[1212] | 1 | MODULE tridia_solver |
---|
| 2 | |
---|
| 3 | !--------------------------------------------------------------------------------! |
---|
| 4 | ! This file is part of PALM. |
---|
| 5 | ! |
---|
| 6 | ! PALM is free software: you can redistribute it and/or modify it under the terms |
---|
| 7 | ! of the GNU General Public License as published by the Free Software Foundation, |
---|
| 8 | ! either version 3 of the License, or (at your option) any later version. |
---|
| 9 | ! |
---|
| 10 | ! PALM is distributed in the hope that it will be useful, but WITHOUT ANY |
---|
| 11 | ! WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR |
---|
| 12 | ! A PARTICULAR PURPOSE. See the GNU General Public License for more details. |
---|
| 13 | ! |
---|
| 14 | ! You should have received a copy of the GNU General Public License along with |
---|
| 15 | ! PALM. If not, see <http://www.gnu.org/licenses/>. |
---|
| 16 | ! |
---|
[1310] | 17 | ! Copyright 1997-2014 Leibniz Universitaet Hannover |
---|
[1212] | 18 | !--------------------------------------------------------------------------------! |
---|
| 19 | ! |
---|
| 20 | ! Current revisions: |
---|
| 21 | ! ------------------ |
---|
[1343] | 22 | ! |
---|
| 23 | ! |
---|
[1321] | 24 | ! Former revisions: |
---|
| 25 | ! ----------------- |
---|
| 26 | ! $Id: tridia_solver.f90 1343 2014-03-26 17:07:58Z kanani $ |
---|
| 27 | ! |
---|
[1343] | 28 | ! 1342 2014-03-26 17:04:47Z kanani |
---|
| 29 | ! REAL constants defined as wp-kind |
---|
| 30 | ! |
---|
[1323] | 31 | ! 1322 2014-03-20 16:38:49Z raasch |
---|
| 32 | ! REAL functions provided with KIND-attribute |
---|
| 33 | ! |
---|
[1321] | 34 | ! 1320 2014-03-20 08:40:49Z raasch |
---|
[1320] | 35 | ! ONLY-attribute added to USE-statements, |
---|
| 36 | ! kind-parameters added to all INTEGER and REAL declaration statements, |
---|
| 37 | ! kinds are defined in new module kinds, |
---|
| 38 | ! old module precision_kind is removed, |
---|
| 39 | ! revision history before 2012 removed, |
---|
| 40 | ! comment fields (!:) to be used for variable explanations added to |
---|
| 41 | ! all variable declaration statements |
---|
[1213] | 42 | ! |
---|
[1258] | 43 | ! 1257 2013-11-08 15:18:40Z raasch |
---|
| 44 | ! openacc loop and loop vector clauses removed, declare create moved after |
---|
| 45 | ! the FORTRAN declaration statement |
---|
| 46 | ! |
---|
[1222] | 47 | ! 1221 2013-09-10 08:59:13Z raasch |
---|
| 48 | ! dummy argument tri in 1d-routines replaced by tri_for_1d because of name |
---|
| 49 | ! conflict with arry tri in module arrays_3d |
---|
| 50 | ! |
---|
[1217] | 51 | ! 1216 2013-08-26 09:31:42Z raasch |
---|
| 52 | ! +tridia_substi_overlap for handling overlapping fft / transposition |
---|
| 53 | ! |
---|
[1213] | 54 | ! 1212 2013-08-15 08:46:27Z raasch |
---|
[1212] | 55 | ! Initial revision. |
---|
| 56 | ! Routines have been moved to seperate module from former file poisfft to here. |
---|
| 57 | ! The tridiagonal matrix coefficients of array tri are calculated only once at |
---|
| 58 | ! the beginning, i.e. routine split is called within tridia_init. |
---|
| 59 | ! |
---|
| 60 | ! |
---|
| 61 | ! Description: |
---|
| 62 | ! ------------ |
---|
| 63 | ! solves the linear system of equations: |
---|
| 64 | ! |
---|
| 65 | ! -(4 pi^2(i^2/(dx^2*nnx^2)+j^2/(dy^2*nny^2))+ |
---|
| 66 | ! 1/(dzu(k)*dzw(k))+1/(dzu(k-1)*dzw(k)))*p(i,j,k)+ |
---|
| 67 | ! 1/(dzu(k)*dzw(k))*p(i,j,k+1)+1/(dzu(k-1)*dzw(k))*p(i,j,k-1)=d(i,j,k) |
