[1850] | 1 | !> @file tridia_solver_mod.f90 |
---|
[4510] | 2 | !--------------------------------------------------------------------------------------------------! |
---|
[2696] | 3 | ! This file is part of the PALM model system. |
---|
[1212] | 4 | ! |
---|
[4510] | 5 | ! PALM is free software: you can redistribute it and/or modify it under the terms of the GNU General |
---|
| 6 | ! Public License as published by the Free Software Foundation, either version 3 of the License, or |
---|
| 7 | ! (at your option) any later version. |
---|
[1212] | 8 | ! |
---|
[4510] | 9 | ! PALM is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the |
---|
| 10 | ! implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General |
---|
| 11 | ! Public License for more details. |
---|
[1212] | 12 | ! |
---|
[4510] | 13 | ! You should have received a copy of the GNU General Public License along with PALM. If not, see |
---|
| 14 | ! <http://www.gnu.org/licenses/>. |
---|
[1212] | 15 | ! |
---|
[4360] | 16 | ! Copyright 1997-2020 Leibniz Universitaet Hannover |
---|
[4510] | 17 | !--------------------------------------------------------------------------------------------------! |
---|
[1212] | 18 | ! |
---|
[4510] | 19 | ! |
---|
[1212] | 20 | ! Current revisions: |
---|
[4510] | 21 | ! ----------------- |
---|
[1851] | 22 | ! |
---|
[2119] | 23 | ! |
---|
[1321] | 24 | ! Former revisions: |
---|
| 25 | ! ----------------- |
---|
| 26 | ! $Id: tridia_solver_mod.f90 4510 2020-04-29 14:19:18Z eckhard $ |
---|
[4510] | 27 | ! file re-formatted to follow the PALM coding standard |
---|
| 28 | ! |
---|
| 29 | ! 4360 2020-01-07 11:25:50Z suehring |
---|
[4236] | 30 | ! Added missing OpenMP directives |
---|
[4510] | 31 | ! |
---|
[4236] | 32 | ! 4182 2019-08-22 15:20:23Z scharf |
---|
[4182] | 33 | ! Corrected "Former revisions" section |
---|
[4510] | 34 | ! |
---|
[4182] | 35 | ! 3761 2019-02-25 15:31:42Z raasch |
---|
[3761] | 36 | ! OpenACC modification to prevent compiler warning about unused variable |
---|
[4510] | 37 | ! |
---|
[3761] | 38 | ! 3690 2019-01-22 22:56:42Z knoop |
---|
[3634] | 39 | ! OpenACC port for SPEC |
---|
[1321] | 40 | ! |
---|
[4182] | 41 | ! 1212 2013-08-15 08:46:27Z raasch |
---|
| 42 | ! Initial revision. |
---|
[4510] | 43 | ! Routines have been moved to seperate module from former file poisfft to here. The tridiagonal |
---|
| 44 | ! matrix coefficients of array tri are calculated only once at the beginning, i.e. routine split is |
---|
| 45 | ! called within tridia_init. |
---|
[4182] | 46 | ! |
---|
| 47 | ! |
---|
[1212] | 48 | ! Description: |
---|
| 49 | ! ------------ |
---|
[4510] | 50 | !> Solves the linear system of equations: |
---|
[1682] | 51 | !> |
---|
[4510] | 52 | !> -(4 pi^2(i^2/(dx^2*nnx^2)+j^2/(dy^2*nny^2))+ 1/(dzu(k)*dzw(k))+1/(dzu(k-1)*dzw(k)))*p(i,j,k)+ |
---|
[1682] | 53 | !> 1/(dzu(k)*dzw(k))*p(i,j,k+1)+1/(dzu(k-1)*dzw(k))*p(i,j,k-1)=d(i,j,k) |
---|
| 54 | !> |
---|
| 55 | !> by using the Thomas algorithm |
---|
[4510] | 56 | !--------------------------------------------------------------------------------------------------! |
---|
[4181] | 57 | |
---|
| 58 | #define __acc_fft_device ( defined( _OPENACC ) && ( defined ( __cuda_fft ) ) ) |
---|
| 59 | |
---|
[1682] | 60 | MODULE tridia_solver |
---|
[1212] | 61 | |
---|
[4510] | 62 | |
---|
| 63 | USE basic_constants_and_equations_mod, & |
---|
[3274] | 64 | ONLY: pi |
---|
| 65 | |
---|
[4510] | 66 | USE indices, & |
---|
| 67 | ONLY: nx, & |
---|
| 68 | ny, & |
---|
