[1212] | 1 | MODULE tridia_solver |
---|
| 2 | |
---|
| 3 | !--------------------------------------------------------------------------------! |
---|
| 4 | ! This file is part of PALM. |
---|
| 5 | ! |
---|
| 6 | ! PALM is free software: you can redistribute it and/or modify it under the terms |
---|
| 7 | ! of the GNU General Public License as published by the Free Software Foundation, |
---|
| 8 | ! either version 3 of the License, or (at your option) any later version. |
---|
| 9 | ! |
---|
| 10 | ! PALM is distributed in the hope that it will be useful, but WITHOUT ANY |
---|
| 11 | ! WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR |
---|
| 12 | ! A PARTICULAR PURPOSE. See the GNU General Public License for more details. |
---|
| 13 | ! |
---|
| 14 | ! You should have received a copy of the GNU General Public License along with |
---|
| 15 | ! PALM. If not, see <http://www.gnu.org/licenses/>. |
---|
| 16 | ! |
---|
[1310] | 17 | ! Copyright 1997-2014 Leibniz Universitaet Hannover |
---|
[1212] | 18 | !--------------------------------------------------------------------------------! |
---|
| 19 | ! |
---|
| 20 | ! Current revisions: |
---|
| 21 | ! ------------------ |
---|
[1343] | 22 | ! |
---|
[1407] | 23 | ! |
---|
[1321] | 24 | ! Former revisions: |
---|
| 25 | ! ----------------- |
---|
| 26 | ! $Id: tridia_solver.f90 1407 2014-05-16 14:06:08Z suehring $ |
---|
| 27 | ! |
---|
[1407] | 28 | ! 1406 2014-05-16 13:47:01Z raasch |
---|
| 29 | ! bugfix for pgi 14.4: declare create moved after array declaration |
---|
| 30 | ! |
---|
[1343] | 31 | ! 1342 2014-03-26 17:04:47Z kanani |
---|
| 32 | ! REAL constants defined as wp-kind |
---|
| 33 | ! |
---|
[1323] | 34 | ! 1322 2014-03-20 16:38:49Z raasch |
---|
| 35 | ! REAL functions provided with KIND-attribute |
---|
| 36 | ! |
---|
[1321] | 37 | ! 1320 2014-03-20 08:40:49Z raasch |
---|
[1320] | 38 | ! ONLY-attribute added to USE-statements, |
---|
| 39 | ! kind-parameters added to all INTEGER and REAL declaration statements, |
---|
| 40 | ! kinds are defined in new module kinds, |
---|
| 41 | ! old module precision_kind is removed, |
---|
| 42 | ! revision history before 2012 removed, |
---|
| 43 | ! comment fields (!:) to be used for variable explanations added to |
---|
| 44 | ! all variable declaration statements |
---|
[1213] | 45 | ! |
---|
[1258] | 46 | ! 1257 2013-11-08 15:18:40Z raasch |
---|
| 47 | ! openacc loop and loop vector clauses removed, declare create moved after |
---|
| 48 | ! the FORTRAN declaration statement |
---|
| 49 | ! |
---|
[1222] | 50 | ! 1221 2013-09-10 08:59:13Z raasch |
---|
| 51 | ! dummy argument tri in 1d-routines replaced by tri_for_1d because of name |
---|
| 52 | ! conflict with arry tri in module arrays_3d |
---|
| 53 | ! |
---|
[1217] | 54 | ! 1216 2013-08-26 09:31:42Z raasch |
---|
| 55 | ! +tridia_substi_overlap for handling overlapping fft / transposition |
---|
| 56 | ! |
---|
[1213] | 57 | ! 1212 2013-08-15 08:46:27Z raasch |
---|
[1212] | 58 | ! Initial revision. |
---|
| 59 | ! Routines have been moved to seperate module from former file poisfft to here. |
---|
| 60 | ! The tridiagonal matrix coefficients of array tri are calculated only once at |
---|
| 61 | ! the beginning, i.e. routine split is called within tridia_init. |
---|
| 62 | ! |
---|
| 63 | ! |
---|
| 64 | ! Description: |
---|
| 65 | ! ------------ |
---|
| 66 | ! solves the linear system of equations: |
---|
| 67 | ! |
---|
| 68 | ! -(4 pi^2(i^2/(dx^2*nnx^2)+j^2/(dy^2*nny^2))+ |
