions as the dissipation |
---|
4285 | !-- in LES mode is only a diagnostic quantity. |
---|
4286 | IF ( .NOT. rans_tke_e .AND. ( use_sgs_for_particles .OR. wang_kernel & |
---|
4287 | .OR. collision_turbulence ) ) THEN |
---|
4288 | surf_s = bc_h(0)%start_index(j,i) |
---|
4289 | surf_e = bc_h(0)%end_index(j,i) |
---|
4290 | DO m = surf_s, surf_e |
---|
4291 | k = bc_h(0)%k(m) |
---|
4292 | diss(k-1,j,i) = diss(k,j,i) |
---|
4293 | ENDDO |
---|
4294 | ! |
---|
4295 | !-- Downward facing surfaces |
---|
4296 | surf_s = bc_h(1)%start_index(j,i) |
---|
4297 | surf_e = bc_h(1)%end_index(j,i) |
---|
4298 | DO m = surf_s, surf_e |
---|
4299 | k = bc_h(1)%k(m) |
---|
4300 | diss(k+1,j,i) = diss(k,j,i) |
---|
4301 | ENDDO |
---|
4302 | ENDIF |
---|
4303 | |
---|
4304 | END SUBROUTINE diffusion_e_ij |
---|
4305 | |
---|
4306 | |
---|
4307 | !------------------------------------------------------------------------------! |
---|
4308 | ! Description: |
---|
4309 | ! ------------ |
---|
4310 | !> Diffusion term for the TKE dissipation rate |
---|
4311 | !> Vector-optimized version |
---|
4312 | !------------------------------------------------------------------------------! |
---|
4313 | SUBROUTINE diffusion_diss |
---|
4314 | USE arrays_3d, & |
---|
4315 | ONLY: ddzu, ddzw, drho_air, rho_air_zw |
---|
4316 | |
---|
4317 | USE grid_variables, & |
---|
4318 | ONLY: ddx2, ddy2 |
---|
4319 | |
---|
4320 | IMPLICIT NONE |
---|
4321 | |
---|
4322 | INTEGER(iwp) :: i !< running index x direction |
---|
4323 | INTEGER(iwp) :: j !< running index y direction |
---|
4324 | INTEGER(iwp) :: k !< running index z direction |
---|
4325 | |
---|
4326 | REAL(wp) :: flag !< flag to mask topography |
---|
4327 | |
---|
4328 | ! |
---|
4329 | !-- Calculate the tendency terms |
---|
4330 | DO i = nxl, nxr |
---|
4331 | DO j = nys, nyn |
---|
4332 | DO k = nzb+1, nzt |
---|
4333 | |
---|
4334 | ! |
---|
4335 | !-- Predetermine flag to mask topography |
---|
4336 | flag = MERGE( 1.0_wp, 0.0_wp, BTEST( wall_flags_0(k,j,i), 0 ) ) |
---|
4337 | |
---|
4338 | tend(k,j,i) = tend(k,j,i) + & |
---|
4339 | ( ( & |
---|
4340 | ( km(k,j,i)+km(k,j,i+1) ) * ( diss(k,j,i+1)-diss(k,j,i) ) & |
---|
4341 | - ( km(k,j,i)+km(k,j,i-1) ) * ( diss(k,j,i)-diss(k,j,i-1) ) & |
---|
4342 | ) * ddx2 & |
---|
4343 | + ( & |
---|
4344 | ( km(k,j,i)+km(k,j+1,i) ) * ( diss(k,j+1,i)-diss(k,j,i) ) & |
---|
4345 | - ( km(k,j,i)+km(k,j-1,i) ) * ( diss(k,j,i)-diss(k,j-1,i) ) & |
---|
4346 | ) * ddy2 & |
---|
4347 | + ( & |
---|
4348 | ( km(k,j,i)+km(k+1,j,i) ) * ( diss(k+1,j,i)-diss(k,j,i) ) * ddzu(k+1) & |
---|
4349 | * rho_air_zw(k) & |
---|
4350 | - ( km(k,j,i)+km(k-1,j,i) ) * ( diss(k,j,i)-diss(k-1,j,i) ) * ddzu(k) & |
---|
4351 | * rho_air_zw(k-1) & |
---|
4352 | ) * ddzw(k) * drho_air(k) & |
---|
4353 | ) * flag * dsig_diss & |
---|
4354 | - c_2 * diss(k,j,i)**2 & |
---|
4355 | / ( e(k,j,i) + 1.0E-20_wp ) * flag |
---|
4356 | |
---|
4357 | ENDDO |
---|
4358 | ENDDO |
---|
4359 | ENDDO |
---|
4360 | |
---|
4361 | END SUBROUTINE diffusion_diss |
---|
4362 | |
---|
4363 | |
---|
4364 | !------------------------------------------------------------------------------! |
---|
4365 | ! Description: |
---|
4366 | ! ------------ |
---|
4367 | !> Diffusion term for the TKE dissipation rate |
---|
4368 | !> Cache-optimized version |
---|
4369 | !------------------------------------------------------------------------------! |
---|
4370 | SUBROUTINE diffusion_diss_ij( i, j ) |
---|
4371 | |
---|
4372 | USE arrays_3d, & |
---|
4373 | ONLY: ddzu, ddzw, drho_air, rho_air_zw |
---|
4374 | |
---|
4375 | USE grid_variables, & |
---|
4376 | ONLY: ddx2, ddy2 |
---|
4377 | |
---|
4378 | IMPLICIT NONE |
---|
4379 | |
---|
4380 | INTEGER(iwp) :: i !< running index x direction |
---|
4381 | INTEGER(iwp) :: j !< running index y direction |
---|
4382 | INTEGER(iwp) :: k !< running index z direction |
---|
4383 | |
---|
4384 | REAL(wp) :: flag !< flag to mask topography |
---|
4385 | |
---|
4386 | ! |
---|
4387 | !-- Calculate the mixing length (for dissipation) |
---|
4388 | DO k = nzb+1, nzt |
---|
4389 | |
---|
4390 | ! |
---|
4391 | !-- Predetermine flag to mask topography |
---|
4392 | flag = MERGE( 1.0_wp, 0.0_wp, BTEST( wall_flags_0(k,j,i), 0 ) ) |
---|
4393 | |
---|
4394 | ! |
---|
4395 | !-- Calculate the tendency term |
---|
4396 | tend(k,j,i) = tend(k,j,i) + & |
---|
4397 | ( ( & |
---|
4398 | ( km(k,j,i)+km(k,j,i+1) ) * ( diss(k,j,i+1)-diss(k,j,i) ) & |
---|
4399 | - ( km(k,j,i)+km(k,j,i-1) ) * ( diss(k,j,i)-diss(k,j,i-1) ) & |
---|
4400 | ) * ddx2 & |
---|
4401 | + ( & |
---|
4402 | ( km(k,j,i)+km(k,j+1,i) ) * ( diss(k,j+1,i)-diss(k,j,i) ) & |