---|
| 68 | ! |
---|
| 69 | ! by using the Thomas algorithm |
---|
| 70 | !------------------------------------------------------------------------------! |
---|
| 71 | |
---|
[1320] | 72 | USE indices, & |
---|
| 73 | ONLY: nx, ny, nz |
---|
[1212] | 74 | |
---|
[1320] | 75 | USE kinds |
---|
| 76 | |
---|
| 77 | USE transpose_indices, & |
---|
| 78 | ONLY: nxl_z, nyn_z, nxr_z, nys_z |
---|
| 79 | |
---|
[1212] | 80 | IMPLICIT NONE |
---|
| 81 | |
---|
[1320] | 82 | REAL(wp), DIMENSION(:,:), ALLOCATABLE :: ddzuw !: |
---|
[1212] | 83 | |
---|
| 84 | PRIVATE |
---|
| 85 | |
---|
| 86 | INTERFACE tridia_substi |
---|
| 87 | MODULE PROCEDURE tridia_substi |
---|
| 88 | END INTERFACE tridia_substi |
---|
| 89 | |
---|
[1216] | 90 | INTERFACE tridia_substi_overlap |
---|
| 91 | MODULE PROCEDURE tridia_substi_overlap |
---|
| 92 | END INTERFACE tridia_substi_overlap |
---|
[1212] | 93 | |
---|
[1216] | 94 | PUBLIC tridia_substi, tridia_substi_overlap, tridia_init, tridia_1dd |
---|
| 95 | |
---|
[1212] | 96 | CONTAINS |
---|
| 97 | |
---|
| 98 | |
---|
| 99 | SUBROUTINE tridia_init |
---|
| 100 | |
---|
[1320] | 101 | USE arrays_3d, & |
---|
| 102 | ONLY: ddzu_pres, ddzw |
---|
[1212] | 103 | |
---|
[1320] | 104 | USE kinds |
---|
| 105 | |
---|
[1212] | 106 | IMPLICIT NONE |
---|
| 107 | |
---|
[1320] | 108 | INTEGER(iwp) :: k !: |
---|
[1212] | 109 | |
---|
| 110 | ALLOCATE( ddzuw(0:nz-1,3) ) |
---|
| 111 | |
---|
| 112 | DO k = 0, nz-1 |
---|
| 113 | ddzuw(k,1) = ddzu_pres(k+1) * ddzw(k+1) |
---|
| 114 | ddzuw(k,2) = ddzu_pres(k+2) * ddzw(k+1) |
---|
[1342] | 115 | ddzuw(k,3) = -1.0_wp * & |
---|
[1212] | 116 | ( ddzu_pres(k+2) * ddzw(k+1) + ddzu_pres(k+1) * ddzw(k+1) ) |
---|
| 117 | ENDDO |
---|
| 118 | ! |
---|
| 119 | !-- Calculate constant coefficients of the tridiagonal matrix |
---|
| 120 | #if ! defined ( __check ) |
---|
| 121 | CALL maketri |
---|
| 122 | CALL split |
---|
| 123 | #endif |
---|
| 124 | |
---|
| 125 | END SUBROUTINE tridia_init |
---|
| 126 | |
---|
| 127 | |
---|
| 128 | SUBROUTINE maketri |
---|
| 129 | |
---|
| 130 | !------------------------------------------------------------------------------! |
---|
| 131 | ! Computes the i- and j-dependent component of the matrix |
---|
| 132 | !------------------------------------------------------------------------------! |
---|
| 133 | |
---|
[1320] | 134 | USE arrays_3d, & |
---|
| 135 | ONLY: tric |
---|
[1212] | 136 | |
---|
[1320] | 137 | USE constants, & |
---|
| 138 | ONLY: pi |
---|
| 139 | |
---|
| 140 | USE control_parameters, & |
---|
| 141 | ONLY: ibc_p_b, ibc_p_t |
---|
| 142 | |
---|
| 143 | USE grid_variables, & |
---|
| 144 | ONLY: dx, dy |
---|
| 145 | |
---|
| 146 | |
---|
| 147 | USE kinds |
---|
| 148 | |
---|
[1212] | 149 | IMPLICIT NONE |
---|
| 150 | |
---|
[1320] | 151 | INTEGER(iwp) :: i !: |
---|
| 152 | INTEGER(iwp) :: j !: |
---|
| 153 | INTEGER(iwp) :: k !: |
---|
| 154 | INTEGER(iwp) :: nnxh !: |
---|
| 155 | INTEGER(iwp) :: nnyh !: |
---|
[1212] | 156 | |
---|
[1320] | 157 | REAL(wp) :: ll(nxl_z:nxr_z,nys_z:nyn_z) !: |
---|
[1212] | 158 | !$acc declare create( ll ) |
---|
| 159 | |
---|
| 160 | |
---|
| 161 | nnxh = ( nx + 1 ) / 2 |
---|
| 162 | nnyh = ( ny + 1 ) / 2 |
---|
| 163 | |
---|
| 164 | ! |
---|
| 165 | !-- Provide the constant coefficients of the tridiagonal matrix for solution |
---|
| 166 | !-- of the Poisson equation in Fourier space. |
---|
