1 | !> @file tridia_solver_mod.f90 |
---|
2 | !--------------------------------------------------------------------------------------------------! |
---|
3 | ! This file is part of the PALM model system. |
---|
4 | ! |
---|
5 | ! PALM is free software: you can redistribute it and/or modify it under the terms of the GNU General |
---|
6 | ! Public License as published by the Free Software Foundation, either version 3 of the License, or |
---|
7 | ! (at your option) any later version. |
---|
8 | ! |
---|
9 | ! PALM is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the |
---|
10 | ! implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General |
---|
11 | ! Public License for more details. |
---|
12 | ! |
---|
13 | ! You should have received a copy of the GNU General Public License along with PALM. If not, see |
---|
14 | ! <http://www.gnu.org/licenses/>. |
---|
15 | ! |
---|
16 | ! Copyright 1997-2021 Leibniz Universitaet Hannover |
---|
17 | !--------------------------------------------------------------------------------------------------! |
---|
18 | ! |
---|
19 | ! |
---|
20 | ! Current revisions: |
---|
21 | ! ----------------- |
---|
22 | ! |
---|
23 | ! |
---|
24 | ! Former revisions: |
---|
25 | ! ----------------- |
---|
26 | ! $Id: tridia_solver_mod.f90 4828 2021-01-05 11:21:41Z hellstea $ |
---|
27 | ! file re-formatted to follow the PALM coding standard |
---|
28 | ! |
---|
29 | ! 4360 2020-01-07 11:25:50Z suehring |
---|
30 | ! Added missing OpenMP directives |
---|
31 | ! |
---|
32 | ! 4182 2019-08-22 15:20:23Z scharf |
---|
33 | ! Corrected "Former revisions" section |
---|
34 | ! |
---|
35 | ! 3761 2019-02-25 15:31:42Z raasch |
---|
36 | ! OpenACC modification to prevent compiler warning about unused variable |
---|
37 | ! |
---|
38 | ! 3690 2019-01-22 22:56:42Z knoop |
---|
39 | ! OpenACC port for SPEC |
---|
40 | ! |
---|
41 | ! 1212 2013-08-15 08:46:27Z raasch |
---|
42 | ! Initial revision. |
---|
43 | ! Routines have been moved to seperate module from former file poisfft to here. The tridiagonal |
---|
44 | ! matrix coefficients of array tri are calculated only once at the beginning, i.e. routine split is |
---|
45 | ! called within tridia_init. |
---|
46 | ! |
---|
47 | ! |
---|
48 | ! Description: |
---|
49 | ! ------------ |
---|
50 | !> Solves the linear system of equations: |
---|
51 | !> |
---|
52 | !> -(4 pi^2(i^2/(dx^2*nnx^2)+j^2/(dy^2*nny^2))+ 1/(dzu(k)*dzw(k))+1/(dzu(k-1)*dzw(k)))*p(i,j,k)+ |
---|
53 | !> 1/(dzu(k)*dzw(k))*p(i,j,k+1)+1/(dzu(k-1)*dzw(k))*p(i,j,k-1)=d(i,j,k) |
---|
54 | !> |
---|
55 | !> by using the Thomas algorithm |
---|
56 | !--------------------------------------------------------------------------------------------------! |
---|
57 | |
---|
58 | #define __acc_fft_device ( defined( _OPENACC ) && ( defined ( __cuda_fft ) ) ) |
---|
59 | |
---|
60 | MODULE tridia_solver |
---|
61 | |
---|
62 | |
---|
63 | USE basic_constants_and_equations_mod, & |
---|
64 | ONLY: pi |
---|
65 | |
---|
66 | USE indices, & |
---|
67 | ONLY: nx, & |
---|
68 | ny, & |
---|
69 | nz |
