[1682] | 1 | !> @file tridia_solver.f90 |
---|
[1212] | 2 | !--------------------------------------------------------------------------------! |
---|
| 3 | ! This file is part of PALM. |
---|
| 4 | ! |
---|
| 5 | ! PALM is free software: you can redistribute it and/or modify it under the terms |
---|
| 6 | ! of the GNU General Public License as published by the Free Software Foundation, |
---|
| 7 | ! either version 3 of the License, or (at your option) any later version. |
---|
| 8 | ! |
---|
| 9 | ! PALM is distributed in the hope that it will be useful, but WITHOUT ANY |
---|
| 10 | ! WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR |
---|
| 11 | ! A PARTICULAR PURPOSE. See the GNU General Public License for more details. |
---|
| 12 | ! |
---|
| 13 | ! You should have received a copy of the GNU General Public License along with |
---|
| 14 | ! PALM. If not, see <http://www.gnu.org/licenses/>. |
---|
| 15 | ! |
---|
[1310] | 16 | ! Copyright 1997-2014 Leibniz Universitaet Hannover |
---|
[1212] | 17 | !--------------------------------------------------------------------------------! |
---|
| 18 | ! |
---|
| 19 | ! Current revisions: |
---|
| 20 | ! ------------------ |
---|
[1343] | 21 | ! |
---|
[1809] | 22 | ! |
---|
[1321] | 23 | ! Former revisions: |
---|
| 24 | ! ----------------- |
---|
| 25 | ! $Id: tridia_solver.f90 1809 2016-04-05 20:13:28Z maronga $ |
---|
| 26 | ! |
---|
[1809] | 27 | ! 1808 2016-04-05 19:44:00Z raasch |
---|
| 28 | ! test output removed |
---|
| 29 | ! |
---|
[1805] | 30 | ! 1804 2016-04-05 16:30:18Z maronga |
---|
| 31 | ! Removed code for parameter file check (__check) |
---|
| 32 | ! |
---|
[1683] | 33 | ! 1682 2015-10-07 23:56:08Z knoop |
---|
| 34 | ! Code annotations made doxygen readable |
---|
| 35 | ! |
---|
[1407] | 36 | ! 1406 2014-05-16 13:47:01Z raasch |
---|
| 37 | ! bugfix for pgi 14.4: declare create moved after array declaration |
---|
| 38 | ! |
---|
[1343] | 39 | ! 1342 2014-03-26 17:04:47Z kanani |
---|
| 40 | ! REAL constants defined as wp-kind |
---|
| 41 | ! |
---|
[1323] | 42 | ! 1322 2014-03-20 16:38:49Z raasch |
---|
| 43 | ! REAL functions provided with KIND-attribute |
---|
| 44 | ! |
---|
[1321] | 45 | ! 1320 2014-03-20 08:40:49Z raasch |
---|
[1320] | 46 | ! ONLY-attribute added to USE-statements, |
---|
| 47 | ! kind-parameters added to all INTEGER and REAL declaration statements, |
---|
| 48 | ! kinds are defined in new module kinds, |
---|
| 49 | ! old module precision_kind is removed, |
---|
| 50 | ! revision history before 2012 removed, |
---|
| 51 | ! comment fields (!:) to be used for variable explanations added to |
---|
| 52 | ! all variable declaration statements |
---|
[1213] | 53 | ! |
---|
[1258] | 54 | ! 1257 2013-11-08 15:18:40Z raasch |
---|
| 55 | ! openacc loop and loop vector clauses removed, declare create moved after |
---|
| 56 | ! the FORTRAN declaration statement |
---|
| 57 | ! |
---|
[1222] | 58 | ! 1221 2013-09-10 08:59:13Z raasch |
---|
| 59 | ! dummy argument tri in 1d-routines replaced by tri_for_1d because of name |
---|
| 60 | ! conflict with arry tri in module arrays_3d |
---|
| 61 | ! |
---|
[1217] | 62 | ! 1216 2013-08-26 09:31:42Z raasch |
---|
| 63 | ! +tridia_substi_overlap for handling overlapping fft / transposition |
---|
| 64 | ! |
---|
[1213] | 65 | ! 1212 2013-08-15 08:46:27Z raasch |
---|
[1212] | 66 | ! Initial revision. |
---|
| 67 | ! Routines have been moved to seperate module from former file poisfft to here. |
---|
| 68 | ! The tridiagonal matrix coefficients of array tri are calculated only once at |
---|
