1 | MODULE tridia_solver |
---|
2 | |
---|
3 | !--------------------------------------------------------------------------------! |
---|
4 | ! This file is part of PALM. |
---|
5 | ! |
---|
6 | ! PALM is free software: you can redistribute it and/or modify it under the terms |
---|
7 | ! of the GNU General Public License as published by the Free Software Foundation, |
---|
8 | ! either version 3 of the License, or (at your option) any later version. |
---|
9 | ! |
---|
10 | ! PALM is distributed in the hope that it will be useful, but WITHOUT ANY |
---|
11 | ! WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR |
---|
12 | ! A PARTICULAR PURPOSE. See the GNU General Public License for more details. |
---|
13 | ! |
---|
14 | ! You should have received a copy of the GNU General Public License along with |
---|
15 | ! PALM. If not, see <http://www.gnu.org/licenses/>. |
---|
16 | ! |
---|
17 | ! Copyright 1997-2012 Leibniz University Hannover |
---|
18 | !--------------------------------------------------------------------------------! |
---|
19 | ! |
---|
20 | ! Current revisions: |
---|
21 | ! ------------------ |
---|
22 | ! |
---|
23 | ! |
---|
24 | ! Former revisions: |
---|
25 | ! ----------------- |
---|
26 | ! $Id: tridia_solver.f90 1258 2013-11-08 16:09:09Z witha $ |
---|
27 | ! |
---|
28 | ! 1257 2013-11-08 15:18:40Z raasch |
---|
29 | ! openacc loop and loop vector clauses removed, declare create moved after |
---|
30 | ! the FORTRAN declaration statement |
---|
31 | ! |
---|
32 | ! 1221 2013-09-10 08:59:13Z raasch |
---|
33 | ! dummy argument tri in 1d-routines replaced by tri_for_1d because of name |
---|
34 | ! conflict with arry tri in module arrays_3d |
---|
35 | ! |
---|
36 | ! 1216 2013-08-26 09:31:42Z raasch |
---|
37 | ! +tridia_substi_overlap for handling overlapping fft / transposition |
---|
38 | ! |
---|
39 | ! 1212 2013-08-15 08:46:27Z raasch |
---|
40 | ! Initial revision. |
---|
41 | ! Routines have been moved to seperate module from former file poisfft to here. |
---|
42 | ! The tridiagonal matrix coefficients of array tri are calculated only once at |
---|
43 | ! the beginning, i.e. routine split is called within tridia_init. |
---|
44 | ! |
---|
45 | ! |
---|
46 | ! Description: |
---|
47 | ! ------------ |
---|
48 | ! solves the linear system of equations: |
---|
49 | ! |
---|
50 | ! -(4 pi^2(i^2/(dx^2*nnx^2)+j^2/(dy^2*nny^2))+ |
---|
51 | ! 1/(dzu(k)*dzw(k))+1/(dzu(k-1)*dzw(k)))*p(i,j,k)+ |
---|
52 | ! 1/(dzu(k)*dzw(k))*p(i,j,k+1)+1/(dzu(k-1)*dzw(k))*p(i,j,k-1)=d(i,j,k) |
---|
53 | ! |
---|
54 | ! by using the Thomas algorithm |
---|
55 | !------------------------------------------------------------------------------! |
---|
56 | |
---|
57 | USE indices |
---|
58 | USE transpose_indices |
---|
59 | |
---|
60 | IMPLICIT NONE |
---|
61 | |