---|
70 | |
---|
71 | USE kinds |
---|
72 | |
---|
73 | USE transpose_indices, & |
---|
74 | ONLY: nxl_z, & |
---|
75 | nyn_z, & |
---|
76 | nxr_z, & |
---|
77 | nys_z |
---|
78 | |
---|
79 | IMPLICIT NONE |
---|
80 | |
---|
81 | REAL(wp), DIMENSION(:,:), ALLOCATABLE :: ddzuw !< |
---|
82 | |
---|
83 | PRIVATE |
---|
84 | |
---|
85 | INTERFACE tridia_substi |
---|
86 | MODULE PROCEDURE tridia_substi |
---|
87 | END INTERFACE tridia_substi |
---|
88 | |
---|
89 | INTERFACE tridia_substi_overlap |
---|
90 | MODULE PROCEDURE tridia_substi_overlap |
---|
91 | END INTERFACE tridia_substi_overlap |
---|
92 | |
---|
93 | PUBLIC tridia_substi, tridia_substi_overlap, tridia_init, tridia_1dd |
---|
94 | |
---|
95 | CONTAINS |
---|
96 | |
---|
97 | |
---|
98 | !--------------------------------------------------------------------------------------------------! |
---|
99 | ! Description: |
---|
100 | ! ------------ |
---|
101 | !> @todo Missing subroutine description. |
---|
102 | !--------------------------------------------------------------------------------------------------! |
---|
103 | SUBROUTINE tridia_init |
---|
104 | |
---|
105 | USE arrays_3d, & |
---|
106 | ONLY: ddzu_pres, & |
---|
107 | ddzw, & |
---|
108 | rho_air_zw |
---|
109 | |
---|
110 | #if defined( _OPENACC ) |
---|
111 | USE arrays_3d, & |
---|
112 | ONLY: tri |
---|
113 | #endif |
---|
114 | |
---|
115 | IMPLICIT NONE |
---|
116 | |
---|
117 | INTEGER(iwp) :: k !< |
---|
118 | |
---|
119 | ALLOCATE( ddzuw(0:nz-1,3) ) |
---|
120 | |
---|
121 | DO k = 0, nz-1 |
---|
122 | ddzuw(k,1) = ddzu_pres(k+1) * ddzw(k+1) * rho_air_zw(k) |
---|
123 | ddzuw(k,2) = ddzu_pres(k+2) * ddzw(k+1) * rho_air_zw(k+1) |
---|
124 | ddzuw(k,3) = -1.0_wp * ( ddzu_pres(k+2) * ddzw(k+1) * rho_air_zw(k+1) + & |
---|
125 | ddzu_pres(k+1) * ddzw(k+1) * rho_air_zw(k) ) |
---|
126 | ENDDO |
---|
127 | ! |
---|
128 | !-- Calculate constant coefficients of the tridiagonal matrix |
---|
129 | CALL maketri |
---|
130 | CALL split |
---|
131 | |
---|
132 | #if __acc_fft_device |
---|
133 | !$ACC ENTER DATA & |
---|
134 | !$ACC COPYIN(ddzuw(0:nz-1,1:3)) & |
---|
135 | !$ACC COPYIN(tri(nxl_z:nxr_z,nys_z:nyn_z,0:nz-1,1:2)) |
---|
136 | #endif |
---|
137 | |
---|
138 | END SUBROUTINE tridia_init |
---|
139 | |
---|
140 | |
---|
141 | !--------------------------------------------------------------------------------------------------! |
---|
142 | ! Description: |
---|
143 | ! ------------ |
---|
144 | !> Computes the i- and j-dependent component of the matrix. |
---|
145 | !> Provide the constant coefficients of the tridiagonal matrix for solution of the Poisson equation |
---|
146 | !> in Fourier space. The coefficients are computed following the method of Schmidt et al. |
---|
147 | !> (DFVLR-Mitteilung 84-15), which departs from Stephan Siano's original version by discretizing the |
---|
148 | !> Poisson equation, before it is Fourier-transformed. |
---|
149 | !--------------------------------------------------------------------------------------------------! |
---|
150 | SUBROUTINE maketri |
---|