| 69 | nz |
---|
[1212] | 70 | |
---|
[1320] | 71 | USE kinds |
---|
| 72 | |
---|
[4510] | 73 | USE transpose_indices, & |
---|
| 74 | ONLY: nxl_z, & |
---|
| 75 | nyn_z, & |
---|
| 76 | nxr_z, & |
---|
| 77 | nys_z |
---|
[1320] | 78 | |
---|
[1212] | 79 | IMPLICIT NONE |
---|
| 80 | |
---|
[4510] | 81 | REAL(wp), DIMENSION(:,:), ALLOCATABLE :: ddzuw !< |
---|
[1212] | 82 | |
---|
| 83 | PRIVATE |
---|
| 84 | |
---|
| 85 | INTERFACE tridia_substi |
---|
| 86 | MODULE PROCEDURE tridia_substi |
---|
| 87 | END INTERFACE tridia_substi |
---|
| 88 | |
---|
[1216] | 89 | INTERFACE tridia_substi_overlap |
---|
| 90 | MODULE PROCEDURE tridia_substi_overlap |
---|
| 91 | END INTERFACE tridia_substi_overlap |
---|
[1212] | 92 | |
---|
[1216] | 93 | PUBLIC tridia_substi, tridia_substi_overlap, tridia_init, tridia_1dd |
---|
| 94 | |
---|
[1212] | 95 | CONTAINS |
---|
| 96 | |
---|
| 97 | |
---|
[4510] | 98 | !--------------------------------------------------------------------------------------------------! |
---|
[1682] | 99 | ! Description: |
---|
| 100 | ! ------------ |
---|
| 101 | !> @todo Missing subroutine description. |
---|
[4510] | 102 | !--------------------------------------------------------------------------------------------------! |
---|
| 103 | SUBROUTINE tridia_init |
---|
[1212] | 104 | |
---|
[4510] | 105 | USE arrays_3d, & |
---|
| 106 | ONLY: ddzu_pres, & |
---|
| 107 | ddzw, & |
---|
| 108 | rho_air_zw |
---|
[1212] | 109 | |
---|
[3761] | 110 | #if defined( _OPENACC ) |
---|
[4510] | 111 | USE arrays_3d, & |
---|
[3761] | 112 | ONLY: tri |
---|
| 113 | #endif |
---|
| 114 | |
---|
[4510] | 115 | IMPLICIT NONE |
---|
[1212] | 116 | |
---|
[4510] | 117 | INTEGER(iwp) :: k !< |
---|
[1212] | 118 | |
---|
[4510] | 119 | ALLOCATE( ddzuw(0:nz-1,3) ) |
---|
[1212] | 120 | |
---|
[4510] | 121 | DO k = 0, nz-1 |
---|
| 122 | ddzuw(k,1) = ddzu_pres(k+1) * ddzw(k+1) * rho_air_zw(k) |
---|
| 123 | ddzuw(k,2) = ddzu_pres(k+2) * ddzw(k+1) * rho_air_zw(k+1) |
---|
| 124 | ddzuw(k,3) = -1.0_wp * ( ddzu_pres(k+2) * ddzw(k+1) * rho_air_zw(k+1) + & |
---|
| 125 | ddzu_pres(k+1) * ddzw(k+1) * rho_air_zw(k) ) |
---|
| 126 | ENDDO |
---|
[1212] | 127 | ! |
---|
[4510] | 128 | !-- Calculate constant coefficients of the tridiagonal matrix |
---|
| 129 | CALL maketri |
---|
| 130 | CALL split |
---|
[1212] | 131 | |
---|
[3690] | 132 | #if __acc_fft_device |
---|
[4510] | 133 | !$ACC ENTER DATA & |
---|
| 134 | !$ACC COPYIN(ddzuw(0:nz-1,1:3)) & |
---|
| 135 | !$ACC COPYIN(tri(nxl_z:nxr_z,nys_z:nyn_z,0:nz-1,1:2)) |
---|
[3690] | 136 | #endif |
---|
[3634] | 137 | |
---|
[4510] | 138 | END SUBROUTINE tridia_init |
---|
[1212] | 139 | |
---|
| 140 | |
---|
[4510] | 141 | !--------------------------------------------------------------------------------------------------! |
---|
[1682] | 142 | ! Description: |
---|
| 143 | ! ------------ |
---|
[4510] | 144 | !> Computes the i- and j-dependent component of the matrix. |
---|
| 145 | !> Provide the constant coefficients of the tridiagonal matrix for solution of the Poisson equation |
---|
| 146 | !> in Fourier space. The coefficients are computed following the method of Schmidt et al. |
---|
| 147 | !> (DFVLR-Mitteilung 84-15), which departs from Stephan Siano's original version by discretizing the |
---|
| 148 | !> Poisson equation, before it is Fourier-transformed. |
---|
| 149 | !--------------------------------------------------------------------------------------------------! |
---|
| 150 | SUBROUTINE maketri |
---|