---|
62 | REAL, DIMENSION(:,:), ALLOCATABLE :: ddzuw |
---|
63 | |
---|
64 | PRIVATE |
---|
65 | |
---|
66 | INTERFACE tridia_substi |
---|
67 | MODULE PROCEDURE tridia_substi |
---|
68 | END INTERFACE tridia_substi |
---|
69 | |
---|
70 | INTERFACE tridia_substi_overlap |
---|
71 | MODULE PROCEDURE tridia_substi_overlap |
---|
72 | END INTERFACE tridia_substi_overlap |
---|
73 | |
---|
74 | PUBLIC tridia_substi, tridia_substi_overlap, tridia_init, tridia_1dd |
---|
75 | |
---|
76 | CONTAINS |
---|
77 | |
---|
78 | |
---|
79 | SUBROUTINE tridia_init |
---|
80 | |
---|
81 | USE arrays_3d, ONLY: ddzu_pres, ddzw |
---|
82 | |
---|
83 | IMPLICIT NONE |
---|
84 | |
---|
85 | INTEGER :: k |
---|
86 | |
---|
87 | ALLOCATE( ddzuw(0:nz-1,3) ) |
---|
88 | |
---|
89 | DO k = 0, nz-1 |
---|
90 | ddzuw(k,1) = ddzu_pres(k+1) * ddzw(k+1) |
---|
91 | ddzuw(k,2) = ddzu_pres(k+2) * ddzw(k+1) |
---|
92 | ddzuw(k,3) = -1.0 * & |
---|
93 | ( ddzu_pres(k+2) * ddzw(k+1) + ddzu_pres(k+1) * ddzw(k+1) ) |
---|
94 | ENDDO |
---|
95 | ! |
---|
96 | !-- Calculate constant coefficients of the tridiagonal matrix |
---|
97 | #if ! defined ( __check ) |
---|
98 | CALL maketri |
---|
99 | CALL split |
---|
100 | #endif |
---|
101 | |
---|
102 | END SUBROUTINE tridia_init |
---|
103 | |
---|
104 | |
---|
105 | SUBROUTINE maketri |
---|
106 | |
---|
107 | !------------------------------------------------------------------------------! |
---|
108 | ! Computes the i- and j-dependent component of the matrix |
---|
109 | !------------------------------------------------------------------------------! |
---|
110 | |
---|
111 | USE arrays_3d, ONLY: tric |
---|
112 | USE constants |
---|
113 | USE control_parameters |
---|
114 | USE grid_variables |
---|
115 | |
---|
116 | IMPLICIT NONE |
---|
117 | |
---|
118 | INTEGER :: i, j, k, nnxh, nnyh |
---|
119 | |
---|
120 | REAL :: ll(nxl_z:nxr_z,nys_z:nyn_z) |
---|
121 | !$acc declare create( ll ) |
---|
122 | |
---|
123 | |
---|
124 | nnxh = ( nx + 1 ) / 2 |
---|
125 | nnyh = ( ny + 1 ) / 2 |
---|
126 | |
---|
127 | ! |
---|
128 | !-- Provide the constant coefficients of the tridiagonal matrix for solution |
---|
129 | !-- of the Poisson equation in Fourier space. |
---|
130 | !-- The coefficients are computed following the method of |
---|
131 | !-- Schmidt et al. (DFVLR-Mitteilung 84-15), which departs from Stephan |
---|
132 | !-- Siano's original version by discretizing the Poisson equation, |
---|
133 | !-- before it is Fourier-transformed. |
---|
134 | |
---|
135 | !$acc kernels present( tric ) |
---|
136 | DO j = nys_z, nyn_z |
---|
137 | DO i = nxl_z, nxr_z |
---|
138 | IF ( j >= 0 .AND. j <= nnyh ) THEN |
---|
139 | IF ( i >= 0 .AND. i <= nnxh ) THEN |
---|
140 | ll(i,j) = 2.0 * ( 1.0 - COS( ( 2.0 * pi * i ) / & |
---|
141 | REAL( nx+1 ) ) ) / ( dx * dx ) + & |