151 | |
---|
152 | |
---|
153 | USE arrays_3d, & |
---|
154 | ONLY: tric, & |
---|
155 | rho_air |
---|
156 | |
---|
157 | USE control_parameters, & |
---|
158 | ONLY: ibc_p_b, & |
---|
159 | ibc_p_t |
---|
160 | |
---|
161 | USE grid_variables, & |
---|
162 | ONLY: dx, & |
---|
163 | dy |
---|
164 | |
---|
165 | |
---|
166 | IMPLICIT NONE |
---|
167 | |
---|
168 | INTEGER(iwp) :: i !< |
---|
169 | INTEGER(iwp) :: j !< |
---|
170 | INTEGER(iwp) :: k !< |
---|
171 | INTEGER(iwp) :: nnxh !< |
---|
172 | INTEGER(iwp) :: nnyh !< |
---|
173 | |
---|
174 | REAL(wp) :: ll(nxl_z:nxr_z,nys_z:nyn_z) !< |
---|
175 | |
---|
176 | |
---|
177 | nnxh = ( nx + 1 ) / 2 |
---|
178 | nnyh = ( ny + 1 ) / 2 |
---|
179 | |
---|
180 | DO j = nys_z, nyn_z |
---|
181 | DO i = nxl_z, nxr_z |
---|
182 | IF ( j >= 0 .AND. j <= nnyh ) THEN |
---|
183 | IF ( i >= 0 .AND. i <= nnxh ) THEN |
---|
184 | ll(i,j) = 2.0_wp * ( 1.0_wp - COS( ( 2.0_wp * pi * i ) / & |
---|
185 | REAL( nx+1, KIND=wp ) ) ) / ( dx * dx ) + & |
---|
186 | 2.0_wp * ( 1.0_wp - COS( ( 2.0_wp * pi * j ) / & |
---|
187 | REAL( ny+1, KIND=wp ) ) ) / ( dy * dy ) |
---|
188 | ELSE |
---|
189 | ll(i,j) = 2.0_wp * ( 1.0_wp - COS( ( 2.0_wp * pi * ( nx+1-i ) ) / & |
---|
190 | REAL( nx+1, KIND=wp ) ) ) / ( dx * dx ) + & |
---|
191 | 2.0_wp * ( 1.0_wp - COS( ( 2.0_wp * pi * j ) / & |
---|
192 | REAL( ny+1, KIND=wp ) ) ) / ( dy * dy ) |
---|
193 | ENDIF |
---|
194 | ELSE |
---|
195 | IF ( i >= 0 .AND. i <= nnxh ) THEN |
---|
196 | ll(i,j) = 2.0_wp * ( 1.0_wp - COS( ( 2.0_wp * pi * i ) / & |
---|
197 | REAL( nx+1, KIND=wp ) ) ) / ( dx * dx ) + & |
---|
198 | 2.0_wp * ( 1.0_wp - COS( ( 2.0_wp * pi * ( ny+1-j ) ) / & |
---|
199 | REAL( ny+1, KIND=wp ) ) ) / ( dy * dy ) |
---|
200 | ELSE |
---|
201 | ll(i,j) = 2.0_wp * ( 1.0_wp - COS( ( 2.0_wp * pi * ( nx+1-i ) ) / & |
---|
202 | REAL( nx+1, KIND=wp ) ) ) / ( dx * dx ) + & |
---|
203 | 2.0_wp * ( 1.0_wp - COS( ( 2.0_wp * pi * ( ny+1-j ) ) / & |
---|
204 | REAL( ny+1, KIND=wp ) ) ) / ( dy * dy ) |
---|
205 | ENDIF |
---|
206 | ENDIF |
---|
207 | ENDDO |
---|
208 | ENDDO |
---|
209 | |
---|
210 | DO k = 0, nz-1 |
---|
211 | DO j = nys_z, nyn_z |
---|
212 | DO i = nxl_z, nxr_z |
---|
213 | tric(i,j,k) = ddzuw(k,3) - ll(i,j) * rho_air(k+1) |
---|
214 | ENDDO |
---|
215 | ENDDO |
---|
216 | ENDDO |
---|
217 | |
---|
218 | IF ( ibc_p_b == 1 ) THEN |
---|
219 | DO j = nys_z, nyn_z |
---|
220 | DO i = nxl_z, nxr_z |
---|
221 | tric(i,j,0) = tric(i,j,0) + ddzuw(0,1) |
---|
222 | ENDDO |
---|
223 | ENDDO |
---|
224 | ENDIF |
---|
225 | IF ( ibc_p_t == 1 ) THEN |
---|
226 | DO j = nys_z, nyn_z |
---|
227 | DO i = nxl_z, nxr_z |
---|
228 | tric(i,j,nz-1) = tric(i,j,nz-1) + ddzuw(nz-1,2) |
---|
229 | ENDDO |
---|
230 | ENDDO |
---|
231 | ENDIF |
---|
232 | |
---|
233 | END SUBROUTINE maketri |
---|
234 | |
---|
235 | |
---|
236 | !--------------------------------------------------------------------------------------------------! |
---|
237 | ! Description: |
---|
238 | ! ------------ |
---|
239 | !> Substitution (Forward and Backward) (Thomas algorithm). |