| 167 | !-- The coefficients are computed following the method of |
---|
| 168 | !-- Schmidt et al. (DFVLR-Mitteilung 84-15), which departs from Stephan |
---|
| 169 | !-- Siano's original version by discretizing the Poisson equation, |
---|
| 170 | !-- before it is Fourier-transformed. |
---|
| 171 | |
---|
| 172 | !$acc kernels present( tric ) |
---|
| 173 | DO j = nys_z, nyn_z |
---|
| 174 | DO i = nxl_z, nxr_z |
---|
| 175 | IF ( j >= 0 .AND. j <= nnyh ) THEN |
---|
| 176 | IF ( i >= 0 .AND. i <= nnxh ) THEN |
---|
[1342] | 177 | ll(i,j) = 2.0_wp * ( 1.0_wp - COS( ( 2.0_wp * pi * i ) / & |
---|
| 178 | REAL( nx+1, KIND=wp ) ) ) / ( dx * dx ) + & |
---|
| 179 | 2.0_wp * ( 1.0_wp - COS( ( 2.0_wp * pi * j ) / & |
---|
| 180 | REAL( ny+1, KIND=wp ) ) ) / ( dy * dy ) |
---|
[1212] | 181 | ELSE |
---|
[1342] | 182 | ll(i,j) = 2.0_wp * ( 1.0_wp - COS( ( 2.0_wp * pi * ( nx+1-i ) ) / & |
---|
| 183 | REAL( nx+1, KIND=wp ) ) ) / ( dx * dx ) + & |
---|
| 184 | 2.0_wp * ( 1.0_wp - COS( ( 2.0_wp * pi * j ) / & |
---|
| 185 | REAL( ny+1, KIND=wp ) ) ) / ( dy * dy ) |
---|
[1212] | 186 | ENDIF |
---|
| 187 | ELSE |
---|
| 188 | IF ( i >= 0 .AND. i <= nnxh ) THEN |
---|
[1342] | 189 | ll(i,j) = 2.0_wp * ( 1.0_wp - COS( ( 2.0_wp * pi * i ) / & |
---|
| 190 | REAL( nx+1, KIND=wp ) ) ) / ( dx * dx ) + & |
---|
| 191 | 2.0_wp * ( 1.0_wp - COS( ( 2.0_wp * pi * ( ny+1-j ) ) / & |
---|
| 192 | REAL( ny+1, KIND=wp ) ) ) / ( dy * dy ) |
---|
[1212] | 193 | ELSE |
---|
[1342] | 194 | ll(i,j) = 2.0_wp * ( 1.0_wp - COS( ( 2.0_wp * pi * ( nx+1-i ) ) / & |
---|
| 195 | REAL( nx+1, KIND=wp ) ) ) / ( dx * dx ) + & |
---|
| 196 | 2.0_wp * ( 1.0_wp - COS( ( 2.0_wp * pi * ( ny+1-j ) ) / & |
---|
| 197 | REAL( ny+1, KIND=wp ) ) ) / ( dy * dy ) |
---|
[1212] | 198 | ENDIF |
---|
| 199 | ENDIF |
---|
| 200 | ENDDO |
---|
| 201 | ENDDO |
---|
| 202 | |
---|
| 203 | DO k = 0, nz-1 |
---|
| 204 | DO j = nys_z, nyn_z |
---|
| 205 | DO i = nxl_z, nxr_z |
---|
| 206 | tric(i,j,k) = ddzuw(k,3) - ll(i,j) |
---|
| 207 | ENDDO |
---|
| 208 | ENDDO |
---|
| 209 | ENDDO |
---|
| 210 | !$acc end kernels |
---|
| 211 | |
---|
| 212 | IF ( ibc_p_b == 1 ) THEN |
---|
| 213 | !$acc kernels present( tric ) |
---|
| 214 | DO j = nys_z, nyn_z |
---|
| 215 | DO i = nxl_z, nxr_z |
---|
| 216 | tric(i,j,0) = tric(i,j,0) + ddzuw(0,1) |
---|
| 217 | ENDDO |
---|
| 218 | ENDDO |
---|
| 219 | !$acc end kernels |
---|
| 220 | ENDIF |
---|
| 221 | IF ( ibc_p_t == 1 ) THEN |
---|
| 222 | !$acc kernels present( tric ) |
---|
| 223 | DO j = nys_z, nyn_z |
---|
| 224 | DO i = nxl_z, nxr_z |
---|
| 225 | tric(i,j,nz-1) = tric(i,j,nz-1) + ddzuw(nz-1,2) |
---|
| 226 | ENDDO |
---|
| 227 | ENDDO |
---|
| 228 | !$acc end kernels |
---|
| 229 | ENDIF |
---|
| 230 | |
---|
| 231 | END SUBROUTINE maketri |
---|
| 232 | |
---|
| 233 | |
---|
| 234 | SUBROUTINE tridia_substi( ar ) |
---|
| 235 | |
---|
| 236 | !------------------------------------------------------------------------------! |
---|
| 237 | ! Substitution (Forward and Backward) (Thomas algorithm) |
---|
| 238 | !------------------------------------------------------------------------------! |
---|
| 239 | |
---|
[1320] | 240 | USE arrays_3d, & |
---|
| 241 | ONLY: tri |
---|
[1212] | 242 | |
---|
[1320] | 243 | USE control_parameters, & |
---|
| 244 | ONLY: ibc_p_b, ibc_p_t |
---|
| 245 | |
---|
| 246 | USE kinds |
---|
| 247 | |
---|
[1212] | 248 | IMPLICIT NONE |
---|
| 249 | |
---|
[1320] | 250 | INTEGER(iwp) :: i !: |
---|