[1212] | 151 | |
---|
[1682] | 152 | |
---|
[4510] | 153 | USE arrays_3d, & |
---|
| 154 | ONLY: tric, & |
---|
| 155 | rho_air |
---|
[1212] | 156 | |
---|
[4510] | 157 | USE control_parameters, & |
---|
| 158 | ONLY: ibc_p_b, & |
---|
| 159 | ibc_p_t |
---|
[1320] | 160 | |
---|
[4510] | 161 | USE grid_variables, & |
---|
| 162 | ONLY: dx, & |
---|
| 163 | dy |
---|
[1320] | 164 | |
---|
| 165 | |
---|
[4510] | 166 | IMPLICIT NONE |
---|
[1212] | 167 | |
---|
[4510] | 168 | INTEGER(iwp) :: i !< |
---|
| 169 | INTEGER(iwp) :: j !< |
---|
| 170 | INTEGER(iwp) :: k !< |
---|
| 171 | INTEGER(iwp) :: nnxh !< |
---|
| 172 | INTEGER(iwp) :: nnyh !< |
---|
[1212] | 173 | |
---|
[4510] | 174 | REAL(wp) :: ll(nxl_z:nxr_z,nys_z:nyn_z) !< |
---|
[1212] | 175 | |
---|
| 176 | |
---|
[4510] | 177 | nnxh = ( nx + 1 ) / 2 |
---|
| 178 | nnyh = ( ny + 1 ) / 2 |
---|
[1212] | 179 | |
---|
[4510] | 180 | DO j = nys_z, nyn_z |
---|
| 181 | DO i = nxl_z, nxr_z |
---|
| 182 | IF ( j >= 0 .AND. j <= nnyh ) THEN |
---|
| 183 | IF ( i >= 0 .AND. i <= nnxh ) THEN |
---|
| 184 | ll(i,j) = 2.0_wp * ( 1.0_wp - COS( ( 2.0_wp * pi * i ) / & |
---|
| 185 | REAL( nx+1, KIND=wp ) ) ) / ( dx * dx ) + & |
---|
| 186 | 2.0_wp * ( 1.0_wp - COS( ( 2.0_wp * pi * j ) / & |
---|
| 187 | REAL( ny+1, KIND=wp ) ) ) / ( dy * dy ) |
---|
| 188 | ELSE |
---|
| 189 | ll(i,j) = 2.0_wp * ( 1.0_wp - COS( ( 2.0_wp * pi * ( nx+1-i ) ) / & |
---|
| 190 | REAL( nx+1, KIND=wp ) ) ) / ( dx * dx ) + & |
---|
| 191 | 2.0_wp * ( 1.0_wp - COS( ( 2.0_wp * pi * j ) / & |
---|
| 192 | REAL( ny+1, KIND=wp ) ) ) / ( dy * dy ) |
---|
| 193 | ENDIF |
---|
| 194 | ELSE |
---|
| 195 | IF ( i >= 0 .AND. i <= nnxh ) THEN |
---|
| 196 | ll(i,j) = 2.0_wp * ( 1.0_wp - COS( ( 2.0_wp * pi * i ) / & |
---|
| 197 | REAL( nx+1, KIND=wp ) ) ) / ( dx * dx ) + & |
---|
| 198 | 2.0_wp * ( 1.0_wp - COS( ( 2.0_wp * pi * ( ny+1-j ) ) / & |
---|
| 199 | REAL( ny+1, KIND=wp ) ) ) / ( dy * dy ) |
---|
| 200 | ELSE |
---|
| 201 | ll(i,j) = 2.0_wp * ( 1.0_wp - COS( ( 2.0_wp * pi * ( nx+1-i ) ) / & |
---|
| 202 | REAL( nx+1, KIND=wp ) ) ) / ( dx * dx ) + & |
---|
| 203 | 2.0_wp * ( 1.0_wp - COS( ( 2.0_wp * pi * ( ny+1-j ) ) / & |
---|
| 204 | REAL( ny+1, KIND=wp ) ) ) / ( dy * dy ) |
---|
| 205 | ENDIF |
---|
| 206 | ENDIF |
---|
| 207 | ENDDO |
---|
| 208 | ENDDO |
---|
| 209 | |
---|
| 210 | DO k = 0, nz-1 |
---|
| 211 | DO j = nys_z, nyn_z |
---|
| 212 | DO i = nxl_z, nxr_z |
---|
| 213 | tric(i,j,k) = ddzuw(k,3) - ll(i,j) * rho_air(k+1) |
---|
[1212] | 214 | ENDDO |
---|
[4510] | 215 | ENDDO |
---|
| 216 | ENDDO |
---|
[1212] | 217 | |
---|
[4510] | 218 | IF ( ibc_p_b == 1 ) THEN |
---|
| 219 | DO j = nys_z, nyn_z |
---|
| 220 | DO i = nxl_z, nxr_z |
---|
| 221 | tric(i,j,0) = tric(i,j,0) + ddzuw(0,1) |
---|
[1212] | 222 | ENDDO |
---|
[4510] | 223 | ENDDO |
---|
| 224 | ENDIF |
---|
| 225 | IF ( ibc_p_t == 1 ) THEN |
---|
| 226 | DO j = nys_z, nyn_z |
---|
| 227 | DO i = nxl_z, nxr_z |
---|
| 228 | tric(i,j,nz-1) = tric(i,j,nz-1) + ddzuw(nz-1,2) |
---|
| 229 | ENDDO |
---|
| 230 | ENDDO |
---|
| 231 | ENDIF |
---|
[1212] | 232 | |
---|
[4510] | 233 | END SUBROUTINE maketri |
---|
[1212] | 234 | |
---|
| 235 | |
---|
[4510] | 236 | !--------------------------------------------------------------------------------------------------! |
---|
[1682] | 237 | ! Description: |
---|
| 238 | ! ------------ |
---|
[4510] | 239 | !> Substitution (Forward and Backward) (Thomas algorithm). |
---|
| 240 | !--------------------------------------------------------------------------------------------------! |
