1 | MODULE tridia_solver |
---|
2 | |
---|
3 | !--------------------------------------------------------------------------------! |
---|
4 | ! This file is part of PALM. |
---|
5 | ! |
---|
6 | ! PALM is free software: you can redistribute it and/or modify it under the terms |
---|
7 | ! of the GNU General Public License as published by the Free Software Foundation, |
---|
8 | ! either version 3 of the License, or (at your option) any later version. |
---|
9 | ! |
---|
10 | ! PALM is distributed in the hope that it will be useful, but WITHOUT ANY |
---|
11 | ! WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR |
---|
12 | ! A PARTICULAR PURPOSE. See the GNU General Public License for more details. |
---|
13 | ! |
---|
14 | ! You should have received a copy of the GNU General Public License along with |
---|
15 | ! PALM. If not, see <http://www.gnu.org/licenses/>. |
---|
16 | ! |
---|
17 | ! Copyright 1997-2014 Leibniz Universitaet Hannover |
---|
18 | !--------------------------------------------------------------------------------! |
---|
19 | ! |
---|
20 | ! Current revisions: |
---|
21 | ! ------------------ |
---|
22 | ! |
---|
23 | ! |
---|
24 | ! Former revisions: |
---|
25 | ! ----------------- |
---|
26 | ! $Id: tridia_solver.f90 1407 2014-05-16 14:06:08Z knoop $ |
---|
27 | ! |
---|
28 | ! 1406 2014-05-16 13:47:01Z raasch |
---|
29 | ! bugfix for pgi 14.4: declare create moved after array declaration |
---|
30 | ! |
---|
31 | ! 1342 2014-03-26 17:04:47Z kanani |
---|
32 | ! REAL constants defined as wp-kind |
---|
33 | ! |
---|
34 | ! 1322 2014-03-20 16:38:49Z raasch |
---|
35 | ! REAL functions provided with KIND-attribute |
---|
36 | ! |
---|
37 | ! 1320 2014-03-20 08:40:49Z raasch |
---|
38 | ! ONLY-attribute added to USE-statements, |
---|
39 | ! kind-parameters added to all INTEGER and REAL declaration statements, |
---|
40 | ! kinds are defined in new module kinds, |
---|
41 | ! old module precision_kind is removed, |
---|
42 | ! revision history before 2012 removed, |
---|
43 | ! comment fields (!:) to be used for variable explanations added to |
---|
44 | ! all variable declaration statements |
---|
45 | ! |
---|
46 | ! 1257 2013-11-08 15:18:40Z raasch |
---|
47 | ! openacc loop and loop vector clauses removed, declare create moved after |
---|
48 | ! the FORTRAN declaration statement |
---|
49 | ! |
---|
50 | ! 1221 2013-09-10 08:59:13Z raasch |
---|
51 | ! dummy argument tri in 1d-routines replaced by tri_for_1d because of name |
---|
52 | ! conflict with arry tri in module arrays_3d |
---|
53 | ! |
---|
54 | ! 1216 2013-08-26 09:31:42Z raasch |
---|
55 | ! +tridia_substi_overlap for handling overlapping fft / transposition |
---|
56 | ! |
---|
57 | ! 1212 2013-08-15 08:46:27Z raasch |
---|
58 | ! Initial revision. |
---|
59 | ! Routines have been moved to seperate module from former file poisfft to here. |
---|
60 | ! The tridiagonal matrix coefficients of array tri are calculated only once at |
---|
61 | ! the beginning, i.e. routine split is called within tridia_init. |
---|
62 | ! |
---|
63 | ! |
---|
64 | ! Description: |
---|
65 | ! ------------ |
---|
66 | ! solves the linear system of equations: |