---|
| 69 | ! 1/(dzu(k)*dzw(k))+1/(dzu(k-1)*dzw(k)))*p(i,j,k)+ |
---|
| 70 | ! 1/(dzu(k)*dzw(k))*p(i,j,k+1)+1/(dzu(k-1)*dzw(k))*p(i,j,k-1)=d(i,j,k) |
---|
| 71 | ! |
---|
| 72 | ! by using the Thomas algorithm |
---|
| 73 | !------------------------------------------------------------------------------! |
---|
| 74 | |
---|
[1320] | 75 | USE indices, & |
---|
| 76 | ONLY: nx, ny, nz |
---|
[1212] | 77 | |
---|
[1320] | 78 | USE kinds |
---|
| 79 | |
---|
| 80 | USE transpose_indices, & |
---|
| 81 | ONLY: nxl_z, nyn_z, nxr_z, nys_z |
---|
| 82 | |
---|
[1212] | 83 | IMPLICIT NONE |
---|
| 84 | |
---|
[1320] | 85 | REAL(wp), DIMENSION(:,:), ALLOCATABLE :: ddzuw !: |
---|
[1212] | 86 | |
---|
| 87 | PRIVATE |
---|
| 88 | |
---|
| 89 | INTERFACE tridia_substi |
---|
| 90 | MODULE PROCEDURE tridia_substi |
---|
| 91 | END INTERFACE tridia_substi |
---|
| 92 | |
---|
[1216] | 93 | INTERFACE tridia_substi_overlap |
---|
| 94 | MODULE PROCEDURE tridia_substi_overlap |
---|
| 95 | END INTERFACE tridia_substi_overlap |
---|
[1212] | 96 | |
---|
[1216] | 97 | PUBLIC tridia_substi, tridia_substi_overlap, tridia_init, tridia_1dd |
---|
| 98 | |
---|
[1212] | 99 | CONTAINS |
---|
| 100 | |
---|
| 101 | |
---|
| 102 | SUBROUTINE tridia_init |
---|
| 103 | |
---|
[1320] | 104 | USE arrays_3d, & |
---|
| 105 | ONLY: ddzu_pres, ddzw |
---|
[1212] | 106 | |
---|
[1320] | 107 | USE kinds |
---|
| 108 | |
---|
[1212] | 109 | IMPLICIT NONE |
---|
| 110 | |
---|
[1320] | 111 | INTEGER(iwp) :: k !: |
---|
[1212] | 112 | |
---|
| 113 | ALLOCATE( ddzuw(0:nz-1,3) ) |
---|
| 114 | |
---|
| 115 | DO k = 0, nz-1 |
---|
| 116 | ddzuw(k,1) = ddzu_pres(k+1) * ddzw(k+1) |
---|
| 117 | ddzuw(k,2) = ddzu_pres(k+2) * ddzw(k+1) |
---|
[1342] | 118 | ddzuw(k,3) = -1.0_wp * & |
---|
[1212] | 119 | ( ddzu_pres(k+2) * ddzw(k+1) + ddzu_pres(k+1) * ddzw(k+1) ) |
---|
| 120 | ENDDO |
---|
| 121 | ! |
---|
| 122 | !-- Calculate constant coefficients of the tridiagonal matrix |
---|
| 123 | #if ! defined ( __check ) |
---|
| 124 | CALL maketri |
---|
| 125 | CALL split |
---|
| 126 | #endif |
---|
| 127 | |
---|
| 128 | END SUBROUTINE tridia_init |
---|
| 129 | |
---|
| 130 | |
---|
| 131 | SUBROUTINE maketri |
---|
| 132 | |
---|
| 133 | !------------------------------------------------------------------------------! |
---|
| 134 | ! Computes the i- and j-dependent component of the matrix |
---|
| 135 | !------------------------------------------------------------------------------! |
---|
| 136 | |
---|
[1320] | 137 | USE arrays_3d, & |
---|
| 138 | ONLY: tric |
---|
[1212] | 139 | |
---|
[1320] | 140 | USE constants, & |
---|
| 141 | ONLY: pi |
---|
| 142 | |
---|
| 143 | USE control_parameters, & |
---|
| 144 | ONLY: ibc_p_b, ibc_p_t |
---|
| 145 | |
---|
| 146 | USE grid_variables, & |
---|
| 147 | ONLY: dx, dy |
---|
| 148 | |
---|
| 149 | |
---|
| 150 | USE kinds |
---|
| 151 | |
---|
[1212] | 152 | IMPLICIT NONE |
---|
| 153 | |
---|
[1320] | 154 | INTEGER(iwp) :: i !: |
---|
| 155 | INTEGER(iwp) :: j !: |
---|
| 156 | INTEGER(iwp) :: k !: |
---|
| 157 | INTEGER(iwp) :: nnxh !: |
---|
| 158 | INTEGER(iwp) :: nnyh !: |
---|
[1212] | 159 | |
---|
[1320] | 160 | REAL(wp) :: ll(nxl_z:nxr_z,nys_z:nyn_z) !: |
---|
[1212] | 161 | !$acc declare create( ll ) |
---|
| 162 | |
---|
| 163 | |
---|
| 164 | nnxh = ( nx + 1 ) / 2 |
---|
| 165 | nnyh = ( ny + 1 ) / 2 |
---|
| 166 | |
---|
| 167 | ! |
---|
| 168 | !-- Provide the constant coefficients of the tridiagonal matrix for solution |