| 69 | ! the beginning, i.e. routine split is called within tridia_init. |
---|
| 70 | ! |
---|
| 71 | ! |
---|
| 72 | ! Description: |
---|
| 73 | ! ------------ |
---|
[1682] | 74 | !> solves the linear system of equations: |
---|
| 75 | !> |
---|
| 76 | !> -(4 pi^2(i^2/(dx^2*nnx^2)+j^2/(dy^2*nny^2))+ |
---|
| 77 | !> 1/(dzu(k)*dzw(k))+1/(dzu(k-1)*dzw(k)))*p(i,j,k)+ |
---|
| 78 | !> 1/(dzu(k)*dzw(k))*p(i,j,k+1)+1/(dzu(k-1)*dzw(k))*p(i,j,k-1)=d(i,j,k) |
---|
| 79 | !> |
---|
| 80 | !> by using the Thomas algorithm |
---|
[1212] | 81 | !------------------------------------------------------------------------------! |
---|
[1682] | 82 | MODULE tridia_solver |
---|
| 83 | |
---|
[1212] | 84 | |
---|
[1320] | 85 | USE indices, & |
---|
| 86 | ONLY: nx, ny, nz |
---|
[1212] | 87 | |
---|
[1320] | 88 | USE kinds |
---|
| 89 | |
---|
| 90 | USE transpose_indices, & |
---|
| 91 | ONLY: nxl_z, nyn_z, nxr_z, nys_z |
---|
| 92 | |
---|
[1212] | 93 | IMPLICIT NONE |
---|
| 94 | |
---|
[1682] | 95 | REAL(wp), DIMENSION(:,:), ALLOCATABLE :: ddzuw !< |
---|
[1212] | 96 | |
---|
| 97 | PRIVATE |
---|
| 98 | |
---|
| 99 | INTERFACE tridia_substi |
---|
| 100 | MODULE PROCEDURE tridia_substi |
---|
| 101 | END INTERFACE tridia_substi |
---|
| 102 | |
---|
[1216] | 103 | INTERFACE tridia_substi_overlap |
---|
| 104 | MODULE PROCEDURE tridia_substi_overlap |
---|
| 105 | END INTERFACE tridia_substi_overlap |
---|
[1212] | 106 | |
---|
[1216] | 107 | PUBLIC tridia_substi, tridia_substi_overlap, tridia_init, tridia_1dd |
---|
| 108 | |
---|
[1212] | 109 | CONTAINS |
---|
| 110 | |
---|
| 111 | |
---|
[1682] | 112 | !------------------------------------------------------------------------------! |
---|
| 113 | ! Description: |
---|
| 114 | ! ------------ |
---|
| 115 | !> @todo Missing subroutine description. |
---|
| 116 | !------------------------------------------------------------------------------! |
---|
[1212] | 117 | SUBROUTINE tridia_init |
---|
| 118 | |
---|
[1320] | 119 | USE arrays_3d, & |
---|
| 120 | ONLY: ddzu_pres, ddzw |
---|
[1212] | 121 | |
---|
[1320] | 122 | USE kinds |
---|
| 123 | |
---|
[1212] | 124 | IMPLICIT NONE |
---|
| 125 | |
---|
[1682] | 126 | INTEGER(iwp) :: k !< |
---|
[1212] | 127 | |
---|
| 128 | ALLOCATE( ddzuw(0:nz-1,3) ) |
---|
| 129 | |
---|
| 130 | DO k = 0, nz-1 |
---|
| 131 | ddzuw(k,1) = ddzu_pres(k+1) * ddzw(k+1) |
---|
| 132 | ddzuw(k,2) = ddzu_pres(k+2) * ddzw(k+1) |
---|
[1342] | 133 | ddzuw(k,3) = -1.0_wp * & |
---|
[1212] | 134 | ( ddzu_pres(k+2) * ddzw(k+1) + ddzu_pres(k+1) * ddzw(k+1) ) |
---|
| 135 | ENDDO |
---|
| 136 | ! |
---|
| 137 | !-- Calculate constant coefficients of the tridiagonal matrix |
---|
| 138 | CALL maketri |
---|
| 139 | CALL split |
---|
| 140 | |
---|
| 141 | END SUBROUTINE tridia_init |
---|
| 142 | |
---|
| 143 | |
---|
| 144 | !------------------------------------------------------------------------------! |
---|
[1682] | 145 | ! Description: |
---|
| 146 | ! ------------ |
---|
| 147 | !> Computes the i- and j-dependent component of the matrix |
---|
| 148 | !> Provide the constant coefficients of the tridiagonal matrix for solution |
---|
| 149 | !> of the Poisson equation in Fourier space. |
---|
| 150 | !> The coefficients are computed following the method of |
---|
| 151 | !> Schmidt et al. (DFVLR-Mitteilung 84-15), which departs from Stephan |
---|
| 152 | !> Siano's original version by discretizing the Poisson equation, |
---|
| 153 | !> before it is Fourier-transformed. |
---|
[1212] | 154 | !------------------------------------------------------------------------------! |
---|
[1682] | 155 | SUBROUTINE maketri |
---|
[1212] | 156 | |