---|
67 | ! |
---|
68 | ! -(4 pi^2(i^2/(dx^2*nnx^2)+j^2/(dy^2*nny^2))+ |
---|
69 | ! 1/(dzu(k)*dzw(k))+1/(dzu(k-1)*dzw(k)))*p(i,j,k)+ |
---|
70 | ! 1/(dzu(k)*dzw(k))*p(i,j,k+1)+1/(dzu(k-1)*dzw(k))*p(i,j,k-1)=d(i,j,k) |
---|
71 | ! |
---|
72 | ! by using the Thomas algorithm |
---|
73 | !------------------------------------------------------------------------------! |
---|
74 | |
---|
75 | USE indices, & |
---|
76 | ONLY: nx, ny, nz |
---|
77 | |
---|
78 | USE kinds |
---|
79 | |
---|
80 | USE transpose_indices, & |
---|
81 | ONLY: nxl_z, nyn_z, nxr_z, nys_z |
---|
82 | |
---|
83 | IMPLICIT NONE |
---|
84 | |
---|
85 | REAL(wp), DIMENSION(:,:), ALLOCATABLE :: ddzuw !: |
---|
86 | |
---|
87 | PRIVATE |
---|
88 | |
---|
89 | INTERFACE tridia_substi |
---|
90 | MODULE PROCEDURE tridia_substi |
---|
91 | END INTERFACE tridia_substi |
---|
92 | |
---|
93 | INTERFACE tridia_substi_overlap |
---|
94 | MODULE PROCEDURE tridia_substi_overlap |
---|
95 | END INTERFACE tridia_substi_overlap |
---|
96 | |
---|
97 | PUBLIC tridia_substi, tridia_substi_overlap, tridia_init, tridia_1dd |
---|
98 | |
---|
99 | CONTAINS |
---|
100 | |
---|
101 | |
---|
102 | SUBROUTINE tridia_init |
---|
103 | |
---|
104 | USE arrays_3d, & |
---|
105 | ONLY: ddzu_pres, ddzw |
---|
106 | |
---|
107 | USE kinds |
---|
108 | |
---|
109 | IMPLICIT NONE |
---|
110 | |
---|
111 | INTEGER(iwp) :: k !: |
---|
112 | |
---|
113 | ALLOCATE( ddzuw(0:nz-1,3) ) |
---|
114 | |
---|
115 | DO k = 0, nz-1 |
---|
116 | ddzuw(k,1) = ddzu_pres(k+1) * ddzw(k+1) |
---|
117 | ddzuw(k,2) = ddzu_pres(k+2) * ddzw(k+1) |
---|
118 | ddzuw(k,3) = -1.0_wp * & |
---|
119 | ( ddzu_pres(k+2) * ddzw(k+1) + ddzu_pres(k+1) * ddzw(k+1) ) |
---|
120 | ENDDO |
---|
121 | ! |
---|
122 | !-- Calculate constant coefficients of the tridiagonal matrix |
---|
123 | #if ! defined ( __check ) |
---|
124 | CALL maketri |
---|
125 | CALL split |
---|
126 | #endif |
---|
127 | |
---|
128 | END SUBROUTINE tridia_init |
---|
129 | |
---|
130 | |
---|
131 | SUBROUTINE maketri |
---|
132 | |
---|
133 | !------------------------------------------------------------------------------! |
---|
134 | ! Computes the i- and j-dependent component of the matrix |
---|
135 | !------------------------------------------------------------------------------! |
---|
136 | |
---|
137 | USE arrays_3d, & |
---|
138 | ONLY: tric |
---|
139 | |
---|
140 | USE constants, & |
---|
141 | ONLY: pi |
---|
142 | |
---|
143 | USE control_parameters, & |
---|
144 | ONLY: ibc_p_b, ibc_p_t |
---|
145 | |
---|
146 | USE grid_variables, & |
---|
147 | ONLY: dx, dy |
---|
148 | |
---|
149 | |
---|
150 | USE kinds |
---|
151 | |
---|
152 | IMPLICIT NONE |
---|
153 | |
---|
154 | INTEGER(iwp) :: i !: |
---|
155 | INTEGER(iwp) :: j !: |
---|
156 | INTEGER(iwp) :: k !: |
---|
157 | INTEGER(iwp) :: nnxh !: |
---|
158 | INTEGER(iwp) :: nnyh !: |
---|
159 | |
---|
160 | REAL(wp) :: ll(nxl_z:nxr_z,nys_z:nyn_z) !: |
---|
161 | !$acc declare create( ll ) |
---|
162 | |
---|
163 | |
---|
164 | nnxh = ( nx + 1 ) / 2 |
---|
165 | nnyh = ( ny + 1 ) / 2 |
---|
166 | |
---|
167 | ! |
---|
168 | !-- Provide the constant coefficients of the tridiagonal matrix for solution |
