[1850] | 1 | !> @file tridia_solver_mod.f90 |
---|
[2000] | 2 | !------------------------------------------------------------------------------! |
---|
[2696] | 3 | ! This file is part of the PALM model system. |
---|
[1212] | 4 | ! |
---|
[2000] | 5 | ! PALM is free software: you can redistribute it and/or modify it under the |
---|
| 6 | ! terms of the GNU General Public License as published by the Free Software |
---|
| 7 | ! Foundation, either version 3 of the License, or (at your option) any later |
---|
| 8 | ! version. |
---|
[1212] | 9 | ! |
---|
| 10 | ! PALM is distributed in the hope that it will be useful, but WITHOUT ANY |
---|
| 11 | ! WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR |
---|
| 12 | ! A PARTICULAR PURPOSE. See the GNU General Public License for more details. |
---|
| 13 | ! |
---|
| 14 | ! You should have received a copy of the GNU General Public License along with |
---|
| 15 | ! PALM. If not, see <http://www.gnu.org/licenses/>. |
---|
| 16 | ! |
---|
[2718] | 17 | ! Copyright 1997-2018 Leibniz Universitaet Hannover |
---|
[2000] | 18 | !------------------------------------------------------------------------------! |
---|
[1212] | 19 | ! |
---|
| 20 | ! Current revisions: |
---|
| 21 | ! ------------------ |
---|
[1851] | 22 | ! |
---|
[2119] | 23 | ! |
---|
[1321] | 24 | ! Former revisions: |
---|
| 25 | ! ----------------- |
---|
| 26 | ! $Id: tridia_solver_mod.f90 3274 2018-09-24 15:42:55Z suehring $ |
---|
[3274] | 27 | ! Modularization of all bulk cloud physics code components |
---|
| 28 | ! |
---|
| 29 | ! 3241 2018-09-12 15:02:00Z raasch |
---|
[3241] | 30 | ! unused variables removed |
---|
| 31 | ! |
---|
| 32 | ! 2718 2018-01-02 08:49:38Z maronga |
---|
[2716] | 33 | ! Corrected "Former revisions" section |
---|
| 34 | ! |
---|
| 35 | ! 2696 2017-12-14 17:12:51Z kanani |
---|
| 36 | ! Change in file header (GPL part) |
---|
[1321] | 37 | ! |
---|
[2716] | 38 | ! 2119 2017-01-17 16:51:50Z raasch |
---|
| 39 | ! |
---|
[2119] | 40 | ! 2118 2017-01-17 16:38:49Z raasch |
---|
| 41 | ! OpenACC directives removed |
---|
| 42 | ! |
---|
[2038] | 43 | ! 2037 2016-10-26 11:15:40Z knoop |
---|
| 44 | ! Anelastic approximation implemented |
---|
| 45 | ! |
---|
[2001] | 46 | ! 2000 2016-08-20 18:09:15Z knoop |
---|
| 47 | ! Forced header and separation lines into 80 columns |
---|
| 48 | ! |
---|
[1851] | 49 | ! 1850 2016-04-08 13:29:27Z maronga |
---|
| 50 | ! Module renamed |
---|
| 51 | ! |
---|
| 52 | ! |
---|
[1816] | 53 | ! 1815 2016-04-06 13:49:59Z raasch |
---|
| 54 | ! cpp-switch intel11 removed |
---|
| 55 | ! |
---|
[1809] | 56 | ! 1808 2016-04-05 19:44:00Z raasch |
---|
| 57 | ! test output removed |
---|
| 58 | ! |
---|
[1805] | 59 | ! 1804 2016-04-05 16:30:18Z maronga |
---|
| 60 | ! Removed code for parameter file check (__check) |
---|
| 61 | ! |
---|
[1683] | 62 | ! 1682 2015-10-07 23:56:08Z knoop |
---|
| 63 | ! Code annotations made doxygen readable |
---|
| 64 | ! |
---|
[1407] | 65 | ! 1406 2014-05-16 13:47:01Z raasch |
---|
| 66 | ! bugfix for pgi 14.4: declare create moved after array declaration |
---|
| 67 | ! |
---|
[1343] | 68 | ! 1342 2014-03-26 17:04:47Z kanani |
---|
| 69 | ! REAL constants defined as wp-kind |
---|
| 70 | ! |
---|
[1323] | 71 | ! 1322 2014-03-20 16:38:49Z raasch |
---|
| 72 | ! REAL functions provided with KIND-attribute |
---|
| 73 | ! |
---|
[1321] | 74 | ! 1320 2014-03-20 08:40:49Z raasch |
---|
[1320] | 75 | ! ONLY-attribute added to USE-statements, |