---|
240 | !--------------------------------------------------------------------------------------------------! |
---|
241 | SUBROUTINE tridia_substi( ar ) |
---|
242 | |
---|
243 | |
---|
244 | USE arrays_3d, & |
---|
245 | ONLY: tri |
---|
246 | |
---|
247 | USE control_parameters, & |
---|
248 | ONLY: ibc_p_b, & |
---|
249 | ibc_p_t |
---|
250 | |
---|
251 | IMPLICIT NONE |
---|
252 | |
---|
253 | INTEGER(iwp) :: i !< |
---|
254 | INTEGER(iwp) :: j !< |
---|
255 | INTEGER(iwp) :: k !< |
---|
256 | |
---|
257 | REAL(wp) :: ar(nxl_z:nxr_z,nys_z:nyn_z,1:nz) !< |
---|
258 | |
---|
259 | REAL(wp), DIMENSION(nxl_z:nxr_z,nys_z:nyn_z,0:nz-1) :: ar1 !< |
---|
260 | #if __acc_fft_device |
---|
261 | !$ACC DECLARE CREATE(ar1) |
---|
262 | #endif |
---|
263 | |
---|
264 | !$OMP PARALLEL PRIVATE(i,j,k) |
---|
265 | |
---|
266 | ! |
---|
267 | !-- Forward substitution |
---|
268 | #if __acc_fft_device |
---|
269 | !$ACC PARALLEL PRESENT(ar, ar1, tri) PRIVATE(i,j,k) |
---|
270 | #endif |
---|
271 | DO k = 0, nz - 1 |
---|
272 | #if __acc_fft_device |
---|
273 | !$ACC LOOP COLLAPSE(2) |
---|
274 | #endif |
---|
275 | !$OMP DO |
---|
276 | DO j = nys_z, nyn_z |
---|
277 | DO i = nxl_z, nxr_z |
---|
278 | |
---|
279 | IF ( k == 0 ) THEN |
---|
280 | ar1(i,j,k) = ar(i,j,k+1) |
---|
281 | ELSE |
---|
282 | ar1(i,j,k) = ar(i,j,k+1) - tri(i,j,k,2) * ar1(i,j,k-1) |
---|
283 | ENDIF |
---|
284 | |
---|
285 | ENDDO |
---|
286 | ENDDO |
---|
287 | ENDDO |
---|
288 | #if __acc_fft_device |
---|
289 | !$ACC END PARALLEL |
---|
290 | #endif |
---|
291 | |
---|
292 | ! |
---|
293 | !-- Backward substitution |
---|
294 | !-- Note, the 1.0E-20 in the denominator is due to avoid divisions by zero appearing if the |
---|
295 | !-- pressure bc is set to neumann at the top of the model domain. |
---|
296 | #if __acc_fft_device |
---|
297 | !$ACC PARALLEL PRESENT(ar, ar1, ddzuw, tri) PRIVATE(i,j,k) |
---|
298 | #endif |
---|
299 | DO k = nz-1, 0, -1 |
---|
300 | #if __acc_fft_device |
---|
301 | !$ACC LOOP COLLAPSE(2) |
---|
302 | #endif |
---|
303 | !$OMP DO |
---|
304 | DO j = nys_z, nyn_z |
---|
305 | DO i = nxl_z, nxr_z |
---|
306 | |
---|
307 | IF ( k == nz-1 ) THEN |
---|
308 | ar(i,j,k+1) = ar1(i,j,k) / ( tri(i,j,k,1) + 1.0E-20_wp ) |
---|
309 | ELSE |
---|
310 | ar(i,j,k+1) = ( ar1(i,j,k) - ddzuw(k,2) * ar(i,j,k+2) ) / tri(i,j,k,1) |
---|
311 | ENDIF |
---|
312 | ENDDO |
---|
313 | ENDDO |
---|
314 | ENDDO |
---|
315 | #if __acc_fft_device |
---|
316 | !$ACC END PARALLEL |
---|
317 | #endif |
---|
318 | |
---|
319 | !$OMP END PARALLEL |
---|
320 | |
---|
321 | ! |
---|
322 | !-- Indices i=0, j=0 correspond to horizontally averaged pressure. The respective values of ar |
---|
323 | !-- should be zero at all k-levels if acceleration of horizontally averaged vertical velocity |
---|
324 | !-- is zero. |
---|
325 | IF ( ibc_p_b == 1 .AND. ibc_p_t == 1 ) THEN |
---|
326 | IF ( nys_z == 0 .AND. nxl_z == 0 ) THEN |
---|
327 | #if __acc_fft_device |
---|
328 | !$ACC PARALLEL LOOP PRESENT(ar) |
---|
329 | #endif |
---|
330 | DO k = 1, nz |
---|