---|
169 | !-- of the Poisson equation in Fourier space. |
---|
170 | !-- The coefficients are computed following the method of |
---|
171 | !-- Schmidt et al. (DFVLR-Mitteilung 84-15), which departs from Stephan |
---|
172 | !-- Siano's original version by discretizing the Poisson equation, |
---|
173 | !-- before it is Fourier-transformed. |
---|
174 | |
---|
175 | !$acc kernels present( tric ) |
---|
176 | DO j = nys_z, nyn_z |
---|
177 | DO i = nxl_z, nxr_z |
---|
178 | IF ( j >= 0 .AND. j <= nnyh ) THEN |
---|
179 | IF ( i >= 0 .AND. i <= nnxh ) THEN |
---|
180 | ll(i,j) = 2.0_wp * ( 1.0_wp - COS( ( 2.0_wp * pi * i ) / & |
---|
181 | REAL( nx+1, KIND=wp ) ) ) / ( dx * dx ) + & |
---|
182 | 2.0_wp * ( 1.0_wp - COS( ( 2.0_wp * pi * j ) / & |
---|
183 | REAL( ny+1, KIND=wp ) ) ) / ( dy * dy ) |
---|
184 | ELSE |
---|
185 | ll(i,j) = 2.0_wp * ( 1.0_wp - COS( ( 2.0_wp * pi * ( nx+1-i ) ) / & |
---|
186 | REAL( nx+1, KIND=wp ) ) ) / ( dx * dx ) + & |
---|
187 | 2.0_wp * ( 1.0_wp - COS( ( 2.0_wp * pi * j ) / & |
---|
188 | REAL( ny+1, KIND=wp ) ) ) / ( dy * dy ) |
---|
189 | ENDIF |
---|
190 | ELSE |
---|
191 | IF ( i >= 0 .AND. i <= nnxh ) THEN |
---|
192 | ll(i,j) = 2.0_wp * ( 1.0_wp - COS( ( 2.0_wp * pi * i ) / & |
---|
193 | REAL( nx+1, KIND=wp ) ) ) / ( dx * dx ) + & |
---|
194 | 2.0_wp * ( 1.0_wp - COS( ( 2.0_wp * pi * ( ny+1-j ) ) / & |
---|
195 | REAL( ny+1, KIND=wp ) ) ) / ( dy * dy ) |
---|
196 | ELSE |
---|
197 | ll(i,j) = 2.0_wp * ( 1.0_wp - COS( ( 2.0_wp * pi * ( nx+1-i ) ) / & |
---|
198 | REAL( nx+1, KIND=wp ) ) ) / ( dx * dx ) + & |
---|
199 | 2.0_wp * ( 1.0_wp - COS( ( 2.0_wp * pi * ( ny+1-j ) ) / & |
---|
200 | REAL( ny+1, KIND=wp ) ) ) / ( dy * dy ) |
---|
201 | ENDIF |
---|
202 | ENDIF |
---|
203 | ENDDO |
---|
204 | ENDDO |
---|
205 | |
---|
206 | DO k = 0, nz-1 |
---|
207 | DO j = nys_z, nyn_z |
---|
208 | DO i = nxl_z, nxr_z |
---|
209 | tric(i,j,k) = ddzuw(k,3) - ll(i,j) |
---|
210 | ENDDO |
---|
211 | ENDDO |
---|
212 | ENDDO |
---|
213 | !$acc end kernels |
---|
214 | |
---|
215 | IF ( ibc_p_b == 1 ) THEN |
---|
216 | !$acc kernels present( tric ) |
---|
217 | DO j = nys_z, nyn_z |
---|
218 | DO i = nxl_z, nxr_z |
---|
219 | tric(i,j,0) = tric(i,j,0) + ddzuw(0,1) |
---|
220 | ENDDO |
---|
221 | ENDDO |
---|
222 | !$acc end kernels |
---|
223 | ENDIF |
---|
224 | IF ( ibc_p_t == 1 ) THEN |
---|
225 | !$acc kernels present( tric ) |
---|
226 | DO j = nys_z, nyn_z |
---|
227 | DO i = nxl_z, nxr_z |
---|
228 | tric(i,j,nz-1) = tric(i,j,nz-1) + ddzuw(nz-1,2) |
---|
229 | ENDDO |
---|
230 | ENDDO |
---|
231 | !$acc end kernels |
---|
232 | ENDIF |
---|
233 | |
---|
234 | END SUBROUTINE maketri |
---|
235 | |
---|
236 | |
---|
237 | SUBROUTINE tridia_substi( ar ) |
---|
238 | |
---|
239 | !------------------------------------------------------------------------------! |
---|
240 | ! Substitution (Forward and Backward) (Thomas algorithm) |
---|
241 | !------------------------------------------------------------------------------! |
---|
242 | |
---|
243 | USE arrays_3d, & |
---|
244 | ONLY: tri |
---|
245 | |
---|
246 | USE control_parameters, & |
---|
247 | ONLY: ibc_p_b, ibc_p_t |