---|
4403 | - ( km(k,j,i)+km(k,j-1,i) ) * ( diss(k,j,i)-diss(k,j-1,i) ) & |
---|
4404 | ) * ddy2 & |
---|
4405 | + ( & |
---|
4406 | ( km(k,j,i)+km(k+1,j,i) ) * ( diss(k+1,j,i)-diss(k,j,i) ) * ddzu(k+1) & |
---|
4407 | * rho_air_zw(k) & |
---|
4408 | - ( km(k,j,i)+km(k-1,j,i) ) * ( diss(k,j,i)-diss(k-1,j,i) ) * ddzu(k) & |
---|
4409 | * rho_air_zw(k-1) & |
---|
4410 | ) * ddzw(k) * drho_air(k) & |
---|
4411 | ) * flag * dsig_diss & |
---|
4412 | - c_2 * diss(k,j,i)**2 / ( e(k,j,i) + 1.0E-20_wp ) * flag |
---|
4413 | |
---|
4414 | ENDDO |
---|
4415 | |
---|
4416 | END SUBROUTINE diffusion_diss_ij |
---|
4417 | |
---|
4418 | |
---|
4419 | !------------------------------------------------------------------------------! |
---|
4420 | ! Description: |
---|
4421 | ! ------------ |
---|
4422 | !> Computation of the turbulent diffusion coefficients for momentum and heat. |
---|
4423 | !> @bug unstable stratification is not properly considered for kh in rans mode. |
---|
4424 | !------------------------------------------------------------------------------! |
---|
4425 | SUBROUTINE tcm_diffusivities( var, var_reference ) |
---|
4426 | |
---|
4427 | USE control_parameters, & |
---|
4428 | ONLY: bc_radiation_l, bc_radiation_n, bc_radiation_r, bc_radiation_s, & |
---|
4429 | e_min |
---|
4430 | |
---|
4431 | USE surface_layer_fluxes_mod, & |
---|
4432 | ONLY: phi_m |
---|
4433 | |
---|
4434 | INTEGER(iwp) :: i !< loop index |
---|
4435 | INTEGER(iwp) :: j !< loop index |
---|
4436 | INTEGER(iwp) :: k !< loop index |
---|
4437 | INTEGER(iwp) :: m !< loop index |
---|
4438 | INTEGER(iwp) :: n !< loop index |
---|
4439 | |
---|
4440 | REAL(wp) :: var_reference !< reference temperature |
---|
4441 | |
---|
4442 | REAL(wp), DIMENSION(nzb:nzt+1,nysg:nyng,nxlg:nxrg), INTENT(IN) :: var !< temperature |
---|
4443 | |
---|
4444 | |
---|
4445 | ! |
---|
4446 | !-- Introduce an optional minimum tke |
---|
4447 | IF ( e_min > 0.0_wp ) THEN |
---|
4448 | !$OMP PARALLEL DO PRIVATE(i,j,k) |
---|
4449 | DO i = nxlg, nxrg |
---|
4450 | DO j = nysg, nyng |
---|
4451 | DO k = nzb+1, nzt |
---|
4452 | e(k,j,i) = MAX( e(k,j,i), e_min ) * & |
---|
4453 | MERGE( 1.0_wp, 0.0_wp, BTEST( wall_flags_0(k,j,i), 0 ) ) |
---|
4454 | ENDDO |
---|
4455 | ENDDO |
---|
4456 | ENDDO |
---|
4457 | ENDIF |
---|
4458 | |
---|
4459 | ! |
---|
4460 | !-- Call default diffusivities routine. This is always used to calculate kh. |
---|
4461 | CALL tcm_diffusivities_default( var, var_reference ) |
---|
4462 | ! |
---|
4463 | !-- Call dynamic subgrid model to calculate km. |
---|
4464 | IF ( les_dynamic ) THEN |
---|
4465 | CALL tcm_diffusivities_dynamic |
---|
4466 | ENDIF |
---|
4467 | |
---|
4468 | ! |
---|
4469 | !-- In RANS mode, use MOST to calculate km and kh within the surface layer. |
---|
4470 | IF ( rans_tke_e ) THEN |
---|
4471 | ! |
---|
4472 | !-- Upward facing surfaces |
---|
4473 | !-- Default surfaces |
---|
4474 | n = 0 |
---|
4475 | !$OMP PARALLEL DO PRIVATE(i,j,k,m) |
---|
4476 | DO m = 1, surf_def_h(0)%ns |
---|
4477 | i = surf_def_h(0)%i(m) |
---|
4478 | j = surf_def_h(0)%j(m) |
---|
4479 | k = surf_def_h(0)%k(m) |
---|
4480 | km(k,j,i) = kappa * surf_def_h(0)%us(m) * surf_def_h(0)%z_mo(m) / & |
---|
4481 | phi_m( surf_def_h(0)%z_mo(m) / surf_def_h(0)%ol(m) ) |
---|
4482 | kh(k,j,i) = 1.35_wp * km(k,j,i) |
---|
4483 | ENDDO |
---|
4484 | ! |
---|
4485 | !-- Natural surfaces |
---|
4486 | !$OMP PARALLEL DO PRIVATE(i,j,k,m) |
---|
4487 | DO m = 1, surf_lsm_h%ns |
---|
4488 | i = surf_lsm_h%i(m) |
---|
4489 | j = surf_lsm_h%j(m) |
---|
4490 | k = surf_lsm_h%k(m) |
---|
4491 | km(k,j,i) = kappa * surf_lsm_h%us(m) * surf_lsm_h%z_mo(m) / & |
---|
4492 | phi_m( surf_lsm_h%z_mo(m) / surf_lsm_h%ol(m) ) |
---|
4493 | kh(k,j,i) = 1.35_wp * km(k,j,i) |
---|
4494 | ENDDO |
---|
4495 | ! |
---|
4496 | !-- Urban surfaces |
---|
4497 | !$OMP PARALLEL DO PRIVATE(i,j,k,m) |
---|
4498 | DO m = 1, surf_usm_h%ns |
---|
4499 | i = surf_usm_h%i(m) |
---|
4500 | j = surf_usm_h%j(m) |
---|
4501 | k = surf_usm_h%k(m) |
---|
4502 | km(k,j,i) = kappa * surf_usm_h%us(m) * surf_usm_h%z_mo(m) / & |
---|
4503 | phi_m( surf_usm_h%z_mo(m) / surf_usm_h%ol(m) ) |
---|
4504 | kh(k,j,i) = 1.35_wp * km(k,j,i) |
---|
4505 | ENDDO |
---|
4506 | |
---|
4507 | ! |
---|
4508 | !-- North-, south-, west and eastward facing surfaces |
---|
4509 | !-- Do not consider stratification at these surfaces. |
---|
4510 | DO n = 0, 3 |
---|
4511 | ! |
---|
4512 | !-- Default surfaces |
---|
4513 | !$OMP PARALLEL DO PRIVATE(i,j,k,m) |
---|
4514 | DO m = 1, surf_def_v(n)%ns |
---|
4515 | i = surf_def_v(n)%i(m) |
---|
4516 | j = surf_def_v(n)%j(m) |