---|
| 241 | SUBROUTINE tridia_substi( ar ) |
---|
[1212] | 242 | |
---|
[1682] | 243 | |
---|
[4510] | 244 | USE arrays_3d, & |
---|
| 245 | ONLY: tri |
---|
[1212] | 246 | |
---|
[4510] | 247 | USE control_parameters, & |
---|
| 248 | ONLY: ibc_p_b, & |
---|
| 249 | ibc_p_t |
---|
[1320] | 250 | |
---|
[4510] | 251 | IMPLICIT NONE |
---|
[1212] | 252 | |
---|
[4510] | 253 | INTEGER(iwp) :: i !< |
---|
| 254 | INTEGER(iwp) :: j !< |
---|
| 255 | INTEGER(iwp) :: k !< |
---|
[1212] | 256 | |
---|
[4510] | 257 | REAL(wp) :: ar(nxl_z:nxr_z,nys_z:nyn_z,1:nz) !< |
---|
[1212] | 258 | |
---|
[4510] | 259 | REAL(wp), DIMENSION(nxl_z:nxr_z,nys_z:nyn_z,0:nz-1) :: ar1 !< |
---|
[3690] | 260 | #if __acc_fft_device |
---|
[4510] | 261 | !$ACC DECLARE CREATE(ar1) |
---|
[3690] | 262 | #endif |
---|
[1212] | 263 | |
---|
[4510] | 264 | !$OMP PARALLEL PRIVATE(i,j,k) |
---|
[4236] | 265 | |
---|
[1212] | 266 | ! |
---|
[4510] | 267 | !-- Forward substitution |
---|
[3690] | 268 | #if __acc_fft_device |
---|
[4510] | 269 | !$ACC PARALLEL PRESENT(ar, ar1, tri) PRIVATE(i,j,k) |
---|
[3690] | 270 | #endif |
---|
[4510] | 271 | DO k = 0, nz - 1 |
---|
[3690] | 272 | #if __acc_fft_device |
---|
[4510] | 273 | !$ACC LOOP COLLAPSE(2) |
---|
[3690] | 274 | #endif |
---|
[4510] | 275 | !$OMP DO |
---|
| 276 | DO j = nys_z, nyn_z |
---|
| 277 | DO i = nxl_z, nxr_z |
---|
[1212] | 278 | |
---|
[4510] | 279 | IF ( k == 0 ) THEN |
---|
| 280 | ar1(i,j,k) = ar(i,j,k+1) |
---|
| 281 | ELSE |
---|
| 282 | ar1(i,j,k) = ar(i,j,k+1) - tri(i,j,k,2) * ar1(i,j,k-1) |
---|
| 283 | ENDIF |
---|
[1212] | 284 | |
---|
| 285 | ENDDO |
---|
[4510] | 286 | ENDDO |
---|
| 287 | ENDDO |
---|
[3690] | 288 | #if __acc_fft_device |
---|
[4510] | 289 | !$ACC END PARALLEL |
---|
[3690] | 290 | #endif |
---|
[1212] | 291 | |
---|
| 292 | ! |
---|
[4510] | 293 | !-- Backward substitution |
---|
| 294 | !-- Note, the 1.0E-20 in the denominator is due to avoid divisions by zero appearing if the |
---|
| 295 | !-- pressure bc is set to neumann at the top of the model domain. |
---|
[3690] | 296 | #if __acc_fft_device |
---|
[4510] | 297 | !$ACC PARALLEL PRESENT(ar, ar1, ddzuw, tri) PRIVATE(i,j,k) |
---|
[3690] | 298 | #endif |
---|
[4510] | 299 | DO k = nz-1, 0, -1 |
---|
[3690] | 300 | #if __acc_fft_device |
---|
[4510] | 301 | !$ACC LOOP COLLAPSE(2) |
---|
[3690] | 302 | #endif |
---|
[4510] | 303 | !$OMP DO |
---|
| 304 | DO j = nys_z, nyn_z |
---|
| 305 | DO i = nxl_z, nxr_z |
---|
[1212] | 306 | |
---|
[4510] | 307 | IF ( k == nz-1 ) THEN |
---|
| 308 | ar(i,j,k+1) = ar1(i,j,k) / ( tri(i,j,k,1) + 1.0E-20_wp ) |
---|
| 309 | ELSE |
---|
| 310 | ar(i,j,k+1) = ( ar1(i,j,k) - ddzuw(k,2) * ar(i,j,k+2) ) / tri(i,j,k,1) |
---|
| 311 | ENDIF |
---|
[1212] | 312 | ENDDO |
---|
[4510] | 313 | ENDDO |
---|
| 314 | ENDDO |
---|
[3690] | 315 | #if __acc_fft_device |
---|
[4510] | 316 | !$ACC END PARALLEL |
---|
[3690] | 317 | #endif |
---|
[1212] | 318 | |
---|
[4510] | 319 | !$OMP END PARALLEL |
---|
[4236] | 320 | |
---|
[1212] | 321 | ! |
---|
[4510] | 322 | !-- Indices i=0, j=0 correspond to horizontally averaged pressure. The respective values of ar |
---|
| 323 | !-- should be zero at all k-levels if acceleration of horizontally averaged vertical velocity |
---|
| 324 | !-- is zero. |
---|
| 325 | IF ( ibc_p_b == 1 .AND. ibc_p_t == 1 ) THEN |
---|
| 326 | IF ( nys_z == 0 .AND. nxl_z == 0 ) THEN |
---|
[3690] | 327 | #if __acc_fft_device |
---|