---|
248 | |
---|
249 | USE kinds |
---|
250 | |
---|
251 | IMPLICIT NONE |
---|
252 | |
---|
253 | INTEGER(iwp) :: i !: |
---|
254 | INTEGER(iwp) :: j !: |
---|
255 | INTEGER(iwp) :: k !: |
---|
256 | |
---|
257 | REAL(wp) :: ar(nxl_z:nxr_z,nys_z:nyn_z,1:nz) !: |
---|
258 | |
---|
259 | REAL(wp), DIMENSION(nxl_z:nxr_z,nys_z:nyn_z,0:nz-1) :: ar1 !: |
---|
260 | !$acc declare create( ar1 ) |
---|
261 | |
---|
262 | ! |
---|
263 | !-- Forward substitution |
---|
264 | DO k = 0, nz - 1 |
---|
265 | !$acc kernels present( ar, tri ) |
---|
266 | DO j = nys_z, nyn_z |
---|
267 | DO i = nxl_z, nxr_z |
---|
268 | |
---|
269 | IF ( k == 0 ) THEN |
---|
270 | ar1(i,j,k) = ar(i,j,k+1) |
---|
271 | ELSE |
---|
272 | ar1(i,j,k) = ar(i,j,k+1) - tri(i,j,k,2) * ar1(i,j,k-1) |
---|
273 | ENDIF |
---|
274 | |
---|
275 | ENDDO |
---|
276 | ENDDO |
---|
277 | !$acc end kernels |
---|
278 | ENDDO |
---|
279 | |
---|
280 | ! |
---|
281 | !-- Backward substitution |
---|
282 | !-- Note, the 1.0E-20 in the denominator is due to avoid divisions |
---|
283 | !-- by zero appearing if the pressure bc is set to neumann at the top of |
---|
284 | !-- the model domain. |
---|
285 | DO k = nz-1, 0, -1 |
---|
286 | !$acc kernels present( ar, tri ) |
---|
287 | DO j = nys_z, nyn_z |
---|
288 | DO i = nxl_z, nxr_z |
---|
289 | |
---|
290 | IF ( k == nz-1 ) THEN |
---|
291 | ar(i,j,k+1) = ar1(i,j,k) / ( tri(i,j,k,1) + 1.0E-20_wp ) |
---|
292 | ELSE |
---|
293 | ar(i,j,k+1) = ( ar1(i,j,k) - ddzuw(k,2) * ar(i,j,k+2) ) & |
---|
294 | / tri(i,j,k,1) |
---|
295 | ENDIF |
---|
296 | ENDDO |
---|
297 | ENDDO |
---|
298 | !$acc end kernels |
---|
299 | ENDDO |
---|
300 | |
---|
301 | ! |
---|
302 | !-- Indices i=0, j=0 correspond to horizontally averaged pressure. |
---|
303 | !-- The respective values of ar should be zero at all k-levels if |
---|
304 | !-- acceleration of horizontally averaged vertical velocity is zero. |
---|
305 | IF ( ibc_p_b == 1 .AND. ibc_p_t == 1 ) THEN |
---|
306 | IF ( nys_z == 0 .AND. nxl_z == 0 ) THEN |
---|
307 | !$acc kernels loop present( ar ) |
---|
308 | DO k = 1, nz |
---|
309 | ar(nxl_z,nys_z,k) = 0.0_wp |
---|
310 | ENDDO |
---|
311 | !$acc end kernels loop |
---|
312 | ENDIF |
---|
313 | ENDIF |
---|
314 | |
---|
315 | END SUBROUTINE tridia_substi |
---|
316 | |
---|
317 | |
---|
318 | SUBROUTINE tridia_substi_overlap( ar, jj ) |
---|
319 | |
---|
320 | !------------------------------------------------------------------------------! |
---|
321 | ! Substitution (Forward and Backward) (Thomas algorithm) |
---|
322 | !------------------------------------------------------------------------------! |
---|
323 | |
---|
324 | USE arrays_3d, & |
---|
325 | ONLY: tri |
---|
326 | |
---|
327 | USE control_parameters, & |
---|
328 | ONLY: ibc_p_b, ibc_p_t |
---|
329 | |
---|
330 | USE kinds |
---|
331 | |
---|
332 | IMPLICIT NONE |
---|
333 | |
---|
334 | INTEGER(iwp) :: i !: |
---|
335 | INTEGER(iwp) :: j !: |
---|
336 | INTEGER(iwp) :: jj !: |
---|
337 | INTEGER(iwp) :: k !: |
---|
338 | |
---|
339 | REAL(wp) :: ar(nxl_z:nxr_z,nys_z:nyn_z,1:nz) !: |
---|
340 | |
---|
341 | REAL(wp), DIMENSION(nxl_z:nxr_z,nys_z:nyn_z,0:nz-1) :: ar1 !: |