---|
4517 | k = surf_def_v(n)%k(m) |
---|
4518 | km(k,j,i) = kappa * surf_def_v(n)%us(m) * surf_def_v(n)%z_mo(m) |
---|
4519 | kh(k,j,i) = 1.35_wp * km(k,j,i) |
---|
4520 | ENDDO |
---|
4521 | ! |
---|
4522 | !-- Natural surfaces |
---|
4523 | !$OMP PARALLEL DO PRIVATE(i,j,k,m) |
---|
4524 | DO m = 1, surf_lsm_v(n)%ns |
---|
4525 | i = surf_lsm_v(n)%i(m) |
---|
4526 | j = surf_lsm_v(n)%j(m) |
---|
4527 | k = surf_lsm_v(n)%k(m) |
---|
4528 | km(k,j,i) = kappa * surf_lsm_v(n)%us(m) * surf_lsm_v(n)%z_mo(m) |
---|
4529 | kh(k,j,i) = 1.35_wp * km(k,j,i) |
---|
4530 | ENDDO |
---|
4531 | ! |
---|
4532 | !-- Urban surfaces |
---|
4533 | !$OMP PARALLEL DO PRIVATE(i,j,k,m) |
---|
4534 | DO m = 1, surf_usm_v(n)%ns |
---|
4535 | i = surf_usm_v(n)%i(m) |
---|
4536 | j = surf_usm_v(n)%j(m) |
---|
4537 | k = surf_usm_v(n)%k(m) |
---|
4538 | km(k,j,i) = kappa * surf_usm_v(n)%us(m) * surf_usm_v(n)%z_mo(m) |
---|
4539 | kh(k,j,i) = 1.35_wp * km(k,j,i) |
---|
4540 | ENDDO |
---|
4541 | ENDDO |
---|
4542 | |
---|
4543 | CALL exchange_horiz( km, nbgp ) |
---|
4544 | CALL exchange_horiz( kh, nbgp ) |
---|
4545 | |
---|
4546 | ENDIF |
---|
4547 | ! |
---|
4548 | !-- Set boundary values (Neumann conditions) |
---|
4549 | !-- Downward facing surfaces |
---|
4550 | !$OMP PARALLEL DO PRIVATE(i,j,k) |
---|
4551 | !$ACC PARALLEL LOOP PRIVATE(i,j,k) & |
---|
4552 | !$ACC PRESENT(bc_h(1), kh, km) |
---|
4553 | DO m = 1, bc_h(1)%ns |
---|
4554 | i = bc_h(1)%i(m) |
---|
4555 | j = bc_h(1)%j(m) |
---|
4556 | k = bc_h(1)%k(m) |
---|
4557 | km(k+1,j,i) = km(k,j,i) |
---|
4558 | kh(k+1,j,i) = kh(k,j,i) |
---|
4559 | ENDDO |
---|
4560 | ! |
---|
4561 | !-- Downward facing surfaces |
---|
4562 | !$OMP PARALLEL DO PRIVATE(i,j,k) |
---|
4563 | !$ACC PARALLEL LOOP PRIVATE(i,j,k) & |
---|
4564 | !$ACC PRESENT(bc_h(0), kh, km) |
---|
4565 | DO m = 1, bc_h(0)%ns |
---|
4566 | i = bc_h(0)%i(m) |
---|
4567 | j = bc_h(0)%j(m) |
---|
4568 | k = bc_h(0)%k(m) |
---|
4569 | km(k-1,j,i) = km(k,j,i) |
---|
4570 | kh(k-1,j,i) = kh(k,j,i) |
---|
4571 | ENDDO |
---|
4572 | ! |
---|
4573 | !-- Model top |
---|
4574 | !$OMP PARALLEL DO |
---|
4575 | !$ACC PARALLEL LOOP COLLAPSE(2) & |
---|
4576 | !$ACC PRESENT(kh, km) |
---|
4577 | DO i = nxlg, nxrg |
---|
4578 | DO j = nysg, nyng |
---|
4579 | km(nzt+1,j,i) = km(nzt,j,i) |
---|
4580 | kh(nzt+1,j,i) = kh(nzt,j,i) |
---|
4581 | ENDDO |
---|
4582 | ENDDO |
---|
4583 | |
---|
4584 | ! |
---|
4585 | !-- Set Neumann boundary conditions at the outflow boundaries in case of |
---|
4586 | !-- non-cyclic lateral boundaries |
---|
4587 | IF ( bc_radiation_l ) THEN |
---|
4588 | km(:,:,nxl-1) = km(:,:,nxl) |
---|
4589 | kh(:,:,nxl-1) = kh(:,:,nxl) |
---|
4590 | ENDIF |
---|
4591 | IF ( bc_radiation_r ) THEN |
---|
4592 | km(:,:,nxr+1) = km(:,:,nxr) |
---|
4593 | kh(:,:,nxr+1) = kh(:,:,nxr) |
---|
4594 | ENDIF |
---|
4595 | IF ( bc_radiation_s ) THEN |
---|
4596 | km(:,nys-1,:) = km(:,nys,:) |
---|
4597 | kh(:,nys-1,:) = kh(:,nys,:) |
---|
4598 | ENDIF |
---|
4599 | IF ( bc_radiation_n ) THEN |
---|
4600 | km(:,nyn+1,:) = km(:,nyn,:) |
---|
4601 | kh(:,nyn+1,:) = kh(:,nyn,:) |
---|
4602 | ENDIF |
---|
4603 | |
---|
4604 | END SUBROUTINE tcm_diffusivities |
---|
4605 | |
---|
4606 | |
---|
4607 | !------------------------------------------------------------------------------! |
---|
4608 | ! Description: |
---|
4609 | ! ------------ |
---|
4610 | !> Computation of the turbulent diffusion coefficients for momentum and heat |
---|
4611 | !> according to Prandtl-Kolmogorov. |
---|
4612 | !------------------------------------------------------------------------------! |
---|
4613 | SUBROUTINE tcm_diffusivities_default( var, var_reference ) |
---|
4614 | |
---|
4615 | USE arrays_3d, & |
---|
4616 | ONLY: dd2zu |
---|
4617 | |
---|
4618 | USE control_parameters, & |
---|
4619 | ONLY: atmos_ocean_sign, use_single_reference_value |
---|
4620 | |
---|
4621 | USE statistics, & |
---|
4622 | ONLY : rmask, sums_l_l |
---|
4623 | |
---|
4624 | IMPLICIT NONE |
---|
4625 | |
---|
4626 | INTEGER(iwp) :: i !< loop index |
---|
4627 | INTEGER(iwp) :: j !< loop index |
---|
4628 | INTEGER(iwp) :: k !< loop index |
---|
4629 | !$ INTEGER(iwp) :: omp_get_thread_num !< opemmp function to get thread number |
---|
4630 | INTEGER(iwp) :: sr !< statistic region |
---|
4631 | INTEGER(iwp) :: tn !< thread number |
---|
4632 | |
---|
4633 | REAL(wp) :: duv2_dz2 !< squared vertical gradient of wind vector |
---|
4634 | REAL(wp) :: dvar_dz !< vertical gradient of var |
---|
4635 | REAL(wp) :: l !< mixing length (single height) |
---|
4636 | REAL(wp) :: var_reference !< reference temperature |
---|
4637 | |