---|
| 169 | !-- of the Poisson equation in Fourier space. |
---|
| 170 | !-- The coefficients are computed following the method of |
---|
| 171 | !-- Schmidt et al. (DFVLR-Mitteilung 84-15), which departs from Stephan |
---|
| 172 | !-- Siano's original version by discretizing the Poisson equation, |
---|
| 173 | !-- before it is Fourier-transformed. |
---|
| 174 | |
---|
| 175 | !$acc kernels present( tric ) |
---|
| 176 | DO j = nys_z, nyn_z |
---|
| 177 | DO i = nxl_z, nxr_z |
---|
| 178 | IF ( j >= 0 .AND. j <= nnyh ) THEN |
---|
| 179 | IF ( i >= 0 .AND. i <= nnxh ) THEN |
---|
[1342] | 180 | ll(i,j) = 2.0_wp * ( 1.0_wp - COS( ( 2.0_wp * pi * i ) / & |
---|
| 181 | REAL( nx+1, KIND=wp ) ) ) / ( dx * dx ) + & |
---|
| 182 | 2.0_wp * ( 1.0_wp - COS( ( 2.0_wp * pi * j ) / & |
---|
| 183 | REAL( ny+1, KIND=wp ) ) ) / ( dy * dy ) |
---|
[1212] | 184 | ELSE |
---|
[1342] | 185 | ll(i,j) = 2.0_wp * ( 1.0_wp - COS( ( 2.0_wp * pi * ( nx+1-i ) ) / & |
---|
| 186 | REAL( nx+1, KIND=wp ) ) ) / ( dx * dx ) + & |
---|
| 187 | 2.0_wp * ( 1.0_wp - COS( ( 2.0_wp * pi * j ) / & |
---|
| 188 | REAL( ny+1, KIND=wp ) ) ) / ( dy * dy ) |
---|
[1212] | 189 | ENDIF |
---|
| 190 | ELSE |
---|
| 191 | IF ( i >= 0 .AND. i <= nnxh ) THEN |
---|
[1342] | 192 | ll(i,j) = 2.0_wp * ( 1.0_wp - COS( ( 2.0_wp * pi * i ) / & |
---|
| 193 | REAL( nx+1, KIND=wp ) ) ) / ( dx * dx ) + & |
---|
| 194 | 2.0_wp * ( 1.0_wp - COS( ( 2.0_wp * pi * ( ny+1-j ) ) / & |
---|
| 195 | REAL( ny+1, KIND=wp ) ) ) / ( dy * dy ) |
---|
[1212] | 196 | ELSE |
---|
[1342] | 197 | ll(i,j) = 2.0_wp * ( 1.0_wp - COS( ( 2.0_wp * pi * ( nx+1-i ) ) / & |
---|
| 198 | REAL( nx+1, KIND=wp ) ) ) / ( dx * dx ) + & |
---|
| 199 | 2.0_wp * ( 1.0_wp - COS( ( 2.0_wp * pi * ( ny+1-j ) ) / & |
---|
| 200 | REAL( ny+1, KIND=wp ) ) ) / ( dy * dy ) |
---|
[1212] | 201 | ENDIF |
---|
| 202 | ENDIF |
---|
| 203 | ENDDO |
---|
| 204 | ENDDO |
---|
| 205 | |
---|
| 206 | DO k = 0, nz-1 |
---|
| 207 | DO j = nys_z, nyn_z |
---|
| 208 | DO i = nxl_z, nxr_z |
---|
| 209 | tric(i,j,k) = ddzuw(k,3) - ll(i,j) |
---|
| 210 | ENDDO |
---|
| 211 | ENDDO |
---|
| 212 | ENDDO |
---|
| 213 | !$acc end kernels |
---|
| 214 | |
---|
| 215 | IF ( ibc_p_b == 1 ) THEN |
---|
| 216 | !$acc kernels present( tric ) |
---|
| 217 | DO j = nys_z, nyn_z |
---|
| 218 | DO i = nxl_z, nxr_z |
---|
| 219 | tric(i,j,0) = tric(i,j,0) + ddzuw(0,1) |
---|
| 220 | ENDDO |
---|
| 221 | ENDDO |
---|
| 222 | !$acc end kernels |
---|
| 223 | ENDIF |
---|
| 224 | IF ( ibc_p_t == 1 ) THEN |
---|
| 225 | !$acc kernels present( tric ) |
---|
| 226 | DO j = nys_z, nyn_z |
---|
| 227 | DO i = nxl_z, nxr_z |
---|
| 228 | tric(i,j,nz-1) = tric(i,j,nz-1) + ddzuw(nz-1,2) |
---|
| 229 | ENDDO |
---|
| 230 | ENDDO |
---|
| 231 | !$acc end kernels |
---|
| 232 | ENDIF |
---|
| 233 | |
---|
| 234 | END SUBROUTINE maketri |
---|
| 235 | |
---|
| 236 | |
---|
| 237 | SUBROUTINE tridia_substi( ar ) |
---|
| 238 | |
---|
| 239 | !------------------------------------------------------------------------------! |
---|
| 240 | ! Substitution (Forward and Backward) (Thomas algorithm) |
---|
| 241 | !------------------------------------------------------------------------------! |
---|
| 242 | |
---|
[1320] | 243 | USE arrays_3d, & |
---|
| 244 | ONLY: tri |
---|
[1212] | 245 | |
---|
[1320] | 246 | USE control_parameters, & |
---|
| 247 | ONLY: ibc_p_b, ibc_p_t |
---|
| 248 | |
---|
| 249 | USE kinds |
---|
| 250 | |
---|