---|
342 | !$acc declare create( ar1 ) |
---|
343 | |
---|
344 | ! |
---|
345 | !-- Forward substitution |
---|
346 | DO k = 0, nz - 1 |
---|
347 | !$acc kernels present( ar, tri ) |
---|
348 | !$acc loop |
---|
349 | DO j = nys_z, nyn_z |
---|
350 | DO i = nxl_z, nxr_z |
---|
351 | |
---|
352 | IF ( k == 0 ) THEN |
---|
353 | ar1(i,j,k) = ar(i,j,k+1) |
---|
354 | ELSE |
---|
355 | ar1(i,j,k) = ar(i,j,k+1) - tri(i,jj,k,2) * ar1(i,j,k-1) |
---|
356 | ENDIF |
---|
357 | |
---|
358 | ENDDO |
---|
359 | ENDDO |
---|
360 | !$acc end kernels |
---|
361 | ENDDO |
---|
362 | |
---|
363 | ! |
---|
364 | !-- Backward substitution |
---|
365 | !-- Note, the 1.0E-20 in the denominator is due to avoid divisions |
---|
366 | !-- by zero appearing if the pressure bc is set to neumann at the top of |
---|
367 | !-- the model domain. |
---|
368 | DO k = nz-1, 0, -1 |
---|
369 | !$acc kernels present( ar, tri ) |
---|
370 | !$acc loop |
---|
371 | DO j = nys_z, nyn_z |
---|
372 | DO i = nxl_z, nxr_z |
---|
373 | |
---|
374 | IF ( k == nz-1 ) THEN |
---|
375 | ar(i,j,k+1) = ar1(i,j,k) / ( tri(i,jj,k,1) + 1.0E-20_wp ) |
---|
376 | ELSE |
---|
377 | ar(i,j,k+1) = ( ar1(i,j,k) - ddzuw(k,2) * ar(i,j,k+2) ) & |
---|
378 | / tri(i,jj,k,1) |
---|
379 | ENDIF |
---|
380 | ENDDO |
---|
381 | ENDDO |
---|
382 | !$acc end kernels |
---|
383 | ENDDO |
---|
384 | |
---|
385 | ! |
---|
386 | !-- Indices i=0, j=0 correspond to horizontally averaged pressure. |
---|
387 | !-- The respective values of ar should be zero at all k-levels if |
---|
388 | !-- acceleration of horizontally averaged vertical velocity is zero. |
---|
389 | IF ( ibc_p_b == 1 .AND. ibc_p_t == 1 ) THEN |
---|
390 | IF ( nys_z == 0 .AND. nxl_z == 0 ) THEN |
---|
391 | !$acc kernels loop present( ar ) |
---|
392 | DO k = 1, nz |
---|
393 | ar(nxl_z,nys_z,k) = 0.0_wp |
---|
394 | ENDDO |
---|
395 | ENDIF |
---|
396 | ENDIF |
---|
397 | |
---|
398 | END SUBROUTINE tridia_substi_overlap |
---|
399 | |
---|
400 | |
---|
401 | SUBROUTINE split |
---|
402 | |
---|
403 | !------------------------------------------------------------------------------! |
---|
404 | ! Splitting of the tridiagonal matrix (Thomas algorithm) |
---|
405 | !------------------------------------------------------------------------------! |
---|
406 | |
---|
407 | USE arrays_3d, & |
---|
408 | ONLY: tri, tric |
---|
409 | |
---|
410 | USE kinds |
---|
411 | |
---|
412 | IMPLICIT NONE |
---|
413 | |
---|
414 | INTEGER(iwp) :: i !: |
---|
415 | INTEGER(iwp) :: j !: |
---|
416 | INTEGER(iwp) :: k !: |
---|
417 | ! |
---|
418 | !-- Splitting |
---|
419 | !$acc kernels present( tri, tric ) |
---|
420 | !$acc loop |
---|
421 | DO j = nys_z, nyn_z |
---|
422 | !$acc loop vector( 32 ) |
---|
423 | DO i = nxl_z, nxr_z |
---|
424 | tri(i,j,0,1) = tric(i,j,0) |
---|
425 | ENDDO |
---|
426 | ENDDO |
---|
427 | !$acc end kernels |
---|
428 | |
---|
429 | DO k = 1, nz-1 |
---|
430 | !$acc kernels present( tri, tric ) |
---|
431 | !$acc loop |
---|
432 | DO j = nys_z, nyn_z |
---|
433 | !$acc loop vector( 32 ) |
---|
434 | DO i = nxl_z, nxr_z |
---|
435 | tri(i,j,k,2) = ddzuw(k,1) / tri(i,j,k-1,1) |
---|