---|
4638 | !DIR$ ATTRIBUTES ALIGN:64:: l_v, l_stable, rif |
---|
4639 | REAL(wp), DIMENSION(nzb+1:nzt) :: l_v !< mixing length (all heights) |
---|
4640 | REAL(wp), DIMENSION(nzb+1:nzt) :: l_stable !< mixing length according to stratification |
---|
4641 | REAL(wp), DIMENSION(nzb+1:nzt) :: rif !< Richardson flux number |
---|
4642 | |
---|
4643 | REAL(wp), DIMENSION(nzb:nzt+1,nysg:nyng,nxlg:nxrg), INTENT(IN) :: var !< temperature |
---|
4644 | |
---|
4645 | ! |
---|
4646 | !-- Default thread number in case of one thread |
---|
4647 | tn = 0 |
---|
4648 | |
---|
4649 | ! |
---|
4650 | !-- Initialization for calculation of the mixing length profile |
---|
4651 | !$ACC KERNELS PRESENT(sums_l_l) |
---|
4652 | sums_l_l = 0.0_wp |
---|
4653 | !$ACC END KERNELS |
---|
4654 | |
---|
4655 | ! |
---|
4656 | !-- Compute the turbulent diffusion coefficient for momentum |
---|
4657 | !$OMP PARALLEL PRIVATE (i,j,k,l,sr,tn) |
---|
4658 | !$ tn = omp_get_thread_num() |
---|
4659 | |
---|
4660 | IF ( les_dynamic .OR. les_mw ) THEN |
---|
4661 | !$OMP DO |
---|
4662 | !$ACC PARALLEL LOOP COLLAPSE(2) PRIVATE(i, j) & |
---|
4663 | !$ACC PRIVATE(dvar_dz, l, l_stable, l_v) & |
---|
4664 | !$ACC PRESENT(wall_flags_0, var, dd2zu, e, l_wall, l_grid, rmask) & |
---|
4665 | !$ACC PRESENT(kh, km, sums_l_l) |
---|
4666 | DO i = nxlg, nxrg |
---|
4667 | DO j = nysg, nyng |
---|
4668 | !$ACC LOOP PRIVATE(k) |
---|
4669 | DO k = nzb+1, nzt |
---|
4670 | ! |
---|
4671 | !-- Determine the mixing length |
---|
4672 | !-- @note The following code cannot be transferred to a subroutine |
---|
4673 | !-- due to errors when using OpenACC directives. The execution |
---|
4674 | !-- crashes reliably if a subroutine is called at this point (the |
---|
4675 | !-- reasong for this behaviour is unknown, however). |
---|
4676 | dvar_dz = atmos_ocean_sign * ( var(k+1,j,i) - var(k-1,j,i) ) * dd2zu(k) |
---|
4677 | IF ( dvar_dz > 0.0_wp ) THEN |
---|
4678 | IF ( use_single_reference_value ) THEN |
---|
4679 | l_stable(k) = 0.76_wp * SQRT( e(k,j,i) ) & |
---|
4680 | / SQRT( g / var_reference * dvar_dz ) + 1E-5_wp |
---|
4681 | ELSE |
---|
4682 | l_stable(k) = 0.76_wp * SQRT( e(k,j,i) ) & |
---|
4683 | / SQRT( g / var(k,j,i) * dvar_dz ) + 1E-5_wp |
---|
4684 | ENDIF |
---|
4685 | ELSE |
---|
4686 | l_stable(k) = l_grid(k) |
---|
4687 | ENDIF |
---|
4688 | |
---|
4689 | ENDDO |
---|
4690 | |
---|
4691 | !$ACC LOOP PRIVATE(k) |
---|
4692 | !DIR$ IVDEP |
---|
4693 | DO k = nzb+1, nzt |
---|
4694 | |
---|
4695 | l_v(k) = MIN( l_wall(k,j,i), l_stable(k) ) & |
---|
4696 | * MERGE( 1.0_wp, 0.0_wp, BTEST( wall_flags_0(k,j,i), 0 ) ) |
---|
4697 | l = l_v(k) |
---|
4698 | ! |
---|
4699 | !-- Compute diffusion coefficients for momentum and heat |
---|
4700 | km(k,j,i) = c_0 * l * SQRT( e(k,j,i) ) |
---|
4701 | kh(k,j,i) = ( 1.0_wp + 2.0_wp * l / l_wall(k,j,i) ) * km(k,j,i) |
---|
4702 | |
---|
4703 | ENDDO |
---|
4704 | ! |
---|
4705 | !-- Summation for averaged profile (cf. flow_statistics) |
---|
4706 | !$ACC LOOP PRIVATE(sr, k) |
---|
4707 | DO sr = 0, statistic_regions |
---|
4708 | DO k = nzb+1, nzt |
---|
4709 | sums_l_l(k,sr,tn) = sums_l_l(k,sr,tn) + l_v(k) * rmask(j,i,sr) |
---|
4710 | ENDDO |
---|
4711 | ENDDO |
---|
4712 | |
---|
4713 | ENDDO |
---|
4714 | ENDDO |
---|
4715 | |
---|
4716 | ELSEIF ( rans_tke_l ) THEN |
---|
4717 | |
---|
4718 | !$OMP DO |
---|
4719 | !$ACC PARALLEL LOOP COLLAPSE(2) PRIVATE(i, j) & |
---|
4720 | !$ACC PRIVATE(dvar_dz, duv2_dz2, l_stable, l_v, rif) & |
---|
4721 | !$ACC PRESENT(wall_flags_0, var, dd2zu, e, u, v, l_wall, l_black, rmask) & |
---|
4722 | !$ACC PRESENT(kh, km, sums_l_l) |
---|
4723 | DO i = nxlg, nxrg |
---|
4724 | DO j = nysg, nyng |
---|
4725 | ! |
---|
4726 | !-- Calculate Richardson-flux number |
---|
4727 | IF ( use_single_reference_value ) THEN |
---|
4728 | !$ACC LOOP PRIVATE(k) |
---|
4729 | !DIR$ IVDEP |
---|
4730 | DO k = nzb+1, nzt |
---|
4731 | dvar_dz = atmos_ocean_sign * ( var(k+1,j,i) - var(k-1,j,i) ) * dd2zu(k) |
---|
4732 | |
---|
4733 | duv2_dz2 = ( ( u(k+1,j,i) - u(k-1,j,i) ) * dd2zu(k) )**2 & |
---|
4734 | + ( ( v(k+1,j,i) - v(k-1,j,i) ) * dd2zu(k) )**2 & |
---|
4735 | + 1E-30_wp |
---|
4736 | |
---|
4737 | rif(k) = MIN( MAX( g / var_reference * dvar_dz / duv2_dz2, -5.0_wp ), 1.0_wp ) |
---|
4738 | ENDDO |
---|
4739 | ELSE |
---|
4740 | !$ACC LOOP PRIVATE(k) |
---|
4741 | !DIR$ IVDEP |
---|
4742 | DO k = nzb+1, nzt |
---|
4743 | dvar_dz = atmos_ocean_sign * ( var(k+1,j,i) - var(k-1,j,i) ) * dd2zu(k) |
---|
4744 | |
---|
4745 | duv2_dz2 = ( ( u(k+1,j,i) - u(k-1,j,i) ) * dd2zu(k) )**2 & |
---|
4746 | + ( ( v(k+1,j,i) - v(k-1,j,i) ) * dd2zu(k) )**2 & |