| 251 | INTEGER(iwp) :: j !: |
---|
| 252 | INTEGER(iwp) :: k !: |
---|
[1212] | 253 | |
---|
[1320] | 254 | REAL(wp) :: ar(nxl_z:nxr_z,nys_z:nyn_z,1:nz) !: |
---|
[1212] | 255 | |
---|
[1320] | 256 | REAL(wp), DIMENSION(nxl_z:nxr_z,nys_z:nyn_z,0:nz-1) :: ar1 !: |
---|
[1212] | 257 | !$acc declare create( ar1 ) |
---|
| 258 | |
---|
| 259 | ! |
---|
| 260 | !-- Forward substitution |
---|
| 261 | DO k = 0, nz - 1 |
---|
| 262 | !$acc kernels present( ar, tri ) |
---|
| 263 | DO j = nys_z, nyn_z |
---|
| 264 | DO i = nxl_z, nxr_z |
---|
| 265 | |
---|
| 266 | IF ( k == 0 ) THEN |
---|
| 267 | ar1(i,j,k) = ar(i,j,k+1) |
---|
| 268 | ELSE |
---|
| 269 | ar1(i,j,k) = ar(i,j,k+1) - tri(i,j,k,2) * ar1(i,j,k-1) |
---|
| 270 | ENDIF |
---|
| 271 | |
---|
| 272 | ENDDO |
---|
| 273 | ENDDO |
---|
| 274 | !$acc end kernels |
---|
| 275 | ENDDO |
---|
| 276 | |
---|
| 277 | ! |
---|
| 278 | !-- Backward substitution |
---|
| 279 | !-- Note, the 1.0E-20 in the denominator is due to avoid divisions |
---|
| 280 | !-- by zero appearing if the pressure bc is set to neumann at the top of |
---|
| 281 | !-- the model domain. |
---|
| 282 | DO k = nz-1, 0, -1 |
---|
| 283 | !$acc kernels present( ar, tri ) |
---|
| 284 | DO j = nys_z, nyn_z |
---|
| 285 | DO i = nxl_z, nxr_z |
---|
| 286 | |
---|
| 287 | IF ( k == nz-1 ) THEN |
---|
[1342] | 288 | ar(i,j,k+1) = ar1(i,j,k) / ( tri(i,j,k,1) + 1.0E-20_wp ) |
---|
[1212] | 289 | ELSE |
---|
| 290 | ar(i,j,k+1) = ( ar1(i,j,k) - ddzuw(k,2) * ar(i,j,k+2) ) & |
---|
| 291 | / tri(i,j,k,1) |
---|
| 292 | ENDIF |
---|
| 293 | ENDDO |
---|
| 294 | ENDDO |
---|
| 295 | !$acc end kernels |
---|
| 296 | ENDDO |
---|
| 297 | |
---|
| 298 | ! |
---|
| 299 | !-- Indices i=0, j=0 correspond to horizontally averaged pressure. |
---|
| 300 | !-- The respective values of ar should be zero at all k-levels if |
---|
| 301 | !-- acceleration of horizontally averaged vertical velocity is zero. |
---|
| 302 | IF ( ibc_p_b == 1 .AND. ibc_p_t == 1 ) THEN |
---|
| 303 | IF ( nys_z == 0 .AND. nxl_z == 0 ) THEN |
---|
| 304 | !$acc kernels loop present( ar ) |
---|
| 305 | DO k = 1, nz |
---|
[1342] | 306 | ar(nxl_z,nys_z,k) = 0.0_wp |
---|
[1212] | 307 | ENDDO |
---|
[1257] | 308 | !$acc end kernels loop |
---|
[1212] | 309 | ENDIF |
---|
| 310 | ENDIF |
---|
| 311 | |
---|
| 312 | END SUBROUTINE tridia_substi |
---|
| 313 | |
---|
| 314 | |
---|
[1216] | 315 | SUBROUTINE tridia_substi_overlap( ar, jj ) |
---|
| 316 | |
---|
| 317 | !------------------------------------------------------------------------------! |
---|
| 318 | ! Substitution (Forward and Backward) (Thomas algorithm) |
---|
| 319 | !------------------------------------------------------------------------------! |
---|
| 320 | |
---|
[1320] | 321 | USE arrays_3d, & |
---|
| 322 | ONLY: tri |
---|
[1216] | 323 | |
---|
[1320] | 324 | USE control_parameters, & |
---|
| 325 | ONLY: ibc_p_b, ibc_p_t |
---|
| 326 | |
---|
| 327 | USE kinds |
---|
| 328 | |
---|
[1216] | 329 | IMPLICIT NONE |
---|
| 330 | |
---|
[1320] | 331 | INTEGER(iwp) :: i !: |
---|
| 332 | INTEGER(iwp) :: j !: |
---|
| 333 | INTEGER(iwp) :: jj !: |
---|
| 334 | INTEGER(iwp) :: k !: |
---|
[1216] | 335 | |
---|
[1320] | 336 | REAL(wp) :: ar(nxl_z:nxr_z,nys_z:nyn_z,1:nz) !: |
---|
[1216] | 337 | |
---|
| 338 | !$acc declare create( ar1 ) |
---|
[1320] | 339 | REAL(wp), DIMENSION(nxl_z:nxr_z,nys_z:nyn_z,0:nz-1) :: ar1 !: |
---|
[1216] | 340 | |
---|
| 341 | ! |
---|
| 342 | !-- Forward substitution |