436 | tri(i,j,k,1) = tric(i,j,k) - ddzuw(k-1,2) * tri(i,j,k,2) |
---|
437 | ENDDO |
---|
438 | ENDDO |
---|
439 | !$acc end kernels |
---|
440 | ENDDO |
---|
441 | |
---|
442 | END SUBROUTINE split |
---|
443 | |
---|
444 | |
---|
445 | SUBROUTINE tridia_1dd( ddx2, ddy2, nx, ny, j, ar, tri_for_1d ) |
---|
446 | |
---|
447 | !------------------------------------------------------------------------------! |
---|
448 | ! Solves the linear system of equations for a 1d-decomposition along x (see |
---|
449 | ! tridia) |
---|
450 | ! |
---|
451 | ! Attention: when using the intel compilers older than 12.0, array tri must |
---|
452 | ! be passed as an argument to the contained subroutines. Otherwise |
---|
453 | ! addres faults will occur. This feature can be activated with |
---|
454 | ! cpp-switch __intel11 |
---|
455 | ! On NEC, tri should not be passed (except for routine substi_1dd) |
---|
456 | ! because this causes very bad performance. |
---|
457 | !------------------------------------------------------------------------------! |
---|
458 | |
---|
459 | USE arrays_3d, & |
---|
460 | ONLY: ddzu_pres, ddzw |
---|
461 | |
---|
462 | USE control_parameters, & |
---|
463 | ONLY: ibc_p_b, ibc_p_t |
---|
464 | |
---|
465 | USE kinds |
---|
466 | |
---|
467 | IMPLICIT NONE |
---|
468 | |
---|
469 | INTEGER(iwp) :: i !: |
---|
470 | INTEGER(iwp) :: j !: |
---|
471 | INTEGER(iwp) :: k !: |
---|
472 | INTEGER(iwp) :: nnyh !: |
---|
473 | INTEGER(iwp) :: nx !: |
---|
474 | INTEGER(iwp) :: ny !: |
---|
475 | INTEGER(iwp) :: omp_get_thread_num !: |
---|
476 | INTEGER(iwp) :: tn !: |
---|
477 | |
---|
478 | REAL(wp) :: ddx2 !: |
---|
479 | REAL(wp) :: ddy2 !: |
---|
480 | |
---|
481 | REAL(wp), DIMENSION(0:nx,1:nz) :: ar !: |
---|
482 | REAL(wp), DIMENSION(5,0:nx,0:nz-1) :: tri_for_1d !: |
---|
483 | |
---|
484 | |
---|
485 | nnyh = ( ny + 1 ) / 2 |
---|
486 | |
---|
487 | ! |
---|
488 | !-- Define constant elements of the tridiagonal matrix. |
---|
489 | !-- The compiler on SX6 does loop exchange. If 0:nx is a high power of 2, |
---|
490 | !-- the exchanged loops create bank conflicts. The following directive |
---|
491 | !-- prohibits loop exchange and the loops perform much better. |
---|
492 | ! tn = omp_get_thread_num() |
---|
493 | ! WRITE( 120+tn, * ) '+++ id=',myid,' nx=',nx,' thread=', omp_get_thread_num() |
---|
494 | ! CALL local_flush( 120+tn ) |
---|
495 | !CDIR NOLOOPCHG |
---|
496 | DO k = 0, nz-1 |
---|
497 | DO i = 0,nx |
---|
498 | tri_for_1d(2,i,k) = ddzu_pres(k+1) * ddzw(k+1) |
---|
499 | tri_for_1d(3,i,k) = ddzu_pres(k+2) * ddzw(k+1) |
---|
500 | ENDDO |
---|
501 | ENDDO |
---|
502 | ! WRITE( 120+tn, * ) '+++ id=',myid,' end of first tridia loop thread=', omp_get_thread_num() |
---|
503 | ! CALL local_flush( 120+tn ) |
---|
504 | |
---|
505 | IF ( j <= nnyh ) THEN |
---|
506 | #if defined( __intel11 ) |
---|
507 | CALL maketri_1dd( j, tri_for_1d ) |
---|
508 | #else |
---|
509 | CALL maketri_1dd( j ) |
---|
510 | #endif |
---|
511 | ELSE |
---|
512 | #if defined( __intel11 ) |
---|
513 | CALL maketri_1dd( ny+1-j, tri_for_1d ) |
---|
514 | #else |
---|
515 | CALL maketri_1dd( ny+1-j ) |
---|
516 | #endif |
---|
517 | ENDIF |
---|