---|
142 | 2.0 * ( 1.0 - COS( ( 2.0 * pi * j ) / & |
---|
143 | REAL( ny+1 ) ) ) / ( dy * dy ) |
---|
144 | ELSE |
---|
145 | ll(i,j) = 2.0 * ( 1.0 - COS( ( 2.0 * pi * ( nx+1-i ) ) / & |
---|
146 | REAL( nx+1 ) ) ) / ( dx * dx ) + & |
---|
147 | 2.0 * ( 1.0 - COS( ( 2.0 * pi * j ) / & |
---|
148 | REAL( ny+1 ) ) ) / ( dy * dy ) |
---|
149 | ENDIF |
---|
150 | ELSE |
---|
151 | IF ( i >= 0 .AND. i <= nnxh ) THEN |
---|
152 | ll(i,j) = 2.0 * ( 1.0 - COS( ( 2.0 * pi * i ) / & |
---|
153 | REAL( nx+1 ) ) ) / ( dx * dx ) + & |
---|
154 | 2.0 * ( 1.0 - COS( ( 2.0 * pi * ( ny+1-j ) ) / & |
---|
155 | REAL( ny+1 ) ) ) / ( dy * dy ) |
---|
156 | ELSE |
---|
157 | ll(i,j) = 2.0 * ( 1.0 - COS( ( 2.0 * pi * ( nx+1-i ) ) / & |
---|
158 | REAL( nx+1 ) ) ) / ( dx * dx ) + & |
---|
159 | 2.0 * ( 1.0 - COS( ( 2.0 * pi * ( ny+1-j ) ) / & |
---|
160 | REAL( ny+1 ) ) ) / ( dy * dy ) |
---|
161 | ENDIF |
---|
162 | ENDIF |
---|
163 | ENDDO |
---|
164 | ENDDO |
---|
165 | |
---|
166 | DO k = 0, nz-1 |
---|
167 | DO j = nys_z, nyn_z |
---|
168 | DO i = nxl_z, nxr_z |
---|
169 | tric(i,j,k) = ddzuw(k,3) - ll(i,j) |
---|
170 | ENDDO |
---|
171 | ENDDO |
---|
172 | ENDDO |
---|
173 | !$acc end kernels |
---|
174 | |
---|
175 | IF ( ibc_p_b == 1 ) THEN |
---|
176 | !$acc kernels present( tric ) |
---|
177 | DO j = nys_z, nyn_z |
---|
178 | DO i = nxl_z, nxr_z |
---|
179 | tric(i,j,0) = tric(i,j,0) + ddzuw(0,1) |
---|
180 | ENDDO |
---|
181 | ENDDO |
---|
182 | !$acc end kernels |
---|
183 | ENDIF |
---|
184 | IF ( ibc_p_t == 1 ) THEN |
---|
185 | !$acc kernels present( tric ) |
---|
186 | DO j = nys_z, nyn_z |
---|
187 | DO i = nxl_z, nxr_z |
---|
188 | tric(i,j,nz-1) = tric(i,j,nz-1) + ddzuw(nz-1,2) |
---|
189 | ENDDO |
---|
190 | ENDDO |
---|
191 | !$acc end kernels |
---|
192 | ENDIF |
---|
193 | |
---|
194 | END SUBROUTINE maketri |
---|
195 | |
---|
196 | |
---|
197 | SUBROUTINE tridia_substi( ar ) |
---|
198 | |
---|
199 | !------------------------------------------------------------------------------! |
---|
200 | ! Substitution (Forward and Backward) (Thomas algorithm) |
---|
201 | !------------------------------------------------------------------------------! |
---|
202 | |
---|
203 | USE arrays_3d, ONLY: tri |
---|
204 | USE control_parameters |
---|
205 | |
---|
206 | IMPLICIT NONE |
---|
207 | |
---|
208 | INTEGER :: i, j, k |
---|
209 | |
---|
210 | REAL :: ar(nxl_z:nxr_z,nys_z:nyn_z,1:nz) |
---|
211 | |
---|
212 | REAL, DIMENSION(nxl_z:nxr_z,nys_z:nyn_z,0:nz-1) :: ar1 |
---|
213 | !$acc declare create( ar1 ) |
---|
214 | |
---|
215 | ! |
---|
216 | !-- Forward substitution |
---|
217 | DO k = 0, nz - 1 |
---|
218 | !$acc kernels present( ar, tri ) |
---|
219 | DO j = nys_z, nyn_z |
---|
220 | DO i = nxl_z, nxr_z |
---|
221 | |
---|
222 | IF ( k == 0 ) THEN |
---|