---|
[1682] | 157 | |
---|
[1320] | 158 | USE arrays_3d, & |
---|
| 159 | ONLY: tric |
---|
[1212] | 160 | |
---|
[1320] | 161 | USE constants, & |
---|
| 162 | ONLY: pi |
---|
| 163 | |
---|
| 164 | USE control_parameters, & |
---|
| 165 | ONLY: ibc_p_b, ibc_p_t |
---|
| 166 | |
---|
| 167 | USE grid_variables, & |
---|
| 168 | ONLY: dx, dy |
---|
| 169 | |
---|
| 170 | |
---|
| 171 | USE kinds |
---|
| 172 | |
---|
[1212] | 173 | IMPLICIT NONE |
---|
| 174 | |
---|
[1682] | 175 | INTEGER(iwp) :: i !< |
---|
| 176 | INTEGER(iwp) :: j !< |
---|
| 177 | INTEGER(iwp) :: k !< |
---|
| 178 | INTEGER(iwp) :: nnxh !< |
---|
| 179 | INTEGER(iwp) :: nnyh !< |
---|
[1212] | 180 | |
---|
[1682] | 181 | REAL(wp) :: ll(nxl_z:nxr_z,nys_z:nyn_z) !< |
---|
[1212] | 182 | !$acc declare create( ll ) |
---|
| 183 | |
---|
| 184 | |
---|
| 185 | nnxh = ( nx + 1 ) / 2 |
---|
| 186 | nnyh = ( ny + 1 ) / 2 |
---|
| 187 | |
---|
| 188 | !$acc kernels present( tric ) |
---|
| 189 | DO j = nys_z, nyn_z |
---|
| 190 | DO i = nxl_z, nxr_z |
---|
| 191 | IF ( j >= 0 .AND. j <= nnyh ) THEN |
---|
| 192 | IF ( i >= 0 .AND. i <= nnxh ) THEN |
---|
[1342] | 193 | ll(i,j) = 2.0_wp * ( 1.0_wp - COS( ( 2.0_wp * pi * i ) / & |
---|
| 194 | REAL( nx+1, KIND=wp ) ) ) / ( dx * dx ) + & |
---|
| 195 | 2.0_wp * ( 1.0_wp - COS( ( 2.0_wp * pi * j ) / & |
---|
| 196 | REAL( ny+1, KIND=wp ) ) ) / ( dy * dy ) |
---|
[1212] | 197 | ELSE |
---|
[1342] | 198 | ll(i,j) = 2.0_wp * ( 1.0_wp - COS( ( 2.0_wp * pi * ( nx+1-i ) ) / & |
---|
| 199 | REAL( nx+1, KIND=wp ) ) ) / ( dx * dx ) + & |
---|
| 200 | 2.0_wp * ( 1.0_wp - COS( ( 2.0_wp * pi * j ) / & |
---|
| 201 | REAL( ny+1, KIND=wp ) ) ) / ( dy * dy ) |
---|
[1212] | 202 | ENDIF |
---|
| 203 | ELSE |
---|
| 204 | IF ( i >= 0 .AND. i <= nnxh ) THEN |
---|
[1342] | 205 | ll(i,j) = 2.0_wp * ( 1.0_wp - COS( ( 2.0_wp * pi * i ) / & |
---|
| 206 | REAL( nx+1, KIND=wp ) ) ) / ( dx * dx ) + & |
---|
| 207 | 2.0_wp * ( 1.0_wp - COS( ( 2.0_wp * pi * ( ny+1-j ) ) / & |
---|
| 208 | REAL( ny+1, KIND=wp ) ) ) / ( dy * dy ) |
---|
[1212] | 209 | ELSE |
---|
[1342] | 210 | ll(i,j) = 2.0_wp * ( 1.0_wp - COS( ( 2.0_wp * pi * ( nx+1-i ) ) / & |
---|
| 211 | REAL( nx+1, KIND=wp ) ) ) / ( dx * dx ) + & |
---|
| 212 | 2.0_wp * ( 1.0_wp - COS( ( 2.0_wp * pi * ( ny+1-j ) ) / & |
---|
| 213 | REAL( ny+1, KIND=wp ) ) ) / ( dy * dy ) |
---|
[1212] | 214 | ENDIF |
---|
| 215 | ENDIF |
---|
| 216 | ENDDO |
---|
| 217 | ENDDO |
---|
| 218 | |
---|
| 219 | DO k = 0, nz-1 |
---|
| 220 | DO j = nys_z, nyn_z |
---|
| 221 | DO i = nxl_z, nxr_z |
---|
| 222 | tric(i,j,k) = ddzuw(k,3) - ll(i,j) |
---|
| 223 | ENDDO |
---|
| 224 | ENDDO |
---|
| 225 | ENDDO |
---|
| 226 | !$acc end kernels |
---|
| 227 | |
---|
| 228 | IF ( ibc_p_b == 1 ) THEN |
---|
| 229 | !$acc kernels present( tric ) |
---|
| 230 | DO j = nys_z, nyn_z |
---|
| 231 | DO i = nxl_z, nxr_z |
---|
| 232 | tric(i,j,0) = tric(i,j,0) + ddzuw(0,1) |
---|
| 233 | ENDDO |
---|
| 234 | ENDDO |
---|
| 235 | !$acc end kernels |
---|
| 236 | ENDIF |
---|
| 237 | IF ( ibc_p_t == 1 ) THEN |
---|
| 238 | !$acc kernels present( tric ) |
---|
| 239 | DO j = nys_z, nyn_z |
---|
| 240 | DO i = nxl_z, nxr_z |
---|
| 241 | tric(i,j,nz-1) = tric(i,j,nz-1) + ddzuw(nz-1,2) |
---|
| 242 | ENDDO |
---|
| 243 | ENDDO |
---|
| 244 | !$acc end kernels |
---|
| 245 | ENDIF |
---|
| 246 | |
---|
| 247 | END SUBROUTINE maketri |
---|
| 248 | |
---|
| 249 | |
---|
| 250 | !------------------------------------------------------------------------------! |
---|
[1682] | 251 | ! Description: |
---|
| 252 | ! ------------ |
---|
| 253 | !> Substitution (Forward and Backward) (Thomas algorithm) |