518 | #if defined( __intel11 ) |
---|
519 | CALL split_1dd( tri_for_1d ) |
---|
520 | #else |
---|
521 | CALL split_1dd |
---|
522 | #endif |
---|
523 | CALL substi_1dd( ar, tri_for_1d ) |
---|
524 | |
---|
525 | CONTAINS |
---|
526 | |
---|
527 | #if defined( __intel11 ) |
---|
528 | SUBROUTINE maketri_1dd( j, tri_for_1d ) |
---|
529 | #else |
---|
530 | SUBROUTINE maketri_1dd( j ) |
---|
531 | #endif |
---|
532 | |
---|
533 | !------------------------------------------------------------------------------! |
---|
534 | ! computes the i- and j-dependent component of the matrix |
---|
535 | !------------------------------------------------------------------------------! |
---|
536 | |
---|
537 | USE constants, & |
---|
538 | ONLY: pi |
---|
539 | |
---|
540 | USE kinds |
---|
541 | |
---|
542 | IMPLICIT NONE |
---|
543 | |
---|
544 | INTEGER(iwp) :: i !: |
---|
545 | INTEGER(iwp) :: j !: |
---|
546 | INTEGER(iwp) :: k !: |
---|
547 | INTEGER(iwp) :: nnxh !: |
---|
548 | |
---|
549 | REAL(wp) :: a !: |
---|
550 | REAL(wp) :: c !: |
---|
551 | |
---|
552 | REAL(wp), DIMENSION(0:nx) :: l !: |
---|
553 | |
---|
554 | #if defined( __intel11 ) |
---|
555 | REAL(wp), DIMENSION(5,0:nx,0:nz-1) :: tri_for_1d !: |
---|
556 | #endif |
---|
557 | |
---|
558 | |
---|
559 | nnxh = ( nx + 1 ) / 2 |
---|
560 | ! |
---|
561 | !-- Provide the tridiagonal matrix for solution of the Poisson equation in |
---|
562 | !-- Fourier space. The coefficients are computed following the method of |
---|
563 | !-- Schmidt et al. (DFVLR-Mitteilung 84-15), which departs from Stephan |
---|
564 | !-- Siano's original version by discretizing the Poisson equation, |
---|
565 | !-- before it is Fourier-transformed |
---|
566 | DO i = 0, nx |
---|
567 | IF ( i >= 0 .AND. i <= nnxh ) THEN |
---|
568 | l(i) = 2.0_wp * ( 1.0_wp - COS( ( 2.0_wp * pi * i ) / & |
---|
569 | REAL( nx+1, KIND=wp ) ) ) * ddx2 + & |
---|
570 | 2.0_wp * ( 1.0_wp - COS( ( 2.0_wp * pi * j ) / & |
---|
571 | REAL( ny+1, KIND=wp ) ) ) * ddy2 |
---|
572 | ELSE |
---|
573 | l(i) = 2.0_wp * ( 1.0_wp - COS( ( 2.0_wp * pi * ( nx+1-i ) ) / & |
---|
574 | REAL( nx+1, KIND=wp ) ) ) * ddx2 + & |
---|
575 | 2.0_wp * ( 1.0_wp - COS( ( 2.0_wp * pi * j ) / & |
---|
576 | REAL( ny+1, KIND=wp ) ) ) * ddy2 |
---|
577 | ENDIF |
---|
578 | ENDDO |
---|
579 | |
---|
580 | DO k = 0, nz-1 |
---|
581 | DO i = 0, nx |
---|
582 | a = -1.0_wp * ddzu_pres(k+2) * ddzw(k+1) |
---|
583 | c = -1.0_wp * ddzu_pres(k+1) * ddzw(k+1) |
---|
584 | tri_for_1d(1,i,k) = a + c - l(i) |
---|
585 | ENDDO |
---|
586 | ENDDO |
---|
587 | IF ( ibc_p_b == 1 ) THEN |
---|
588 | DO i = 0, nx |
---|
589 | tri_for_1d(1,i,0) = tri_for_1d(1,i,0) + tri_for_1d(2,i,0) |
---|
590 | ENDDO |
---|
591 | ENDIF |
---|
592 | IF ( ibc_p_t == 1 ) THEN |
---|
593 | DO i = 0, nx |
---|
594 | tri_for_1d(1,i,nz-1) = tri_for_1d(1,i,nz-1) + tri_for_1d(3,i,nz-1) |
---|
595 | ENDDO |
---|
596 | ENDIF |
---|
597 | |
---|
598 | END SUBROUTINE maketri_1dd |
---|
599 | |
---|
600 | |
---|
601 | #if defined( __intel11 ) |
---|
602 | SUBROUTINE split_1dd( tri_for_1d ) |
---|
603 | #else |
---|
604 | SUBROUTINE split_1dd |
---|
605 | #endif |
---|
606 | |
---|