---|
| 76 | ! kind-parameters added to all INTEGER and REAL declaration statements, |
---|
| 77 | ! kinds are defined in new module kinds, |
---|
| 78 | ! old module precision_kind is removed, |
---|
| 79 | ! revision history before 2012 removed, |
---|
| 80 | ! comment fields (!:) to be used for variable explanations added to |
---|
| 81 | ! all variable declaration statements |
---|
[1213] | 82 | ! |
---|
[1258] | 83 | ! 1257 2013-11-08 15:18:40Z raasch |
---|
| 84 | ! openacc loop and loop vector clauses removed, declare create moved after |
---|
| 85 | ! the FORTRAN declaration statement |
---|
| 86 | ! |
---|
[1222] | 87 | ! 1221 2013-09-10 08:59:13Z raasch |
---|
| 88 | ! dummy argument tri in 1d-routines replaced by tri_for_1d because of name |
---|
| 89 | ! conflict with arry tri in module arrays_3d |
---|
| 90 | ! |
---|
[1217] | 91 | ! 1216 2013-08-26 09:31:42Z raasch |
---|
| 92 | ! +tridia_substi_overlap for handling overlapping fft / transposition |
---|
| 93 | ! |
---|
[1213] | 94 | ! 1212 2013-08-15 08:46:27Z raasch |
---|
[1212] | 95 | ! Initial revision. |
---|
| 96 | ! Routines have been moved to seperate module from former file poisfft to here. |
---|
| 97 | ! The tridiagonal matrix coefficients of array tri are calculated only once at |
---|
| 98 | ! the beginning, i.e. routine split is called within tridia_init. |
---|
| 99 | ! |
---|
| 100 | ! |
---|
| 101 | ! Description: |
---|
| 102 | ! ------------ |
---|
[1682] | 103 | !> solves the linear system of equations: |
---|
| 104 | !> |
---|
| 105 | !> -(4 pi^2(i^2/(dx^2*nnx^2)+j^2/(dy^2*nny^2))+ |
---|
| 106 | !> 1/(dzu(k)*dzw(k))+1/(dzu(k-1)*dzw(k)))*p(i,j,k)+ |
---|
| 107 | !> 1/(dzu(k)*dzw(k))*p(i,j,k+1)+1/(dzu(k-1)*dzw(k))*p(i,j,k-1)=d(i,j,k) |
---|
| 108 | !> |
---|
| 109 | !> by using the Thomas algorithm |
---|
[1212] | 110 | !------------------------------------------------------------------------------! |
---|
[1682] | 111 | MODULE tridia_solver |
---|
| 112 | |
---|
[1212] | 113 | |
---|
[3274] | 114 | USE basic_constants_and_equations_mod, & |
---|
| 115 | ONLY: pi |
---|
| 116 | |
---|
[1320] | 117 | USE indices, & |
---|
| 118 | ONLY: nx, ny, nz |
---|
[1212] | 119 | |
---|
[1320] | 120 | USE kinds |
---|
| 121 | |
---|
| 122 | USE transpose_indices, & |
---|
| 123 | ONLY: nxl_z, nyn_z, nxr_z, nys_z |
---|
| 124 | |
---|
[1212] | 125 | IMPLICIT NONE |
---|
| 126 | |
---|
[1682] | 127 | REAL(wp), DIMENSION(:,:), ALLOCATABLE :: ddzuw !< |
---|
[1212] | 128 | |
---|
| 129 | PRIVATE |
---|
| 130 | |
---|
| 131 | INTERFACE tridia_substi |
---|
| 132 | MODULE PROCEDURE tridia_substi |
---|
| 133 | END INTERFACE tridia_substi |
---|
| 134 | |
---|
[1216] | 135 | INTERFACE tridia_substi_overlap |
---|
| 136 | MODULE PROCEDURE tridia_substi_overlap |
---|
| 137 | END INTERFACE tridia_substi_overlap |
---|
[1212] | 138 | |
---|
[1216] | 139 | PUBLIC tridia_substi, tridia_substi_overlap, tridia_init, tridia_1dd |
---|
| 140 | |
---|
[1212] | 141 | CONTAINS |
---|
| 142 | |
---|
| 143 | |
---|
[1682] | 144 | !------------------------------------------------------------------------------! |
---|
| 145 | ! Description: |
---|
| 146 | ! ------------ |
---|
| 147 | !> @todo Missing subroutine description. |
---|
| 148 | !------------------------------------------------------------------------------! |
---|
[1212] | 149 | SUBROUTINE tridia_init |
---|
| 150 | |
---|
[1320] | 151 | USE arrays_3d, & |
---|
