1 | SUBROUTINE transpose_xy( f_in, work1, f_inv, work2, f_out ) |
---|
2 | |
---|
3 | !------------------------------------------------------------------------------! |
---|
4 | ! Actual revisions: |
---|
5 | ! ----------------- |
---|
6 | ! |
---|
7 | ! |
---|
8 | ! Former revisions: |
---|
9 | ! ----------------- |
---|
10 | ! $Id: transpose.f90 4 2007-02-13 11:33:16Z raasch $ |
---|
11 | ! RCS Log replace by Id keyword, revision history cleaned up |
---|
12 | ! |
---|
13 | ! Revision 1.2 2004/04/30 13:12:17 raasch |
---|
14 | ! Switched from mpi_alltoallv to the simpler mpi_alltoall, |
---|
15 | ! all former transpose-routine files collected in this file, enlarged |
---|
16 | ! transposition arrays introduced |
---|
17 | ! |
---|
18 | ! Revision 1.1 2004/04/30 13:08:16 raasch |
---|
19 | ! Initial revision (collection of former routines transpose_xy, transpose_xz, |
---|
20 | ! transpose_yx, transpose_yz, transpose_zx, transpose_zy) |
---|
21 | ! |
---|
22 | ! Revision 1.1 1997/07/24 11:25:18 raasch |
---|
23 | ! Initial revision |
---|
24 | ! |
---|
25 | ! |
---|
26 | ! Description: |
---|
27 | ! ------------ |
---|
28 | ! Transposition of input array (f_in) from x to y. For the input array, all |
---|
29 | ! elements along x reside on the same PE, while after transposition, all |
---|
30 | ! elements along y reside on the same PE. |
---|
31 | !------------------------------------------------------------------------------! |
---|
32 | |
---|
33 | USE cpulog |
---|
34 | USE indices |
---|
35 | USE interfaces |
---|
36 | USE pegrid |
---|
37 | USE transpose_indices |
---|
38 | |
---|
39 | IMPLICIT NONE |
---|
40 | |
---|
41 | INTEGER :: i, j, k, l, m, ys |
---|
42 | |
---|
43 | REAL :: f_in(0:nxa,nys_x:nyn_xa,nzb_x:nzt_xa), & |
---|
44 | f_inv(nys_x:nyn_xa,nzb_x:nzt_xa,0:nxa), & |
---|
45 | f_out(0:nya,nxl_y:nxr_ya,nzb_y:nzt_ya), & |
---|
46 | work1(nys_x:nyn_xa,nzb_x:nzt_xa,0:nxa), work2(nnx*nny*nnz) |
---|
47 | |
---|
48 | #if defined( __parallel ) |
---|
49 | |
---|
50 | ! |
---|
51 | !-- Rearrange indices of input array in order to make data to be send |
---|
52 | !-- by MPI contiguous |
---|
53 | DO k = nzb_x, nzt_xa |
---|
54 | DO j = nys_x, nyn_xa |
---|
55 | DO i = 0, nxa |
---|
56 | work1(j,k,i) = f_in(i,j,k) |
---|
57 | ENDDO |
---|
58 | ENDDO |
---|
59 | ENDDO |
---|
60 | |
---|
61 | ! |
---|
62 | !-- Move data to different array, because memory location of work1 is |
---|
63 | !-- needed further below (work1 = work2) |
---|
64 | DO i = 0, nxa |
---|
65 | DO k = nzb_x, nzt_xa |
---|
66 | DO j = nys_x, nyn_xa |
---|
67 | f_inv(j,k,i) = work1(j,k,i) |
---|
68 | ENDDO |
---|
69 | ENDDO |
---|
70 | ENDDO |
---|
71 | |
---|
72 | ! |
---|
73 | !-- Transpose array |
---|
74 | CALL cpu_log( log_point_s(32), 'mpi_alltoall', 'start' ) |
---|
75 | CALL MPI_ALLTOALL( f_inv(nys_x,nzb_x,0), sendrecvcount_xy, MPI_REAL, & |
---|
76 | work2(1), sendrecvcount_xy, MPI_REAL, & |
---|
77 | comm1dy, ierr ) |
---|
78 | CALL cpu_log( log_point_s(32), 'mpi_alltoall', 'stop' ) |
---|
79 | |
---|
80 | ! |
---|
81 | !-- Reorder transposed array |
---|
82 | m = 0 |
---|
83 | DO l = 0, pdims(2) - 1 |
---|
84 | ys = 0 + l * ( nyn_xa - nys_x + 1 ) |
---|
85 | DO i = nxl_y, nxr_ya |
---|
86 | DO k = nzb_y, nzt_ya |
---|
