[1850] | 1 | !> @file tridia_solver_mod.f90 |
---|
[2000] | 2 | !------------------------------------------------------------------------------! |
---|
[2696] | 3 | ! This file is part of the PALM model system. |
---|
[1212] | 4 | ! |
---|
[2000] | 5 | ! PALM is free software: you can redistribute it and/or modify it under the |
---|
| 6 | ! terms of the GNU General Public License as published by the Free Software |
---|
| 7 | ! Foundation, either version 3 of the License, or (at your option) any later |
---|
| 8 | ! version. |
---|
[1212] | 9 | ! |
---|
| 10 | ! PALM is distributed in the hope that it will be useful, but WITHOUT ANY |
---|
| 11 | ! WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR |
---|
| 12 | ! A PARTICULAR PURPOSE. See the GNU General Public License for more details. |
---|
| 13 | ! |
---|
| 14 | ! You should have received a copy of the GNU General Public License along with |
---|
| 15 | ! PALM. If not, see <http://www.gnu.org/licenses/>. |
---|
| 16 | ! |
---|
[3655] | 17 | ! Copyright 1997-2019 Leibniz Universitaet Hannover |
---|
[2000] | 18 | !------------------------------------------------------------------------------! |
---|
[1212] | 19 | ! |
---|
| 20 | ! Current revisions: |
---|
| 21 | ! ------------------ |
---|
[1851] | 22 | ! |
---|
[2119] | 23 | ! |
---|
[1321] | 24 | ! Former revisions: |
---|
| 25 | ! ----------------- |
---|
| 26 | ! $Id: tridia_solver_mod.f90 3761 2019-02-25 15:31:42Z maronga $ |
---|
[3761] | 27 | ! OpenACC modification to prevent compiler warning about unused variable |
---|
| 28 | ! |
---|
| 29 | ! 3690 2019-01-22 22:56:42Z knoop |
---|
[3634] | 30 | ! OpenACC port for SPEC |
---|
| 31 | ! |
---|
| 32 | ! 3274 2018-09-24 15:42:55Z knoop |
---|
[3274] | 33 | ! Modularization of all bulk cloud physics code components |
---|
| 34 | ! |
---|
| 35 | ! 3241 2018-09-12 15:02:00Z raasch |
---|
[3241] | 36 | ! unused variables removed |
---|
| 37 | ! |
---|
| 38 | ! 2718 2018-01-02 08:49:38Z maronga |
---|
[2716] | 39 | ! Corrected "Former revisions" section |
---|
| 40 | ! |
---|
| 41 | ! 2696 2017-12-14 17:12:51Z kanani |
---|
| 42 | ! Change in file header (GPL part) |
---|
[1321] | 43 | ! |
---|
[2716] | 44 | ! 2119 2017-01-17 16:51:50Z raasch |
---|
| 45 | ! |
---|
[2119] | 46 | ! 2118 2017-01-17 16:38:49Z raasch |
---|
| 47 | ! OpenACC directives removed |
---|
| 48 | ! |
---|
[2038] | 49 | ! 2037 2016-10-26 11:15:40Z knoop |
---|
| 50 | ! Anelastic approximation implemented |
---|
| 51 | ! |
---|
[2001] | 52 | ! 2000 2016-08-20 18:09:15Z knoop |
---|
| 53 | ! Forced header and separation lines into 80 columns |
---|
| 54 | ! |
---|
[1851] | 55 | ! 1850 2016-04-08 13:29:27Z maronga |
---|
| 56 | ! Module renamed |
---|
| 57 | ! |
---|
| 58 | ! |
---|
[1816] | 59 | ! 1815 2016-04-06 13:49:59Z raasch |
---|
| 60 | ! cpp-switch intel11 removed |
---|
| 61 | ! |
---|
[1809] | 62 | ! 1808 2016-04-05 19:44:00Z raasch |
---|
| 63 | ! test output removed |
---|
| 64 | ! |
---|
[1805] | 65 | ! 1804 2016-04-05 16:30:18Z maronga |
---|
| 66 | ! Removed code for parameter file check (__check) |
---|
| 67 | ! |
---|
[1683] | 68 | ! 1682 2015-10-07 23:56:08Z knoop |
---|
| 69 | ! Code annotations made doxygen readable |
---|
| 70 | ! |
---|
[1407] | 71 | ! 1406 2014-05-16 13:47:01Z raasch |
---|
| 72 | ! bugfix for pgi 14.4: declare create moved after array declaration |
---|
| 73 | ! |
---|
[1343] | 74 | ! 1342 2014-03-26 17:04:47Z kanani |
---|
| 75 | ! REAL constants defined as wp-kind |
---|
| 76 | ! |
---|
[1323] | 77 | ! 1322 2014-03-20 16:38:49Z raasch |
---|
| 78 | ! REAL functions provided with KIND-attribute |
---|
| 79 | ! |
---|
[1321] | 80 | ! 1320 2014-03-20 08:40:49Z raasch |
---|