331 | ar(nxl_z,nys_z,k) = 0.0_wp |
---|
332 | ENDDO |
---|
333 | ENDIF |
---|
334 | ENDIF |
---|
335 | |
---|
336 | END SUBROUTINE tridia_substi |
---|
337 | |
---|
338 | |
---|
339 | !--------------------------------------------------------------------------------------------------! |
---|
340 | ! Description: |
---|
341 | ! ------------ |
---|
342 | !> Substitution (Forward and Backward) (Thomas algorithm). |
---|
343 | !--------------------------------------------------------------------------------------------------! |
---|
344 | SUBROUTINE tridia_substi_overlap( ar, jj ) |
---|
345 | |
---|
346 | |
---|
347 | USE arrays_3d, & |
---|
348 | ONLY: tri |
---|
349 | |
---|
350 | USE control_parameters, & |
---|
351 | ONLY: ibc_p_b, & |
---|
352 | ibc_p_t |
---|
353 | |
---|
354 | IMPLICIT NONE |
---|
355 | |
---|
356 | INTEGER(iwp) :: i !< |
---|
357 | INTEGER(iwp) :: j !< |
---|
358 | INTEGER(iwp) :: jj !< |
---|
359 | INTEGER(iwp) :: k !< |
---|
360 | |
---|
361 | REAL(wp) :: ar(nxl_z:nxr_z,nys_z:nyn_z,1:nz) !< |
---|
362 | |
---|
363 | REAL(wp), DIMENSION(nxl_z:nxr_z,nys_z:nyn_z,0:nz-1) :: ar1 !< |
---|
364 | |
---|
365 | ! |
---|
366 | !-- Forward substitution |
---|
367 | DO k = 0, nz - 1 |
---|
368 | DO j = nys_z, nyn_z |
---|
369 | DO i = nxl_z, nxr_z |
---|
370 | |
---|
371 | IF ( k == 0 ) THEN |
---|
372 | ar1(i,j,k) = ar(i,j,k+1) |
---|
373 | ELSE |
---|
374 | ar1(i,j,k) = ar(i,j,k+1) - tri(i,jj,k,2) * ar1(i,j,k-1) |
---|
375 | ENDIF |
---|
376 | |
---|
377 | ENDDO |
---|
378 | ENDDO |
---|
379 | ENDDO |
---|
380 | |
---|
381 | ! |
---|
382 | !-- Backward substitution |
---|
383 | !-- Note, the 1.0E-20 in the denominator is due to avoid divisions by zero appearing if the |
---|
384 | !-- pressure bc is set to neumann at the top of the model domain. |
---|
385 | DO k = nz-1, 0, -1 |
---|
386 | DO j = nys_z, nyn_z |
---|
387 | DO i = nxl_z, nxr_z |
---|
388 | |
---|
389 | IF ( k == nz-1 ) THEN |
---|
390 | ar(i,j,k+1) = ar1(i,j,k) / ( tri(i,jj,k,1) + 1.0E-20_wp ) |
---|
391 | ELSE |
---|
392 | ar(i,j,k+1) = ( ar1(i,j,k) - ddzuw(k,2) * ar(i,j,k+2) ) / tri(i,jj,k,1) |
---|
393 | ENDIF |
---|
394 | ENDDO |
---|
395 | ENDDO |
---|
396 | ENDDO |
---|
397 | |
---|
398 | ! |
---|
399 | !-- Indices i=0, j=0 correspond to horizontally averaged pressure. The respective values of ar |
---|
400 | !-- should be zero at all k-levels if acceleration of horizontally averaged vertical velocity |
---|
401 | !-- is zero. |
---|
402 | IF ( ibc_p_b == 1 .AND. ibc_p_t == 1 ) THEN |
---|
403 | IF ( nys_z == 0 .AND. nxl_z == 0 ) THEN |
---|
404 | DO k = 1, nz |
---|
405 | ar(nxl_z,nys_z,k) = 0.0_wp |
---|
406 | ENDDO |
---|
407 | ENDIF |
---|
408 | ENDIF |
---|
409 | |
---|
410 | END SUBROUTINE tridia_substi_overlap |
---|
411 | |
---|
412 | |
---|
413 | !--------------------------------------------------------------------------------------------------! |
---|
414 | ! Description: |
---|
415 | ! ------------ |
---|
416 | !> Splitting of the tridiagonal matrix (Thomas algorithm). |
---|
417 | !--------------------------------------------------------------------------------------------------! |