[1212] | 251 | IMPLICIT NONE |
---|
| 252 | |
---|
[1320] | 253 | INTEGER(iwp) :: i !: |
---|
| 254 | INTEGER(iwp) :: j !: |
---|
| 255 | INTEGER(iwp) :: k !: |
---|
[1212] | 256 | |
---|
[1320] | 257 | REAL(wp) :: ar(nxl_z:nxr_z,nys_z:nyn_z,1:nz) !: |
---|
[1212] | 258 | |
---|
[1320] | 259 | REAL(wp), DIMENSION(nxl_z:nxr_z,nys_z:nyn_z,0:nz-1) :: ar1 !: |
---|
[1212] | 260 | !$acc declare create( ar1 ) |
---|
| 261 | |
---|
| 262 | ! |
---|
| 263 | !-- Forward substitution |
---|
| 264 | DO k = 0, nz - 1 |
---|
| 265 | !$acc kernels present( ar, tri ) |
---|
| 266 | DO j = nys_z, nyn_z |
---|
| 267 | DO i = nxl_z, nxr_z |
---|
| 268 | |
---|
| 269 | IF ( k == 0 ) THEN |
---|
| 270 | ar1(i,j,k) = ar(i,j,k+1) |
---|
| 271 | ELSE |
---|
| 272 | ar1(i,j,k) = ar(i,j,k+1) - tri(i,j,k,2) * ar1(i,j,k-1) |
---|
| 273 | ENDIF |
---|
| 274 | |
---|
| 275 | ENDDO |
---|
| 276 | ENDDO |
---|
| 277 | !$acc end kernels |
---|
| 278 | ENDDO |
---|
| 279 | |
---|
| 280 | ! |
---|
| 281 | !-- Backward substitution |
---|
| 282 | !-- Note, the 1.0E-20 in the denominator is due to avoid divisions |
---|
| 283 | !-- by zero appearing if the pressure bc is set to neumann at the top of |
---|
| 284 | !-- the model domain. |
---|
| 285 | DO k = nz-1, 0, -1 |
---|
| 286 | !$acc kernels present( ar, tri ) |
---|
| 287 | DO j = nys_z, nyn_z |
---|
| 288 | DO i = nxl_z, nxr_z |
---|
| 289 | |
---|
| 290 | IF ( k == nz-1 ) THEN |
---|
[1342] | 291 | ar(i,j,k+1) = ar1(i,j,k) / ( tri(i,j,k,1) + 1.0E-20_wp ) |
---|
[1212] | 292 | ELSE |
---|
| 293 | ar(i,j,k+1) = ( ar1(i,j,k) - ddzuw(k,2) * ar(i,j,k+2) ) & |
---|
| 294 | / tri(i,j,k,1) |
---|
| 295 | ENDIF |
---|
| 296 | ENDDO |
---|
| 297 | ENDDO |
---|
| 298 | !$acc end kernels |
---|
| 299 | ENDDO |
---|
| 300 | |
---|
| 301 | ! |
---|
| 302 | !-- Indices i=0, j=0 correspond to horizontally averaged pressure. |
---|
| 303 | !-- The respective values of ar should be zero at all k-levels if |
---|
| 304 | !-- acceleration of horizontally averaged vertical velocity is zero. |
---|
| 305 | IF ( ibc_p_b == 1 .AND. ibc_p_t == 1 ) THEN |
---|
| 306 | IF ( nys_z == 0 .AND. nxl_z == 0 ) THEN |
---|
| 307 | !$acc kernels loop present( ar ) |
---|
| 308 | DO k = 1, nz |
---|
[1342] | 309 | ar(nxl_z,nys_z,k) = 0.0_wp |
---|
[1212] | 310 | ENDDO |
---|
[1257] | 311 | !$acc end kernels loop |
---|
[1212] | 312 | ENDIF |
---|
| 313 | ENDIF |
---|
| 314 | |
---|
| 315 | END SUBROUTINE tridia_substi |
---|
| 316 | |
---|
| 317 | |
---|
[1216] | 318 | SUBROUTINE tridia_substi_overlap( ar, jj ) |
---|
| 319 | |
---|
| 320 | !------------------------------------------------------------------------------! |
---|
| 321 | ! Substitution (Forward and Backward) (Thomas algorithm) |
---|
| 322 | !------------------------------------------------------------------------------! |
---|
| 323 | |
---|
[1320] | 324 | USE arrays_3d, & |
---|
| 325 | ONLY: tri |
---|
[1216] | 326 | |
---|
[1320] | 327 | USE control_parameters, & |
---|
| 328 | ONLY: ibc_p_b, ibc_p_t |
---|
| 329 | |
---|
| 330 | USE kinds |
---|
| 331 | |
---|
[1216] | 332 | IMPLICIT NONE |
---|
| 333 | |
---|
[1320] | 334 | INTEGER(iwp) :: i !: |
---|
| 335 | INTEGER(iwp) :: j !: |
---|
| 336 | INTEGER(iwp) :: jj !: |
---|
| 337 | INTEGER(iwp) :: k !: |
---|
[1216] | 338 | |
---|
[1320] | 339 | REAL(wp) :: ar(nxl_z:nxr_z,nys_z:nyn_z,1:nz) !: |
---|
[1216] | 340 | |
---|
[1406] | 341 | REAL(wp), DIMENSION(nxl_z:nxr_z,nys_z:nyn_z,0:nz-1) :: ar1 !: |
---|