[1320] | 81 | ! ONLY-attribute added to USE-statements, |
---|
| 82 | ! kind-parameters added to all INTEGER and REAL declaration statements, |
---|
| 83 | ! kinds are defined in new module kinds, |
---|
| 84 | ! old module precision_kind is removed, |
---|
| 85 | ! revision history before 2012 removed, |
---|
| 86 | ! comment fields (!:) to be used for variable explanations added to |
---|
| 87 | ! all variable declaration statements |
---|
[1213] | 88 | ! |
---|
[1258] | 89 | ! 1257 2013-11-08 15:18:40Z raasch |
---|
| 90 | ! openacc loop and loop vector clauses removed, declare create moved after |
---|
| 91 | ! the FORTRAN declaration statement |
---|
| 92 | ! |
---|
[1222] | 93 | ! 1221 2013-09-10 08:59:13Z raasch |
---|
| 94 | ! dummy argument tri in 1d-routines replaced by tri_for_1d because of name |
---|
| 95 | ! conflict with arry tri in module arrays_3d |
---|
| 96 | ! |
---|
[1217] | 97 | ! 1216 2013-08-26 09:31:42Z raasch |
---|
| 98 | ! +tridia_substi_overlap for handling overlapping fft / transposition |
---|
| 99 | ! |
---|
[1213] | 100 | ! 1212 2013-08-15 08:46:27Z raasch |
---|
[1212] | 101 | ! Initial revision. |
---|
| 102 | ! Routines have been moved to seperate module from former file poisfft to here. |
---|
| 103 | ! The tridiagonal matrix coefficients of array tri are calculated only once at |
---|
| 104 | ! the beginning, i.e. routine split is called within tridia_init. |
---|
| 105 | ! |
---|
[3690] | 106 | |
---|
| 107 | #define __acc_fft_device ( defined( _OPENACC ) && ( defined ( __cuda_fft ) ) ) |
---|
| 108 | |
---|
[1212] | 109 | ! |
---|
| 110 | ! Description: |
---|
| 111 | ! ------------ |
---|
[1682] | 112 | !> solves the linear system of equations: |
---|
| 113 | !> |
---|
| 114 | !> -(4 pi^2(i^2/(dx^2*nnx^2)+j^2/(dy^2*nny^2))+ |
---|
| 115 | !> 1/(dzu(k)*dzw(k))+1/(dzu(k-1)*dzw(k)))*p(i,j,k)+ |
---|
| 116 | !> 1/(dzu(k)*dzw(k))*p(i,j,k+1)+1/(dzu(k-1)*dzw(k))*p(i,j,k-1)=d(i,j,k) |
---|
| 117 | !> |
---|
| 118 | !> by using the Thomas algorithm |
---|
[1212] | 119 | !------------------------------------------------------------------------------! |
---|
[1682] | 120 | MODULE tridia_solver |
---|
| 121 | |
---|
[1212] | 122 | |
---|
[3274] | 123 | USE basic_constants_and_equations_mod, & |
---|
| 124 | ONLY: pi |
---|
| 125 | |
---|
[1320] | 126 | USE indices, & |
---|
| 127 | ONLY: nx, ny, nz |
---|
[1212] | 128 | |
---|
[1320] | 129 | USE kinds |
---|
| 130 | |
---|
| 131 | USE transpose_indices, & |
---|
| 132 | ONLY: nxl_z, nyn_z, nxr_z, nys_z |
---|
| 133 | |
---|
[1212] | 134 | IMPLICIT NONE |
---|
| 135 | |
---|
[1682] | 136 | REAL(wp), DIMENSION(:,:), ALLOCATABLE :: ddzuw !< |
---|
[1212] | 137 | |
---|
| 138 | PRIVATE |
---|
| 139 | |
---|
| 140 | INTERFACE tridia_substi |
---|
| 141 | MODULE PROCEDURE tridia_substi |
---|
| 142 | END INTERFACE tridia_substi |
---|
| 143 | |
---|
[1216] | 144 | INTERFACE tridia_substi_overlap |
---|
| 145 | MODULE PROCEDURE tridia_substi_overlap |
---|
| 146 | END INTERFACE tridia_substi_overlap |
---|
[1212] | 147 | |
---|
[1216] | 148 | PUBLIC tridia_substi, tridia_substi_overlap, tridia_init, tridia_1dd |
---|
| 149 | |
---|
[1212] | 150 | CONTAINS |
---|
| 151 | |
---|
| 152 | |
---|
[1682] | 153 | !------------------------------------------------------------------------------! |
---|
| 154 | ! Description: |
---|
| 155 | ! ------------ |
---|
| 156 | !> @todo Missing subroutine description. |
---|
| 157 | !------------------------------------------------------------------------------! |
---|
[1212] | 158 | SUBROUTINE tridia_init |
---|
| 159 | |
---|
[1320] | 160 | USE arrays_3d, & |
---|
[3761] | 161 | ONLY: ddzu_pres, ddzw, rho_air_zw |
---|
[1212] | 162 | |