---|
418 | SUBROUTINE split |
---|
419 | |
---|
420 | |
---|
421 | USE arrays_3d, & |
---|
422 | ONLY: tri, & |
---|
423 | tric |
---|
424 | |
---|
425 | IMPLICIT NONE |
---|
426 | |
---|
427 | INTEGER(iwp) :: i !< |
---|
428 | INTEGER(iwp) :: j !< |
---|
429 | INTEGER(iwp) :: k !< |
---|
430 | ! |
---|
431 | ! Splitting |
---|
432 | DO j = nys_z, nyn_z |
---|
433 | DO i = nxl_z, nxr_z |
---|
434 | tri(i,j,0,1) = tric(i,j,0) |
---|
435 | ENDDO |
---|
436 | ENDDO |
---|
437 | |
---|
438 | DO k = 1, nz-1 |
---|
439 | DO j = nys_z, nyn_z |
---|
440 | DO i = nxl_z, nxr_z |
---|
441 | tri(i,j,k,2) = ddzuw(k,1) / tri(i,j,k-1,1) |
---|
442 | tri(i,j,k,1) = tric(i,j,k) - ddzuw(k-1,2) * tri(i,j,k,2) |
---|
443 | ENDDO |
---|
444 | ENDDO |
---|
445 | ENDDO |
---|
446 | |
---|
447 | END SUBROUTINE split |
---|
448 | |
---|
449 | |
---|
450 | !--------------------------------------------------------------------------------------------------! |
---|
451 | ! Description: |
---|
452 | ! ------------ |
---|
453 | !> Solves the linear system of equations for a 1d-decomposition along x (see tridia). |
---|
454 | !> |
---|
455 | !> @attention When using intel compilers older than 12.0, array tri must be passed as an argument to |
---|
456 | !> the contained subroutines. Otherwise address faults will occur. This feature can be |
---|
457 | !> activated with cpp-switch __intel11. On NEC, tri should not be passed |
---|
458 | !> (except for routine substi_1dd) because this causes very bad performance. |
---|
459 | !--------------------------------------------------------------------------------------------------! |
---|
460 | |
---|
461 | SUBROUTINE tridia_1dd( ddx2, ddy2, nx, ny, j, ar, tri_for_1d ) |
---|
462 | |
---|
463 | |
---|
464 | USE arrays_3d, & |
---|
465 | ONLY: ddzu_pres, & |
---|
466 | ddzw, & |
---|
467 | rho_air, & |
---|
468 | rho_air_zw |
---|
469 | |
---|
470 | USE control_parameters, & |
---|
471 | ONLY: ibc_p_b, & |
---|
472 | ibc_p_t |
---|
473 | |
---|
474 | IMPLICIT NONE |
---|
475 | |
---|
476 | INTEGER(iwp) :: i !< |
---|
477 | INTEGER(iwp) :: j !< |
---|
478 | INTEGER(iwp) :: k !< |
---|
479 | INTEGER(iwp) :: nnyh !< |
---|
480 | INTEGER(iwp) :: nx !< |
---|
481 | INTEGER(iwp) :: ny !< |
---|
482 | |
---|
483 | REAL(wp) :: ddx2 !< |
---|
484 | REAL(wp) :: ddy2 !< |
---|
485 | |
---|
486 | REAL(wp), DIMENSION(0:nx,1:nz) :: ar !< |
---|
487 | REAL(wp), DIMENSION(5,0:nx,0:nz-1) :: tri_for_1d !< |
---|
488 | |
---|
489 | |
---|
490 | nnyh = ( ny + 1 ) / 2 |
---|
491 | |
---|
492 | ! |
---|
493 | !-- Define constant elements of the tridiagonal matrix. The compiler on SX6 does loop exchange. |
---|
494 | !-- If 0:nx is a high power of 2, the exchanged loops create bank conflicts. The following directive |
---|
495 | !-- prohibits loop exchange and the loops perform much better. |
---|
496 | !CDIR NOLOOPCHG |
---|
497 | DO k = 0, nz-1 |
---|
498 | DO i = 0,nx |
---|
499 | tri_for_1d(2,i,k) = ddzu_pres(k+1) * ddzw(k+1) * rho_air_zw(k) |
---|