223 | ar1(i,j,k) = ar(i,j,k+1) |
---|
224 | ELSE |
---|
225 | ar1(i,j,k) = ar(i,j,k+1) - tri(i,j,k,2) * ar1(i,j,k-1) |
---|
226 | ENDIF |
---|
227 | |
---|
228 | ENDDO |
---|
229 | ENDDO |
---|
230 | !$acc end kernels |
---|
231 | ENDDO |
---|
232 | |
---|
233 | ! |
---|
234 | !-- Backward substitution |
---|
235 | !-- Note, the 1.0E-20 in the denominator is due to avoid divisions |
---|
236 | !-- by zero appearing if the pressure bc is set to neumann at the top of |
---|
237 | !-- the model domain. |
---|
238 | DO k = nz-1, 0, -1 |
---|
239 | !$acc kernels present( ar, tri ) |
---|
240 | DO j = nys_z, nyn_z |
---|
241 | DO i = nxl_z, nxr_z |
---|
242 | |
---|
243 | IF ( k == nz-1 ) THEN |
---|
244 | ar(i,j,k+1) = ar1(i,j,k) / ( tri(i,j,k,1) + 1.0E-20 ) |
---|
245 | ELSE |
---|
246 | ar(i,j,k+1) = ( ar1(i,j,k) - ddzuw(k,2) * ar(i,j,k+2) ) & |
---|
247 | / tri(i,j,k,1) |
---|
248 | ENDIF |
---|
249 | ENDDO |
---|
250 | ENDDO |
---|
251 | !$acc end kernels |
---|
252 | ENDDO |
---|
253 | |
---|
254 | ! |
---|
255 | !-- Indices i=0, j=0 correspond to horizontally averaged pressure. |
---|
256 | !-- The respective values of ar should be zero at all k-levels if |
---|
257 | !-- acceleration of horizontally averaged vertical velocity is zero. |
---|
258 | IF ( ibc_p_b == 1 .AND. ibc_p_t == 1 ) THEN |
---|
259 | IF ( nys_z == 0 .AND. nxl_z == 0 ) THEN |
---|
260 | !$acc kernels loop present( ar ) |
---|
261 | DO k = 1, nz |
---|
262 | ar(nxl_z,nys_z,k) = 0.0 |
---|
263 | ENDDO |
---|
264 | !$acc end kernels loop |
---|
265 | ENDIF |
---|
266 | ENDIF |
---|
267 | |
---|
268 | END SUBROUTINE tridia_substi |
---|
269 | |
---|
270 | |
---|
271 | SUBROUTINE tridia_substi_overlap( ar, jj ) |
---|
272 | |
---|
273 | !------------------------------------------------------------------------------! |
---|
274 | ! Substitution (Forward and Backward) (Thomas algorithm) |
---|
275 | !------------------------------------------------------------------------------! |
---|
276 | |
---|
277 | USE arrays_3d, ONLY: tri |
---|
278 | USE control_parameters |
---|
279 | |
---|
280 | IMPLICIT NONE |
---|
281 | |
---|
282 | INTEGER :: i, j, jj, k |
---|
283 | |
---|
284 | REAL :: ar(nxl_z:nxr_z,nys_z:nyn_z,1:nz) |
---|
285 | |
---|
286 | !$acc declare create( ar1 ) |
---|
287 | REAL, DIMENSION(nxl_z:nxr_z,nys_z:nyn_z,0:nz-1) :: ar1 |
---|
288 | |
---|
289 | ! |
---|
290 | !-- Forward substitution |
---|
291 | DO k = 0, nz - 1 |
---|
292 | !$acc kernels present( ar, tri ) |
---|
293 | !$acc loop |
---|
294 | DO j = nys_z, nyn_z |
---|
295 | DO i = nxl_z, nxr_z |
---|
296 | |
---|
297 | IF ( k == 0 ) THEN |
---|
298 | ar1(i,j,k) = ar(i,j,k+1) |
---|
299 | ELSE |
---|
300 | ar1(i,j,k) = ar(i,j,k+1) - tri(i,jj,k,2) * ar1(i,j,k-1) |
---|
301 | ENDIF |
---|
302 | |
---|
303 | ENDDO |
---|
304 | ENDDO |
---|