---|
[1212] | 254 | !------------------------------------------------------------------------------! |
---|
[1682] | 255 | SUBROUTINE tridia_substi( ar ) |
---|
[1212] | 256 | |
---|
[1682] | 257 | |
---|
[1320] | 258 | USE arrays_3d, & |
---|
| 259 | ONLY: tri |
---|
[1212] | 260 | |
---|
[1320] | 261 | USE control_parameters, & |
---|
| 262 | ONLY: ibc_p_b, ibc_p_t |
---|
| 263 | |
---|
| 264 | USE kinds |
---|
| 265 | |
---|
[1212] | 266 | IMPLICIT NONE |
---|
| 267 | |
---|
[1682] | 268 | INTEGER(iwp) :: i !< |
---|
| 269 | INTEGER(iwp) :: j !< |
---|
| 270 | INTEGER(iwp) :: k !< |
---|
[1212] | 271 | |
---|
[1682] | 272 | REAL(wp) :: ar(nxl_z:nxr_z,nys_z:nyn_z,1:nz) !< |
---|
[1212] | 273 | |
---|
[1682] | 274 | REAL(wp), DIMENSION(nxl_z:nxr_z,nys_z:nyn_z,0:nz-1) :: ar1 !< |
---|
[1212] | 275 | !$acc declare create( ar1 ) |
---|
| 276 | |
---|
| 277 | ! |
---|
| 278 | !-- Forward substitution |
---|
| 279 | DO k = 0, nz - 1 |
---|
| 280 | !$acc kernels present( ar, tri ) |
---|
| 281 | DO j = nys_z, nyn_z |
---|
| 282 | DO i = nxl_z, nxr_z |
---|
| 283 | |
---|
| 284 | IF ( k == 0 ) THEN |
---|
| 285 | ar1(i,j,k) = ar(i,j,k+1) |
---|
| 286 | ELSE |
---|
| 287 | ar1(i,j,k) = ar(i,j,k+1) - tri(i,j,k,2) * ar1(i,j,k-1) |
---|
| 288 | ENDIF |
---|
| 289 | |
---|
| 290 | ENDDO |
---|
| 291 | ENDDO |
---|
| 292 | !$acc end kernels |
---|
| 293 | ENDDO |
---|
| 294 | |
---|
| 295 | ! |
---|
| 296 | !-- Backward substitution |
---|
| 297 | !-- Note, the 1.0E-20 in the denominator is due to avoid divisions |
---|
| 298 | !-- by zero appearing if the pressure bc is set to neumann at the top of |
---|
| 299 | !-- the model domain. |
---|
| 300 | DO k = nz-1, 0, -1 |
---|
| 301 | !$acc kernels present( ar, tri ) |
---|
| 302 | DO j = nys_z, nyn_z |
---|
| 303 | DO i = nxl_z, nxr_z |
---|
| 304 | |
---|
| 305 | IF ( k == nz-1 ) THEN |
---|
[1342] | 306 | ar(i,j,k+1) = ar1(i,j,k) / ( tri(i,j,k,1) + 1.0E-20_wp ) |
---|
[1212] | 307 | ELSE |
---|
| 308 | ar(i,j,k+1) = ( ar1(i,j,k) - ddzuw(k,2) * ar(i,j,k+2) ) & |
---|
| 309 | / tri(i,j,k,1) |
---|
| 310 | ENDIF |
---|
| 311 | ENDDO |
---|
| 312 | ENDDO |
---|
| 313 | !$acc end kernels |
---|
| 314 | ENDDO |
---|
| 315 | |
---|
| 316 | ! |
---|
| 317 | !-- Indices i=0, j=0 correspond to horizontally averaged pressure. |
---|
| 318 | !-- The respective values of ar should be zero at all k-levels if |
---|
| 319 | !-- acceleration of horizontally averaged vertical velocity is zero. |
---|
| 320 | IF ( ibc_p_b == 1 .AND. ibc_p_t == 1 ) THEN |
---|
| 321 | IF ( nys_z == 0 .AND. nxl_z == 0 ) THEN |
---|
| 322 | !$acc kernels loop present( ar ) |
---|
| 323 | DO k = 1, nz |
---|
[1342] | 324 | ar(nxl_z,nys_z,k) = 0.0_wp |
---|
[1212] | 325 | ENDDO |
---|
[1257] | 326 | !$acc end kernels loop |
---|
[1212] | 327 | ENDIF |
---|
| 328 | ENDIF |
---|
| 329 | |
---|
| 330 | END SUBROUTINE tridia_substi |
---|
| 331 | |
---|
| 332 | |
---|
[1216] | 333 | !------------------------------------------------------------------------------! |
---|
[1682] | 334 | ! Description: |
---|
| 335 | ! ------------ |
---|
| 336 | !> Substitution (Forward and Backward) (Thomas algorithm) |
---|
[1216] | 337 | !------------------------------------------------------------------------------! |
---|
[1682] | 338 | SUBROUTINE tridia_substi_overlap( ar, jj ) |
---|
[1216] | 339 | |
---|
[1682] | 340 | |
---|
[1320] | 341 | USE arrays_3d, & |
---|
| 342 | ONLY: tri |
---|
[1216] | 343 | |
---|
[1320] | 344 | USE control_parameters, & |
---|
| 345 | ONLY: ibc_p_b, ibc_p_t |
---|
| 346 | |
---|
| 347 | USE kinds |
---|
| 348 | |