[1216] | 342 | !$acc declare create( ar1 ) |
---|
| 343 | |
---|
| 344 | ! |
---|
| 345 | !-- Forward substitution |
---|
| 346 | DO k = 0, nz - 1 |
---|
| 347 | !$acc kernels present( ar, tri ) |
---|
| 348 | !$acc loop |
---|
| 349 | DO j = nys_z, nyn_z |
---|
| 350 | DO i = nxl_z, nxr_z |
---|
| 351 | |
---|
| 352 | IF ( k == 0 ) THEN |
---|
| 353 | ar1(i,j,k) = ar(i,j,k+1) |
---|
| 354 | ELSE |
---|
| 355 | ar1(i,j,k) = ar(i,j,k+1) - tri(i,jj,k,2) * ar1(i,j,k-1) |
---|
| 356 | ENDIF |
---|
| 357 | |
---|
| 358 | ENDDO |
---|
| 359 | ENDDO |
---|
| 360 | !$acc end kernels |
---|
| 361 | ENDDO |
---|
| 362 | |
---|
| 363 | ! |
---|
| 364 | !-- Backward substitution |
---|
| 365 | !-- Note, the 1.0E-20 in the denominator is due to avoid divisions |
---|
| 366 | !-- by zero appearing if the pressure bc is set to neumann at the top of |
---|
| 367 | !-- the model domain. |
---|
| 368 | DO k = nz-1, 0, -1 |
---|
| 369 | !$acc kernels present( ar, tri ) |
---|
| 370 | !$acc loop |
---|
| 371 | DO j = nys_z, nyn_z |
---|
| 372 | DO i = nxl_z, nxr_z |
---|
| 373 | |
---|
| 374 | IF ( k == nz-1 ) THEN |
---|
[1342] | 375 | ar(i,j,k+1) = ar1(i,j,k) / ( tri(i,jj,k,1) + 1.0E-20_wp ) |
---|
[1216] | 376 | ELSE |
---|
| 377 | ar(i,j,k+1) = ( ar1(i,j,k) - ddzuw(k,2) * ar(i,j,k+2) ) & |
---|
| 378 | / tri(i,jj,k,1) |
---|
| 379 | ENDIF |
---|
| 380 | ENDDO |
---|
| 381 | ENDDO |
---|
| 382 | !$acc end kernels |
---|
| 383 | ENDDO |
---|
| 384 | |
---|
| 385 | ! |
---|
| 386 | !-- Indices i=0, j=0 correspond to horizontally averaged pressure. |
---|
| 387 | !-- The respective values of ar should be zero at all k-levels if |
---|
| 388 | !-- acceleration of horizontally averaged vertical velocity is zero. |
---|
| 389 | IF ( ibc_p_b == 1 .AND. ibc_p_t == 1 ) THEN |
---|
| 390 | IF ( nys_z == 0 .AND. nxl_z == 0 ) THEN |
---|
| 391 | !$acc kernels loop present( ar ) |
---|
| 392 | DO k = 1, nz |
---|
[1342] | 393 | ar(nxl_z,nys_z,k) = 0.0_wp |
---|
[1216] | 394 | ENDDO |
---|
| 395 | ENDIF |
---|
| 396 | ENDIF |
---|
| 397 | |
---|
| 398 | END SUBROUTINE tridia_substi_overlap |
---|
| 399 | |
---|
| 400 | |
---|
[1212] | 401 | SUBROUTINE split |
---|
| 402 | |
---|
| 403 | !------------------------------------------------------------------------------! |
---|
| 404 | ! Splitting of the tridiagonal matrix (Thomas algorithm) |
---|
| 405 | !------------------------------------------------------------------------------! |
---|
| 406 | |
---|
[1320] | 407 | USE arrays_3d, & |
---|
| 408 | ONLY: tri, tric |
---|
[1212] | 409 | |
---|
[1320] | 410 | USE kinds |
---|
| 411 | |
---|
[1212] | 412 | IMPLICIT NONE |
---|
| 413 | |
---|
[1320] | 414 | INTEGER(iwp) :: i !: |
---|
| 415 | INTEGER(iwp) :: j !: |
---|
| 416 | INTEGER(iwp) :: k !: |
---|
[1212] | 417 | ! |
---|
| 418 | !-- Splitting |
---|
| 419 | !$acc kernels present( tri, tric ) |
---|
| 420 | !$acc loop |
---|
| 421 | DO j = nys_z, nyn_z |
---|
| 422 | !$acc loop vector( 32 ) |
---|
| 423 | DO i = nxl_z, nxr_z |
---|
| 424 | tri(i,j,0,1) = tric(i,j,0) |
---|
| 425 | ENDDO |
---|
| 426 | ENDDO |
---|
| 427 | !$acc end kernels |
---|
| 428 | |
---|
| 429 | DO k = 1, nz-1 |
---|
| 430 | !$acc kernels present( tri, tric ) |
---|
| 431 | !$acc loop |
---|
| 432 | DO j = nys_z, nyn_z |
---|
| 433 | !$acc loop vector( 32 ) |
---|
| 434 | DO i = nxl_z, nxr_z |
---|
| 435 | tri(i,j,k,2) = ddzuw(k,1) / tri(i,j,k-1,1) |
---|
| 436 | tri(i,j,k,1) = tric(i,j,k) - ddzuw(k-1,2) * tri(i,j,k,2) |
---|
| 437 | ENDDO |
---|