[4510] | 328 | !$ACC PARALLEL LOOP PRESENT(ar) |
---|
[3690] | 329 | #endif |
---|
[4510] | 330 | DO k = 1, nz |
---|
| 331 | ar(nxl_z,nys_z,k) = 0.0_wp |
---|
| 332 | ENDDO |
---|
| 333 | ENDIF |
---|
| 334 | ENDIF |
---|
[1212] | 335 | |
---|
[4510] | 336 | END SUBROUTINE tridia_substi |
---|
[1212] | 337 | |
---|
| 338 | |
---|
[4510] | 339 | !--------------------------------------------------------------------------------------------------! |
---|
[1682] | 340 | ! Description: |
---|
| 341 | ! ------------ |
---|
[4510] | 342 | !> Substitution (Forward and Backward) (Thomas algorithm). |
---|
| 343 | !--------------------------------------------------------------------------------------------------! |
---|
| 344 | SUBROUTINE tridia_substi_overlap( ar, jj ) |
---|
[1216] | 345 | |
---|
[1682] | 346 | |
---|
[4510] | 347 | USE arrays_3d, & |
---|
| 348 | ONLY: tri |
---|
[1216] | 349 | |
---|
[4510] | 350 | USE control_parameters, & |
---|
| 351 | ONLY: ibc_p_b, & |
---|
| 352 | ibc_p_t |
---|
[1320] | 353 | |
---|
[4510] | 354 | IMPLICIT NONE |
---|
[1216] | 355 | |
---|
[4510] | 356 | INTEGER(iwp) :: i !< |
---|
| 357 | INTEGER(iwp) :: j !< |
---|
| 358 | INTEGER(iwp) :: jj !< |
---|
| 359 | INTEGER(iwp) :: k !< |
---|
[1216] | 360 | |
---|
[4510] | 361 | REAL(wp) :: ar(nxl_z:nxr_z,nys_z:nyn_z,1:nz) !< |
---|
[1216] | 362 | |
---|
[4510] | 363 | REAL(wp), DIMENSION(nxl_z:nxr_z,nys_z:nyn_z,0:nz-1) :: ar1 !< |
---|
[1216] | 364 | |
---|
| 365 | ! |
---|
[4510] | 366 | !-- Forward substitution |
---|
| 367 | DO k = 0, nz - 1 |
---|
| 368 | DO j = nys_z, nyn_z |
---|
| 369 | DO i = nxl_z, nxr_z |
---|
[1216] | 370 | |
---|
[4510] | 371 | IF ( k == 0 ) THEN |
---|
| 372 | ar1(i,j,k) = ar(i,j,k+1) |
---|
| 373 | ELSE |
---|
| 374 | ar1(i,j,k) = ar(i,j,k+1) - tri(i,jj,k,2) * ar1(i,j,k-1) |
---|
| 375 | ENDIF |
---|
[1216] | 376 | |
---|
| 377 | ENDDO |
---|
[4510] | 378 | ENDDO |
---|
| 379 | ENDDO |
---|
[1216] | 380 | |
---|
| 381 | ! |
---|
[4510] | 382 | !-- Backward substitution |
---|
| 383 | !-- Note, the 1.0E-20 in the denominator is due to avoid divisions by zero appearing if the |
---|
| 384 | !-- pressure bc is set to neumann at the top of the model domain. |
---|
| 385 | DO k = nz-1, 0, -1 |
---|
| 386 | DO j = nys_z, nyn_z |
---|
| 387 | DO i = nxl_z, nxr_z |
---|
[1216] | 388 | |
---|
[4510] | 389 | IF ( k == nz-1 ) THEN |
---|
| 390 | ar(i,j,k+1) = ar1(i,j,k) / ( tri(i,jj,k,1) + 1.0E-20_wp ) |
---|
| 391 | ELSE |
---|
| 392 | ar(i,j,k+1) = ( ar1(i,j,k) - ddzuw(k,2) * ar(i,j,k+2) ) / tri(i,jj,k,1) |
---|
| 393 | ENDIF |
---|
[1216] | 394 | ENDDO |
---|
[4510] | 395 | ENDDO |
---|
| 396 | ENDDO |
---|
[1216] | 397 | |
---|
| 398 | ! |
---|
[4510] | 399 | !-- Indices i=0, j=0 correspond to horizontally averaged pressure. The respective values of ar |
---|
| 400 | !-- should be zero at all k-levels if acceleration of horizontally averaged vertical velocity |
---|
| 401 | !-- is zero. |
---|
| 402 | IF ( ibc_p_b == 1 .AND. ibc_p_t == 1 ) THEN |
---|
| 403 | IF ( nys_z == 0 .AND. nxl_z == 0 ) THEN |
---|
| 404 | DO k = 1, nz |
---|
| 405 | ar(nxl_z,nys_z,k) = 0.0_wp |
---|
| 406 | ENDDO |
---|
| 407 | ENDIF |
---|
| 408 | ENDIF |
---|
[1216] | 409 | |
---|
[4510] | 410 | END SUBROUTINE tridia_substi_overlap |
---|
[1216] | 411 | |
---|
| 412 | |
---|
[4510] | 413 | !--------------------------------------------------------------------------------------------------! |
---|
[1682] | 414 | ! Description: |
---|
| 415 | ! ------------ |
---|