---|
[3761] | 163 | #if defined( _OPENACC ) |
---|
| 164 | USE arrays_3d, & |
---|
| 165 | ONLY: tri |
---|
| 166 | #endif |
---|
| 167 | |
---|
[1212] | 168 | IMPLICIT NONE |
---|
| 169 | |
---|
[1682] | 170 | INTEGER(iwp) :: k !< |
---|
[1212] | 171 | |
---|
| 172 | ALLOCATE( ddzuw(0:nz-1,3) ) |
---|
| 173 | |
---|
| 174 | DO k = 0, nz-1 |
---|
[2037] | 175 | ddzuw(k,1) = ddzu_pres(k+1) * ddzw(k+1) * rho_air_zw(k) |
---|
| 176 | ddzuw(k,2) = ddzu_pres(k+2) * ddzw(k+1) * rho_air_zw(k+1) |
---|
[1342] | 177 | ddzuw(k,3) = -1.0_wp * & |
---|
[2037] | 178 | ( ddzu_pres(k+2) * ddzw(k+1) * rho_air_zw(k+1) + & |
---|
| 179 | ddzu_pres(k+1) * ddzw(k+1) * rho_air_zw(k) ) |
---|
[1212] | 180 | ENDDO |
---|
| 181 | ! |
---|
| 182 | !-- Calculate constant coefficients of the tridiagonal matrix |
---|
| 183 | CALL maketri |
---|
| 184 | CALL split |
---|
| 185 | |
---|
[3690] | 186 | #if __acc_fft_device |
---|
[3634] | 187 | !$ACC ENTER DATA & |
---|
| 188 | !$ACC COPYIN(ddzuw(0:nz-1,1:3)) & |
---|
| 189 | !$ACC COPYIN(tri(nxl_z:nxr_z,nys_z:nyn_z,0:nz-1,1:2)) |
---|
[3690] | 190 | #endif |
---|
[3634] | 191 | |
---|
[1212] | 192 | END SUBROUTINE tridia_init |
---|
| 193 | |
---|
| 194 | |
---|
| 195 | !------------------------------------------------------------------------------! |
---|
[1682] | 196 | ! Description: |
---|
| 197 | ! ------------ |
---|
| 198 | !> Computes the i- and j-dependent component of the matrix |
---|
| 199 | !> Provide the constant coefficients of the tridiagonal matrix for solution |
---|
| 200 | !> of the Poisson equation in Fourier space. |
---|
| 201 | !> The coefficients are computed following the method of |
---|
| 202 | !> Schmidt et al. (DFVLR-Mitteilung 84-15), which departs from Stephan |
---|
| 203 | !> Siano's original version by discretizing the Poisson equation, |
---|
| 204 | !> before it is Fourier-transformed. |
---|
[1212] | 205 | !------------------------------------------------------------------------------! |
---|
[1682] | 206 | SUBROUTINE maketri |
---|
[1212] | 207 | |
---|
[1682] | 208 | |
---|
[1320] | 209 | USE arrays_3d, & |
---|
[2037] | 210 | ONLY: tric, rho_air |
---|
[1212] | 211 | |
---|
[1320] | 212 | USE control_parameters, & |
---|
| 213 | ONLY: ibc_p_b, ibc_p_t |
---|
| 214 | |
---|
| 215 | USE grid_variables, & |
---|
| 216 | ONLY: dx, dy |
---|
| 217 | |
---|
| 218 | |
---|
[1212] | 219 | IMPLICIT NONE |
---|
| 220 | |
---|
[1682] | 221 | INTEGER(iwp) :: i !< |
---|
| 222 | INTEGER(iwp) :: j !< |
---|
| 223 | INTEGER(iwp) :: k !< |
---|
| 224 | INTEGER(iwp) :: nnxh !< |
---|
| 225 | INTEGER(iwp) :: nnyh !< |
---|
[1212] | 226 | |
---|
[1682] | 227 | REAL(wp) :: ll(nxl_z:nxr_z,nys_z:nyn_z) !< |
---|
[1212] | 228 | |
---|
| 229 | |
---|
| 230 | nnxh = ( nx + 1 ) / 2 |
---|
| 231 | nnyh = ( ny + 1 ) / 2 |
---|
| 232 | |
---|
| 233 | DO j = nys_z, nyn_z |
---|
| 234 | DO i = nxl_z, nxr_z |
---|
| 235 | IF ( j >= 0 .AND. j <= nnyh ) THEN |
---|
| 236 | IF ( i >= 0 .AND. i <= nnxh ) THEN |
---|
[1342] | 237 | ll(i,j) = 2.0_wp * ( 1.0_wp - COS( ( 2.0_wp * pi * i ) / & |
---|
| 238 | REAL( nx+1, KIND=wp ) ) ) / ( dx * dx ) + & |
---|
| 239 | 2.0_wp * ( 1.0_wp - COS( ( 2.0_wp * pi * j ) / & |
---|
| 240 | REAL( ny+1, KIND=wp ) ) ) / ( dy * dy ) |
---|
[1212] | 241 | ELSE |
---|
[1342] | 242 | ll(i,j) = 2.0_wp * ( 1.0_wp - COS( ( 2.0_wp * pi * ( nx+1-i ) ) / & |
---|
| 243 | REAL( nx+1, KIND=wp ) ) ) / ( dx * dx ) + & |
---|
| 244 | 2.0_wp * ( 1.0_wp - COS( ( 2.0_wp * pi * j ) / & |
---|
| 245 | REAL( ny+1, KIND=wp ) ) ) / ( dy * dy ) |
---|
[1212] | 246 | ENDIF |
---|
| 247 | ELSE |
---|
| 248 | IF ( i >= 0 .AND. i <= nnxh ) THEN |
---|
[1342] | 249 | ll(i,j) = 2.0_wp * ( 1.0_wp - COS( ( 2.0_wp * pi * i ) / & |