305 | !$acc end kernels |
---|
306 | ENDDO |
---|
307 | |
---|
308 | ! |
---|
309 | !-- Backward substitution |
---|
310 | !-- Note, the 1.0E-20 in the denominator is due to avoid divisions |
---|
311 | !-- by zero appearing if the pressure bc is set to neumann at the top of |
---|
312 | !-- the model domain. |
---|
313 | DO k = nz-1, 0, -1 |
---|
314 | !$acc kernels present( ar, tri ) |
---|
315 | !$acc loop |
---|
316 | DO j = nys_z, nyn_z |
---|
317 | DO i = nxl_z, nxr_z |
---|
318 | |
---|
319 | IF ( k == nz-1 ) THEN |
---|
320 | ar(i,j,k+1) = ar1(i,j,k) / ( tri(i,jj,k,1) + 1.0E-20 ) |
---|
321 | ELSE |
---|
322 | ar(i,j,k+1) = ( ar1(i,j,k) - ddzuw(k,2) * ar(i,j,k+2) ) & |
---|
323 | / tri(i,jj,k,1) |
---|
324 | ENDIF |
---|
325 | ENDDO |
---|
326 | ENDDO |
---|
327 | !$acc end kernels |
---|
328 | ENDDO |
---|
329 | |
---|
330 | ! |
---|
331 | !-- Indices i=0, j=0 correspond to horizontally averaged pressure. |
---|
332 | !-- The respective values of ar should be zero at all k-levels if |
---|
333 | !-- acceleration of horizontally averaged vertical velocity is zero. |
---|
334 | IF ( ibc_p_b == 1 .AND. ibc_p_t == 1 ) THEN |
---|
335 | IF ( nys_z == 0 .AND. nxl_z == 0 ) THEN |
---|
336 | !$acc kernels loop present( ar ) |
---|
337 | DO k = 1, nz |
---|
338 | ar(nxl_z,nys_z,k) = 0.0 |
---|
339 | ENDDO |
---|
340 | ENDIF |
---|
341 | ENDIF |
---|
342 | |
---|
343 | END SUBROUTINE tridia_substi_overlap |
---|
344 | |
---|
345 | |
---|
346 | SUBROUTINE split |
---|
347 | |
---|
348 | !------------------------------------------------------------------------------! |
---|
349 | ! Splitting of the tridiagonal matrix (Thomas algorithm) |
---|
350 | !------------------------------------------------------------------------------! |
---|
351 | |
---|
352 | USE arrays_3d, ONLY: tri, tric |
---|
353 | |
---|
354 | IMPLICIT NONE |
---|
355 | |
---|
356 | INTEGER :: i, j, k |
---|
357 | |
---|
358 | ! |
---|
359 | !-- Splitting |
---|
360 | !$acc kernels present( tri, tric ) |
---|
361 | !$acc loop |
---|
362 | DO j = nys_z, nyn_z |
---|
363 | !$acc loop vector( 32 ) |
---|
364 | DO i = nxl_z, nxr_z |
---|
365 | tri(i,j,0,1) = tric(i,j,0) |
---|
366 | ENDDO |
---|
367 | ENDDO |
---|
368 | !$acc end kernels |
---|
369 | |
---|
370 | DO k = 1, nz-1 |
---|
371 | !$acc kernels present( tri, tric ) |
---|
372 | !$acc loop |
---|
373 | DO j = nys_z, nyn_z |
---|
374 | !$acc loop vector( 32 ) |
---|
375 | DO i = nxl_z, nxr_z |
---|
376 | tri(i,j,k,2) = ddzuw(k,1) / tri(i,j,k-1,1) |
---|
377 | tri(i,j,k,1) = tric(i,j,k) - ddzuw(k-1,2) * tri(i,j,k,2) |
---|
378 | ENDDO |
---|
379 | ENDDO |
---|
380 | !$acc end kernels |
---|
381 | ENDDO |
---|
382 | |
---|
383 | END SUBROUTINE split |
---|
384 | |
---|
385 | |
---|
386 | SUBROUTINE tridia_1dd( ddx2, ddy2, nx, ny, j, ar, tri_for_1d ) |
---|
387 | |