---|
[1216] | 349 | IMPLICIT NONE |
---|
| 350 | |
---|
[1682] | 351 | INTEGER(iwp) :: i !< |
---|
| 352 | INTEGER(iwp) :: j !< |
---|
| 353 | INTEGER(iwp) :: jj !< |
---|
| 354 | INTEGER(iwp) :: k !< |
---|
[1216] | 355 | |
---|
[1682] | 356 | REAL(wp) :: ar(nxl_z:nxr_z,nys_z:nyn_z,1:nz) !< |
---|
[1216] | 357 | |
---|
[1682] | 358 | REAL(wp), DIMENSION(nxl_z:nxr_z,nys_z:nyn_z,0:nz-1) :: ar1 !< |
---|
[1216] | 359 | !$acc declare create( ar1 ) |
---|
| 360 | |
---|
| 361 | ! |
---|
| 362 | !-- Forward substitution |
---|
| 363 | DO k = 0, nz - 1 |
---|
| 364 | !$acc kernels present( ar, tri ) |
---|
| 365 | !$acc loop |
---|
| 366 | DO j = nys_z, nyn_z |
---|
| 367 | DO i = nxl_z, nxr_z |
---|
| 368 | |
---|
| 369 | IF ( k == 0 ) THEN |
---|
| 370 | ar1(i,j,k) = ar(i,j,k+1) |
---|
| 371 | ELSE |
---|
| 372 | ar1(i,j,k) = ar(i,j,k+1) - tri(i,jj,k,2) * ar1(i,j,k-1) |
---|
| 373 | ENDIF |
---|
| 374 | |
---|
| 375 | ENDDO |
---|
| 376 | ENDDO |
---|
| 377 | !$acc end kernels |
---|
| 378 | ENDDO |
---|
| 379 | |
---|
| 380 | ! |
---|
| 381 | !-- Backward substitution |
---|
| 382 | !-- Note, the 1.0E-20 in the denominator is due to avoid divisions |
---|
| 383 | !-- by zero appearing if the pressure bc is set to neumann at the top of |
---|
| 384 | !-- the model domain. |
---|
| 385 | DO k = nz-1, 0, -1 |
---|
| 386 | !$acc kernels present( ar, tri ) |
---|
| 387 | !$acc loop |
---|
| 388 | DO j = nys_z, nyn_z |
---|
| 389 | DO i = nxl_z, nxr_z |
---|
| 390 | |
---|
| 391 | IF ( k == nz-1 ) THEN |
---|
[1342] | 392 | ar(i,j,k+1) = ar1(i,j,k) / ( tri(i,jj,k,1) + 1.0E-20_wp ) |
---|
[1216] | 393 | ELSE |
---|
| 394 | ar(i,j,k+1) = ( ar1(i,j,k) - ddzuw(k,2) * ar(i,j,k+2) ) & |
---|
| 395 | / tri(i,jj,k,1) |
---|
| 396 | ENDIF |
---|
| 397 | ENDDO |
---|
| 398 | ENDDO |
---|
| 399 | !$acc end kernels |
---|
| 400 | ENDDO |
---|
| 401 | |
---|
| 402 | ! |
---|
| 403 | !-- Indices i=0, j=0 correspond to horizontally averaged pressure. |
---|
| 404 | !-- The respective values of ar should be zero at all k-levels if |
---|
| 405 | !-- acceleration of horizontally averaged vertical velocity is zero. |
---|
| 406 | IF ( ibc_p_b == 1 .AND. ibc_p_t == 1 ) THEN |
---|
| 407 | IF ( nys_z == 0 .AND. nxl_z == 0 ) THEN |
---|
| 408 | !$acc kernels loop present( ar ) |
---|
| 409 | DO k = 1, nz |
---|
[1342] | 410 | ar(nxl_z,nys_z,k) = 0.0_wp |
---|
[1216] | 411 | ENDDO |
---|
| 412 | ENDIF |
---|
| 413 | ENDIF |
---|
| 414 | |
---|
| 415 | END SUBROUTINE tridia_substi_overlap |
---|
| 416 | |
---|
| 417 | |
---|
[1212] | 418 | !------------------------------------------------------------------------------! |
---|
[1682] | 419 | ! Description: |
---|
| 420 | ! ------------ |
---|
| 421 | !> Splitting of the tridiagonal matrix (Thomas algorithm) |
---|
[1212] | 422 | !------------------------------------------------------------------------------! |
---|
[1682] | 423 | SUBROUTINE split |
---|
[1212] | 424 | |
---|
[1682] | 425 | |
---|
[1320] | 426 | USE arrays_3d, & |
---|
| 427 | ONLY: tri, tric |
---|
[1212] | 428 | |
---|
[1320] | 429 | USE kinds |
---|
| 430 | |
---|
[1212] | 431 | IMPLICIT NONE |
---|
| 432 | |
---|
[1682] | 433 | INTEGER(iwp) :: i !< |
---|
| 434 | INTEGER(iwp) :: j !< |
---|
| 435 | INTEGER(iwp) :: k !< |
---|
[1212] | 436 | ! |
---|
| 437 | !-- Splitting |
---|
| 438 | !$acc kernels present( tri, tric ) |
---|
| 439 | !$acc loop |
---|
| 440 | DO j = nys_z, nyn_z |
---|
| 441 | !$acc loop vector( 32 ) |
---|
| 442 | DO i = nxl_z, nxr_z |
---|
| 443 | tri(i,j,0,1) = tric(i,j,0) |
---|
| 444 | ENDDO |
---|
| 445 | ENDDO |
---|
| 446 | !$acc end kernels |
---|