87 | DO j = ys, ys + nyn_xa - nys_x |
---|
88 | m = m + 1 |
---|
89 | f_out(j,i,k) = work2(m) |
---|
90 | ENDDO |
---|
91 | ENDDO |
---|
92 | ENDDO |
---|
93 | ENDDO |
---|
94 | |
---|
95 | #endif |
---|
96 | |
---|
97 | END SUBROUTINE transpose_xy |
---|
98 | |
---|
99 | |
---|
100 | SUBROUTINE transpose_xz( f_in, work1, f_inv, work2, f_out ) |
---|
101 | |
---|
102 | !------------------------------------------------------------------------------! |
---|
103 | ! Description: |
---|
104 | ! ------------ |
---|
105 | ! Transposition of input array (f_in) from x to z. For the input array, all |
---|
106 | ! elements along x reside on the same PE, while after transposition, all |
---|
107 | ! elements along z reside on the same PE. |
---|
108 | !------------------------------------------------------------------------------! |
---|
109 | |
---|
110 | USE cpulog |
---|
111 | USE indices |
---|
112 | USE interfaces |
---|
113 | USE pegrid |
---|
114 | USE transpose_indices |
---|
115 | |
---|
116 | IMPLICIT NONE |
---|
117 | |
---|
118 | INTEGER :: i, j, k, l, m, xs |
---|
119 | |
---|
120 | REAL :: f_in(0:nxa,nys_x:nyn_xa,nzb_x:nzt_xa), & |
---|
121 | f_inv(nxl:nxra,nys:nyna,1:nza), & |
---|
122 | f_out(1:nza,nys:nyna,nxl:nxra), & |
---|
123 | work1(1:nza,nys:nyna,nxl:nxra), work2(nnx*nny*nnz) |
---|
124 | |
---|
125 | #if defined( __parallel ) |
---|
126 | |
---|
127 | ! |
---|
128 | !-- If the PE grid is one-dimensional along y, the array has only to be |
---|
129 | !-- reordered locally and therefore no transposition has to be done. |
---|
130 | IF ( pdims(1) /= 1 ) THEN |
---|
131 | ! |
---|
132 | !-- Reorder input array for transposition |
---|
133 | m = 0 |
---|
134 | DO l = 0, pdims(1) - 1 |
---|
135 | xs = 0 + l * nnx |
---|
136 | DO k = nzb_x, nzt_xa |
---|
137 | DO j = nys_x, nyn_xa |
---|
138 | DO i = xs, xs + nnx - 1 |
---|
139 | m = m + 1 |
---|
140 | work2(m) = f_in(i,j,k) |
---|
141 | ENDDO |
---|
142 | ENDDO |
---|
143 | ENDDO |
---|
144 | ENDDO |
---|
145 | |
---|
146 | ! |
---|
147 | !-- Transpose array |
---|
148 | CALL cpu_log( log_point_s(32), 'mpi_alltoall', 'start' ) |
---|
149 | CALL MPI_ALLTOALL( work2(1), sendrecvcount_zx, MPI_REAL, & |
---|
150 | f_inv(nxl,nys,1), sendrecvcount_zx, MPI_REAL, & |
---|
151 | comm1dx, ierr ) |
---|
152 | CALL cpu_log( log_point_s(32), 'mpi_alltoall', 'stop' ) |
---|
153 | |
---|
154 | ! |
---|
155 | !-- Reorder transposed array in a way that the z index is in first position |
---|
156 | DO i = nxl, nxra |
---|
157 | DO j = nys, nyna |
---|
158 | DO k = 1, nza |
---|
159 | work1(k,j,i) = f_inv(i,j,k) |
---|
160 | ENDDO |
---|
161 | ENDDO |
---|
162 | ENDDO |
---|
163 | ELSE |
---|
164 | ! |
---|
165 | !-- Reorder the array in a way that the z index is in first position |
---|
166 | DO i = nxl, nxra |
---|
167 | DO j = nys, nyna |
---|
168 | DO k = 1, nza |
---|
169 | work1(k,j,i) = f_in(i,j,k) |
---|
170 | ENDDO |
---|
171 | ENDDO |
---|
172 | ENDDO |
---|
173 | ENDIF |
---|
174 | |
---|
175 | ! |
---|
176 | !-- Move data to output array |
---|
177 | DO i = nxl, nxra |
---|
178 | DO j = nys, nyna |
---|
179 | DO k = 1, nza |
---|
180 | f_out(k,j,i) = work1(k,j,i) |
---|
181 | ENDDO |
---|
182 | ENDDO |
---|
183 | ENDDO |
---|
184 | |
---|
185 | #endif |
---|
186 | |
---|