500 | tri_for_1d(3,i,k) = ddzu_pres(k+2) * ddzw(k+1) * rho_air_zw(k+1) |
---|
501 | ENDDO |
---|
502 | ENDDO |
---|
503 | |
---|
504 | IF ( j <= nnyh ) THEN |
---|
505 | CALL maketri_1dd( j ) |
---|
506 | ELSE |
---|
507 | CALL maketri_1dd( ny+1-j ) |
---|
508 | ENDIF |
---|
509 | |
---|
510 | CALL split_1dd |
---|
511 | CALL substi_1dd( ar, tri_for_1d ) |
---|
512 | |
---|
513 | CONTAINS |
---|
514 | |
---|
515 | |
---|
516 | !--------------------------------------------------------------------------------------------------! |
---|
517 | ! Description: |
---|
518 | ! ------------ |
---|
519 | !> Computes the i- and j-dependent component of the matrix. |
---|
520 | !--------------------------------------------------------------------------------------------------! |
---|
521 | SUBROUTINE maketri_1dd( j ) |
---|
522 | |
---|
523 | IMPLICIT NONE |
---|
524 | |
---|
525 | INTEGER(iwp) :: i !< |
---|
526 | INTEGER(iwp) :: j !< |
---|
527 | INTEGER(iwp) :: k !< |
---|
528 | INTEGER(iwp) :: nnxh !< |
---|
529 | |
---|
530 | REAL(wp) :: a !< |
---|
531 | REAL(wp) :: c !< |
---|
532 | |
---|
533 | REAL(wp), DIMENSION(0:nx) :: l !< |
---|
534 | |
---|
535 | |
---|
536 | nnxh = ( nx + 1 ) / 2 |
---|
537 | ! |
---|
538 | !-- Provide the tridiagonal matrix for solution of the Poisson equation in Fourier space. |
---|
539 | !-- The coefficients are computed following the method of Schmidt et al. (DFVLR-Mitteilung 84-15), |
---|
540 | !-- which departs from Stephan Siano's original version by discretizing the Poisson equation, |
---|
541 | !-- before it is Fourier-transformed. |
---|
542 | DO i = 0, nx |
---|
543 | IF ( i >= 0 .AND. i <= nnxh ) THEN |
---|
544 | l(i) = 2.0_wp * ( 1.0_wp - COS( ( 2.0_wp * pi * i ) / & |
---|
545 | REAL( nx+1, KIND=wp ) ) ) * ddx2 + & |
---|
546 | 2.0_wp * ( 1.0_wp - COS( ( 2.0_wp * pi * j ) / & |
---|
547 | REAL( ny+1, KIND=wp ) ) ) * ddy2 |
---|
548 | ELSE |
---|
549 | l(i) = 2.0_wp * ( 1.0_wp - COS( ( 2.0_wp * pi * ( nx+1-i ) ) / & |
---|
550 | REAL( nx+1, KIND=wp ) ) ) * ddx2 + & |
---|
551 | 2.0_wp * ( 1.0_wp - COS( ( 2.0_wp * pi * j ) / & |
---|
552 | REAL( ny+1, KIND=wp ) ) ) * ddy2 |
---|
553 | ENDIF |
---|
554 | ENDDO |
---|
555 | |
---|
556 | DO k = 0, nz-1 |
---|
557 | DO i = 0, nx |
---|
558 | a = -1.0_wp * ddzu_pres(k+2) * ddzw(k+1) * rho_air_zw(k+1) |
---|
559 | c = -1.0_wp * ddzu_pres(k+1) * ddzw(k+1) * rho_air_zw(k) |
---|
560 | tri_for_1d(1,i,k) = a + c - l(i) * rho_air(k+1) |
---|
561 | ENDDO |
---|
562 | ENDDO |
---|
563 | IF ( ibc_p_b == 1 ) THEN |
---|
564 | DO i = 0, nx |
---|
565 | tri_for_1d(1,i,0) = tri_for_1d(1,i,0) + tri_for_1d(2,i,0) |
---|
566 | ENDDO |
---|
567 | ENDIF |
---|
568 | IF ( ibc_p_t == 1 ) THEN |
---|
569 | DO i = 0, nx |
---|
570 | tri_for_1d(1,i,nz-1) = tri_for_1d(1,i,nz-1) + tri_for_1d(3,i,nz-1) |
---|
571 | ENDDO |
---|
572 | ENDIF |
---|
573 | |
---|
574 | END SUBROUTINE maketri_1dd |
---|
575 | |
---|
576 | |
---|
577 | !--------------------------------------------------------------------------------------------------! |
---|
578 | ! Description: |
---|
579 | ! ------------ |
---|