---|
| 343 | DO k = 0, nz - 1 |
---|
| 344 | !$acc kernels present( ar, tri ) |
---|
| 345 | !$acc loop |
---|
| 346 | DO j = nys_z, nyn_z |
---|
| 347 | DO i = nxl_z, nxr_z |
---|
| 348 | |
---|
| 349 | IF ( k == 0 ) THEN |
---|
| 350 | ar1(i,j,k) = ar(i,j,k+1) |
---|
| 351 | ELSE |
---|
| 352 | ar1(i,j,k) = ar(i,j,k+1) - tri(i,jj,k,2) * ar1(i,j,k-1) |
---|
| 353 | ENDIF |
---|
| 354 | |
---|
| 355 | ENDDO |
---|
| 356 | ENDDO |
---|
| 357 | !$acc end kernels |
---|
| 358 | ENDDO |
---|
| 359 | |
---|
| 360 | ! |
---|
| 361 | !-- Backward substitution |
---|
| 362 | !-- Note, the 1.0E-20 in the denominator is due to avoid divisions |
---|
| 363 | !-- by zero appearing if the pressure bc is set to neumann at the top of |
---|
| 364 | !-- the model domain. |
---|
| 365 | DO k = nz-1, 0, -1 |
---|
| 366 | !$acc kernels present( ar, tri ) |
---|
| 367 | !$acc loop |
---|
| 368 | DO j = nys_z, nyn_z |
---|
| 369 | DO i = nxl_z, nxr_z |
---|
| 370 | |
---|
| 371 | IF ( k == nz-1 ) THEN |
---|
[1342] | 372 | ar(i,j,k+1) = ar1(i,j,k) / ( tri(i,jj,k,1) + 1.0E-20_wp ) |
---|
[1216] | 373 | ELSE |
---|
| 374 | ar(i,j,k+1) = ( ar1(i,j,k) - ddzuw(k,2) * ar(i,j,k+2) ) & |
---|
| 375 | / tri(i,jj,k,1) |
---|
| 376 | ENDIF |
---|
| 377 | ENDDO |
---|
| 378 | ENDDO |
---|
| 379 | !$acc end kernels |
---|
| 380 | ENDDO |
---|
| 381 | |
---|
| 382 | ! |
---|
| 383 | !-- Indices i=0, j=0 correspond to horizontally averaged pressure. |
---|
| 384 | !-- The respective values of ar should be zero at all k-levels if |
---|
| 385 | !-- acceleration of horizontally averaged vertical velocity is zero. |
---|
| 386 | IF ( ibc_p_b == 1 .AND. ibc_p_t == 1 ) THEN |
---|
| 387 | IF ( nys_z == 0 .AND. nxl_z == 0 ) THEN |
---|
| 388 | !$acc kernels loop present( ar ) |
---|
| 389 | DO k = 1, nz |
---|
[1342] | 390 | ar(nxl_z,nys_z,k) = 0.0_wp |
---|
[1216] | 391 | ENDDO |
---|
| 392 | ENDIF |
---|
| 393 | ENDIF |
---|
| 394 | |
---|
| 395 | END SUBROUTINE tridia_substi_overlap |
---|
| 396 | |
---|
| 397 | |
---|
[1212] | 398 | SUBROUTINE split |
---|
| 399 | |
---|
| 400 | !------------------------------------------------------------------------------! |
---|
| 401 | ! Splitting of the tridiagonal matrix (Thomas algorithm) |
---|
| 402 | !------------------------------------------------------------------------------! |
---|
| 403 | |
---|
[1320] | 404 | USE arrays_3d, & |
---|
| 405 | ONLY: tri, tric |
---|
[1212] | 406 | |
---|
[1320] | 407 | USE kinds |
---|
| 408 | |
---|
[1212] | 409 | IMPLICIT NONE |
---|
| 410 | |
---|
[1320] | 411 | INTEGER(iwp) :: i !: |
---|
| 412 | INTEGER(iwp) :: j !: |
---|
| 413 | INTEGER(iwp) :: k !: |
---|
[1212] | 414 | ! |
---|
| 415 | !-- Splitting |
---|
| 416 | !$acc kernels present( tri, tric ) |
---|
| 417 | !$acc loop |
---|
| 418 | DO j = nys_z, nyn_z |
---|
| 419 | !$acc loop vector( 32 ) |
---|
| 420 | DO i = nxl_z, nxr_z |
---|
| 421 | tri(i,j,0,1) = tric(i,j,0) |
---|
| 422 | ENDDO |
---|
| 423 | ENDDO |
---|
| 424 | !$acc end kernels |
---|
| 425 | |
---|
| 426 | DO k = 1, nz-1 |
---|
| 427 | !$acc kernels present( tri, tric ) |
---|
| 428 | !$acc loop |
---|
| 429 | DO j = nys_z, nyn_z |
---|
| 430 | !$acc loop vector( 32 ) |
---|
| 431 | DO i = nxl_z, nxr_z |
---|
| 432 | tri(i,j,k,2) = ddzuw(k,1) / tri(i,j,k-1,1) |
---|
| 433 | tri(i,j,k,1) = tric(i,j,k) - ddzuw(k-1,2) * tri(i,j,k,2) |
---|
| 434 | ENDDO |
---|
| 435 | ENDDO |
---|
| 436 | !$acc end kernels |
---|
| 437 | ENDDO |