187 | END SUBROUTINE transpose_xz |
---|
188 | |
---|
189 | |
---|
190 | SUBROUTINE transpose_yx( f_in, work1, f_inv, work2, f_out ) |
---|
191 | |
---|
192 | !------------------------------------------------------------------------------! |
---|
193 | ! Description: |
---|
194 | ! ------------ |
---|
195 | ! Transposition of input array (f_in) from y to x. For the input array, all |
---|
196 | ! elements along y reside on the same PE, while after transposition, all |
---|
197 | ! elements along x reside on the same PE. |
---|
198 | !------------------------------------------------------------------------------! |
---|
199 | |
---|
200 | USE cpulog |
---|
201 | USE indices |
---|
202 | USE interfaces |
---|
203 | USE pegrid |
---|
204 | USE transpose_indices |
---|
205 | |
---|
206 | IMPLICIT NONE |
---|
207 | |
---|
208 | INTEGER :: i, j, k, l, m, ys |
---|
209 | |
---|
210 | REAL :: f_in(0:nya,nxl_y:nxr_ya,nzb_y:nzt_ya), & |
---|
211 | f_inv(nys_x:nyn_xa,nzb_x:nzt_xa,0:nxa), & |
---|
212 | f_out(0:nxa,nys_x:nyn_xa,nzb_x:nzt_xa), & |
---|
213 | work1(0:nxa,nys_x:nyn_xa,nzb_x:nzt_xa), work2(nnx*nny*nnz) |
---|
214 | |
---|
215 | #if defined( __parallel ) |
---|
216 | |
---|
217 | ! |
---|
218 | !-- Reorder input array for transposition |
---|
219 | m = 0 |
---|
220 | DO l = 0, pdims(2) - 1 |
---|
221 | ys = 0 + l * ( nyn_xa - nys_x + 1 ) |
---|
222 | DO i = nxl_y, nxr_ya |
---|
223 | DO k = nzb_y, nzt_ya |
---|
224 | DO j = ys, ys + nyn_xa - nys_x |
---|
225 | m = m + 1 |
---|
226 | work2(m) = f_in(j,i,k) |
---|
227 | ENDDO |
---|
228 | ENDDO |
---|
229 | ENDDO |
---|
230 | ENDDO |
---|
231 | |
---|
232 | ! |
---|
233 | !-- Transpose array |
---|
234 | CALL cpu_log( log_point_s(32), 'mpi_alltoall', 'start' ) |
---|
235 | CALL MPI_ALLTOALL( work2(1), sendrecvcount_xy, MPI_REAL, & |
---|
236 | f_inv(nys_x,nzb_x,0), sendrecvcount_xy, MPI_REAL, & |
---|
237 | comm1dy, ierr ) |
---|
238 | CALL cpu_log( log_point_s(32), 'mpi_alltoall', 'stop' ) |
---|
239 | |
---|
240 | ! |
---|
241 | !-- Reorder transposed array in a way that the x index is in first position |
---|
242 | DO i = 0, nxa |
---|
243 | DO k = nzb_x, nzt_xa |
---|
244 | DO j = nys_x, nyn_xa |
---|
245 | work1(i,j,k) = f_inv(j,k,i) |
---|
246 | ENDDO |
---|
247 | ENDDO |
---|
248 | ENDDO |
---|
249 | |
---|
250 | ! |
---|
251 | !-- Move data to output array |
---|
252 | DO k = nzb_x, nzt_xa |
---|
253 | DO j = nys_x, nyn_xa |
---|
254 | DO i = 0, nxa |
---|
255 | f_out(i,j,k) = work1(i,j,k) |
---|
256 | ENDDO |
---|
257 | ENDDO |
---|
258 | ENDDO |
---|
259 | |
---|
260 | #endif |
---|
261 | |
---|
262 | END SUBROUTINE transpose_yx |
---|
263 | |
---|
264 | |
---|
265 | SUBROUTINE transpose_yxd( f_in, work1, f_inv, work2, f_out ) |
---|
266 | |
---|
267 | !------------------------------------------------------------------------------! |
---|
268 | ! Description: |
---|
269 | ! ------------ |
---|
270 | ! Transposition of input array (f_in) from y to x. For the input array, all |
---|
271 | ! elements along y reside on the same PE, while after transposition, all |
---|
272 | ! elements along x reside on the same PE. |
---|
273 | ! This is a direct transposition for arrays with indices in regular order |
---|
274 | ! (k,j,i) (cf. transpose_yx). |
---|