---|
4747 | + 1E-30_wp |
---|
4748 | |
---|
4749 | rif(k) = MIN( MAX( g / var(k,j,i) * dvar_dz / duv2_dz2, -5.0_wp ), 1.0_wp ) |
---|
4750 | ENDDO |
---|
4751 | ENDIF |
---|
4752 | ! |
---|
4753 | !-- Calculate diabatic mixing length using Dyer-profile functions |
---|
4754 | !-- In case of unstable stratification, use mixing length of neutral case |
---|
4755 | !$ACC LOOP PRIVATE(k) |
---|
4756 | DO k = nzb+1, nzt |
---|
4757 | IF ( rif(k) >= 0.0_wp ) THEN |
---|
4758 | l_stable(k) = MIN( l_black(k) / ( 1.0_wp + 5.0_wp * rif(k) ), l_wall(k,j,i) ) |
---|
4759 | ELSE |
---|
4760 | l_stable(k) = l_wall(k,j,i) |
---|
4761 | ENDIF |
---|
4762 | |
---|
4763 | ENDDO |
---|
4764 | ! |
---|
4765 | !-- Compute diffusion coefficients for momentum and heat |
---|
4766 | !$ACC LOOP PRIVATE(k) |
---|
4767 | !DIR$ IVDEP |
---|
4768 | DO k = nzb+1, nzt |
---|
4769 | l_v(k) = l_stable(k) * MERGE( 1.0_wp, 0.0_wp, BTEST( wall_flags_0(k,j,i), 0 ) ) |
---|
4770 | km(k,j,i) = c_0 * l_v(k) * SQRT( e(k,j,i) ) |
---|
4771 | kh(k,j,i) = km(k,j,i) / prandtl_number |
---|
4772 | ENDDO |
---|
4773 | ! |
---|
4774 | !-- Summation for averaged profile (cf. flow_statistics) |
---|
4775 | !$ACC LOOP PRIVATE(sr, k) |
---|
4776 | DO sr = 0, statistic_regions |
---|
4777 | DO k = nzb+1, nzt |
---|
4778 | sums_l_l(k,sr,tn) = sums_l_l(k,sr,tn) + l_v(k) * rmask(j,i,sr) |
---|
4779 | ENDDO |
---|
4780 | ENDDO |
---|
4781 | |
---|
4782 | ENDDO |
---|
4783 | ENDDO |
---|
4784 | |
---|
4785 | ELSEIF ( rans_tke_e ) THEN |
---|
4786 | |
---|
4787 | !$OMP DO |
---|
4788 | !$ACC PARALLEL LOOP COLLAPSE(2) PRIVATE(i, j) & |
---|
4789 | !$ACC PRIVATE(l_v) & |
---|
4790 | !$ACC PRESENT(wall_flags_0, e, diss, rmask) & |
---|
4791 | !$ACC PRESENT(kh, km, sums_l_l) |
---|
4792 | DO i = nxlg, nxrg |
---|
4793 | DO j = nysg, nyng |
---|
4794 | ! |
---|
4795 | !-- Compute diffusion coefficients for momentum and heat |
---|
4796 | !$ACC LOOP PRIVATE(k) |
---|
4797 | !DIR$ IVDEP |
---|
4798 | DO k = nzb+1, nzt |
---|
4799 | |
---|
4800 | l_v(k) = c_0**3 * e(k,j,i) * SQRT(e(k,j,i)) / ( diss(k,j,i) + 1.0E-30_wp ) & |
---|
4801 | * MERGE( 1.0_wp, 0.0_wp, BTEST( wall_flags_0(k,j,i), 0 ) ) |
---|
4802 | |
---|
4803 | km(k,j,i) = c_0 * SQRT( e(k,j,i) ) * l_v(k) |
---|
4804 | kh(k,j,i) = km(k,j,i) / prandtl_number |
---|
4805 | |
---|
4806 | ENDDO |
---|
4807 | ! |
---|
4808 | !-- Summation for averaged profile of mixing length (cf. flow_statistics) |
---|
4809 | !$ACC LOOP PRIVATE(sr, k) |
---|
4810 | DO sr = 0, statistic_regions |
---|
4811 | DO k = nzb+1, nzt |
---|
4812 | sums_l_l(k,sr,tn) = sums_l_l(k,sr,tn) + l_v(k) * rmask(j,i,sr) |
---|
4813 | ENDDO |
---|
4814 | ENDDO |
---|
4815 | |
---|
4816 | ENDDO |
---|
4817 | ENDDO |
---|
4818 | |
---|
4819 | ENDIF |
---|
4820 | |
---|
4821 | !$ACC KERNELS PRESENT(sums_l_l) |
---|
4822 | sums_l_l(nzt+1,:,tn) = sums_l_l(nzt,:,tn) ! quasi boundary-condition for |
---|
4823 | ! data output |
---|
4824 | !$ACC END KERNELS |
---|
4825 | !$OMP END PARALLEL |
---|
4826 | |
---|
4827 | END SUBROUTINE tcm_diffusivities_default |
---|
4828 | |
---|
4829 | |
---|
4830 | !------------------------------------------------------------------------------! |
---|
4831 | ! Description: |
---|
4832 | ! ------------ |
---|
4833 | !> Calculates the eddy viscosity dynamically using the linear dynamic model |
---|
4834 | !> according to |
---|
4835 | !> Heinz, Stefan. "Realizability of dynamic subgrid-scale stress models via |
---|
4836 | !> stochastic analysis." |
---|
4837 | !> Monte Carlo Methods and Applications 14.4 (2008): 311-329. |
---|
4838 | !> |
---|
4839 | !> Furthermore dynamic bounds are used to limit the absolute value of c* as |
---|
4840 | !> described in |
---|
4841 | !> Mokhtarpoor, Reza, and Stefan Heinz. "Dynamic large eddy simulation: |
---|
4842 | !> Stability via realizability." Physics of Fluids 29.10 (2017): 105104. |
---|
4843 | !> |
---|
4844 | !> @author Hauke Wurps |
---|
4845 | !> @author Björn Maronga |
---|
4846 | !------------------------------------------------------------------------------! |
---|
4847 | SUBROUTINE tcm_diffusivities_dynamic |
---|
4848 | |
---|
4849 | USE arrays_3d, & |
---|
4850 | ONLY: ddzw, dzw, dd2zu, w, ug, vg |
---|
4851 | |
---|
4852 | USE grid_variables, & |
---|
4853 | ONLY : ddx, ddy, dx, dy |
---|
4854 | |
---|
4855 | IMPLICIT NONE |
---|
4856 | |
---|
4857 | INTEGER(iwp) :: i !< running index x-direction |
---|
4858 | INTEGER(iwp) :: j !< running index y-direction |
---|
4859 | INTEGER(iwp) :: k !< running index z-direction |
---|
4860 | INTEGER(iwp) :: l !< running index |
---|
4861 | INTEGER(iwp) :: m !< running index |
---|
4862 | |