---|
| 250 | REAL( nx+1, KIND=wp ) ) ) / ( dx * dx ) + & |
---|
| 251 | 2.0_wp * ( 1.0_wp - COS( ( 2.0_wp * pi * ( ny+1-j ) ) / & |
---|
| 252 | REAL( ny+1, KIND=wp ) ) ) / ( dy * dy ) |
---|
[1212] | 253 | ELSE |
---|
[1342] | 254 | ll(i,j) = 2.0_wp * ( 1.0_wp - COS( ( 2.0_wp * pi * ( nx+1-i ) ) / & |
---|
| 255 | REAL( nx+1, KIND=wp ) ) ) / ( dx * dx ) + & |
---|
| 256 | 2.0_wp * ( 1.0_wp - COS( ( 2.0_wp * pi * ( ny+1-j ) ) / & |
---|
| 257 | REAL( ny+1, KIND=wp ) ) ) / ( dy * dy ) |
---|
[1212] | 258 | ENDIF |
---|
| 259 | ENDIF |
---|
| 260 | ENDDO |
---|
| 261 | ENDDO |
---|
| 262 | |
---|
| 263 | DO k = 0, nz-1 |
---|
| 264 | DO j = nys_z, nyn_z |
---|
| 265 | DO i = nxl_z, nxr_z |
---|
[2037] | 266 | tric(i,j,k) = ddzuw(k,3) - ll(i,j) * rho_air(k+1) |
---|
[1212] | 267 | ENDDO |
---|
| 268 | ENDDO |
---|
| 269 | ENDDO |
---|
| 270 | |
---|
| 271 | IF ( ibc_p_b == 1 ) THEN |
---|
| 272 | DO j = nys_z, nyn_z |
---|
| 273 | DO i = nxl_z, nxr_z |
---|
| 274 | tric(i,j,0) = tric(i,j,0) + ddzuw(0,1) |
---|
| 275 | ENDDO |
---|
| 276 | ENDDO |
---|
| 277 | ENDIF |
---|
| 278 | IF ( ibc_p_t == 1 ) THEN |
---|
| 279 | DO j = nys_z, nyn_z |
---|
| 280 | DO i = nxl_z, nxr_z |
---|
| 281 | tric(i,j,nz-1) = tric(i,j,nz-1) + ddzuw(nz-1,2) |
---|
| 282 | ENDDO |
---|
| 283 | ENDDO |
---|
| 284 | ENDIF |
---|
| 285 | |
---|
| 286 | END SUBROUTINE maketri |
---|
| 287 | |
---|
| 288 | |
---|
| 289 | !------------------------------------------------------------------------------! |
---|
[1682] | 290 | ! Description: |
---|
| 291 | ! ------------ |
---|
| 292 | !> Substitution (Forward and Backward) (Thomas algorithm) |
---|
[1212] | 293 | !------------------------------------------------------------------------------! |
---|
[1682] | 294 | SUBROUTINE tridia_substi( ar ) |
---|
[1212] | 295 | |
---|
[1682] | 296 | |
---|
[1320] | 297 | USE arrays_3d, & |
---|
| 298 | ONLY: tri |
---|
[1212] | 299 | |
---|
[1320] | 300 | USE control_parameters, & |
---|
| 301 | ONLY: ibc_p_b, ibc_p_t |
---|
| 302 | |
---|
[1212] | 303 | IMPLICIT NONE |
---|
| 304 | |
---|
[1682] | 305 | INTEGER(iwp) :: i !< |
---|
| 306 | INTEGER(iwp) :: j !< |
---|
| 307 | INTEGER(iwp) :: k !< |
---|
[1212] | 308 | |
---|
[1682] | 309 | REAL(wp) :: ar(nxl_z:nxr_z,nys_z:nyn_z,1:nz) !< |
---|
[1212] | 310 | |
---|
[1682] | 311 | REAL(wp), DIMENSION(nxl_z:nxr_z,nys_z:nyn_z,0:nz-1) :: ar1 !< |
---|
[3690] | 312 | #if __acc_fft_device |
---|
[3634] | 313 | !$ACC DECLARE CREATE(ar1) |
---|
[3690] | 314 | #endif |
---|
[1212] | 315 | |
---|
| 316 | ! |
---|
| 317 | !-- Forward substitution |
---|
[3690] | 318 | #if __acc_fft_device |
---|
[3634] | 319 | !$ACC PARALLEL PRESENT(ar, ar1, tri) PRIVATE(i,j,k) |
---|
[3690] | 320 | #endif |
---|
[1212] | 321 | DO k = 0, nz - 1 |
---|
[3690] | 322 | #if __acc_fft_device |
---|
[3634] | 323 | !$ACC LOOP COLLAPSE(2) |
---|
[3690] | 324 | #endif |
---|
[1212] | 325 | DO j = nys_z, nyn_z |
---|
| 326 | DO i = nxl_z, nxr_z |
---|
| 327 | |
---|
| 328 | IF ( k == 0 ) THEN |
---|
| 329 | ar1(i,j,k) = ar(i,j,k+1) |
---|
| 330 | ELSE |
---|
| 331 | ar1(i,j,k) = ar(i,j,k+1) - tri(i,j,k,2) * ar1(i,j,k-1) |
---|
| 332 | ENDIF |
---|
| 333 | |
---|
| 334 | ENDDO |
---|
| 335 | ENDDO |
---|
| 336 | ENDDO |
---|
[3690] | 337 | #if __acc_fft_device |
---|
[3634] | 338 | !$ACC END PARALLEL |
---|
[3690] | 339 | #endif |
---|
[1212] | 340 | |
---|
| 341 | ! |
---|
| 342 | !-- Backward substitution |
---|
| 343 | !-- Note, the 1.0E-20 in the denominator is due to avoid divisions |
---|
| 344 | !-- by zero appearing if the pressure bc is set to neumann at the top of |
---|
| 345 | !-- the model domain. |
---|
[3690] | 346 | #if __acc_fft_device |
---|