[4510] | 416 | !> Splitting of the tridiagonal matrix (Thomas algorithm). |
---|
| 417 | !--------------------------------------------------------------------------------------------------! |
---|
| 418 | SUBROUTINE split |
---|
[1212] | 419 | |
---|
[1682] | 420 | |
---|
[4510] | 421 | USE arrays_3d, & |
---|
| 422 | ONLY: tri, & |
---|
| 423 | tric |
---|
[1212] | 424 | |
---|
[4510] | 425 | IMPLICIT NONE |
---|
[1212] | 426 | |
---|
[4510] | 427 | INTEGER(iwp) :: i !< |
---|
| 428 | INTEGER(iwp) :: j !< |
---|
| 429 | INTEGER(iwp) :: k !< |
---|
[1212] | 430 | ! |
---|
[4510] | 431 | ! Splitting |
---|
| 432 | DO j = nys_z, nyn_z |
---|
| 433 | DO i = nxl_z, nxr_z |
---|
| 434 | tri(i,j,0,1) = tric(i,j,0) |
---|
| 435 | ENDDO |
---|
| 436 | ENDDO |
---|
[1212] | 437 | |
---|
[4510] | 438 | DO k = 1, nz-1 |
---|
| 439 | DO j = nys_z, nyn_z |
---|
| 440 | DO i = nxl_z, nxr_z |
---|
| 441 | tri(i,j,k,2) = ddzuw(k,1) / tri(i,j,k-1,1) |
---|
| 442 | tri(i,j,k,1) = tric(i,j,k) - ddzuw(k-1,2) * tri(i,j,k,2) |
---|
[1212] | 443 | ENDDO |
---|
[4510] | 444 | ENDDO |
---|
| 445 | ENDDO |
---|
[1212] | 446 | |
---|
[4510] | 447 | END SUBROUTINE split |
---|
[1212] | 448 | |
---|
| 449 | |
---|
[4510] | 450 | !--------------------------------------------------------------------------------------------------! |
---|
[1682] | 451 | ! Description: |
---|
| 452 | ! ------------ |
---|
[4510] | 453 | !> Solves the linear system of equations for a 1d-decomposition along x (see tridia). |
---|
[1682] | 454 | !> |
---|
[4510] | 455 | !> @attention When using intel compilers older than 12.0, array tri must be passed as an argument to |
---|
| 456 | !> the contained subroutines. Otherwise address faults will occur. This feature can be |
---|
| 457 | !> activated with cpp-switch __intel11. On NEC, tri should not be passed |
---|
| 458 | !> (except for routine substi_1dd) because this causes very bad performance. |
---|
| 459 | !--------------------------------------------------------------------------------------------------! |
---|
[1212] | 460 | |
---|
[4510] | 461 | SUBROUTINE tridia_1dd( ddx2, ddy2, nx, ny, j, ar, tri_for_1d ) |
---|
[1682] | 462 | |
---|
[1212] | 463 | |
---|
[4510] | 464 | USE arrays_3d, & |
---|
| 465 | ONLY: ddzu_pres, & |
---|
| 466 | ddzw, & |
---|
| 467 | rho_air, & |
---|
| 468 | rho_air_zw |
---|
[1212] | 469 | |
---|
[4510] | 470 | USE control_parameters, & |
---|
| 471 | ONLY: ibc_p_b, & |
---|
| 472 | ibc_p_t |
---|
[1212] | 473 | |
---|
[4510] | 474 | IMPLICIT NONE |
---|
[1212] | 475 | |
---|
[4510] | 476 | INTEGER(iwp) :: i !< |
---|
| 477 | INTEGER(iwp) :: j !< |
---|
| 478 | INTEGER(iwp) :: k !< |
---|
| 479 | INTEGER(iwp) :: nnyh !< |
---|
| 480 | INTEGER(iwp) :: nx !< |
---|
| 481 | INTEGER(iwp) :: ny !< |
---|
[1212] | 482 | |
---|
[4510] | 483 | REAL(wp) :: ddx2 !< |
---|
| 484 | REAL(wp) :: ddy2 !< |
---|
[1212] | 485 | |
---|
[4510] | 486 | REAL(wp), DIMENSION(0:nx,1:nz) :: ar !< |
---|
| 487 | REAL(wp), DIMENSION(5,0:nx,0:nz-1) :: tri_for_1d !< |
---|
[1212] | 488 | |
---|
| 489 | |
---|
[4510] | 490 | nnyh = ( ny + 1 ) / 2 |
---|
| 491 | |
---|
[1212] | 492 | ! |
---|
[4510] | 493 | !-- Define constant elements of the tridiagonal matrix. The compiler on SX6 does loop exchange. |
---|
| 494 | !-- If 0:nx is a high power of 2, the exchanged loops create bank conflicts. The following directive |
---|
| 495 | !-- prohibits loop exchange and the loops perform much better. |
---|
[1212] | 496 | !CDIR NOLOOPCHG |
---|
[4510] | 497 | DO k = 0, nz-1 |
---|
| 498 | DO i = 0,nx |