---|
| 438 | |
---|
| 439 | END SUBROUTINE split |
---|
| 440 | |
---|
| 441 | |
---|
[1221] | 442 | SUBROUTINE tridia_1dd( ddx2, ddy2, nx, ny, j, ar, tri_for_1d ) |
---|
[1212] | 443 | |
---|
| 444 | !------------------------------------------------------------------------------! |
---|
| 445 | ! Solves the linear system of equations for a 1d-decomposition along x (see |
---|
| 446 | ! tridia) |
---|
| 447 | ! |
---|
| 448 | ! Attention: when using the intel compilers older than 12.0, array tri must |
---|
| 449 | ! be passed as an argument to the contained subroutines. Otherwise |
---|
| 450 | ! addres faults will occur. This feature can be activated with |
---|
| 451 | ! cpp-switch __intel11 |
---|
| 452 | ! On NEC, tri should not be passed (except for routine substi_1dd) |
---|
| 453 | ! because this causes very bad performance. |
---|
| 454 | !------------------------------------------------------------------------------! |
---|
| 455 | |
---|
[1320] | 456 | USE arrays_3d, & |
---|
| 457 | ONLY: ddzu_pres, ddzw |
---|
[1212] | 458 | |
---|
[1320] | 459 | USE control_parameters, & |
---|
| 460 | ONLY: ibc_p_b, ibc_p_t |
---|
[1212] | 461 | |
---|
[1320] | 462 | USE kinds |
---|
| 463 | |
---|
[1212] | 464 | IMPLICIT NONE |
---|
| 465 | |
---|
[1320] | 466 | INTEGER(iwp) :: i !: |
---|
| 467 | INTEGER(iwp) :: j !: |
---|
| 468 | INTEGER(iwp) :: k !: |
---|
| 469 | INTEGER(iwp) :: nnyh !: |
---|
| 470 | INTEGER(iwp) :: nx !: |
---|
| 471 | INTEGER(iwp) :: ny !: |
---|
| 472 | INTEGER(iwp) :: omp_get_thread_num !: |
---|
| 473 | INTEGER(iwp) :: tn !: |
---|
[1212] | 474 | |
---|
[1320] | 475 | REAL(wp) :: ddx2 !: |
---|
| 476 | REAL(wp) :: ddy2 !: |
---|
[1212] | 477 | |
---|
[1320] | 478 | REAL(wp), DIMENSION(0:nx,1:nz) :: ar !: |
---|
| 479 | REAL(wp), DIMENSION(5,0:nx,0:nz-1) :: tri_for_1d !: |
---|
[1212] | 480 | |
---|
| 481 | |
---|
| 482 | nnyh = ( ny + 1 ) / 2 |
---|
| 483 | |
---|
| 484 | ! |
---|
| 485 | !-- Define constant elements of the tridiagonal matrix. |
---|
| 486 | !-- The compiler on SX6 does loop exchange. If 0:nx is a high power of 2, |
---|
| 487 | !-- the exchanged loops create bank conflicts. The following directive |
---|
| 488 | !-- prohibits loop exchange and the loops perform much better. |
---|
| 489 | ! tn = omp_get_thread_num() |
---|
| 490 | ! WRITE( 120+tn, * ) '+++ id=',myid,' nx=',nx,' thread=', omp_get_thread_num() |
---|
| 491 | ! CALL local_flush( 120+tn ) |
---|
| 492 | !CDIR NOLOOPCHG |
---|
| 493 | DO k = 0, nz-1 |
---|
| 494 | DO i = 0,nx |
---|
[1221] | 495 | tri_for_1d(2,i,k) = ddzu_pres(k+1) * ddzw(k+1) |
---|
| 496 | tri_for_1d(3,i,k) = ddzu_pres(k+2) * ddzw(k+1) |
---|
[1212] | 497 | ENDDO |
---|
| 498 | ENDDO |
---|
| 499 | ! WRITE( 120+tn, * ) '+++ id=',myid,' end of first tridia loop thread=', omp_get_thread_num() |
---|
| 500 | ! CALL local_flush( 120+tn ) |
---|
| 501 | |
---|
| 502 | IF ( j <= nnyh ) THEN |
---|
| 503 | #if defined( __intel11 ) |
---|
[1221] | 504 | CALL maketri_1dd( j, tri_for_1d ) |
---|
[1212] | 505 | #else |
---|
| 506 | CALL maketri_1dd( j ) |
---|
| 507 | #endif |
---|
| 508 | ELSE |
---|
| 509 | #if defined( __intel11 ) |
---|
[1221] | 510 | CALL maketri_1dd( ny+1-j, tri_for_1d ) |
---|
[1212] | 511 | #else |
---|
| 512 | CALL maketri_1dd( ny+1-j ) |
---|
| 513 | #endif |
---|
| 514 | ENDIF |
---|
| 515 | #if defined( __intel11 ) |
---|
[1221] | 516 | CALL split_1dd( tri_for_1d ) |
---|
[1212] | 517 | #else |
---|
| 518 | CALL split_1dd |