[2037] | 152 | ONLY: ddzu_pres, ddzw, rho_air_zw |
---|
[1212] | 153 | |
---|
| 154 | IMPLICIT NONE |
---|
| 155 | |
---|
[1682] | 156 | INTEGER(iwp) :: k !< |
---|
[1212] | 157 | |
---|
| 158 | ALLOCATE( ddzuw(0:nz-1,3) ) |
---|
| 159 | |
---|
| 160 | DO k = 0, nz-1 |
---|
[2037] | 161 | ddzuw(k,1) = ddzu_pres(k+1) * ddzw(k+1) * rho_air_zw(k) |
---|
| 162 | ddzuw(k,2) = ddzu_pres(k+2) * ddzw(k+1) * rho_air_zw(k+1) |
---|
[1342] | 163 | ddzuw(k,3) = -1.0_wp * & |
---|
[2037] | 164 | ( ddzu_pres(k+2) * ddzw(k+1) * rho_air_zw(k+1) + & |
---|
| 165 | ddzu_pres(k+1) * ddzw(k+1) * rho_air_zw(k) ) |
---|
[1212] | 166 | ENDDO |
---|
| 167 | ! |
---|
| 168 | !-- Calculate constant coefficients of the tridiagonal matrix |
---|
| 169 | CALL maketri |
---|
| 170 | CALL split |
---|
| 171 | |
---|
| 172 | END SUBROUTINE tridia_init |
---|
| 173 | |
---|
| 174 | |
---|
| 175 | !------------------------------------------------------------------------------! |
---|
[1682] | 176 | ! Description: |
---|
| 177 | ! ------------ |
---|
| 178 | !> Computes the i- and j-dependent component of the matrix |
---|
| 179 | !> Provide the constant coefficients of the tridiagonal matrix for solution |
---|
| 180 | !> of the Poisson equation in Fourier space. |
---|
| 181 | !> The coefficients are computed following the method of |
---|
| 182 | !> Schmidt et al. (DFVLR-Mitteilung 84-15), which departs from Stephan |
---|
| 183 | !> Siano's original version by discretizing the Poisson equation, |
---|
| 184 | !> before it is Fourier-transformed. |
---|
[1212] | 185 | !------------------------------------------------------------------------------! |
---|
[1682] | 186 | SUBROUTINE maketri |
---|
[1212] | 187 | |
---|
[1682] | 188 | |
---|
[1320] | 189 | USE arrays_3d, & |
---|
[2037] | 190 | ONLY: tric, rho_air |
---|
[1212] | 191 | |
---|
[1320] | 192 | USE control_parameters, & |
---|
| 193 | ONLY: ibc_p_b, ibc_p_t |
---|
| 194 | |
---|
| 195 | USE grid_variables, & |
---|
| 196 | ONLY: dx, dy |
---|
| 197 | |
---|
| 198 | |
---|
[1212] | 199 | IMPLICIT NONE |
---|
| 200 | |
---|
[1682] | 201 | INTEGER(iwp) :: i !< |
---|
| 202 | INTEGER(iwp) :: j !< |
---|
| 203 | INTEGER(iwp) :: k !< |
---|
| 204 | INTEGER(iwp) :: nnxh !< |
---|
| 205 | INTEGER(iwp) :: nnyh !< |
---|
[1212] | 206 | |
---|
[1682] | 207 | REAL(wp) :: ll(nxl_z:nxr_z,nys_z:nyn_z) !< |
---|
[1212] | 208 | |
---|
| 209 | |
---|
| 210 | nnxh = ( nx + 1 ) / 2 |
---|
| 211 | nnyh = ( ny + 1 ) / 2 |
---|
| 212 | |
---|
| 213 | DO j = nys_z, nyn_z |
---|
| 214 | DO i = nxl_z, nxr_z |
---|
| 215 | IF ( j >= 0 .AND. j <= nnyh ) THEN |
---|
| 216 | IF ( i >= 0 .AND. i <= nnxh ) THEN |
---|
[1342] | 217 | ll(i,j) = 2.0_wp * ( 1.0_wp - COS( ( 2.0_wp * pi * i ) / & |
---|
| 218 | REAL( nx+1, KIND=wp ) ) ) / ( dx * dx ) + & |
---|
| 219 | 2.0_wp * ( 1.0_wp - COS( ( 2.0_wp * pi * j ) / & |
---|
| 220 | REAL( ny+1, KIND=wp ) ) ) / ( dy * dy ) |
---|
[1212] | 221 | ELSE |
---|
[1342] | 222 | ll(i,j) = 2.0_wp * ( 1.0_wp - COS( ( 2.0_wp * pi * ( nx+1-i ) ) / & |
---|
| 223 | REAL( nx+1, KIND=wp ) ) ) / ( dx * dx ) + & |
---|
| 224 | 2.0_wp * ( 1.0_wp - COS( ( 2.0_wp * pi * j ) / & |
---|
| 225 | REAL( ny+1, KIND=wp ) ) ) / ( dy * dy ) |
---|
[1212] | 226 | ENDIF |
---|
| 227 | ELSE |
---|
| 228 | IF ( i >= 0 .AND. i <= nnxh ) THEN |
---|
[1342] | 229 | ll(i,j) = 2.0_wp * ( 1.0_wp - COS( ( 2.0_wp * pi * i ) / & |
---|
| 230 | REAL( nx+1, KIND=wp ) ) ) / ( dx * dx ) + & |
---|
| 231 | 2.0_wp * ( 1.0_wp - COS( ( 2.0_wp * pi * ( ny+1-j ) ) / & |