| 438 | ENDDO |
---|
| 439 | !$acc end kernels |
---|
| 440 | ENDDO |
---|
| 441 | |
---|
| 442 | END SUBROUTINE split |
---|
| 443 | |
---|
| 444 | |
---|
[1221] | 445 | SUBROUTINE tridia_1dd( ddx2, ddy2, nx, ny, j, ar, tri_for_1d ) |
---|
[1212] | 446 | |
---|
| 447 | !------------------------------------------------------------------------------! |
---|
| 448 | ! Solves the linear system of equations for a 1d-decomposition along x (see |
---|
| 449 | ! tridia) |
---|
| 450 | ! |
---|
| 451 | ! Attention: when using the intel compilers older than 12.0, array tri must |
---|
| 452 | ! be passed as an argument to the contained subroutines. Otherwise |
---|
| 453 | ! addres faults will occur. This feature can be activated with |
---|
| 454 | ! cpp-switch __intel11 |
---|
| 455 | ! On NEC, tri should not be passed (except for routine substi_1dd) |
---|
| 456 | ! because this causes very bad performance. |
---|
| 457 | !------------------------------------------------------------------------------! |
---|
| 458 | |
---|
[1320] | 459 | USE arrays_3d, & |
---|
| 460 | ONLY: ddzu_pres, ddzw |
---|
[1212] | 461 | |
---|
[1320] | 462 | USE control_parameters, & |
---|
| 463 | ONLY: ibc_p_b, ibc_p_t |
---|
[1212] | 464 | |
---|
[1320] | 465 | USE kinds |
---|
| 466 | |
---|
[1212] | 467 | IMPLICIT NONE |
---|
| 468 | |
---|
[1320] | 469 | INTEGER(iwp) :: i !: |
---|
| 470 | INTEGER(iwp) :: j !: |
---|
| 471 | INTEGER(iwp) :: k !: |
---|
| 472 | INTEGER(iwp) :: nnyh !: |
---|
| 473 | INTEGER(iwp) :: nx !: |
---|
| 474 | INTEGER(iwp) :: ny !: |
---|
| 475 | INTEGER(iwp) :: omp_get_thread_num !: |
---|
| 476 | INTEGER(iwp) :: tn !: |
---|
[1212] | 477 | |
---|
[1320] | 478 | REAL(wp) :: ddx2 !: |
---|
| 479 | REAL(wp) :: ddy2 !: |
---|
[1212] | 480 | |
---|
[1320] | 481 | REAL(wp), DIMENSION(0:nx,1:nz) :: ar !: |
---|
| 482 | REAL(wp), DIMENSION(5,0:nx,0:nz-1) :: tri_for_1d !: |
---|
[1212] | 483 | |
---|
| 484 | |
---|
| 485 | nnyh = ( ny + 1 ) / 2 |
---|
| 486 | |
---|
| 487 | ! |
---|
| 488 | !-- Define constant elements of the tridiagonal matrix. |
---|
| 489 | !-- The compiler on SX6 does loop exchange. If 0:nx is a high power of 2, |
---|
| 490 | !-- the exchanged loops create bank conflicts. The following directive |
---|
| 491 | !-- prohibits loop exchange and the loops perform much better. |
---|
| 492 | ! tn = omp_get_thread_num() |
---|
| 493 | ! WRITE( 120+tn, * ) '+++ id=',myid,' nx=',nx,' thread=', omp_get_thread_num() |
---|
| 494 | ! CALL local_flush( 120+tn ) |
---|
| 495 | !CDIR NOLOOPCHG |
---|
| 496 | DO k = 0, nz-1 |
---|
| 497 | DO i = 0,nx |
---|
[1221] | 498 | tri_for_1d(2,i,k) = ddzu_pres(k+1) * ddzw(k+1) |
---|
| 499 | tri_for_1d(3,i,k) = ddzu_pres(k+2) * ddzw(k+1) |
---|
[1212] | 500 | ENDDO |
---|
| 501 | ENDDO |
---|
| 502 | ! WRITE( 120+tn, * ) '+++ id=',myid,' end of first tridia loop thread=', omp_get_thread_num() |
---|
| 503 | ! CALL local_flush( 120+tn ) |
---|
| 504 | |
---|
| 505 | IF ( j <= nnyh ) THEN |
---|
| 506 | #if defined( __intel11 ) |
---|
[1221] | 507 | CALL maketri_1dd( j, tri_for_1d ) |
---|
[1212] | 508 | #else |
---|
| 509 | CALL maketri_1dd( j ) |
---|
| 510 | #endif |
---|
| 511 | ELSE |
---|
| 512 | #if defined( __intel11 ) |
---|
[1221] | 513 | CALL maketri_1dd( ny+1-j, tri_for_1d ) |
---|
[1212] | 514 | #else |
---|
| 515 | CALL maketri_1dd( ny+1-j ) |
---|
| 516 | #endif |
---|
| 517 | ENDIF |
---|
| 518 | #if defined( __intel11 ) |
---|
[1221] | 519 | CALL split_1dd( tri_for_1d ) |
---|