[3634] | 347 | !$ACC PARALLEL PRESENT(ar, ar1, ddzuw, tri) PRIVATE(i,j,k) |
---|
[3690] | 348 | #endif |
---|
[1212] | 349 | DO k = nz-1, 0, -1 |
---|
[3690] | 350 | #if __acc_fft_device |
---|
[3634] | 351 | !$ACC LOOP COLLAPSE(2) |
---|
[3690] | 352 | #endif |
---|
[1212] | 353 | DO j = nys_z, nyn_z |
---|
| 354 | DO i = nxl_z, nxr_z |
---|
| 355 | |
---|
| 356 | IF ( k == nz-1 ) THEN |
---|
[1342] | 357 | ar(i,j,k+1) = ar1(i,j,k) / ( tri(i,j,k,1) + 1.0E-20_wp ) |
---|
[1212] | 358 | ELSE |
---|
| 359 | ar(i,j,k+1) = ( ar1(i,j,k) - ddzuw(k,2) * ar(i,j,k+2) ) & |
---|
| 360 | / tri(i,j,k,1) |
---|
| 361 | ENDIF |
---|
| 362 | ENDDO |
---|
| 363 | ENDDO |
---|
| 364 | ENDDO |
---|
[3690] | 365 | #if __acc_fft_device |
---|
[3634] | 366 | !$ACC END PARALLEL |
---|
[3690] | 367 | #endif |
---|
[1212] | 368 | |
---|
| 369 | ! |
---|
| 370 | !-- Indices i=0, j=0 correspond to horizontally averaged pressure. |
---|
| 371 | !-- The respective values of ar should be zero at all k-levels if |
---|
| 372 | !-- acceleration of horizontally averaged vertical velocity is zero. |
---|
| 373 | IF ( ibc_p_b == 1 .AND. ibc_p_t == 1 ) THEN |
---|
| 374 | IF ( nys_z == 0 .AND. nxl_z == 0 ) THEN |
---|
[3690] | 375 | #if __acc_fft_device |
---|
[3634] | 376 | !$ACC PARALLEL LOOP PRESENT(ar) |
---|
[3690] | 377 | #endif |
---|
[1212] | 378 | DO k = 1, nz |
---|
[1342] | 379 | ar(nxl_z,nys_z,k) = 0.0_wp |
---|
[1212] | 380 | ENDDO |
---|
| 381 | ENDIF |
---|
| 382 | ENDIF |
---|
| 383 | |
---|
| 384 | END SUBROUTINE tridia_substi |
---|
| 385 | |
---|
| 386 | |
---|
[1216] | 387 | !------------------------------------------------------------------------------! |
---|
[1682] | 388 | ! Description: |
---|
| 389 | ! ------------ |
---|
| 390 | !> Substitution (Forward and Backward) (Thomas algorithm) |
---|
[1216] | 391 | !------------------------------------------------------------------------------! |
---|
[1682] | 392 | SUBROUTINE tridia_substi_overlap( ar, jj ) |
---|
[1216] | 393 | |
---|
[1682] | 394 | |
---|
[1320] | 395 | USE arrays_3d, & |
---|
| 396 | ONLY: tri |
---|
[1216] | 397 | |
---|
[1320] | 398 | USE control_parameters, & |
---|
| 399 | ONLY: ibc_p_b, ibc_p_t |
---|
| 400 | |
---|
[1216] | 401 | IMPLICIT NONE |
---|
| 402 | |
---|
[1682] | 403 | INTEGER(iwp) :: i !< |
---|
| 404 | INTEGER(iwp) :: j !< |
---|
| 405 | INTEGER(iwp) :: jj !< |
---|
| 406 | INTEGER(iwp) :: k !< |
---|
[1216] | 407 | |
---|
[1682] | 408 | REAL(wp) :: ar(nxl_z:nxr_z,nys_z:nyn_z,1:nz) !< |
---|
[1216] | 409 | |
---|
[1682] | 410 | REAL(wp), DIMENSION(nxl_z:nxr_z,nys_z:nyn_z,0:nz-1) :: ar1 !< |
---|
[1216] | 411 | |
---|
| 412 | ! |
---|
| 413 | !-- Forward substitution |
---|
| 414 | DO k = 0, nz - 1 |
---|
| 415 | DO j = nys_z, nyn_z |
---|
| 416 | DO i = nxl_z, nxr_z |
---|
| 417 | |
---|
| 418 | IF ( k == 0 ) THEN |
---|
| 419 | ar1(i,j,k) = ar(i,j,k+1) |
---|
| 420 | ELSE |
---|
| 421 | ar1(i,j,k) = ar(i,j,k+1) - tri(i,jj,k,2) * ar1(i,j,k-1) |
---|
| 422 | ENDIF |
---|
| 423 | |
---|
| 424 | ENDDO |
---|
| 425 | ENDDO |
---|
| 426 | ENDDO |
---|
| 427 | |
---|
| 428 | ! |
---|
| 429 | !-- Backward substitution |
---|
| 430 | !-- Note, the 1.0E-20 in the denominator is due to avoid divisions |
---|
| 431 | !-- by zero appearing if the pressure bc is set to neumann at the top of |
---|
| 432 | !-- the model domain. |
---|
| 433 | DO k = nz-1, 0, -1 |
---|
| 434 | DO j = nys_z, nyn_z |
---|
| 435 | DO i = nxl_z, nxr_z |
---|
| 436 | |
---|
| 437 | IF ( k == nz-1 ) THEN |
---|
[1342] | 438 | ar(i,j,k+1) = ar1(i,j,k) / ( tri(i,jj,k,1) + 1.0E-20_wp ) |
---|
[1216] | 439 | ELSE |
---|
| 440 | ar(i,j,k+1) = ( ar1(i,j,k) - ddzuw(k,2) * ar(i,j,k+2) ) & |
---|
| 441 | / tri(i,jj,k,1) |