---|
388 | !------------------------------------------------------------------------------! |
---|
389 | ! Solves the linear system of equations for a 1d-decomposition along x (see |
---|
390 | ! tridia) |
---|
391 | ! |
---|
392 | ! Attention: when using the intel compilers older than 12.0, array tri must |
---|
393 | ! be passed as an argument to the contained subroutines. Otherwise |
---|
394 | ! addres faults will occur. This feature can be activated with |
---|
395 | ! cpp-switch __intel11 |
---|
396 | ! On NEC, tri should not be passed (except for routine substi_1dd) |
---|
397 | ! because this causes very bad performance. |
---|
398 | !------------------------------------------------------------------------------! |
---|
399 | |
---|
400 | USE arrays_3d |
---|
401 | USE control_parameters |
---|
402 | |
---|
403 | USE pegrid |
---|
404 | |
---|
405 | IMPLICIT NONE |
---|
406 | |
---|
407 | INTEGER :: i, j, k, nnyh, nx, ny, omp_get_thread_num, tn |
---|
408 | |
---|
409 | REAL :: ddx2, ddy2 |
---|
410 | |
---|
411 | REAL, DIMENSION(0:nx,1:nz) :: ar |
---|
412 | REAL, DIMENSION(5,0:nx,0:nz-1) :: tri_for_1d |
---|
413 | |
---|
414 | |
---|
415 | nnyh = ( ny + 1 ) / 2 |
---|
416 | |
---|
417 | ! |
---|
418 | !-- Define constant elements of the tridiagonal matrix. |
---|
419 | !-- The compiler on SX6 does loop exchange. If 0:nx is a high power of 2, |
---|
420 | !-- the exchanged loops create bank conflicts. The following directive |
---|
421 | !-- prohibits loop exchange and the loops perform much better. |
---|
422 | ! tn = omp_get_thread_num() |
---|
423 | ! WRITE( 120+tn, * ) '+++ id=',myid,' nx=',nx,' thread=', omp_get_thread_num() |
---|
424 | ! CALL local_flush( 120+tn ) |
---|
425 | !CDIR NOLOOPCHG |
---|
426 | DO k = 0, nz-1 |
---|
427 | DO i = 0,nx |
---|
428 | tri_for_1d(2,i,k) = ddzu_pres(k+1) * ddzw(k+1) |
---|
429 | tri_for_1d(3,i,k) = ddzu_pres(k+2) * ddzw(k+1) |
---|
430 | ENDDO |
---|
431 | ENDDO |
---|
432 | ! WRITE( 120+tn, * ) '+++ id=',myid,' end of first tridia loop thread=', omp_get_thread_num() |
---|
433 | ! CALL local_flush( 120+tn ) |
---|
434 | |
---|
435 | IF ( j <= nnyh ) THEN |
---|
436 | #if defined( __intel11 ) |
---|
437 | CALL maketri_1dd( j, tri_for_1d ) |
---|
438 | #else |
---|
439 | CALL maketri_1dd( j ) |
---|
440 | #endif |
---|
441 | ELSE |
---|
442 | #if defined( __intel11 ) |
---|
443 | CALL maketri_1dd( ny+1-j, tri_for_1d ) |
---|
444 | #else |
---|
445 | CALL maketri_1dd( ny+1-j ) |
---|
446 | #endif |
---|
447 | ENDIF |
---|
448 | #if defined( __intel11 ) |
---|
449 | CALL split_1dd( tri_for_1d ) |
---|
450 | #else |
---|
451 | CALL split_1dd |
---|
452 | #endif |
---|
453 | CALL substi_1dd( ar, tri_for_1d ) |
---|
454 | |
---|
455 | CONTAINS |
---|
456 | |
---|
457 | #if defined( __intel11 ) |
---|