275 | !------------------------------------------------------------------------------! |
---|
276 | |
---|
277 | USE cpulog |
---|
278 | USE indices |
---|
279 | USE interfaces |
---|
280 | USE pegrid |
---|
281 | USE transpose_indices |
---|
282 | |
---|
283 | IMPLICIT NONE |
---|
284 | |
---|
285 | INTEGER :: i, j, k, l, m, recvcount_yx, sendcount_yx, xs |
---|
286 | |
---|
287 | REAL :: f_in(1:nza,nys:nyna,nxl:nxra), f_inv(nxl:nxra,1:nza,nys:nyna), & |
---|
288 | f_out(0:nxa,nys_x:nyn_xa,nzb_x:nzt_xa), & |
---|
289 | work1(nxl:nxra,1:nza,nys:nyna), work2(nnx*nny*nnz) |
---|
290 | |
---|
291 | #if defined( __parallel ) |
---|
292 | |
---|
293 | ! |
---|
294 | !-- Rearrange indices of input array in order to make data to be send |
---|
295 | !-- by MPI contiguous |
---|
296 | DO k = 1, nza |
---|
297 | DO j = nys, nyna |
---|
298 | DO i = nxl, nxra |
---|
299 | work1(i,k,j) = f_in(k,j,i) |
---|
300 | ENDDO |
---|
301 | ENDDO |
---|
302 | ENDDO |
---|
303 | |
---|
304 | ! |
---|
305 | !-- Move data to different array, because memory location of work1 is |
---|
306 | !-- needed further below (work1 = work2) |
---|
307 | DO j = nys, nyna |
---|
308 | DO k = 1, nza |
---|
309 | DO i = nxl, nxra |
---|
310 | f_inv(i,k,j) = work1(i,k,j) |
---|
311 | ENDDO |
---|
312 | ENDDO |
---|
313 | ENDDO |
---|
314 | |
---|
315 | ! |
---|
316 | !-- Transpose array |
---|
317 | CALL cpu_log( log_point_s(32), 'mpi_alltoall', 'start' ) |
---|
318 | CALL MPI_ALLTOALL( f_inv(nxl,1,nys), sendrecvcount_xy, MPI_REAL, & |
---|
319 | work2(1), sendrecvcount_xy, MPI_REAL, & |
---|
320 | comm1dx, ierr ) |
---|
321 | CALL cpu_log( log_point_s(32), 'mpi_alltoall', 'stop' ) |
---|
322 | |
---|
323 | ! |
---|
324 | !-- Reorder transposed array |
---|
325 | m = 0 |
---|
326 | DO l = 0, pdims(1) - 1 |
---|
327 | xs = 0 + l * nnx |
---|
328 | DO j = nys_x, nyn_xa |
---|
329 | DO k = 1, nza |
---|
330 | DO i = xs, xs + nnx - 1 |
---|
331 | m = m + 1 |
---|
332 | f_out(i,j,k) = work2(m) |
---|
333 | ENDDO |
---|
334 | ENDDO |
---|
335 | ENDDO |
---|
336 | ENDDO |
---|
337 | |
---|
338 | #endif |
---|
339 | |
---|
340 | END SUBROUTINE transpose_yxd |
---|
341 | |
---|
342 | |
---|
343 | SUBROUTINE transpose_yz( f_in, work1, f_inv, work2, f_out ) |
---|
344 | |
---|
345 | !------------------------------------------------------------------------------! |
---|
346 | ! Description: |
---|
347 | ! ------------ |
---|
348 | ! Transposition of input array (f_in) from y to z. For the input array, all |
---|
349 | ! elements along y reside on the same PE, while after transposition, all |
---|
350 | ! elements along z reside on the same PE. |
---|
351 | !------------------------------------------------------------------------------! |
---|
352 | |
---|
353 | USE cpulog |
---|
354 | USE indices |
---|
355 | USE interfaces |
---|
356 | USE pegrid |
---|
357 | USE transpose_indices |
---|
358 | |
---|
359 | IMPLICIT NONE |
---|
360 | |
---|
361 | INTEGER :: i, j, k, l, m, zs |
---|
362 | |
---|
363 | REAL :: f_in(0:nya,nxl_y:nxr_ya,nzb_y:nzt_ya), & |
---|
364 | f_inv(nxl_y:nxr_ya,nzb_y:nzt_ya,0:nya), & |
---|
365 | f_out(nxl_z:nxr_za,nys_z:nyn_za,1:nza), & |
---|
366 | work1(nxl_y:nxr_ya,nzb_y:nzt_ya,0:nya), work2(nnx*nny*nnz) |
---|
367 | |
---|
368 | #if defined( __parallel ) |