---|
4863 | REAL(wp) :: dudx !< Gradient of u-component in x-direction |
---|
4864 | REAL(wp) :: dudy !< Gradient of u-component in y-direction |
---|
4865 | REAL(wp) :: dudz !< Gradient of u-component in z-direction |
---|
4866 | REAL(wp) :: dvdx !< Gradient of v-component in x-direction |
---|
4867 | REAL(wp) :: dvdy !< Gradient of v-component in y-direction |
---|
4868 | REAL(wp) :: dvdz !< Gradient of v-component in z-direction |
---|
4869 | REAL(wp) :: dwdx !< Gradient of w-component in x-direction |
---|
4870 | REAL(wp) :: dwdy !< Gradient of w-component in y-direction |
---|
4871 | REAL(wp) :: dwdz !< Gradient of w-component in z-direction |
---|
4872 | |
---|
4873 | REAL(wp) :: flag !< topography flag |
---|
4874 | |
---|
4875 | REAL(wp) :: uc(-1:1,-1:1) !< u on grid center |
---|
4876 | REAL(wp) :: vc(-1:1,-1:1) !< v on grid center |
---|
4877 | REAL(wp) :: wc(-1:1,-1:1) !< w on grid center |
---|
4878 | |
---|
4879 | REAL(wp) :: ut(nzb:nzt+1,nysg:nyng,nxlg:nxrg) !< test filtered u |
---|
4880 | REAL(wp) :: vt(nzb:nzt+1,nysg:nyng,nxlg:nxrg) !< test filtered v |
---|
4881 | REAL(wp) :: wt(nzb:nzt+1,nysg:nyng,nxlg:nxrg) !< test filtered w |
---|
4882 | |
---|
4883 | REAL(wp) :: uct !< test filtered u on grid center |
---|
4884 | REAL(wp) :: vct !< test filtered v on grid center |
---|
4885 | REAL(wp) :: wct !< test filtered w on grid center |
---|
4886 | REAL(wp) :: u2t !< test filtered u**2 on grid center |
---|
4887 | REAL(wp) :: v2t !< test filtered v**2 on grid center |
---|
4888 | REAL(wp) :: w2t !< test filtered w**2 on grid center |
---|
4889 | REAL(wp) :: uvt !< test filtered u*v on grid center |
---|
4890 | REAL(wp) :: uwt !< test filtered u*w on grid center |
---|
4891 | REAL(wp) :: vwt !< test filtered v*w on grid center |
---|
4892 | |
---|
4893 | REAL(wp) :: sd11 !< deviatoric shear tensor |
---|
4894 | REAL(wp) :: sd22 !< deviatoric shear tensor |
---|
4895 | REAL(wp) :: sd33 !<f deviatoric shear tensor |
---|
4896 | REAL(wp) :: sd12 !< deviatoric shear tensor |
---|
4897 | REAL(wp) :: sd13 !< deviatoric shear tensor |
---|
4898 | REAL(wp) :: sd23 !< deviatoric shear tensor |
---|
4899 | |
---|
4900 | REAL(wp) :: sd2 !< sum: sd_ij*sd_ij |
---|
4901 | |
---|
4902 | REAL(wp) :: sdt11 !< filtered deviatoric shear tensor |
---|
4903 | REAL(wp) :: sdt22 !< filtered deviatoric shear tensor |
---|
4904 | REAL(wp) :: sdt33 !< filtered deviatoric shear tensor |
---|
4905 | REAL(wp) :: sdt12 !< filtered deviatoric shear tensor |
---|
4906 | REAL(wp) :: sdt13 !< filtered deviatoric shear tensor |
---|
4907 | REAL(wp) :: sdt23 !< filtered deviatoric shear tensor |
---|
4908 | |
---|
4909 | REAL(wp) :: sdt2 !< sum: sdt_ij*sdt_ij |
---|
4910 | |
---|
4911 | REAL(wp) :: ld11 !< deviatoric stress tensor |
---|
4912 | REAL(wp) :: ld22 !< deviatoric stress tensor |
---|
4913 | REAL(wp) :: ld33 !< deviatoric stress tensor |
---|
4914 | REAL(wp) :: ld12 !< deviatoric stress tensor |
---|
4915 | REAL(wp) :: ld13 !< deviatoric stress tensor |
---|
4916 | REAL(wp) :: ld23 !< deviatoric stress tensor |
---|
4917 | |
---|
4918 | REAL(wp) :: lnn !< sum ld_nn |
---|
4919 | REAL(wp) :: ldsd !< sum: ld_ij*sd_ij |
---|
4920 | |
---|
4921 | REAL(wp) :: delta !< grid size |
---|
4922 | REAL(wp) :: cst !< c* |
---|
4923 | REAL(wp) :: cstnust_t !< product c*nu* |
---|
4924 | REAL(wp) :: cst_max !< bounds of c* |
---|
4925 | |
---|
4926 | REAL(wp), PARAMETER :: fac_cmax = 23.0_wp/(24.0_wp*sqrt(3.0_wp)) !< constant |
---|
4927 | |
---|
4928 | ! |
---|
4929 | !-- velocities on grid centers: |
---|
4930 | CALL tcm_box_filter_2d_array( u, ut ) |
---|
4931 | CALL tcm_box_filter_2d_array( v, vt ) |
---|
4932 | CALL tcm_box_filter_2d_array( w, wt ) |
---|
4933 | |
---|
4934 | DO i = nxl, nxr |
---|
4935 | DO j = nys, nyn |
---|
4936 | DO k = nzb+1, nzt |
---|
4937 | |
---|
4938 | flag = MERGE( 1.0_wp, 0.0_wp, BTEST( wall_flags_0(k,j,i), 0 ) ) |
---|
4939 | |
---|
4940 | ! |
---|
4941 | !-- Compute the deviatoric shear tensor s_ij on grid centers: |
---|
4942 | !-- s_ij = 0.5 * ( du_i/dx_j + du_j/dx_i ) |
---|
4943 | dudx = ( u(k,j,i+1) - u(k,j,i) ) * ddx |
---|
4944 | dudy = 0.25_wp * ( u(k,j+1,i) + u(k,j+1,i+1) - & |
---|
4945 | u(k,j-1,i) - u(k,j-1,i+1) ) * ddy |
---|
4946 | dudz = 0.5_wp * ( u(k+1,j,i) + u(k+1,j,i+1) - & |
---|
4947 | u(k-1,j,i) - u(k-1,j,i+1) ) * dd2zu(k) |
---|
4948 | |
---|
4949 | dvdx = 0.25_wp * ( v(k,j,i+1) + v(k,j+1,i+1) - & |
---|
4950 | v(k,j,i-1) - v(k,j+1,i-1) ) * ddx |
---|
4951 | dvdy = ( v(k,j+1,i) - v(k,j,i) ) * ddy |
---|
4952 | dvdz = 0.5_wp * ( v(k+1,j,i) + v(k+1,j+1,i) - & |
---|
4953 | v(k-1,j,i) - v(k-1,j+1,i) ) * dd2zu(k) |
---|
4954 | |