---|
| 232 | REAL( ny+1, KIND=wp ) ) ) / ( dy * dy ) |
---|
[1212] | 233 | ELSE |
---|
[1342] | 234 | ll(i,j) = 2.0_wp * ( 1.0_wp - COS( ( 2.0_wp * pi * ( nx+1-i ) ) / & |
---|
| 235 | REAL( nx+1, KIND=wp ) ) ) / ( dx * dx ) + & |
---|
| 236 | 2.0_wp * ( 1.0_wp - COS( ( 2.0_wp * pi * ( ny+1-j ) ) / & |
---|
| 237 | REAL( ny+1, KIND=wp ) ) ) / ( dy * dy ) |
---|
[1212] | 238 | ENDIF |
---|
| 239 | ENDIF |
---|
| 240 | ENDDO |
---|
| 241 | ENDDO |
---|
| 242 | |
---|
| 243 | DO k = 0, nz-1 |
---|
| 244 | DO j = nys_z, nyn_z |
---|
| 245 | DO i = nxl_z, nxr_z |
---|
[2037] | 246 | tric(i,j,k) = ddzuw(k,3) - ll(i,j) * rho_air(k+1) |
---|
[1212] | 247 | ENDDO |
---|
| 248 | ENDDO |
---|
| 249 | ENDDO |
---|
| 250 | |
---|
| 251 | IF ( ibc_p_b == 1 ) THEN |
---|
| 252 | DO j = nys_z, nyn_z |
---|
| 253 | DO i = nxl_z, nxr_z |
---|
| 254 | tric(i,j,0) = tric(i,j,0) + ddzuw(0,1) |
---|
| 255 | ENDDO |
---|
| 256 | ENDDO |
---|
| 257 | ENDIF |
---|
| 258 | IF ( ibc_p_t == 1 ) THEN |
---|
| 259 | DO j = nys_z, nyn_z |
---|
| 260 | DO i = nxl_z, nxr_z |
---|
| 261 | tric(i,j,nz-1) = tric(i,j,nz-1) + ddzuw(nz-1,2) |
---|
| 262 | ENDDO |
---|
| 263 | ENDDO |
---|
| 264 | ENDIF |
---|
| 265 | |
---|
| 266 | END SUBROUTINE maketri |
---|
| 267 | |
---|
| 268 | |
---|
| 269 | !------------------------------------------------------------------------------! |
---|
[1682] | 270 | ! Description: |
---|
| 271 | ! ------------ |
---|
| 272 | !> Substitution (Forward and Backward) (Thomas algorithm) |
---|
[1212] | 273 | !------------------------------------------------------------------------------! |
---|
[1682] | 274 | SUBROUTINE tridia_substi( ar ) |
---|
[1212] | 275 | |
---|
[1682] | 276 | |
---|
[1320] | 277 | USE arrays_3d, & |
---|
| 278 | ONLY: tri |
---|
[1212] | 279 | |
---|
[1320] | 280 | USE control_parameters, & |
---|
| 281 | ONLY: ibc_p_b, ibc_p_t |
---|
| 282 | |
---|
[1212] | 283 | IMPLICIT NONE |
---|
| 284 | |
---|
[1682] | 285 | INTEGER(iwp) :: i !< |
---|
| 286 | INTEGER(iwp) :: j !< |
---|
| 287 | INTEGER(iwp) :: k !< |
---|
[1212] | 288 | |
---|
[1682] | 289 | REAL(wp) :: ar(nxl_z:nxr_z,nys_z:nyn_z,1:nz) !< |
---|
[1212] | 290 | |
---|
[1682] | 291 | REAL(wp), DIMENSION(nxl_z:nxr_z,nys_z:nyn_z,0:nz-1) :: ar1 !< |
---|
[1212] | 292 | |
---|
| 293 | ! |
---|
| 294 | !-- Forward substitution |
---|
| 295 | DO k = 0, nz - 1 |
---|
| 296 | DO j = nys_z, nyn_z |
---|
| 297 | DO i = nxl_z, nxr_z |
---|
| 298 | |
---|
| 299 | IF ( k == 0 ) THEN |
---|
| 300 | ar1(i,j,k) = ar(i,j,k+1) |
---|
| 301 | ELSE |
---|
| 302 | ar1(i,j,k) = ar(i,j,k+1) - tri(i,j,k,2) * ar1(i,j,k-1) |
---|
| 303 | ENDIF |
---|
| 304 | |
---|
| 305 | ENDDO |
---|
| 306 | ENDDO |
---|
| 307 | ENDDO |
---|
| 308 | |
---|
| 309 | ! |
---|
| 310 | !-- Backward substitution |
---|
| 311 | !-- Note, the 1.0E-20 in the denominator is due to avoid divisions |
---|
| 312 | !-- by zero appearing if the pressure bc is set to neumann at the top of |
---|
| 313 | !-- the model domain. |
---|
| 314 | DO k = nz-1, 0, -1 |
---|
| 315 | DO j = nys_z, nyn_z |
---|
| 316 | DO i = nxl_z, nxr_z |
---|
| 317 | |
---|
| 318 | IF ( k == nz-1 ) THEN |
---|
[1342] | 319 | ar(i,j,k+1) = ar1(i,j,k) / ( tri(i,j,k,1) + 1.0E-20_wp ) |
---|
[1212] | 320 | ELSE |
---|
| 321 | ar(i,j,k+1) = ( ar1(i,j,k) - ddzuw(k,2) * ar(i,j,k+2) ) & |
---|
| 322 | / tri(i,j,k,1) |
---|
| 323 | ENDIF |
---|
| 324 | ENDDO |
---|
| 325 | ENDDO |
---|
| 326 | ENDDO |