580 | !> Splitting of the tridiagonal matrix (Thomas algorithm). |
---|
581 | !--------------------------------------------------------------------------------------------------! |
---|
582 | SUBROUTINE split_1dd |
---|
583 | |
---|
584 | IMPLICIT NONE |
---|
585 | |
---|
586 | INTEGER(iwp) :: i !< |
---|
587 | INTEGER(iwp) :: k !< |
---|
588 | |
---|
589 | |
---|
590 | ! |
---|
591 | !-- Splitting |
---|
592 | DO i = 0, nx |
---|
593 | tri_for_1d(4,i,0) = tri_for_1d(1,i,0) |
---|
594 | ENDDO |
---|
595 | DO k = 1, nz-1 |
---|
596 | DO i = 0, nx |
---|
597 | tri_for_1d(5,i,k) = tri_for_1d(2,i,k) / tri_for_1d(4,i,k-1) |
---|
598 | tri_for_1d(4,i,k) = tri_for_1d(1,i,k) - tri_for_1d(3,i,k-1) * tri_for_1d(5,i,k) |
---|
599 | ENDDO |
---|
600 | ENDDO |
---|
601 | |
---|
602 | END SUBROUTINE split_1dd |
---|
603 | |
---|
604 | |
---|
605 | !--------------------------------------------------------------------------------------------------! |
---|
606 | ! Description: |
---|
607 | ! ------------ |
---|
608 | !> Substitution (Forward and Backward) (Thomas algorithm). |
---|
609 | !--------------------------------------------------------------------------------------------------! |
---|
610 | SUBROUTINE substi_1dd( ar, tri_for_1d ) |
---|
611 | |
---|
612 | |
---|
613 | IMPLICIT NONE |
---|
614 | |
---|
615 | INTEGER(iwp) :: i !< |
---|
616 | INTEGER(iwp) :: k !< |
---|
617 | |
---|
618 | REAL(wp), DIMENSION(0:nx,nz) :: ar !< |
---|
619 | REAL(wp), DIMENSION(0:nx,0:nz-1) :: ar1 !< |
---|
620 | REAL(wp), DIMENSION(5,0:nx,0:nz-1) :: tri_for_1d !< |
---|
621 | |
---|
622 | ! |
---|
623 | !-- Forward substitution |
---|
624 | DO i = 0, nx |
---|
625 | ar1(i,0) = ar(i,1) |
---|
626 | ENDDO |
---|
627 | DO k = 1, nz-1 |
---|
628 | DO i = 0, nx |
---|
629 | ar1(i,k) = ar(i,k+1) - tri_for_1d(5,i,k) * ar1(i,k-1) |
---|
630 | ENDDO |
---|
631 | ENDDO |
---|
632 | |
---|
633 | ! |
---|
634 | !-- Backward substitution |
---|
635 | !-- Note, the add of 1.0E-20 in the denominator is due to avoid divisions by zero appearing if the |
---|
636 | !-- pressure bc is set to neumann at the top of the model domain. |
---|
637 | DO i = 0, nx |
---|
638 | ar(i,nz) = ar1(i,nz-1) / ( tri_for_1d(4,i,nz-1) + 1.0E-20_wp ) |
---|
639 | ENDDO |
---|
640 | DO k = nz-2, 0, -1 |
---|
641 | DO i = 0, nx |
---|
642 | ar(i,k+1) = ( ar1(i,k) - tri_for_1d(3,i,k) * ar(i,k+2) ) / tri_for_1d(4,i,k) |
---|
643 | ENDDO |
---|
644 | ENDDO |
---|
645 | |
---|
646 | ! |
---|
647 | !-- Indices i=0, j=0 correspond to horizontally averaged pressure. The respective values of ar |
---|
648 | !-- should be zero at all k-levels if acceleration of horizontally averaged vertical velocity is |
---|
649 | !-- zero. |
---|
650 | IF ( ibc_p_b == 1 .AND. ibc_p_t == 1 ) THEN |
---|
651 | IF ( j == 0 ) THEN |
---|
652 | DO k = 1, nz |
---|
653 | ar(0,k) = 0.0_wp |
---|
654 | ENDDO |
---|
655 | ENDIF |
---|
656 | ENDIF |
---|
657 | |
---|
658 | END SUBROUTINE substi_1dd |
---|
659 | |
---|
660 | END SUBROUTINE tridia_1dd |
---|
661 | |
---|
662 | |
---|
663 | END MODULE tridia_solver |
---|