---|
| 519 | #endif |
---|
[1221] | 520 | CALL substi_1dd( ar, tri_for_1d ) |
---|
[1212] | 521 | |
---|
| 522 | CONTAINS |
---|
| 523 | |
---|
| 524 | #if defined( __intel11 ) |
---|
[1221] | 525 | SUBROUTINE maketri_1dd( j, tri_for_1d ) |
---|
[1212] | 526 | #else |
---|
| 527 | SUBROUTINE maketri_1dd( j ) |
---|
| 528 | #endif |
---|
| 529 | |
---|
| 530 | !------------------------------------------------------------------------------! |
---|
| 531 | ! computes the i- and j-dependent component of the matrix |
---|
| 532 | !------------------------------------------------------------------------------! |
---|
| 533 | |
---|
[1320] | 534 | USE constants, & |
---|
| 535 | ONLY: pi |
---|
[1212] | 536 | |
---|
[1320] | 537 | USE kinds |
---|
| 538 | |
---|
[1212] | 539 | IMPLICIT NONE |
---|
| 540 | |
---|
[1320] | 541 | INTEGER(iwp) :: i !: |
---|
| 542 | INTEGER(iwp) :: j !: |
---|
| 543 | INTEGER(iwp) :: k !: |
---|
| 544 | INTEGER(iwp) :: nnxh !: |
---|
[1212] | 545 | |
---|
[1320] | 546 | REAL(wp) :: a !: |
---|
| 547 | REAL(wp) :: c !: |
---|
[1212] | 548 | |
---|
[1320] | 549 | REAL(wp), DIMENSION(0:nx) :: l !: |
---|
| 550 | |
---|
[1212] | 551 | #if defined( __intel11 ) |
---|
[1320] | 552 | REAL(wp), DIMENSION(5,0:nx,0:nz-1) :: tri_for_1d !: |
---|
[1212] | 553 | #endif |
---|
| 554 | |
---|
| 555 | |
---|
| 556 | nnxh = ( nx + 1 ) / 2 |
---|
| 557 | ! |
---|
| 558 | !-- Provide the tridiagonal matrix for solution of the Poisson equation in |
---|
| 559 | !-- Fourier space. The coefficients are computed following the method of |
---|
| 560 | !-- Schmidt et al. (DFVLR-Mitteilung 84-15), which departs from Stephan |
---|
| 561 | !-- Siano's original version by discretizing the Poisson equation, |
---|
| 562 | !-- before it is Fourier-transformed |
---|
| 563 | DO i = 0, nx |
---|
| 564 | IF ( i >= 0 .AND. i <= nnxh ) THEN |
---|
[1342] | 565 | l(i) = 2.0_wp * ( 1.0_wp - COS( ( 2.0_wp * pi * i ) / & |
---|
| 566 | REAL( nx+1, KIND=wp ) ) ) * ddx2 + & |
---|
| 567 | 2.0_wp * ( 1.0_wp - COS( ( 2.0_wp * pi * j ) / & |
---|
| 568 | REAL( ny+1, KIND=wp ) ) ) * ddy2 |
---|
[1212] | 569 | ELSE |
---|
[1342] | 570 | l(i) = 2.0_wp * ( 1.0_wp - COS( ( 2.0_wp * pi * ( nx+1-i ) ) / & |
---|
| 571 | REAL( nx+1, KIND=wp ) ) ) * ddx2 + & |
---|
| 572 | 2.0_wp * ( 1.0_wp - COS( ( 2.0_wp * pi * j ) / & |
---|
| 573 | REAL( ny+1, KIND=wp ) ) ) * ddy2 |
---|
[1212] | 574 | ENDIF |
---|
| 575 | ENDDO |
---|
| 576 | |
---|
| 577 | DO k = 0, nz-1 |
---|
| 578 | DO i = 0, nx |
---|
[1342] | 579 | a = -1.0_wp * ddzu_pres(k+2) * ddzw(k+1) |
---|
| 580 | c = -1.0_wp * ddzu_pres(k+1) * ddzw(k+1) |
---|
[1221] | 581 | tri_for_1d(1,i,k) = a + c - l(i) |
---|
[1212] | 582 | ENDDO |
---|
| 583 | ENDDO |
---|
| 584 | IF ( ibc_p_b == 1 ) THEN |
---|
| 585 | DO i = 0, nx |
---|
[1221] | 586 | tri_for_1d(1,i,0) = tri_for_1d(1,i,0) + tri_for_1d(2,i,0) |
---|
[1212] | 587 | ENDDO |
---|
| 588 | ENDIF |
---|
| 589 | IF ( ibc_p_t == 1 ) THEN |
---|
| 590 | DO i = 0, nx |
---|
[1221] | 591 | tri_for_1d(1,i,nz-1) = tri_for_1d(1,i,nz-1) + tri_for_1d(3,i,nz-1) |
---|
[1212] | 592 | ENDDO |
---|
| 593 | ENDIF |
---|
| 594 | |
---|
| 595 | END SUBROUTINE maketri_1dd |
---|
| 596 | |
---|
| 597 | |
---|
| 598 | #if defined( __intel11 ) |
---|
[1221] | 599 | SUBROUTINE split_1dd( tri_for_1d ) |
---|
[1212] | 600 | #else |
---|
| 601 | SUBROUTINE split_1dd |
---|
| 602 | #endif |
---|
| 603 | |
---|