[1212] | 520 | #else |
---|
| 521 | CALL split_1dd |
---|
| 522 | #endif |
---|
[1221] | 523 | CALL substi_1dd( ar, tri_for_1d ) |
---|
[1212] | 524 | |
---|
| 525 | CONTAINS |
---|
| 526 | |
---|
| 527 | #if defined( __intel11 ) |
---|
[1221] | 528 | SUBROUTINE maketri_1dd( j, tri_for_1d ) |
---|
[1212] | 529 | #else |
---|
| 530 | SUBROUTINE maketri_1dd( j ) |
---|
| 531 | #endif |
---|
| 532 | |
---|
| 533 | !------------------------------------------------------------------------------! |
---|
| 534 | ! computes the i- and j-dependent component of the matrix |
---|
| 535 | !------------------------------------------------------------------------------! |
---|
| 536 | |
---|
[1320] | 537 | USE constants, & |
---|
| 538 | ONLY: pi |
---|
[1212] | 539 | |
---|
[1320] | 540 | USE kinds |
---|
| 541 | |
---|
[1212] | 542 | IMPLICIT NONE |
---|
| 543 | |
---|
[1320] | 544 | INTEGER(iwp) :: i !: |
---|
| 545 | INTEGER(iwp) :: j !: |
---|
| 546 | INTEGER(iwp) :: k !: |
---|
| 547 | INTEGER(iwp) :: nnxh !: |
---|
[1212] | 548 | |
---|
[1320] | 549 | REAL(wp) :: a !: |
---|
| 550 | REAL(wp) :: c !: |
---|
[1212] | 551 | |
---|
[1320] | 552 | REAL(wp), DIMENSION(0:nx) :: l !: |
---|
| 553 | |
---|
[1212] | 554 | #if defined( __intel11 ) |
---|
[1320] | 555 | REAL(wp), DIMENSION(5,0:nx,0:nz-1) :: tri_for_1d !: |
---|
[1212] | 556 | #endif |
---|
| 557 | |
---|
| 558 | |
---|
| 559 | nnxh = ( nx + 1 ) / 2 |
---|
| 560 | ! |
---|
| 561 | !-- Provide the tridiagonal matrix for solution of the Poisson equation in |
---|
| 562 | !-- Fourier space. The coefficients are computed following the method of |
---|
| 563 | !-- Schmidt et al. (DFVLR-Mitteilung 84-15), which departs from Stephan |
---|
| 564 | !-- Siano's original version by discretizing the Poisson equation, |
---|
| 565 | !-- before it is Fourier-transformed |
---|
| 566 | DO i = 0, nx |
---|
| 567 | IF ( i >= 0 .AND. i <= nnxh ) THEN |
---|
[1342] | 568 | l(i) = 2.0_wp * ( 1.0_wp - COS( ( 2.0_wp * pi * i ) / & |
---|
| 569 | REAL( nx+1, KIND=wp ) ) ) * ddx2 + & |
---|
| 570 | 2.0_wp * ( 1.0_wp - COS( ( 2.0_wp * pi * j ) / & |
---|
| 571 | REAL( ny+1, KIND=wp ) ) ) * ddy2 |
---|
[1212] | 572 | ELSE |
---|
[1342] | 573 | l(i) = 2.0_wp * ( 1.0_wp - COS( ( 2.0_wp * pi * ( nx+1-i ) ) / & |
---|
| 574 | REAL( nx+1, KIND=wp ) ) ) * ddx2 + & |
---|
| 575 | 2.0_wp * ( 1.0_wp - COS( ( 2.0_wp * pi * j ) / & |
---|
| 576 | REAL( ny+1, KIND=wp ) ) ) * ddy2 |
---|
[1212] | 577 | ENDIF |
---|
| 578 | ENDDO |
---|
| 579 | |
---|
| 580 | DO k = 0, nz-1 |
---|
| 581 | DO i = 0, nx |
---|
[1342] | 582 | a = -1.0_wp * ddzu_pres(k+2) * ddzw(k+1) |
---|
| 583 | c = -1.0_wp * ddzu_pres(k+1) * ddzw(k+1) |
---|
[1221] | 584 | tri_for_1d(1,i,k) = a + c - l(i) |
---|
[1212] | 585 | ENDDO |
---|
| 586 | ENDDO |
---|
| 587 | IF ( ibc_p_b == 1 ) THEN |
---|
| 588 | DO i = 0, nx |
---|
[1221] | 589 | tri_for_1d(1,i,0) = tri_for_1d(1,i,0) + tri_for_1d(2,i,0) |
---|
[1212] | 590 | ENDDO |
---|
| 591 | ENDIF |
---|
| 592 | IF ( ibc_p_t == 1 ) THEN |
---|
| 593 | DO i = 0, nx |
---|
[1221] | 594 | tri_for_1d(1,i,nz-1) = tri_for_1d(1,i,nz-1) + tri_for_1d(3,i,nz-1) |
---|
[1212] | 595 | ENDDO |
---|
| 596 | ENDIF |
---|
| 597 | |
---|
| 598 | END SUBROUTINE maketri_1dd |
---|
| 599 | |
---|
| 600 | |
---|
| 601 | #if defined( __intel11 ) |
---|
[1221] | 602 | SUBROUTINE split_1dd( tri_for_1d ) |
---|
[1212] | 603 | #else |
---|
| 604 | SUBROUTINE split_1dd |
---|
| 605 | #endif |
---|
| 606 | |
---|