| 447 | |
---|
| 448 | DO k = 1, nz-1 |
---|
| 449 | !$acc kernels present( tri, tric ) |
---|
| 450 | !$acc loop |
---|
| 451 | DO j = nys_z, nyn_z |
---|
| 452 | !$acc loop vector( 32 ) |
---|
| 453 | DO i = nxl_z, nxr_z |
---|
| 454 | tri(i,j,k,2) = ddzuw(k,1) / tri(i,j,k-1,1) |
---|
| 455 | tri(i,j,k,1) = tric(i,j,k) - ddzuw(k-1,2) * tri(i,j,k,2) |
---|
| 456 | ENDDO |
---|
| 457 | ENDDO |
---|
| 458 | !$acc end kernels |
---|
| 459 | ENDDO |
---|
| 460 | |
---|
| 461 | END SUBROUTINE split |
---|
| 462 | |
---|
| 463 | |
---|
| 464 | !------------------------------------------------------------------------------! |
---|
[1682] | 465 | ! Description: |
---|
| 466 | ! ------------ |
---|
| 467 | !> Solves the linear system of equations for a 1d-decomposition along x (see |
---|
| 468 | !> tridia) |
---|
| 469 | !> |
---|
| 470 | !> @attention when using the intel compilers older than 12.0, array tri must |
---|
| 471 | !> be passed as an argument to the contained subroutines. Otherwise |
---|
| 472 | !> addres faults will occur. This feature can be activated with |
---|
| 473 | !> cpp-switch __intel11 |
---|
| 474 | !> On NEC, tri should not be passed (except for routine substi_1dd) |
---|
| 475 | !> because this causes very bad performance. |
---|
[1212] | 476 | !------------------------------------------------------------------------------! |
---|
[1682] | 477 | |
---|
| 478 | SUBROUTINE tridia_1dd( ddx2, ddy2, nx, ny, j, ar, tri_for_1d ) |
---|
[1212] | 479 | |
---|
[1682] | 480 | |
---|
[1320] | 481 | USE arrays_3d, & |
---|
| 482 | ONLY: ddzu_pres, ddzw |
---|
[1212] | 483 | |
---|
[1320] | 484 | USE control_parameters, & |
---|
| 485 | ONLY: ibc_p_b, ibc_p_t |
---|
[1212] | 486 | |
---|
[1320] | 487 | USE kinds |
---|
| 488 | |
---|
[1212] | 489 | IMPLICIT NONE |
---|
| 490 | |
---|
[1682] | 491 | INTEGER(iwp) :: i !< |
---|
| 492 | INTEGER(iwp) :: j !< |
---|
| 493 | INTEGER(iwp) :: k !< |
---|
| 494 | INTEGER(iwp) :: nnyh !< |
---|
| 495 | INTEGER(iwp) :: nx !< |
---|
| 496 | INTEGER(iwp) :: ny !< |
---|
| 497 | INTEGER(iwp) :: omp_get_thread_num !< |
---|
| 498 | INTEGER(iwp) :: tn !< |
---|
[1212] | 499 | |
---|
[1682] | 500 | REAL(wp) :: ddx2 !< |
---|
| 501 | REAL(wp) :: ddy2 !< |
---|
[1212] | 502 | |
---|
[1682] | 503 | REAL(wp), DIMENSION(0:nx,1:nz) :: ar !< |
---|
| 504 | REAL(wp), DIMENSION(5,0:nx,0:nz-1) :: tri_for_1d !< |
---|
[1212] | 505 | |
---|
| 506 | |
---|
| 507 | nnyh = ( ny + 1 ) / 2 |
---|
| 508 | |
---|
| 509 | ! |
---|
| 510 | !-- Define constant elements of the tridiagonal matrix. |
---|
| 511 | !-- The compiler on SX6 does loop exchange. If 0:nx is a high power of 2, |
---|
| 512 | !-- the exchanged loops create bank conflicts. The following directive |
---|
| 513 | !-- prohibits loop exchange and the loops perform much better. |
---|
| 514 | !CDIR NOLOOPCHG |
---|
| 515 | DO k = 0, nz-1 |
---|
| 516 | DO i = 0,nx |
---|
[1221] | 517 | tri_for_1d(2,i,k) = ddzu_pres(k+1) * ddzw(k+1) |
---|
| 518 | tri_for_1d(3,i,k) = ddzu_pres(k+2) * ddzw(k+1) |
---|
[1212] | 519 | ENDDO |
---|
| 520 | ENDDO |
---|
| 521 | |
---|
| 522 | IF ( j <= nnyh ) THEN |
---|
| 523 | #if defined( __intel11 ) |
---|
[1221] | 524 | CALL maketri_1dd( j, tri_for_1d ) |
---|
[1212] | 525 | #else |
---|
| 526 | CALL maketri_1dd( j ) |
---|
| 527 | #endif |
---|
| 528 | ELSE |
---|
| 529 | #if defined( __intel11 ) |
---|
[1221] | 530 | CALL maketri_1dd( ny+1-j, tri_for_1d ) |
---|
[1212] | 531 | #else |
---|
| 532 | CALL maketri_1dd( ny+1-j ) |
---|
| 533 | #endif |
---|
| 534 | ENDIF |
---|
| 535 | #if defined( __intel11 ) |
---|
[1221] | 536 | CALL split_1dd( tri_for_1d ) |