---|
4955 | dwdx = 0.25_wp * ( w(k,j,i+1) + w(k-1,j,i+1) - & |
---|
4956 | w(k,j,i-1) - w(k-1,j,i-1) ) * ddx |
---|
4957 | dwdy = 0.25_wp * ( w(k,j+1,i) + w(k-1,j+1,i) - & |
---|
4958 | w(k,j-1,i) - w(k-1,j-1,i) ) * ddy |
---|
4959 | dwdz = ( w(k,j,i) - w(k-1,j,i) ) * ddzw(k) |
---|
4960 | |
---|
4961 | sd11 = dudx |
---|
4962 | sd22 = dvdy |
---|
4963 | sd33 = dwdz |
---|
4964 | sd12 = 0.5_wp * ( dudy + dvdx ) |
---|
4965 | sd13 = 0.5_wp * ( dudz + dwdx ) |
---|
4966 | sd23 = 0.5_wp * ( dvdz + dwdy ) |
---|
4967 | ! |
---|
4968 | !-- sum: sd_ij*sd_ij |
---|
4969 | sd2 = sd11**2 + sd22**2 + sd33**2 & |
---|
4970 | + 2.0_wp * ( sd12**2 + sd13**2 + sd23**2 ) |
---|
4971 | ! |
---|
4972 | !-- The filtered velocities are needed to calculate the filtered shear |
---|
4973 | !-- tensor: sdt_ij = 0.5 * ( dut_i/dx_j + dut_j/dx_i ) |
---|
4974 | dudx = ( ut(k,j,i+1) - ut(k,j,i) ) * ddx |
---|
4975 | dudy = 0.25_wp * ( ut(k,j+1,i) + ut(k,j+1,i+1) - & |
---|
4976 | ut(k,j-1,i) - ut(k,j-1,i+1) ) * ddy |
---|
4977 | dudz = 0.5_wp * ( ut(k+1,j,i) + ut(k+1,j,i+1) - & |
---|
4978 | ut(k-1,j,i) - ut(k-1,j,i+1) ) * dd2zu(k) |
---|
4979 | |
---|
4980 | dvdx = 0.25_wp * ( vt(k,j,i+1) + vt(k,j+1,i+1) - & |
---|
4981 | vt(k,j,i-1) - vt(k,j+1,i-1) ) * ddx |
---|
4982 | dvdy = ( vt(k,j+1,i) - vt(k,j,i) ) * ddy |
---|
4983 | dvdz = 0.5_wp * ( vt(k+1,j,i) + vt(k+1,j+1,i) - & |
---|
4984 | vt(k-1,j,i) - vt(k-1,j+1,i) ) * dd2zu(k) |
---|
4985 | |
---|
4986 | dwdx = 0.25_wp * ( wt(k,j,i+1) + wt(k-1,j,i+1) - & |
---|
4987 | wt(k,j,i-1) - wt(k-1,j,i-1) ) * ddx |
---|
4988 | dwdy = 0.25_wp * ( wt(k,j+1,i) + wt(k-1,j+1,i) - & |
---|
4989 | wt(k,j-1,i) - wt(k-1,j-1,i) ) * ddy |
---|
4990 | dwdz = ( wt(k,j,i) - wt(k-1,j,i) ) * ddzw(k) |
---|
4991 | |
---|
4992 | sdt11 = dudx |
---|
4993 | sdt22 = dvdy |
---|
4994 | sdt33 = dwdz |
---|
4995 | sdt12 = 0.5_wp * ( dudy + dvdx ) |
---|
4996 | sdt13 = 0.5_wp * ( dudz + dwdx ) |
---|
4997 | sdt23 = 0.5_wp * ( dvdz + dwdy ) |
---|
4998 | ! |
---|
4999 | !-- sum: sd_ij*sd_ij |
---|
5000 | sdt2 = sdt11**2 + sdt22**2 + sdt33**2 & |
---|
5001 | + 2.0_wp * ( sdt12**2 + sdt13**2 + sdt23**2 ) |
---|
5002 | ! |
---|
5003 | !-- Need filtered velocities and filtered squared velocities on grid |
---|
5004 | !-- centers. Substraction of geostrophic velocity helps to avoid |
---|
5005 | !-- numerical errors in the expression <u**2> - <u>*<u>, which can be |
---|
5006 | !-- very small (<...> means filtered). |
---|
5007 | DO l = -1, 1 |
---|
5008 | DO m = -1, 1 |
---|
5009 | uc(l,m) = 0.5_wp * ( u(k,j+l,i+m) + u(k,j+l,i+m+1) ) - ug(k) |
---|
5010 | vc(l,m) = 0.5_wp * ( v(k,j+l,i+m) + v(k,j+l+1,i+m) ) - vg(k) |
---|
5011 | wc(l,m) = 0.5_wp * ( w(k-1,j+l,i+m) + w(k,j+l,i+m) ) |
---|
5012 | ENDDO |
---|
5013 | ENDDO |
---|
5014 | |
---|
5015 | CALL tcm_box_filter_2d_single( uc, uct ) |
---|
5016 | CALL tcm_box_filter_2d_single( vc, vct ) |
---|
5017 | CALL tcm_box_filter_2d_single( wc, wct ) |
---|
5018 | CALL tcm_box_filter_2d_single( uc**2, u2t ) |
---|
5019 | CALL tcm_box_filter_2d_single( vc**2, v2t ) |
---|
5020 | CALL tcm_box_filter_2d_single( wc**2, w2t ) |
---|
5021 | CALL tcm_box_filter_2d_single( uc*vc, uvt ) |
---|
5022 | CALL tcm_box_filter_2d_single( uc*wc, uwt ) |
---|
5023 | CALL tcm_box_filter_2d_single( vc*wc, vwt ) |
---|
5024 | |
---|
5025 | ld11 = u2t - uct*uct |
---|
5026 | ld22 = v2t - vct*vct |
---|
5027 | ld33 = w2t - wct*wct |
---|
5028 | ld12 = uvt - uct*vct |
---|
5029 | ld13 = uwt - uct*wct |
---|
5030 | ld23 = vwt - vct*wct |
---|
5031 | |
---|
5032 | lnn = ld11 + ld22 + ld33 |
---|
5033 | ! |
---|
5034 | !-- Substract trace to get deviatoric resolved stress |
---|
5035 | ld11 = ld11 - lnn / 3.0_wp |
---|
5036 | ld22 = ld22 - lnn / 3.0_wp |
---|
5037 | ld33 = ld33 - lnn / 3.0_wp |
---|
5038 | |
---|
5039 | ldsd = ld11 * sdt11 + ld22 * sdt22 + ld33 * sdt33 + & |
---|
5040 | 2.0_wp * ( ld12 * sdt12 + ld13 * sdt13 + ld23 * sdt23 ) |
---|
5041 | ! |
---|
5042 | !-- c* nu*^T is SGS viscosity on test filter level: |
---|
5043 | cstnust_t = -ldsd / ( sdt2 + 1.0E-20_wp ) |
---|
5044 | ! |
---|
5045 | !-- The model was only tested for an isotropic grid. The following |
---|
5046 | !-- expression was a recommendation of Stefan Heinz. |
---|
5047 | delta = MAX( dx, dy, dzw(k) ) |
---|
5048 | |
---|
5049 | IF ( lnn <= 0.0_wp ) THEN |
---|
5050 | cst = 0.0_wp |
---|
5051 | ELSE |
---|
5052 | cst = cstnust_t / & |
---|
5053 | ( 4.0_wp * delta * SQRT( lnn / 2.0_wp ) + 1.0E-20_wp ) |
---|
5054 | ENDIF |
---|
5055 | |
---|
5056 | ! |
---|
5057 | !-- Calculate border according to Mokhtarpoor and Heinz (2017) |
---|
5058 | cst_max = fac_cmax * SQRT( e(k,j,i) ) / & |