458 | SUBROUTINE maketri_1dd( j, tri_for_1d ) |
---|
459 | #else |
---|
460 | SUBROUTINE maketri_1dd( j ) |
---|
461 | #endif |
---|
462 | |
---|
463 | !------------------------------------------------------------------------------! |
---|
464 | ! computes the i- and j-dependent component of the matrix |
---|
465 | !------------------------------------------------------------------------------! |
---|
466 | |
---|
467 | USE constants |
---|
468 | |
---|
469 | IMPLICIT NONE |
---|
470 | |
---|
471 | INTEGER :: i, j, k, nnxh |
---|
472 | REAL :: a, c |
---|
473 | |
---|
474 | REAL, DIMENSION(0:nx) :: l |
---|
475 | |
---|
476 | #if defined( __intel11 ) |
---|
477 | REAL, DIMENSION(5,0:nx,0:nz-1) :: tri_for_1d |
---|
478 | #endif |
---|
479 | |
---|
480 | |
---|
481 | nnxh = ( nx + 1 ) / 2 |
---|
482 | ! |
---|
483 | !-- Provide the tridiagonal matrix for solution of the Poisson equation in |
---|
484 | !-- Fourier space. The coefficients are computed following the method of |
---|
485 | !-- Schmidt et al. (DFVLR-Mitteilung 84-15), which departs from Stephan |
---|
486 | !-- Siano's original version by discretizing the Poisson equation, |
---|
487 | !-- before it is Fourier-transformed |
---|
488 | DO i = 0, nx |
---|
489 | IF ( i >= 0 .AND. i <= nnxh ) THEN |
---|
490 | l(i) = 2.0 * ( 1.0 - COS( ( 2.0 * pi * i ) / & |
---|
491 | REAL( nx+1 ) ) ) * ddx2 + & |
---|
492 | 2.0 * ( 1.0 - COS( ( 2.0 * pi * j ) / & |
---|
493 | REAL( ny+1 ) ) ) * ddy2 |
---|
494 | ELSE |
---|
495 | l(i) = 2.0 * ( 1.0 - COS( ( 2.0 * pi * ( nx+1-i ) ) / & |
---|
496 | REAL( nx+1 ) ) ) * ddx2 + & |
---|
497 | 2.0 * ( 1.0 - COS( ( 2.0 * pi * j ) / & |
---|
498 | REAL( ny+1 ) ) ) * ddy2 |
---|
499 | ENDIF |
---|
500 | ENDDO |
---|
501 | |
---|
502 | DO k = 0, nz-1 |
---|
503 | DO i = 0, nx |
---|
504 | a = -1.0 * ddzu_pres(k+2) * ddzw(k+1) |
---|
505 | c = -1.0 * ddzu_pres(k+1) * ddzw(k+1) |
---|
506 | tri_for_1d(1,i,k) = a + c - l(i) |
---|
507 | ENDDO |
---|
508 | ENDDO |
---|
509 | IF ( ibc_p_b == 1 ) THEN |
---|
510 | DO i = 0, nx |
---|
511 | tri_for_1d(1,i,0) = tri_for_1d(1,i,0) + tri_for_1d(2,i,0) |
---|
512 | ENDDO |
---|
513 | ENDIF |
---|
514 | IF ( ibc_p_t == 1 ) THEN |
---|
515 | DO i = 0, nx |
---|
516 | tri_for_1d(1,i,nz-1) = tri_for_1d(1,i,nz-1) + tri_for_1d(3,i,nz-1) |
---|
517 | ENDDO |
---|
518 | ENDIF |
---|
519 | |
---|
520 | END SUBROUTINE maketri_1dd |
---|
521 | |
---|
522 | |
---|
523 | #if defined( __intel11 ) |
---|
524 | SUBROUTINE split_1dd( tri_for_1d ) |
---|
525 | #else |
---|
526 | SUBROUTINE split_1dd |
---|
527 | #endif |
---|
528 | |
---|
529 | !------------------------------------------------------------------------------! |
---|
530 | ! Splitting of the tridiagonal matrix (Thomas algorithm) |
---|
531 | !------------------------------------------------------------------------------! |