607 | !------------------------------------------------------------------------------! |
---|
608 | ! Splitting of the tridiagonal matrix (Thomas algorithm) |
---|
609 | !------------------------------------------------------------------------------! |
---|
610 | |
---|
611 | IMPLICIT NONE |
---|
612 | |
---|
613 | INTEGER(iwp) :: i !: |
---|
614 | INTEGER(iwp) :: k !: |
---|
615 | |
---|
616 | #if defined( __intel11 ) |
---|
617 | REAL(wp), DIMENSION(5,0:nx,0:nz-1) :: tri_for_1d !: |
---|
618 | #endif |
---|
619 | |
---|
620 | |
---|
621 | ! |
---|
622 | !-- Splitting |
---|
623 | DO i = 0, nx |
---|
624 | tri_for_1d(4,i,0) = tri_for_1d(1,i,0) |
---|
625 | ENDDO |
---|
626 | DO k = 1, nz-1 |
---|
627 | DO i = 0, nx |
---|
628 | tri_for_1d(5,i,k) = tri_for_1d(2,i,k) / tri_for_1d(4,i,k-1) |
---|
629 | tri_for_1d(4,i,k) = tri_for_1d(1,i,k) - tri_for_1d(3,i,k-1) * tri_for_1d(5,i,k) |
---|
630 | ENDDO |
---|
631 | ENDDO |
---|
632 | |
---|
633 | END SUBROUTINE split_1dd |
---|
634 | |
---|
635 | |
---|
636 | SUBROUTINE substi_1dd( ar, tri_for_1d ) |
---|
637 | |
---|
638 | !------------------------------------------------------------------------------! |
---|
639 | ! Substitution (Forward and Backward) (Thomas algorithm) |
---|
640 | !------------------------------------------------------------------------------! |
---|
641 | |
---|
642 | IMPLICIT NONE |
---|
643 | |
---|
644 | INTEGER(iwp) :: i !: |
---|
645 | INTEGER(iwp) :: k !: |
---|
646 | |
---|
647 | REAL(wp), DIMENSION(0:nx,nz) :: ar !: |
---|
648 | REAL(wp), DIMENSION(0:nx,0:nz-1) :: ar1 !: |
---|
649 | REAL(wp), DIMENSION(5,0:nx,0:nz-1) :: tri_for_1d !: |
---|
650 | |
---|
651 | ! |
---|
652 | !-- Forward substitution |
---|
653 | DO i = 0, nx |
---|
654 | ar1(i,0) = ar(i,1) |
---|
655 | ENDDO |
---|
656 | DO k = 1, nz-1 |
---|
657 | DO i = 0, nx |
---|
658 | ar1(i,k) = ar(i,k+1) - tri_for_1d(5,i,k) * ar1(i,k-1) |
---|
659 | ENDDO |
---|
660 | ENDDO |
---|
661 | |
---|
662 | ! |
---|
663 | !-- Backward substitution |
---|
664 | !-- Note, the add of 1.0E-20 in the denominator is due to avoid divisions |
---|
665 | !-- by zero appearing if the pressure bc is set to neumann at the top of |
---|
666 | !-- the model domain. |
---|
667 | DO i = 0, nx |
---|
668 | ar(i,nz) = ar1(i,nz-1) / ( tri_for_1d(4,i,nz-1) + 1.0E-20_wp ) |
---|
669 | ENDDO |
---|
670 | DO k = nz-2, 0, -1 |
---|
671 | DO i = 0, nx |
---|
672 | ar(i,k+1) = ( ar1(i,k) - tri_for_1d(3,i,k) * ar(i,k+2) ) & |
---|
673 | / tri_for_1d(4,i,k) |
---|
674 | ENDDO |
---|
675 | ENDDO |
---|
676 | |
---|
677 | ! |
---|
678 | !-- Indices i=0, j=0 correspond to horizontally averaged pressure. |
---|
679 | !-- The respective values of ar should be zero at all k-levels if |
---|
680 | !-- acceleration of horizontally averaged vertical velocity is zero. |
---|
681 | IF ( ibc_p_b == 1 .AND. ibc_p_t == 1 ) THEN |
---|
682 | IF ( j == 0 ) THEN |
---|
683 | DO k = 1, nz |
---|
684 | ar(0,k) = 0.0_wp |
---|
685 | ENDDO |
---|
686 | ENDIF |
---|
687 | ENDIF |
---|
688 | |
---|
689 | END SUBROUTINE substi_1dd |
---|
690 | |
---|
691 | END SUBROUTINE tridia_1dd |
---|
692 | |
---|
693 | |
---|
694 | END MODULE tridia_solver |
---|