---|
| 327 | |
---|
| 328 | ! |
---|
| 329 | !-- Indices i=0, j=0 correspond to horizontally averaged pressure. |
---|
| 330 | !-- The respective values of ar should be zero at all k-levels if |
---|
| 331 | !-- acceleration of horizontally averaged vertical velocity is zero. |
---|
| 332 | IF ( ibc_p_b == 1 .AND. ibc_p_t == 1 ) THEN |
---|
| 333 | IF ( nys_z == 0 .AND. nxl_z == 0 ) THEN |
---|
| 334 | DO k = 1, nz |
---|
[1342] | 335 | ar(nxl_z,nys_z,k) = 0.0_wp |
---|
[1212] | 336 | ENDDO |
---|
| 337 | ENDIF |
---|
| 338 | ENDIF |
---|
| 339 | |
---|
| 340 | END SUBROUTINE tridia_substi |
---|
| 341 | |
---|
| 342 | |
---|
[1216] | 343 | !------------------------------------------------------------------------------! |
---|
[1682] | 344 | ! Description: |
---|
| 345 | ! ------------ |
---|
| 346 | !> Substitution (Forward and Backward) (Thomas algorithm) |
---|
[1216] | 347 | !------------------------------------------------------------------------------! |
---|
[1682] | 348 | SUBROUTINE tridia_substi_overlap( ar, jj ) |
---|
[1216] | 349 | |
---|
[1682] | 350 | |
---|
[1320] | 351 | USE arrays_3d, & |
---|
| 352 | ONLY: tri |
---|
[1216] | 353 | |
---|
[1320] | 354 | USE control_parameters, & |
---|
| 355 | ONLY: ibc_p_b, ibc_p_t |
---|
| 356 | |
---|
[1216] | 357 | IMPLICIT NONE |
---|
| 358 | |
---|
[1682] | 359 | INTEGER(iwp) :: i !< |
---|
| 360 | INTEGER(iwp) :: j !< |
---|
| 361 | INTEGER(iwp) :: jj !< |
---|
| 362 | INTEGER(iwp) :: k !< |
---|
[1216] | 363 | |
---|
[1682] | 364 | REAL(wp) :: ar(nxl_z:nxr_z,nys_z:nyn_z,1:nz) !< |
---|
[1216] | 365 | |
---|
[1682] | 366 | REAL(wp), DIMENSION(nxl_z:nxr_z,nys_z:nyn_z,0:nz-1) :: ar1 !< |
---|
[1216] | 367 | |
---|
| 368 | ! |
---|
| 369 | !-- Forward substitution |
---|
| 370 | DO k = 0, nz - 1 |
---|
| 371 | DO j = nys_z, nyn_z |
---|
| 372 | DO i = nxl_z, nxr_z |
---|
| 373 | |
---|
| 374 | IF ( k == 0 ) THEN |
---|
| 375 | ar1(i,j,k) = ar(i,j,k+1) |
---|
| 376 | ELSE |
---|
| 377 | ar1(i,j,k) = ar(i,j,k+1) - tri(i,jj,k,2) * ar1(i,j,k-1) |
---|
| 378 | ENDIF |
---|
| 379 | |
---|
| 380 | ENDDO |
---|
| 381 | ENDDO |
---|
| 382 | ENDDO |
---|
| 383 | |
---|
| 384 | ! |
---|
| 385 | !-- Backward substitution |
---|
| 386 | !-- Note, the 1.0E-20 in the denominator is due to avoid divisions |
---|
| 387 | !-- by zero appearing if the pressure bc is set to neumann at the top of |
---|
| 388 | !-- the model domain. |
---|
| 389 | DO k = nz-1, 0, -1 |
---|
| 390 | DO j = nys_z, nyn_z |
---|
| 391 | DO i = nxl_z, nxr_z |
---|
| 392 | |
---|
| 393 | IF ( k == nz-1 ) THEN |
---|
[1342] | 394 | ar(i,j,k+1) = ar1(i,j,k) / ( tri(i,jj,k,1) + 1.0E-20_wp ) |
---|
[1216] | 395 | ELSE |
---|
| 396 | ar(i,j,k+1) = ( ar1(i,j,k) - ddzuw(k,2) * ar(i,j,k+2) ) & |
---|
| 397 | / tri(i,jj,k,1) |
---|
| 398 | ENDIF |
---|
| 399 | ENDDO |
---|
| 400 | ENDDO |
---|
| 401 | ENDDO |
---|
| 402 | |
---|
| 403 | ! |
---|
| 404 | !-- Indices i=0, j=0 correspond to horizontally averaged pressure. |
---|
| 405 | !-- The respective values of ar should be zero at all k-levels if |
---|
| 406 | !-- acceleration of horizontally averaged vertical velocity is zero. |
---|
| 407 | IF ( ibc_p_b == 1 .AND. ibc_p_t == 1 ) THEN |
---|
| 408 | IF ( nys_z == 0 .AND. nxl_z == 0 ) THEN |
---|
| 409 | DO k = 1, nz |
---|
[1342] | 410 | ar(nxl_z,nys_z,k) = 0.0_wp |
---|
[1216] | 411 | ENDDO |
---|
| 412 | ENDIF |
---|
| 413 | ENDIF |
---|
| 414 | |
---|
| 415 | END SUBROUTINE tridia_substi_overlap |
---|