---|
| 499 | tri_for_1d(2,i,k) = ddzu_pres(k+1) * ddzw(k+1) * rho_air_zw(k) |
---|
| 500 | tri_for_1d(3,i,k) = ddzu_pres(k+2) * ddzw(k+1) * rho_air_zw(k+1) |
---|
[1212] | 501 | ENDDO |
---|
[4510] | 502 | ENDDO |
---|
[1212] | 503 | |
---|
[4510] | 504 | IF ( j <= nnyh ) THEN |
---|
| 505 | CALL maketri_1dd( j ) |
---|
| 506 | ELSE |
---|
| 507 | CALL maketri_1dd( ny+1-j ) |
---|
| 508 | ENDIF |
---|
[1815] | 509 | |
---|
[4510] | 510 | CALL split_1dd |
---|
| 511 | CALL substi_1dd( ar, tri_for_1d ) |
---|
[1212] | 512 | |
---|
[4510] | 513 | CONTAINS |
---|
[1212] | 514 | |
---|
[1682] | 515 | |
---|
[4510] | 516 | !--------------------------------------------------------------------------------------------------! |
---|
[1682] | 517 | ! Description: |
---|
| 518 | ! ------------ |
---|
[4510] | 519 | !> Computes the i- and j-dependent component of the matrix. |
---|
| 520 | !--------------------------------------------------------------------------------------------------! |
---|
| 521 | SUBROUTINE maketri_1dd( j ) |
---|
[1212] | 522 | |
---|
[4510] | 523 | IMPLICIT NONE |
---|
[1212] | 524 | |
---|
[4510] | 525 | INTEGER(iwp) :: i !< |
---|
| 526 | INTEGER(iwp) :: j !< |
---|
| 527 | INTEGER(iwp) :: k !< |
---|
| 528 | INTEGER(iwp) :: nnxh !< |
---|
[1212] | 529 | |
---|
[4510] | 530 | REAL(wp) :: a !< |
---|
| 531 | REAL(wp) :: c !< |
---|
[1212] | 532 | |
---|
[4510] | 533 | REAL(wp), DIMENSION(0:nx) :: l !< |
---|
[1320] | 534 | |
---|
[1212] | 535 | |
---|
[4510] | 536 | nnxh = ( nx + 1 ) / 2 |
---|
[1212] | 537 | ! |
---|
[4510] | 538 | !-- Provide the tridiagonal matrix for solution of the Poisson equation in Fourier space. |
---|
| 539 | !-- The coefficients are computed following the method of Schmidt et al. (DFVLR-Mitteilung 84-15), |
---|
| 540 | !-- which departs from Stephan Siano's original version by discretizing the Poisson equation, |
---|
| 541 | !-- before it is Fourier-transformed. |
---|
| 542 | DO i = 0, nx |
---|
| 543 | IF ( i >= 0 .AND. i <= nnxh ) THEN |
---|
| 544 | l(i) = 2.0_wp * ( 1.0_wp - COS( ( 2.0_wp * pi * i ) / & |
---|
| 545 | REAL( nx+1, KIND=wp ) ) ) * ddx2 + & |
---|
| 546 | 2.0_wp * ( 1.0_wp - COS( ( 2.0_wp * pi * j ) / & |
---|
| 547 | REAL( ny+1, KIND=wp ) ) ) * ddy2 |
---|
| 548 | ELSE |
---|
| 549 | l(i) = 2.0_wp * ( 1.0_wp - COS( ( 2.0_wp * pi * ( nx+1-i ) ) / & |
---|
| 550 | REAL( nx+1, KIND=wp ) ) ) * ddx2 + & |
---|
| 551 | 2.0_wp * ( 1.0_wp - COS( ( 2.0_wp * pi * j ) / & |
---|
| 552 | REAL( ny+1, KIND=wp ) ) ) * ddy2 |
---|
| 553 | ENDIF |
---|
| 554 | ENDDO |
---|
[1212] | 555 | |
---|
[4510] | 556 | DO k = 0, nz-1 |
---|
| 557 | DO i = 0, nx |
---|
| 558 | a = -1.0_wp * ddzu_pres(k+2) * ddzw(k+1) * rho_air_zw(k+1) |
---|
| 559 | c = -1.0_wp * ddzu_pres(k+1) * ddzw(k+1) * rho_air_zw(k) |
---|
| 560 | tri_for_1d(1,i,k) = a + c - l(i) * rho_air(k+1) |
---|
| 561 | ENDDO |
---|
| 562 | ENDDO |
---|
| 563 | IF ( ibc_p_b == 1 ) THEN |
---|
| 564 | DO i = 0, nx |
---|
| 565 | tri_for_1d(1,i,0) = tri_for_1d(1,i,0) + tri_for_1d(2,i,0) |
---|
| 566 | ENDDO |
---|
| 567 | ENDIF |
---|
| 568 | IF ( ibc_p_t == 1 ) THEN |
---|
| 569 | DO i = 0, nx |
---|
| 570 | tri_for_1d(1,i,nz-1) = tri_for_1d(1,i,nz-1) + tri_for_1d(3,i,nz-1) |
---|
| 571 | ENDDO |
---|
| 572 | ENDIF |
---|
[1212] | 573 | |
---|
[4510] | 574 | END SUBROUTINE maketri_1dd |
---|
[1212] | 575 | |
---|
| 576 | |
---|
[4510] | 577 | !--------------------------------------------------------------------------------------------------! |
---|