---|
[1212] | 537 | #else |
---|
| 538 | CALL split_1dd |
---|
| 539 | #endif |
---|
[1221] | 540 | CALL substi_1dd( ar, tri_for_1d ) |
---|
[1212] | 541 | |
---|
| 542 | CONTAINS |
---|
| 543 | |
---|
[1682] | 544 | |
---|
| 545 | !------------------------------------------------------------------------------! |
---|
| 546 | ! Description: |
---|
| 547 | ! ------------ |
---|
| 548 | !> computes the i- and j-dependent component of the matrix |
---|
| 549 | !------------------------------------------------------------------------------! |
---|
[1212] | 550 | #if defined( __intel11 ) |
---|
[1221] | 551 | SUBROUTINE maketri_1dd( j, tri_for_1d ) |
---|
[1212] | 552 | #else |
---|
| 553 | SUBROUTINE maketri_1dd( j ) |
---|
| 554 | #endif |
---|
| 555 | |
---|
[1320] | 556 | USE constants, & |
---|
| 557 | ONLY: pi |
---|
[1212] | 558 | |
---|
[1320] | 559 | USE kinds |
---|
| 560 | |
---|
[1212] | 561 | IMPLICIT NONE |
---|
| 562 | |
---|
[1682] | 563 | INTEGER(iwp) :: i !< |
---|
| 564 | INTEGER(iwp) :: j !< |
---|
| 565 | INTEGER(iwp) :: k !< |
---|
| 566 | INTEGER(iwp) :: nnxh !< |
---|
[1212] | 567 | |
---|
[1682] | 568 | REAL(wp) :: a !< |
---|
| 569 | REAL(wp) :: c !< |
---|
[1212] | 570 | |
---|
[1682] | 571 | REAL(wp), DIMENSION(0:nx) :: l !< |
---|
[1320] | 572 | |
---|
[1212] | 573 | #if defined( __intel11 ) |
---|
[1682] | 574 | REAL(wp), DIMENSION(5,0:nx,0:nz-1) :: tri_for_1d !< |
---|
[1212] | 575 | #endif |
---|
| 576 | |
---|
| 577 | |
---|
| 578 | nnxh = ( nx + 1 ) / 2 |
---|
| 579 | ! |
---|
| 580 | !-- Provide the tridiagonal matrix for solution of the Poisson equation in |
---|
| 581 | !-- Fourier space. The coefficients are computed following the method of |
---|
| 582 | !-- Schmidt et al. (DFVLR-Mitteilung 84-15), which departs from Stephan |
---|
| 583 | !-- Siano's original version by discretizing the Poisson equation, |
---|
| 584 | !-- before it is Fourier-transformed |
---|
| 585 | DO i = 0, nx |
---|
| 586 | IF ( i >= 0 .AND. i <= nnxh ) THEN |
---|
[1342] | 587 | l(i) = 2.0_wp * ( 1.0_wp - COS( ( 2.0_wp * pi * i ) / & |
---|
| 588 | REAL( nx+1, KIND=wp ) ) ) * ddx2 + & |
---|
| 589 | 2.0_wp * ( 1.0_wp - COS( ( 2.0_wp * pi * j ) / & |
---|
| 590 | REAL( ny+1, KIND=wp ) ) ) * ddy2 |
---|
[1212] | 591 | ELSE |
---|
[1342] | 592 | l(i) = 2.0_wp * ( 1.0_wp - COS( ( 2.0_wp * pi * ( nx+1-i ) ) / & |
---|
| 593 | REAL( nx+1, KIND=wp ) ) ) * ddx2 + & |
---|
| 594 | 2.0_wp * ( 1.0_wp - COS( ( 2.0_wp * pi * j ) / & |
---|
| 595 | REAL( ny+1, KIND=wp ) ) ) * ddy2 |
---|
[1212] | 596 | ENDIF |
---|
| 597 | ENDDO |
---|
| 598 | |
---|
| 599 | DO k = 0, nz-1 |
---|
| 600 | DO i = 0, nx |
---|
[1342] | 601 | a = -1.0_wp * ddzu_pres(k+2) * ddzw(k+1) |
---|
| 602 | c = -1.0_wp * ddzu_pres(k+1) * ddzw(k+1) |
---|
[1221] | 603 | tri_for_1d(1,i,k) = a + c - l(i) |
---|
[1212] | 604 | ENDDO |
---|
| 605 | ENDDO |
---|
| 606 | IF ( ibc_p_b == 1 ) THEN |
---|
| 607 | DO i = 0, nx |
---|
[1221] | 608 | tri_for_1d(1,i,0) = tri_for_1d(1,i,0) + tri_for_1d(2,i,0) |
---|
[1212] | 609 | ENDDO |
---|
| 610 | ENDIF |
---|
| 611 | IF ( ibc_p_t == 1 ) THEN |
---|
| 612 | DO i = 0, nx |
---|
[1221] | 613 | tri_for_1d(1,i,nz-1) = tri_for_1d(1,i,nz-1) + tri_for_1d(3,i,nz-1) |
---|
[1212] | 614 | ENDDO |
---|
| 615 | ENDIF |
---|
| 616 | |
---|
| 617 | END SUBROUTINE maketri_1dd |
---|
| 618 | |
---|
| 619 | |
---|
[1682] | 620 | !------------------------------------------------------------------------------! |
---|
| 621 | ! Description: |
---|
| 622 | ! ------------ |
---|
| 623 | !> Splitting of the tridiagonal matrix (Thomas algorithm) |
---|