| 416 | |
---|
| 417 | |
---|
[1212] | 418 | !------------------------------------------------------------------------------! |
---|
[1682] | 419 | ! Description: |
---|
| 420 | ! ------------ |
---|
| 421 | !> Splitting of the tridiagonal matrix (Thomas algorithm) |
---|
[1212] | 422 | !------------------------------------------------------------------------------! |
---|
[1682] | 423 | SUBROUTINE split |
---|
[1212] | 424 | |
---|
[1682] | 425 | |
---|
[1320] | 426 | USE arrays_3d, & |
---|
| 427 | ONLY: tri, tric |
---|
[1212] | 428 | |
---|
| 429 | IMPLICIT NONE |
---|
| 430 | |
---|
[1682] | 431 | INTEGER(iwp) :: i !< |
---|
| 432 | INTEGER(iwp) :: j !< |
---|
| 433 | INTEGER(iwp) :: k !< |
---|
[1212] | 434 | ! |
---|
| 435 | !-- Splitting |
---|
| 436 | DO j = nys_z, nyn_z |
---|
| 437 | DO i = nxl_z, nxr_z |
---|
| 438 | tri(i,j,0,1) = tric(i,j,0) |
---|
| 439 | ENDDO |
---|
| 440 | ENDDO |
---|
| 441 | |
---|
| 442 | DO k = 1, nz-1 |
---|
| 443 | DO j = nys_z, nyn_z |
---|
| 444 | DO i = nxl_z, nxr_z |
---|
| 445 | tri(i,j,k,2) = ddzuw(k,1) / tri(i,j,k-1,1) |
---|
| 446 | tri(i,j,k,1) = tric(i,j,k) - ddzuw(k-1,2) * tri(i,j,k,2) |
---|
| 447 | ENDDO |
---|
| 448 | ENDDO |
---|
| 449 | ENDDO |
---|
| 450 | |
---|
| 451 | END SUBROUTINE split |
---|
| 452 | |
---|
| 453 | |
---|
| 454 | !------------------------------------------------------------------------------! |
---|
[1682] | 455 | ! Description: |
---|
| 456 | ! ------------ |
---|
| 457 | !> Solves the linear system of equations for a 1d-decomposition along x (see |
---|
| 458 | !> tridia) |
---|
| 459 | !> |
---|
| 460 | !> @attention when using the intel compilers older than 12.0, array tri must |
---|
| 461 | !> be passed as an argument to the contained subroutines. Otherwise |
---|
| 462 | !> addres faults will occur. This feature can be activated with |
---|
| 463 | !> cpp-switch __intel11 |
---|
| 464 | !> On NEC, tri should not be passed (except for routine substi_1dd) |
---|
| 465 | !> because this causes very bad performance. |
---|
[1212] | 466 | !------------------------------------------------------------------------------! |
---|
[1682] | 467 | |
---|
| 468 | SUBROUTINE tridia_1dd( ddx2, ddy2, nx, ny, j, ar, tri_for_1d ) |
---|
[1212] | 469 | |
---|
[1682] | 470 | |
---|
[1320] | 471 | USE arrays_3d, & |
---|
[2037] | 472 | ONLY: ddzu_pres, ddzw, rho_air, rho_air_zw |
---|
[1212] | 473 | |
---|
[1320] | 474 | USE control_parameters, & |
---|
| 475 | ONLY: ibc_p_b, ibc_p_t |
---|
[1212] | 476 | |
---|
| 477 | IMPLICIT NONE |
---|
| 478 | |
---|
[1682] | 479 | INTEGER(iwp) :: i !< |
---|
| 480 | INTEGER(iwp) :: j !< |
---|
| 481 | INTEGER(iwp) :: k !< |
---|
| 482 | INTEGER(iwp) :: nnyh !< |
---|
| 483 | INTEGER(iwp) :: nx !< |
---|
| 484 | INTEGER(iwp) :: ny !< |
---|
[1212] | 485 | |
---|
[1682] | 486 | REAL(wp) :: ddx2 !< |
---|
| 487 | REAL(wp) :: ddy2 !< |
---|
[1212] | 488 | |
---|
[1682] | 489 | REAL(wp), DIMENSION(0:nx,1:nz) :: ar !< |
---|
| 490 | REAL(wp), DIMENSION(5,0:nx,0:nz-1) :: tri_for_1d !< |
---|
[1212] | 491 | |
---|
| 492 | |
---|
| 493 | nnyh = ( ny + 1 ) / 2 |
---|
| 494 | |
---|
| 495 | ! |
---|
| 496 | !-- Define constant elements of the tridiagonal matrix. |
---|
| 497 | !-- The compiler on SX6 does loop exchange. If 0:nx is a high power of 2, |
---|
| 498 | !-- the exchanged loops create bank conflicts. The following directive |
---|
| 499 | !-- prohibits loop exchange and the loops perform much better. |
---|