---|
532 | |
---|
533 | IMPLICIT NONE |
---|
534 | |
---|
535 | INTEGER :: i, k |
---|
536 | |
---|
537 | #if defined( __intel11 ) |
---|
538 | REAL, DIMENSION(5,0:nx,0:nz-1) :: tri_for_1d |
---|
539 | #endif |
---|
540 | |
---|
541 | |
---|
542 | ! |
---|
543 | !-- Splitting |
---|
544 | DO i = 0, nx |
---|
545 | tri_for_1d(4,i,0) = tri_for_1d(1,i,0) |
---|
546 | ENDDO |
---|
547 | DO k = 1, nz-1 |
---|
548 | DO i = 0, nx |
---|
549 | tri_for_1d(5,i,k) = tri_for_1d(2,i,k) / tri_for_1d(4,i,k-1) |
---|
550 | tri_for_1d(4,i,k) = tri_for_1d(1,i,k) - tri_for_1d(3,i,k-1) * tri_for_1d(5,i,k) |
---|
551 | ENDDO |
---|
552 | ENDDO |
---|
553 | |
---|
554 | END SUBROUTINE split_1dd |
---|
555 | |
---|
556 | |
---|
557 | SUBROUTINE substi_1dd( ar, tri_for_1d ) |
---|
558 | |
---|
559 | !------------------------------------------------------------------------------! |
---|
560 | ! Substitution (Forward and Backward) (Thomas algorithm) |
---|
561 | !------------------------------------------------------------------------------! |
---|
562 | |
---|
563 | IMPLICIT NONE |
---|
564 | |
---|
565 | INTEGER :: i, k |
---|
566 | |
---|
567 | REAL, DIMENSION(0:nx,nz) :: ar |
---|
568 | REAL, DIMENSION(0:nx,0:nz-1) :: ar1 |
---|
569 | REAL, DIMENSION(5,0:nx,0:nz-1) :: tri_for_1d |
---|
570 | |
---|
571 | ! |
---|
572 | !-- Forward substitution |
---|
573 | DO i = 0, nx |
---|
574 | ar1(i,0) = ar(i,1) |
---|
575 | ENDDO |
---|
576 | DO k = 1, nz-1 |
---|
577 | DO i = 0, nx |
---|
578 | ar1(i,k) = ar(i,k+1) - tri_for_1d(5,i,k) * ar1(i,k-1) |
---|
579 | ENDDO |
---|
580 | ENDDO |
---|
581 | |
---|
582 | ! |
---|
583 | !-- Backward substitution |
---|
584 | !-- Note, the add of 1.0E-20 in the denominator is due to avoid divisions |
---|
585 | !-- by zero appearing if the pressure bc is set to neumann at the top of |
---|
586 | !-- the model domain. |
---|
587 | DO i = 0, nx |
---|
588 | ar(i,nz) = ar1(i,nz-1) / ( tri_for_1d(4,i,nz-1) + 1.0E-20 ) |
---|
589 | ENDDO |
---|
590 | DO k = nz-2, 0, -1 |
---|
591 | DO i = 0, nx |
---|
592 | ar(i,k+1) = ( ar1(i,k) - tri_for_1d(3,i,k) * ar(i,k+2) ) & |
---|
593 | / tri_for_1d(4,i,k) |
---|
594 | ENDDO |
---|
595 | ENDDO |
---|
596 | |
---|
597 | ! |
---|
598 | !-- Indices i=0, j=0 correspond to horizontally averaged pressure. |
---|
599 | !-- The respective values of ar should be zero at all k-levels if |
---|
600 | !-- acceleration of horizontally averaged vertical velocity is zero. |
---|
601 | IF ( ibc_p_b == 1 .AND. ibc_p_t == 1 ) THEN |
---|
602 | IF ( j == 0 ) THEN |
---|
603 | DO k = 1, nz |
---|
604 | ar(0,k) = 0.0 |
---|
605 | ENDDO |
---|
606 | ENDIF |
---|
607 | ENDIF |
---|
608 | |
---|
609 | END SUBROUTINE substi_1dd |
---|
610 | |
---|
611 | END SUBROUTINE tridia_1dd |
---|
612 | |
---|
613 | |
---|
614 | END MODULE tridia_solver |
---|