| 624 | !------------------------------------------------------------------------------! |
---|
[1212] | 625 | #if defined( __intel11 ) |
---|
[1221] | 626 | SUBROUTINE split_1dd( tri_for_1d ) |
---|
[1212] | 627 | #else |
---|
| 628 | SUBROUTINE split_1dd |
---|
| 629 | #endif |
---|
| 630 | |
---|
| 631 | |
---|
| 632 | IMPLICIT NONE |
---|
| 633 | |
---|
[1682] | 634 | INTEGER(iwp) :: i !< |
---|
| 635 | INTEGER(iwp) :: k !< |
---|
[1212] | 636 | |
---|
| 637 | #if defined( __intel11 ) |
---|
[1682] | 638 | REAL(wp), DIMENSION(5,0:nx,0:nz-1) :: tri_for_1d !< |
---|
[1212] | 639 | #endif |
---|
| 640 | |
---|
| 641 | |
---|
| 642 | ! |
---|
| 643 | !-- Splitting |
---|
| 644 | DO i = 0, nx |
---|
[1221] | 645 | tri_for_1d(4,i,0) = tri_for_1d(1,i,0) |
---|
[1212] | 646 | ENDDO |
---|
| 647 | DO k = 1, nz-1 |
---|
| 648 | DO i = 0, nx |
---|
[1221] | 649 | tri_for_1d(5,i,k) = tri_for_1d(2,i,k) / tri_for_1d(4,i,k-1) |
---|
| 650 | tri_for_1d(4,i,k) = tri_for_1d(1,i,k) - tri_for_1d(3,i,k-1) * tri_for_1d(5,i,k) |
---|
[1212] | 651 | ENDDO |
---|
| 652 | ENDDO |
---|
| 653 | |
---|
| 654 | END SUBROUTINE split_1dd |
---|
| 655 | |
---|
| 656 | |
---|
| 657 | !------------------------------------------------------------------------------! |
---|
[1682] | 658 | ! Description: |
---|
| 659 | ! ------------ |
---|
| 660 | !> Substitution (Forward and Backward) (Thomas algorithm) |
---|
[1212] | 661 | !------------------------------------------------------------------------------! |
---|
[1682] | 662 | SUBROUTINE substi_1dd( ar, tri_for_1d ) |
---|
[1212] | 663 | |
---|
[1682] | 664 | |
---|
[1212] | 665 | IMPLICIT NONE |
---|
| 666 | |
---|
[1682] | 667 | INTEGER(iwp) :: i !< |
---|
| 668 | INTEGER(iwp) :: k !< |
---|
[1212] | 669 | |
---|
[1682] | 670 | REAL(wp), DIMENSION(0:nx,nz) :: ar !< |
---|
| 671 | REAL(wp), DIMENSION(0:nx,0:nz-1) :: ar1 !< |
---|
| 672 | REAL(wp), DIMENSION(5,0:nx,0:nz-1) :: tri_for_1d !< |
---|
[1212] | 673 | |
---|
| 674 | ! |
---|
| 675 | !-- Forward substitution |
---|
| 676 | DO i = 0, nx |
---|
| 677 | ar1(i,0) = ar(i,1) |
---|
| 678 | ENDDO |
---|
| 679 | DO k = 1, nz-1 |
---|
| 680 | DO i = 0, nx |
---|
[1221] | 681 | ar1(i,k) = ar(i,k+1) - tri_for_1d(5,i,k) * ar1(i,k-1) |
---|
[1212] | 682 | ENDDO |
---|
| 683 | ENDDO |
---|
| 684 | |
---|
| 685 | ! |
---|
| 686 | !-- Backward substitution |
---|
| 687 | !-- Note, the add of 1.0E-20 in the denominator is due to avoid divisions |
---|
| 688 | !-- by zero appearing if the pressure bc is set to neumann at the top of |
---|
| 689 | !-- the model domain. |
---|
| 690 | DO i = 0, nx |
---|
[1342] | 691 | ar(i,nz) = ar1(i,nz-1) / ( tri_for_1d(4,i,nz-1) + 1.0E-20_wp ) |
---|
[1212] | 692 | ENDDO |
---|
| 693 | DO k = nz-2, 0, -1 |
---|
| 694 | DO i = 0, nx |
---|
[1221] | 695 | ar(i,k+1) = ( ar1(i,k) - tri_for_1d(3,i,k) * ar(i,k+2) ) & |
---|
| 696 | / tri_for_1d(4,i,k) |
---|
[1212] | 697 | ENDDO |
---|
| 698 | ENDDO |
---|
| 699 | |
---|
| 700 | ! |
---|
| 701 | !-- Indices i=0, j=0 correspond to horizontally averaged pressure. |
---|
| 702 | !-- The respective values of ar should be zero at all k-levels if |
---|
| 703 | !-- acceleration of horizontally averaged vertical velocity is zero. |
---|
| 704 | IF ( ibc_p_b == 1 .AND. ibc_p_t == 1 ) THEN |
---|
| 705 | IF ( j == 0 ) THEN |
---|
| 706 | DO k = 1, nz |
---|
[1342] | 707 | ar(0,k) = 0.0_wp |
---|
[1212] | 708 | ENDDO |
---|
| 709 | ENDIF |
---|
| 710 | ENDIF |
---|
| 711 | |
---|
| 712 | END SUBROUTINE substi_1dd |
---|
| 713 | |
---|
| 714 | END SUBROUTINE tridia_1dd |
---|
| 715 | |
---|
| 716 | |
---|
| 717 | END MODULE tridia_solver |
---|