| 500 | !CDIR NOLOOPCHG |
---|
| 501 | DO k = 0, nz-1 |
---|
| 502 | DO i = 0,nx |
---|
[2037] | 503 | tri_for_1d(2,i,k) = ddzu_pres(k+1) * ddzw(k+1) * rho_air_zw(k) |
---|
| 504 | tri_for_1d(3,i,k) = ddzu_pres(k+2) * ddzw(k+1) * rho_air_zw(k+1) |
---|
[1212] | 505 | ENDDO |
---|
| 506 | ENDDO |
---|
| 507 | |
---|
| 508 | IF ( j <= nnyh ) THEN |
---|
| 509 | CALL maketri_1dd( j ) |
---|
| 510 | ELSE |
---|
| 511 | CALL maketri_1dd( ny+1-j ) |
---|
| 512 | ENDIF |
---|
[1815] | 513 | |
---|
[1212] | 514 | CALL split_1dd |
---|
[1221] | 515 | CALL substi_1dd( ar, tri_for_1d ) |
---|
[1212] | 516 | |
---|
| 517 | CONTAINS |
---|
| 518 | |
---|
[1682] | 519 | |
---|
| 520 | !------------------------------------------------------------------------------! |
---|
| 521 | ! Description: |
---|
| 522 | ! ------------ |
---|
| 523 | !> computes the i- and j-dependent component of the matrix |
---|
| 524 | !------------------------------------------------------------------------------! |
---|
[1212] | 525 | SUBROUTINE maketri_1dd( j ) |
---|
| 526 | |
---|
| 527 | IMPLICIT NONE |
---|
| 528 | |
---|
[1682] | 529 | INTEGER(iwp) :: i !< |
---|
| 530 | INTEGER(iwp) :: j !< |
---|
| 531 | INTEGER(iwp) :: k !< |
---|
| 532 | INTEGER(iwp) :: nnxh !< |
---|
[1212] | 533 | |
---|
[1682] | 534 | REAL(wp) :: a !< |
---|
| 535 | REAL(wp) :: c !< |
---|
[1212] | 536 | |
---|
[1682] | 537 | REAL(wp), DIMENSION(0:nx) :: l !< |
---|
[1320] | 538 | |
---|
[1212] | 539 | |
---|
| 540 | nnxh = ( nx + 1 ) / 2 |
---|
| 541 | ! |
---|
| 542 | !-- Provide the tridiagonal matrix for solution of the Poisson equation in |
---|
| 543 | !-- Fourier space. The coefficients are computed following the method of |
---|
| 544 | !-- Schmidt et al. (DFVLR-Mitteilung 84-15), which departs from Stephan |
---|
| 545 | !-- Siano's original version by discretizing the Poisson equation, |
---|
| 546 | !-- before it is Fourier-transformed |
---|
| 547 | DO i = 0, nx |
---|
| 548 | IF ( i >= 0 .AND. i <= nnxh ) THEN |
---|
[1342] | 549 | l(i) = 2.0_wp * ( 1.0_wp - COS( ( 2.0_wp * pi * i ) / & |
---|
| 550 | REAL( nx+1, KIND=wp ) ) ) * ddx2 + & |
---|
| 551 | 2.0_wp * ( 1.0_wp - COS( ( 2.0_wp * pi * j ) / & |
---|
| 552 | REAL( ny+1, KIND=wp ) ) ) * ddy2 |
---|
[1212] | 553 | ELSE |
---|
[1342] | 554 | l(i) = 2.0_wp * ( 1.0_wp - COS( ( 2.0_wp * pi * ( nx+1-i ) ) / & |
---|
| 555 | REAL( nx+1, KIND=wp ) ) ) * ddx2 + & |
---|
| 556 | 2.0_wp * ( 1.0_wp - COS( ( 2.0_wp * pi * j ) / & |
---|
| 557 | REAL( ny+1, KIND=wp ) ) ) * ddy2 |
---|
[1212] | 558 | ENDIF |
---|
| 559 | ENDDO |
---|
| 560 | |
---|
| 561 | DO k = 0, nz-1 |
---|
| 562 | DO i = 0, nx |
---|
[2037] | 563 | a = -1.0_wp * ddzu_pres(k+2) * ddzw(k+1) * rho_air_zw(k+1) |
---|
| 564 | c = -1.0_wp * ddzu_pres(k+1) * ddzw(k+1) * rho_air_zw(k) |
---|
| 565 | tri_for_1d(1,i,k) = a + c - l(i) * rho_air(k+1) |
---|
[1212] | 566 | ENDDO |
---|
| 567 | ENDDO |
---|
| 568 | IF ( ibc_p_b == 1 ) THEN |
---|
| 569 | DO i = 0, nx |
---|
[1221] | 570 | tri_for_1d(1,i,0) = tri_for_1d(1,i,0) + tri_for_1d(2,i,0) |
---|
[1212] | 571 | ENDDO |
---|
| 572 | ENDIF |
---|
| 573 | IF ( ibc_p_t == 1 ) THEN |
---|
| 574 | DO i = 0, nx |
---|
[1221] | 575 | tri_for_1d(1,i,nz-1) = tri_for_1d(1,i,nz-1) + tri_for_1d(3,i,nz-1) |
---|
[1212] | 576 | ENDDO |
---|
| 577 | ENDIF |
---|
| 578 | |
---|
| 579 | END SUBROUTINE maketri_1dd |
---|
| 580 | |
---|
| 581 | |
---|
[1682] | 582 | !------------------------------------------------------------------------------! |