[1682] | 578 | ! Description: |
---|
| 579 | ! ------------ |
---|
[4510] | 580 | !> Splitting of the tridiagonal matrix (Thomas algorithm). |
---|
| 581 | !--------------------------------------------------------------------------------------------------! |
---|
| 582 | SUBROUTINE split_1dd |
---|
[1212] | 583 | |
---|
[4510] | 584 | IMPLICIT NONE |
---|
[1212] | 585 | |
---|
[4510] | 586 | INTEGER(iwp) :: i !< |
---|
| 587 | INTEGER(iwp) :: k !< |
---|
[1212] | 588 | |
---|
| 589 | |
---|
| 590 | ! |
---|
[4510] | 591 | !-- Splitting |
---|
| 592 | DO i = 0, nx |
---|
| 593 | tri_for_1d(4,i,0) = tri_for_1d(1,i,0) |
---|
| 594 | ENDDO |
---|
| 595 | DO k = 1, nz-1 |
---|
| 596 | DO i = 0, nx |
---|
| 597 | tri_for_1d(5,i,k) = tri_for_1d(2,i,k) / tri_for_1d(4,i,k-1) |
---|
| 598 | tri_for_1d(4,i,k) = tri_for_1d(1,i,k) - tri_for_1d(3,i,k-1) * tri_for_1d(5,i,k) |
---|
| 599 | ENDDO |
---|
| 600 | ENDDO |
---|
[1212] | 601 | |
---|
[4510] | 602 | END SUBROUTINE split_1dd |
---|
[1212] | 603 | |
---|
| 604 | |
---|
[4510] | 605 | !--------------------------------------------------------------------------------------------------! |
---|
[1682] | 606 | ! Description: |
---|
| 607 | ! ------------ |
---|
[4510] | 608 | !> Substitution (Forward and Backward) (Thomas algorithm). |
---|
| 609 | !--------------------------------------------------------------------------------------------------! |
---|
| 610 | SUBROUTINE substi_1dd( ar, tri_for_1d ) |
---|
[1212] | 611 | |
---|
[1682] | 612 | |
---|
[4510] | 613 | IMPLICIT NONE |
---|
[1212] | 614 | |
---|
[4510] | 615 | INTEGER(iwp) :: i !< |
---|
| 616 | INTEGER(iwp) :: k !< |
---|
[1212] | 617 | |
---|
[4510] | 618 | REAL(wp), DIMENSION(0:nx,nz) :: ar !< |
---|
| 619 | REAL(wp), DIMENSION(0:nx,0:nz-1) :: ar1 !< |
---|
| 620 | REAL(wp), DIMENSION(5,0:nx,0:nz-1) :: tri_for_1d !< |
---|
[1212] | 621 | |
---|
| 622 | ! |
---|
[4510] | 623 | !-- Forward substitution |
---|
| 624 | DO i = 0, nx |
---|
| 625 | ar1(i,0) = ar(i,1) |
---|
| 626 | ENDDO |
---|
| 627 | DO k = 1, nz-1 |
---|
| 628 | DO i = 0, nx |
---|
| 629 | ar1(i,k) = ar(i,k+1) - tri_for_1d(5,i,k) * ar1(i,k-1) |
---|
| 630 | ENDDO |
---|
| 631 | ENDDO |
---|
[1212] | 632 | |
---|
| 633 | ! |
---|
[4510] | 634 | !-- Backward substitution |
---|
| 635 | !-- Note, the add of 1.0E-20 in the denominator is due to avoid divisions by zero appearing if the |
---|
| 636 | !-- pressure bc is set to neumann at the top of the model domain. |
---|
| 637 | DO i = 0, nx |
---|
| 638 | ar(i,nz) = ar1(i,nz-1) / ( tri_for_1d(4,i,nz-1) + 1.0E-20_wp ) |
---|
| 639 | ENDDO |
---|
| 640 | DO k = nz-2, 0, -1 |
---|
| 641 | DO i = 0, nx |
---|
| 642 | ar(i,k+1) = ( ar1(i,k) - tri_for_1d(3,i,k) * ar(i,k+2) ) / tri_for_1d(4,i,k) |
---|
| 643 | ENDDO |
---|
| 644 | ENDDO |
---|
[1212] | 645 | |
---|
| 646 | ! |
---|
[4510] | 647 | !-- Indices i=0, j=0 correspond to horizontally averaged pressure. The respective values of ar |
---|
| 648 | !-- should be zero at all k-levels if acceleration of horizontally averaged vertical velocity is |
---|
| 649 | !-- zero. |
---|
| 650 | IF ( ibc_p_b == 1 .AND. ibc_p_t == 1 ) THEN |
---|
| 651 | IF ( j == 0 ) THEN |
---|
| 652 | DO k = 1, nz |
---|
| 653 | ar(0,k) = 0.0_wp |
---|
| 654 | ENDDO |
---|
| 655 | ENDIF |
---|
| 656 | ENDIF |
---|
[1212] | 657 | |
---|
[4510] | 658 | END SUBROUTINE substi_1dd |
---|
[1212] | 659 | |
---|
[4510] | 660 | END SUBROUTINE tridia_1dd |
---|
[1212] | 661 | |
---|
| 662 | |
---|
| 663 | END MODULE tridia_solver |
---|