| 604 | !------------------------------------------------------------------------------! |
---|
| 605 | ! Splitting of the tridiagonal matrix (Thomas algorithm) |
---|
| 606 | !------------------------------------------------------------------------------! |
---|
| 607 | |
---|
| 608 | IMPLICIT NONE |
---|
| 609 | |
---|
[1320] | 610 | INTEGER(iwp) :: i !: |
---|
| 611 | INTEGER(iwp) :: k !: |
---|
[1212] | 612 | |
---|
| 613 | #if defined( __intel11 ) |
---|
[1320] | 614 | REAL(wp), DIMENSION(5,0:nx,0:nz-1) :: tri_for_1d !: |
---|
[1212] | 615 | #endif |
---|
| 616 | |
---|
| 617 | |
---|
| 618 | ! |
---|
| 619 | !-- Splitting |
---|
| 620 | DO i = 0, nx |
---|
[1221] | 621 | tri_for_1d(4,i,0) = tri_for_1d(1,i,0) |
---|
[1212] | 622 | ENDDO |
---|
| 623 | DO k = 1, nz-1 |
---|
| 624 | DO i = 0, nx |
---|
[1221] | 625 | tri_for_1d(5,i,k) = tri_for_1d(2,i,k) / tri_for_1d(4,i,k-1) |
---|
| 626 | tri_for_1d(4,i,k) = tri_for_1d(1,i,k) - tri_for_1d(3,i,k-1) * tri_for_1d(5,i,k) |
---|
[1212] | 627 | ENDDO |
---|
| 628 | ENDDO |
---|
| 629 | |
---|
| 630 | END SUBROUTINE split_1dd |
---|
| 631 | |
---|
| 632 | |
---|
[1221] | 633 | SUBROUTINE substi_1dd( ar, tri_for_1d ) |
---|
[1212] | 634 | |
---|
| 635 | !------------------------------------------------------------------------------! |
---|
| 636 | ! Substitution (Forward and Backward) (Thomas algorithm) |
---|
| 637 | !------------------------------------------------------------------------------! |
---|
| 638 | |
---|
| 639 | IMPLICIT NONE |
---|
| 640 | |
---|
[1320] | 641 | INTEGER(iwp) :: i !: |
---|
| 642 | INTEGER(iwp) :: k !: |
---|
[1212] | 643 | |
---|
[1320] | 644 | REAL(wp), DIMENSION(0:nx,nz) :: ar !: |
---|
| 645 | REAL(wp), DIMENSION(0:nx,0:nz-1) :: ar1 !: |
---|
| 646 | REAL(wp), DIMENSION(5,0:nx,0:nz-1) :: tri_for_1d !: |
---|
[1212] | 647 | |
---|
| 648 | ! |
---|
| 649 | !-- Forward substitution |
---|
| 650 | DO i = 0, nx |
---|
| 651 | ar1(i,0) = ar(i,1) |
---|
| 652 | ENDDO |
---|
| 653 | DO k = 1, nz-1 |
---|
| 654 | DO i = 0, nx |
---|
[1221] | 655 | ar1(i,k) = ar(i,k+1) - tri_for_1d(5,i,k) * ar1(i,k-1) |
---|
[1212] | 656 | ENDDO |
---|
| 657 | ENDDO |
---|
| 658 | |
---|
| 659 | ! |
---|
| 660 | !-- Backward substitution |
---|
| 661 | !-- Note, the add of 1.0E-20 in the denominator is due to avoid divisions |
---|
| 662 | !-- by zero appearing if the pressure bc is set to neumann at the top of |
---|
| 663 | !-- the model domain. |
---|
| 664 | DO i = 0, nx |
---|
[1342] | 665 | ar(i,nz) = ar1(i,nz-1) / ( tri_for_1d(4,i,nz-1) + 1.0E-20_wp ) |
---|
[1212] | 666 | ENDDO |
---|
| 667 | DO k = nz-2, 0, -1 |
---|
| 668 | DO i = 0, nx |
---|
[1221] | 669 | ar(i,k+1) = ( ar1(i,k) - tri_for_1d(3,i,k) * ar(i,k+2) ) & |
---|
| 670 | / tri_for_1d(4,i,k) |
---|
[1212] | 671 | ENDDO |
---|
| 672 | ENDDO |
---|
| 673 | |
---|
| 674 | ! |
---|
| 675 | !-- Indices i=0, j=0 correspond to horizontally averaged pressure. |
---|
| 676 | !-- The respective values of ar should be zero at all k-levels if |
---|
| 677 | !-- acceleration of horizontally averaged vertical velocity is zero. |
---|
| 678 | IF ( ibc_p_b == 1 .AND. ibc_p_t == 1 ) THEN |
---|
| 679 | IF ( j == 0 ) THEN |
---|
| 680 | DO k = 1, nz |
---|
[1342] | 681 | ar(0,k) = 0.0_wp |
---|
[1212] | 682 | ENDDO |
---|
| 683 | ENDIF |
---|
| 684 | ENDIF |
---|
| 685 | |
---|
| 686 | END SUBROUTINE substi_1dd |
---|
| 687 | |
---|
| 688 | END SUBROUTINE tridia_1dd |
---|
| 689 | |
---|
| 690 | |
---|
| 691 | END MODULE tridia_solver |
---|