---|
| 583 | ! Description: |
---|
| 584 | ! ------------ |
---|
| 585 | !> Splitting of the tridiagonal matrix (Thomas algorithm) |
---|
| 586 | !------------------------------------------------------------------------------! |
---|
[1212] | 587 | SUBROUTINE split_1dd |
---|
| 588 | |
---|
| 589 | IMPLICIT NONE |
---|
| 590 | |
---|
[1682] | 591 | INTEGER(iwp) :: i !< |
---|
| 592 | INTEGER(iwp) :: k !< |
---|
[1212] | 593 | |
---|
| 594 | |
---|
| 595 | ! |
---|
| 596 | !-- Splitting |
---|
| 597 | DO i = 0, nx |
---|
[1221] | 598 | tri_for_1d(4,i,0) = tri_for_1d(1,i,0) |
---|
[1212] | 599 | ENDDO |
---|
| 600 | DO k = 1, nz-1 |
---|
| 601 | DO i = 0, nx |
---|
[1221] | 602 | tri_for_1d(5,i,k) = tri_for_1d(2,i,k) / tri_for_1d(4,i,k-1) |
---|
| 603 | tri_for_1d(4,i,k) = tri_for_1d(1,i,k) - tri_for_1d(3,i,k-1) * tri_for_1d(5,i,k) |
---|
[1212] | 604 | ENDDO |
---|
| 605 | ENDDO |
---|
| 606 | |
---|
| 607 | END SUBROUTINE split_1dd |
---|
| 608 | |
---|
| 609 | |
---|
| 610 | !------------------------------------------------------------------------------! |
---|
[1682] | 611 | ! Description: |
---|
| 612 | ! ------------ |
---|
| 613 | !> Substitution (Forward and Backward) (Thomas algorithm) |
---|
[1212] | 614 | !------------------------------------------------------------------------------! |
---|
[1682] | 615 | SUBROUTINE substi_1dd( ar, tri_for_1d ) |
---|
[1212] | 616 | |
---|
[1682] | 617 | |
---|
[1212] | 618 | IMPLICIT NONE |
---|
| 619 | |
---|
[1682] | 620 | INTEGER(iwp) :: i !< |
---|
| 621 | INTEGER(iwp) :: k !< |
---|
[1212] | 622 | |
---|
[1682] | 623 | REAL(wp), DIMENSION(0:nx,nz) :: ar !< |
---|
| 624 | REAL(wp), DIMENSION(0:nx,0:nz-1) :: ar1 !< |
---|
| 625 | REAL(wp), DIMENSION(5,0:nx,0:nz-1) :: tri_for_1d !< |
---|
[1212] | 626 | |
---|
| 627 | ! |
---|
| 628 | !-- Forward substitution |
---|
| 629 | DO i = 0, nx |
---|
| 630 | ar1(i,0) = ar(i,1) |
---|
| 631 | ENDDO |
---|
| 632 | DO k = 1, nz-1 |
---|
| 633 | DO i = 0, nx |
---|
[1221] | 634 | ar1(i,k) = ar(i,k+1) - tri_for_1d(5,i,k) * ar1(i,k-1) |
---|
[1212] | 635 | ENDDO |
---|
| 636 | ENDDO |
---|
| 637 | |
---|
| 638 | ! |
---|
| 639 | !-- Backward substitution |
---|
| 640 | !-- Note, the add of 1.0E-20 in the denominator is due to avoid divisions |
---|
| 641 | !-- by zero appearing if the pressure bc is set to neumann at the top of |
---|
| 642 | !-- the model domain. |
---|
| 643 | DO i = 0, nx |
---|
[1342] | 644 | ar(i,nz) = ar1(i,nz-1) / ( tri_for_1d(4,i,nz-1) + 1.0E-20_wp ) |
---|
[1212] | 645 | ENDDO |
---|
| 646 | DO k = nz-2, 0, -1 |
---|
| 647 | DO i = 0, nx |
---|
[1221] | 648 | ar(i,k+1) = ( ar1(i,k) - tri_for_1d(3,i,k) * ar(i,k+2) ) & |
---|
| 649 | / tri_for_1d(4,i,k) |
---|
[1212] | 650 | ENDDO |
---|
| 651 | ENDDO |
---|
| 652 | |
---|
| 653 | ! |
---|
| 654 | !-- Indices i=0, j=0 correspond to horizontally averaged pressure. |
---|
| 655 | !-- The respective values of ar should be zero at all k-levels if |
---|
| 656 | !-- acceleration of horizontally averaged vertical velocity is zero. |
---|
| 657 | IF ( ibc_p_b == 1 .AND. ibc_p_t == 1 ) THEN |
---|
| 658 | IF ( j == 0 ) THEN |
---|
| 659 | DO k = 1, nz |
---|
[1342] | 660 | ar(0,k) = 0.0_wp |
---|
[1212] | 661 | ENDDO |
---|
| 662 | ENDIF |
---|
| 663 | ENDIF |
---|
| 664 | |
---|
| 665 | END SUBROUTINE substi_1dd |
---|
| 666 | |
---|
| 667 | END SUBROUTINE tridia_1dd |
---|
| 668 | |
---|
| 669 | |
---|
| 670 | END MODULE tridia_solver |
---|