---|
| 442 | ENDIF |
---|
| 443 | ENDDO |
---|
| 444 | ENDDO |
---|
| 445 | ENDDO |
---|
| 446 | |
---|
| 447 | ! |
---|
| 448 | !-- Indices i=0, j=0 correspond to horizontally averaged pressure. |
---|
| 449 | !-- The respective values of ar should be zero at all k-levels if |
---|
| 450 | !-- acceleration of horizontally averaged vertical velocity is zero. |
---|
| 451 | IF ( ibc_p_b == 1 .AND. ibc_p_t == 1 ) THEN |
---|
| 452 | IF ( nys_z == 0 .AND. nxl_z == 0 ) THEN |
---|
| 453 | DO k = 1, nz |
---|
[1342] | 454 | ar(nxl_z,nys_z,k) = 0.0_wp |
---|
[1216] | 455 | ENDDO |
---|
| 456 | ENDIF |
---|
| 457 | ENDIF |
---|
| 458 | |
---|
| 459 | END SUBROUTINE tridia_substi_overlap |
---|
| 460 | |
---|
| 461 | |
---|
[1212] | 462 | !------------------------------------------------------------------------------! |
---|
[1682] | 463 | ! Description: |
---|
| 464 | ! ------------ |
---|
| 465 | !> Splitting of the tridiagonal matrix (Thomas algorithm) |
---|
[1212] | 466 | !------------------------------------------------------------------------------! |
---|
[1682] | 467 | SUBROUTINE split |
---|
[1212] | 468 | |
---|
[1682] | 469 | |
---|
[1320] | 470 | USE arrays_3d, & |
---|
| 471 | ONLY: tri, tric |
---|
[1212] | 472 | |
---|
| 473 | IMPLICIT NONE |
---|
| 474 | |
---|
[1682] | 475 | INTEGER(iwp) :: i !< |
---|
| 476 | INTEGER(iwp) :: j !< |
---|
| 477 | INTEGER(iwp) :: k !< |
---|
[1212] | 478 | ! |
---|
| 479 | !-- Splitting |
---|
| 480 | DO j = nys_z, nyn_z |
---|
| 481 | DO i = nxl_z, nxr_z |
---|
| 482 | tri(i,j,0,1) = tric(i,j,0) |
---|
| 483 | ENDDO |
---|
| 484 | ENDDO |
---|
| 485 | |
---|
| 486 | DO k = 1, nz-1 |
---|
| 487 | DO j = nys_z, nyn_z |
---|
| 488 | DO i = nxl_z, nxr_z |
---|
| 489 | tri(i,j,k,2) = ddzuw(k,1) / tri(i,j,k-1,1) |
---|
| 490 | tri(i,j,k,1) = tric(i,j,k) - ddzuw(k-1,2) * tri(i,j,k,2) |
---|
| 491 | ENDDO |
---|
| 492 | ENDDO |
---|
| 493 | ENDDO |
---|
| 494 | |
---|
| 495 | END SUBROUTINE split |
---|
| 496 | |
---|
| 497 | |
---|
| 498 | !------------------------------------------------------------------------------! |
---|
[1682] | 499 | ! Description: |
---|
| 500 | ! ------------ |
---|
| 501 | !> Solves the linear system of equations for a 1d-decomposition along x (see |
---|
| 502 | !> tridia) |
---|
| 503 | !> |
---|
| 504 | !> @attention when using the intel compilers older than 12.0, array tri must |
---|
| 505 | !> be passed as an argument to the contained subroutines. Otherwise |
---|
| 506 | !> addres faults will occur. This feature can be activated with |
---|
| 507 | !> cpp-switch __intel11 |
---|
| 508 | !> On NEC, tri should not be passed (except for routine substi_1dd) |
---|
| 509 | !> because this causes very bad performance. |
---|
[1212] | 510 | !------------------------------------------------------------------------------! |
---|
[1682] | 511 | |
---|
| 512 | SUBROUTINE tridia_1dd( ddx2, ddy2, nx, ny, j, ar, tri_for_1d ) |
---|
[1212] | 513 | |
---|
[1682] | 514 | |
---|
[1320] | 515 | USE arrays_3d, & |
---|
[2037] | 516 | ONLY: ddzu_pres, ddzw, rho_air, rho_air_zw |
---|
[1212] | 517 | |
---|
[1320] | 518 | USE control_parameters, & |
---|
| 519 | ONLY: ibc_p_b, ibc_p_t |
---|
[1212] | 520 | |
---|
| 521 | IMPLICIT NONE |
---|
| 522 | |
---|
[1682] | 523 | INTEGER(iwp) :: i !< |
---|
| 524 | INTEGER(iwp) :: j !< |
---|
| 525 | INTEGER(iwp) :: k !< |
---|
| 526 | INTEGER(iwp) :: nnyh !< |
---|
| 527 | INTEGER(iwp) :: nx !< |
---|
| 528 | INTEGER(iwp) :: ny !< |
---|
[1212] | 529 | |
---|
[1682] | 530 | REAL(wp) :: ddx2 !< |
---|
| 531 | REAL(wp) :: ddy2 !< |
---|
[1212] | 532 | |
---|
[1682] | 533 | REAL(wp), DIMENSION(0:nx,1:nz) :: ar !< |
---|
| 534 | REAL(wp), DIMENSION(5,0:nx,0:nz-1) :: tri_for_1d !< |