---|
5059 | ( delta * SQRT( 2.0_wp * sd2 ) + 1.0E-20_wp ) |
---|
5060 | |
---|
5061 | IF ( ABS( cst ) > cst_max ) THEN |
---|
5062 | cst = cst_max * cst / ABS( cst ) |
---|
5063 | ENDIF |
---|
5064 | |
---|
5065 | km(k,j,i) = cst * delta * SQRT( e(k,j,i) ) * flag |
---|
5066 | |
---|
5067 | ENDDO |
---|
5068 | ENDDO |
---|
5069 | ENDDO |
---|
5070 | |
---|
5071 | END SUBROUTINE tcm_diffusivities_dynamic |
---|
5072 | |
---|
5073 | |
---|
5074 | !------------------------------------------------------------------------------! |
---|
5075 | ! Description: |
---|
5076 | ! ------------ |
---|
5077 | !> This subroutine acts as a box filter with filter width 2 * dx. |
---|
5078 | !> Output is only one point. |
---|
5079 | !------------------------------------------------------------------------------! |
---|
5080 | SUBROUTINE tcm_box_filter_2d_single( var, var_fil ) |
---|
5081 | |
---|
5082 | IMPLICIT NONE |
---|
5083 | |
---|
5084 | REAL(wp) :: var(-1:1,-1:1) !< variable to be filtered |
---|
5085 | REAL(wp) :: var_fil !< filtered variable |
---|
5086 | ! |
---|
5087 | !-- It is assumed that a box with a side length of 2 * dx and centered at the |
---|
5088 | !-- variable*s position contains one half of the four closest neigbours and one |
---|
5089 | !-- forth of the diagonally closest neighbours. |
---|
5090 | var_fil = 0.25_wp * ( var(0,0) + & |
---|
5091 | 0.5_wp * ( var(0,1) + var(1,0) + & |
---|
5092 | var(0,-1) + var(-1,0) ) + & |
---|
5093 | 0.25_wp * ( var(1,1) + var(1,-1) + & |
---|
5094 | var(-1,1) + var(-1,-1) ) ) |
---|
5095 | |
---|
5096 | END SUBROUTINE tcm_box_filter_2d_single |
---|
5097 | |
---|
5098 | !------------------------------------------------------------------------------! |
---|
5099 | ! Description: |
---|
5100 | ! ------------ |
---|
5101 | !> This subroutine acts as a box filter with filter width 2 * dx. |
---|
5102 | !> The filtered variable var_fil is on the same grid as var. |
---|
5103 | !------------------------------------------------------------------------------! |
---|
5104 | SUBROUTINE tcm_box_filter_2d_array( var, var_fil ) |
---|
5105 | |
---|
5106 | IMPLICIT NONE |
---|
5107 | |
---|
5108 | INTEGER(iwp) :: i !< running index x-direction |
---|
5109 | INTEGER(iwp) :: j !< running index y-direction |
---|
5110 | INTEGER(iwp) :: k !< running index z-direction |
---|
5111 | |
---|
5112 | REAL(wp) :: var(nzb:nzt+1,nysg:nyng,nxlg:nxrg) !< variable to be filtered |
---|
5113 | REAL(wp) :: var_fil(nzb:nzt+1,nysg:nyng,nxlg:nxrg) !< filtered variable |
---|
5114 | ! |
---|
5115 | !-- It is assumed that a box with a side length of 2 * dx and centered at the |
---|
5116 | !-- variable's position contains one half of the four closest neigbours and one |
---|
5117 | !-- forth of the diagonally closest neighbours. |
---|
5118 | DO i = nxlg+1, nxrg-1 |
---|
5119 | DO j = nysg+1, nyng-1 |
---|
5120 | DO k = nzb, nzt+1 |
---|
5121 | var_fil(k,j,i) = 0.25_wp * ( var(k,j,i) + & |
---|
5122 | 0.5_wp * ( var(k,j,i+1) + var(k,j+1,i) + & |
---|
5123 | var(k,j,i-1) + var(k,j-1,i) ) +& |
---|
5124 | 0.25_wp * ( var(k,j+1,i+1) + var(k,j+1,i-1) + & |
---|
5125 | var(k,j-1,i+1) + var(k,j-1,i-1) ) ) |
---|
5126 | END DO |
---|
5127 | END DO |
---|
5128 | END DO |
---|
5129 | |
---|
5130 | END SUBROUTINE tcm_box_filter_2d_array |
---|
5131 | |
---|
5132 | |
---|
5133 | !------------------------------------------------------------------------------! |
---|
5134 | ! Description: |
---|
5135 | ! ------------ |
---|
5136 | !> Swapping of timelevels. |
---|
5137 | !------------------------------------------------------------------------------! |
---|
5138 | SUBROUTINE tcm_swap_timelevel ( mod_count ) |
---|
5139 | |
---|
5140 | IMPLICIT NONE |
---|
5141 | |
---|
5142 | |
---|
5143 | INTEGER, INTENT(IN) :: mod_count !< flag defining where pointers point to |
---|
5144 | |
---|
5145 | |
---|
5146 | SELECT CASE ( mod_count ) |
---|
5147 | |
---|
5148 | CASE ( 0 ) |
---|
5149 | |
---|
5150 | IF ( .NOT. constant_diffusion ) THEN |
---|
5151 | e => e_1; e_p => e_2 |
---|
5152 | ENDIF |
---|
5153 | |
---|
5154 | IF ( rans_tke_e ) THEN |
---|
5155 | diss => diss_1; diss_p => diss_2 |
---|
5156 | ENDIF |
---|
5157 | |
---|
5158 | CASE ( 1 ) |
---|
5159 | |
---|
5160 | IF ( .NOT. constant_diffusion ) THEN |
---|
5161 | e => e_2; e_p => e_1 |
---|
5162 | ENDIF |
---|
5163 | |
---|
5164 | IF ( rans_tke_e ) THEN |
---|
5165 | diss => diss_2; diss_p => diss_1 |
---|
5166 | ENDIF |
---|
5167 | |
---|
5168 | END SELECT |
---|
5169 | |
---|
5170 | END SUBROUTINE tcm_swap_timelevel |
---|
5171 | |
---|
5172 | |
---|
5173 | END MODULE turbulence_closure_mod |
---|