| 607 | !------------------------------------------------------------------------------! |
---|
| 608 | ! Splitting of the tridiagonal matrix (Thomas algorithm) |
---|
| 609 | !------------------------------------------------------------------------------! |
---|
| 610 | |
---|
| 611 | IMPLICIT NONE |
---|
| 612 | |
---|
[1320] | 613 | INTEGER(iwp) :: i !: |
---|
| 614 | INTEGER(iwp) :: k !: |
---|
[1212] | 615 | |
---|
| 616 | #if defined( __intel11 ) |
---|
[1320] | 617 | REAL(wp), DIMENSION(5,0:nx,0:nz-1) :: tri_for_1d !: |
---|
[1212] | 618 | #endif |
---|
| 619 | |
---|
| 620 | |
---|
| 621 | ! |
---|
| 622 | !-- Splitting |
---|
| 623 | DO i = 0, nx |
---|
[1221] | 624 | tri_for_1d(4,i,0) = tri_for_1d(1,i,0) |
---|
[1212] | 625 | ENDDO |
---|
| 626 | DO k = 1, nz-1 |
---|
| 627 | DO i = 0, nx |
---|
[1221] | 628 | tri_for_1d(5,i,k) = tri_for_1d(2,i,k) / tri_for_1d(4,i,k-1) |
---|
| 629 | tri_for_1d(4,i,k) = tri_for_1d(1,i,k) - tri_for_1d(3,i,k-1) * tri_for_1d(5,i,k) |
---|
[1212] | 630 | ENDDO |
---|
| 631 | ENDDO |
---|
| 632 | |
---|
| 633 | END SUBROUTINE split_1dd |
---|
| 634 | |
---|
| 635 | |
---|
[1221] | 636 | SUBROUTINE substi_1dd( ar, tri_for_1d ) |
---|
[1212] | 637 | |
---|
| 638 | !------------------------------------------------------------------------------! |
---|
| 639 | ! Substitution (Forward and Backward) (Thomas algorithm) |
---|
| 640 | !------------------------------------------------------------------------------! |
---|
| 641 | |
---|
| 642 | IMPLICIT NONE |
---|
| 643 | |
---|
[1320] | 644 | INTEGER(iwp) :: i !: |
---|
| 645 | INTEGER(iwp) :: k !: |
---|
[1212] | 646 | |
---|
[1320] | 647 | REAL(wp), DIMENSION(0:nx,nz) :: ar !: |
---|
| 648 | REAL(wp), DIMENSION(0:nx,0:nz-1) :: ar1 !: |
---|
| 649 | REAL(wp), DIMENSION(5,0:nx,0:nz-1) :: tri_for_1d !: |
---|
[1212] | 650 | |
---|
| 651 | ! |
---|
| 652 | !-- Forward substitution |
---|
| 653 | DO i = 0, nx |
---|
| 654 | ar1(i,0) = ar(i,1) |
---|
| 655 | ENDDO |
---|
| 656 | DO k = 1, nz-1 |
---|
| 657 | DO i = 0, nx |
---|
[1221] | 658 | ar1(i,k) = ar(i,k+1) - tri_for_1d(5,i,k) * ar1(i,k-1) |
---|
[1212] | 659 | ENDDO |
---|
| 660 | ENDDO |
---|
| 661 | |
---|
| 662 | ! |
---|
| 663 | !-- Backward substitution |
---|
| 664 | !-- Note, the add of 1.0E-20 in the denominator is due to avoid divisions |
---|
| 665 | !-- by zero appearing if the pressure bc is set to neumann at the top of |
---|
| 666 | !-- the model domain. |
---|
| 667 | DO i = 0, nx |
---|
[1342] | 668 | ar(i,nz) = ar1(i,nz-1) / ( tri_for_1d(4,i,nz-1) + 1.0E-20_wp ) |
---|
[1212] | 669 | ENDDO |
---|
| 670 | DO k = nz-2, 0, -1 |
---|
| 671 | DO i = 0, nx |
---|
[1221] | 672 | ar(i,k+1) = ( ar1(i,k) - tri_for_1d(3,i,k) * ar(i,k+2) ) & |
---|
| 673 | / tri_for_1d(4,i,k) |
---|
[1212] | 674 | ENDDO |
---|
| 675 | ENDDO |
---|
| 676 | |
---|
| 677 | ! |
---|
| 678 | !-- Indices i=0, j=0 correspond to horizontally averaged pressure. |
---|
| 679 | !-- The respective values of ar should be zero at all k-levels if |
---|
| 680 | !-- acceleration of horizontally averaged vertical velocity is zero. |
---|
| 681 | IF ( ibc_p_b == 1 .AND. ibc_p_t == 1 ) THEN |
---|
| 682 | IF ( j == 0 ) THEN |
---|
| 683 | DO k = 1, nz |
---|
[1342] | 684 | ar(0,k) = 0.0_wp |
---|
[1212] | 685 | ENDDO |
---|
| 686 | ENDIF |
---|
| 687 | ENDIF |
---|
| 688 | |
---|
| 689 | END SUBROUTINE substi_1dd |
---|
| 690 | |
---|
| 691 | END SUBROUTINE tridia_1dd |
---|
| 692 | |
---|
| 693 | |
---|
| 694 | END MODULE tridia_solver |
---|