---|
[1212] | 535 | |
---|
| 536 | |
---|
| 537 | nnyh = ( ny + 1 ) / 2 |
---|
| 538 | |
---|
| 539 | ! |
---|
| 540 | !-- Define constant elements of the tridiagonal matrix. |
---|
| 541 | !-- The compiler on SX6 does loop exchange. If 0:nx is a high power of 2, |
---|
| 542 | !-- the exchanged loops create bank conflicts. The following directive |
---|
| 543 | !-- prohibits loop exchange and the loops perform much better. |
---|
| 544 | !CDIR NOLOOPCHG |
---|
| 545 | DO k = 0, nz-1 |
---|
| 546 | DO i = 0,nx |
---|
[2037] | 547 | tri_for_1d(2,i,k) = ddzu_pres(k+1) * ddzw(k+1) * rho_air_zw(k) |
---|
| 548 | tri_for_1d(3,i,k) = ddzu_pres(k+2) * ddzw(k+1) * rho_air_zw(k+1) |
---|
[1212] | 549 | ENDDO |
---|
| 550 | ENDDO |
---|
| 551 | |
---|
| 552 | IF ( j <= nnyh ) THEN |
---|
| 553 | CALL maketri_1dd( j ) |
---|
| 554 | ELSE |
---|
| 555 | CALL maketri_1dd( ny+1-j ) |
---|
| 556 | ENDIF |
---|
[1815] | 557 | |
---|
[1212] | 558 | CALL split_1dd |
---|
[1221] | 559 | CALL substi_1dd( ar, tri_for_1d ) |
---|
[1212] | 560 | |
---|
| 561 | CONTAINS |
---|
| 562 | |
---|
[1682] | 563 | |
---|
| 564 | !------------------------------------------------------------------------------! |
---|
| 565 | ! Description: |
---|
| 566 | ! ------------ |
---|
| 567 | !> computes the i- and j-dependent component of the matrix |
---|
| 568 | !------------------------------------------------------------------------------! |
---|
[1212] | 569 | SUBROUTINE maketri_1dd( j ) |
---|
| 570 | |
---|
| 571 | IMPLICIT NONE |
---|
| 572 | |
---|
[1682] | 573 | INTEGER(iwp) :: i !< |
---|
| 574 | INTEGER(iwp) :: j !< |
---|
| 575 | INTEGER(iwp) :: k !< |
---|
| 576 | INTEGER(iwp) :: nnxh !< |
---|
[1212] | 577 | |
---|
[1682] | 578 | REAL(wp) :: a !< |
---|
| 579 | REAL(wp) :: c !< |
---|
[1212] | 580 | |
---|
[1682] | 581 | REAL(wp), DIMENSION(0:nx) :: l !< |
---|
[1320] | 582 | |
---|
[1212] | 583 | |
---|
| 584 | nnxh = ( nx + 1 ) / 2 |
---|
| 585 | ! |
---|
| 586 | !-- Provide the tridiagonal matrix for solution of the Poisson equation in |
---|
| 587 | !-- Fourier space. The coefficients are computed following the method of |
---|
| 588 | !-- Schmidt et al. (DFVLR-Mitteilung 84-15), which departs from Stephan |
---|
| 589 | !-- Siano's original version by discretizing the Poisson equation, |
---|
| 590 | !-- before it is Fourier-transformed |
---|
| 591 | DO i = 0, nx |
---|
| 592 | IF ( i >= 0 .AND. i <= nnxh ) THEN |
---|
[1342] | 593 | l(i) = 2.0_wp * ( 1.0_wp - COS( ( 2.0_wp * pi * i ) / & |
---|
| 594 | REAL( nx+1, KIND=wp ) ) ) * ddx2 + & |
---|
| 595 | 2.0_wp * ( 1.0_wp - COS( ( 2.0_wp * pi * j ) / & |
---|
| 596 | REAL( ny+1, KIND=wp ) ) ) * ddy2 |
---|
[1212] | 597 | ELSE |
---|
[1342] | 598 | l(i) = 2.0_wp * ( 1.0_wp - COS( ( 2.0_wp * pi * ( nx+1-i ) ) / & |
---|
| 599 | REAL( nx+1, KIND=wp ) ) ) * ddx2 + & |
---|
| 600 | 2.0_wp * ( 1.0_wp - COS( ( 2.0_wp * pi * j ) / & |
---|
| 601 | REAL( ny+1, KIND=wp ) ) ) * ddy2 |
---|
[1212] | 602 | ENDIF |
---|
| 603 | ENDDO |
---|
| 604 | |
---|
| 605 | DO k = 0, nz-1 |
---|
| 606 | DO i = 0, nx |
---|
[2037] | 607 | a = -1.0_wp * ddzu_pres(k+2) * ddzw(k+1) * rho_air_zw(k+1) |
---|
| 608 | c = -1.0_wp * ddzu_pres(k+1) * ddzw(k+1) * rho_air_zw(k) |
---|
| 609 | tri_for_1d(1,i,k) = a + c - l(i) * rho_air(k+1) |
---|
[1212] | 610 | ENDDO |
---|
| 611 | ENDDO |
---|
| 612 | IF ( ibc_p_b == 1 ) THEN |
---|
| 613 | DO i = 0, nx |
---|
[1221] | 614 | tri_for_1d(1,i,0) = tri_for_1d(1,i,0) + tri_for_1d(2,i,0) |
---|
[1212] | 615 | ENDDO |
---|
| 616 | ENDIF |
---|
| 617 | IF ( ibc_p_t == 1 ) THEN |
---|
| 618 | DO i = 0, nx |
---|
[1221] | 619 | tri_for_1d(1,i,nz-1) = tri_for_1d(1,i,nz-1) + tri_for_1d(3,i,nz-1) |
---|
[1212] | 620 | ENDDO |
---|
| 621 | ENDIF |
---|
| 622 | |
---|
| 623 | END SUBROUTINE maketri_1dd |
---|
| 624 | |
---|
| 625 | |
---|
[1682] | 626 | !------------------------------------------------------------------------------! |
---|
| 627 | ! Description: |
---|
| 628 | ! ------------ |
---|
| 629 | !> Splitting of the tridiagonal matrix (Thomas algorithm) |
---|
| 630 | !------------------------------------------------------------------------------! |
---|
[1212] | 631 | SUBROUTINE split_1dd |
---|
| 632 | |
---|
| 633 | IMPLICIT NONE |
---|
| 634 | |
---|
[1682] | 635 | INTEGER(iwp) :: i !< |
---|
| 636 | INTEGER(iwp) :: k !< |
---|
[1212] | 637 | |
---|
| 638 | |
---|
| 639 | ! |
---|
| 640 | !-- Splitting |
---|
| 641 | DO i = 0, nx |
---|
[1221] | 642 | tri_for_1d(4,i,0) = tri_for_1d(1,i,0) |
---|
[1212] | 643 | ENDDO |
---|
| 644 | DO k = 1, nz-1 |
---|
| 645 | DO i = 0, nx |
---|
[1221] | 646 | tri_for_1d(5,i,k) = tri_for_1d(2,i,k) / tri_for_1d(4,i,k-1) |
---|
| 647 | tri_for_1d(4,i,k) = tri_for_1d(1,i,k) - tri_for_1d(3,i,k-1) * tri_for_1d(5,i,k) |
---|
[1212] | 648 | ENDDO |
---|
| 649 | ENDDO |
---|
| 650 | |
---|
| 651 | END SUBROUTINE split_1dd |
---|
| 652 | |
---|
| 653 | |
---|
| 654 | !------------------------------------------------------------------------------! |
---|
[1682] | 655 | ! Description: |
---|
| 656 | ! ------------ |
---|
| 657 | !> Substitution (Forward and Backward) (Thomas algorithm) |
---|
[1212] | 658 | !------------------------------------------------------------------------------! |
---|
[1682] | 659 | SUBROUTINE substi_1dd( ar, tri_for_1d ) |
---|
[1212] | 660 | |
---|
[1682] | 661 | |
---|
[1212] | 662 | IMPLICIT NONE |
---|
| 663 | |
---|
[1682] | 664 | INTEGER(iwp) :: i !< |
---|
| 665 | INTEGER(iwp) :: k !< |
---|
[1212] | 666 | |
---|
[1682] | 667 | REAL(wp), DIMENSION(0:nx,nz) :: ar !< |
---|
| 668 | REAL(wp), DIMENSION(0:nx,0:nz-1) :: ar1 !< |
---|
| 669 | REAL(wp), DIMENSION(5,0:nx,0:nz-1) :: tri_for_1d !< |
---|
[1212] | 670 | |
---|
| 671 | ! |
---|
| 672 | !-- Forward substitution |
---|
| 673 | DO i = 0, nx |
---|
| 674 | ar1(i,0) = ar(i,1) |
---|
| 675 | ENDDO |
---|
| 676 | DO k = 1, nz-1 |
---|
| 677 | DO i = 0, nx |
---|
[1221] | 678 | ar1(i,k) = ar(i,k+1) - tri_for_1d(5,i,k) * ar1(i,k-1) |
---|
[1212] | 679 | ENDDO |
---|
| 680 | ENDDO |
---|
| 681 | |
---|
| 682 | ! |
---|
| 683 | !-- Backward substitution |
---|
| 684 | !-- Note, the add of 1.0E-20 in the denominator is due to avoid divisions |
---|
| 685 | !-- by zero appearing if the pressure bc is set to neumann at the top of |
---|
| 686 | !-- the model domain. |
---|
| 687 | DO i = 0, nx |
---|
[1342] | 688 | ar(i,nz) = ar1(i,nz-1) / ( tri_for_1d(4,i,nz-1) + 1.0E-20_wp ) |
---|
[1212] | 689 | ENDDO |
---|
| 690 | DO k = nz-2, 0, -1 |
---|
| 691 | DO i = 0, nx |
---|
[1221] | 692 | ar(i,k+1) = ( ar1(i,k) - tri_for_1d(3,i,k) * ar(i,k+2) ) & |
---|
| 693 | / tri_for_1d(4,i,k) |
---|
[1212] | 694 | ENDDO |
---|
| 695 | ENDDO |
---|
| 696 | |
---|
| 697 | ! |
---|
| 698 | !-- Indices i=0, j=0 correspond to horizontally averaged pressure. |
---|
| 699 | !-- The respective values of ar should be zero at all k-levels if |
---|
| 700 | !-- acceleration of horizontally averaged vertical velocity is zero. |
---|
| 701 | IF ( ibc_p_b == 1 .AND. ibc_p_t == 1 ) THEN |
---|
| 702 | IF ( j == 0 ) THEN |
---|
| 703 | DO k = 1, nz |
---|
[1342] | 704 | ar(0,k) = 0.0_wp |
---|
[1212] | 705 | ENDDO |
---|
| 706 | ENDIF |
---|
| 707 | ENDIF |
---|
| 708 | |
---|
| 709 | END SUBROUTINE substi_1dd |
---|
| 710 | |
---|
| 711 | END SUBROUTINE tridia_1dd |
---|
| 712 | |
---|
| 713 | |
---|
| 714 | END MODULE tridia_solver |
---|