---|
369 | |
---|
370 | ! |
---|
371 | !-- Rearrange indices of input array in order to make data to be send |
---|
372 | !-- by MPI contiguous |
---|
373 | DO k = nzb_y, nzt_ya |
---|
374 | DO i = nxl_y, nxr_ya |
---|
375 | DO j = 0, nya |
---|
376 | work1(i,k,j) = f_in(j,i,k) |
---|
377 | ENDDO |
---|
378 | ENDDO |
---|
379 | ENDDO |
---|
380 | |
---|
381 | ! |
---|
382 | !-- Move data to different array, because memory location of work1 is |
---|
383 | !-- needed further below (work1 = work2). |
---|
384 | !-- If the PE grid is one-dimensional along y, only local reordering |
---|
385 | !-- of the data is necessary and no transposition has to be done. |
---|
386 | IF ( pdims(1) == 1 ) THEN |
---|
387 | DO j = 0, nya |
---|
388 | DO k = nzb_y, nzt_ya |
---|
389 | DO i = nxl_y, nxr_ya |
---|
390 | f_out(i,j,k) = work1(i,k,j) |
---|
391 | ENDDO |
---|
392 | ENDDO |
---|
393 | ENDDO |
---|
394 | RETURN |
---|
395 | ELSE |
---|
396 | DO j = 0, nya |
---|
397 | DO k = nzb_y, nzt_ya |
---|
398 | DO i = nxl_y, nxr_ya |
---|
399 | f_inv(i,k,j) = work1(i,k,j) |
---|
400 | ENDDO |
---|
401 | ENDDO |
---|
402 | ENDDO |
---|
403 | ENDIF |
---|
404 | |
---|
405 | ! |
---|
406 | !-- Transpose array |
---|
407 | CALL cpu_log( log_point_s(32), 'mpi_alltoall', 'start' ) |
---|
408 | CALL MPI_ALLTOALL( f_inv(nxl_y,nzb_y,0), sendrecvcount_yz, MPI_REAL, & |
---|
409 | work2(1), sendrecvcount_yz, MPI_REAL, & |
---|
410 | comm1dx, ierr ) |
---|
411 | CALL cpu_log( log_point_s(32), 'mpi_alltoall', 'stop' ) |
---|
412 | |
---|
413 | ! |
---|
414 | !-- Reorder transposed array |
---|
415 | m = 0 |
---|
416 | DO l = 0, pdims(1) - 1 |
---|
417 | zs = 1 + l * ( nzt_ya - nzb_y + 1 ) |
---|
418 | DO j = nys_z, nyn_za |
---|
419 | DO k = zs, zs + nzt_ya - nzb_y |
---|
420 | DO i = nxl_z, nxr_za |
---|
421 | m = m + 1 |
---|
422 | f_out(i,j,k) = work2(m) |
---|
423 | ENDDO |
---|
424 | ENDDO |
---|
425 | ENDDO |
---|
426 | ENDDO |
---|
427 | |
---|
428 | #endif |
---|
429 | |
---|
430 | END SUBROUTINE transpose_yz |
---|
431 | |
---|
432 | |
---|
433 | SUBROUTINE transpose_zx( f_in, work1, f_inv, work2, f_out ) |
---|
434 | |
---|
435 | !------------------------------------------------------------------------------! |
---|
436 | ! Description: |
---|
437 | ! ------------ |
---|
438 | ! Transposition of input array (f_in) from z to x. For the input array, all |
---|
439 | ! elements along z reside on the same PE, while after transposition, all |
---|
440 | ! elements along x reside on the same PE. |
---|
441 | !------------------------------------------------------------------------------! |
---|
442 | |
---|
443 | USE cpulog |
---|
444 | USE indices |
---|
445 | USE interfaces |
---|
446 | USE pegrid |
---|
447 | USE transpose_indices |
---|
448 | |
---|
449 | IMPLICIT NONE |
---|
450 | |
---|
451 | INTEGER :: i, j, k, l, m, xs |
---|
452 | |
---|
453 | REAL :: f_in(1:nza,nys:nyna,nxl:nxra), f_inv(nxl:nxra,nys:nyna,1:nza), & |
---|
454 | f_out(0:nxa,nys_x:nyn_xa,nzb_x:nzt_xa), & |
---|
455 | work1(nxl:nxra,nys:nyna,1:nza), work2(nnx*nny*nnz) |
---|
456 | |
---|
457 | #if defined( __parallel ) |
---|
458 | |
---|
459 | ! |
---|
460 | !-- Rearrange indices of input array in order to make data to be send |
---|
461 | !-- by MPI contiguous |
---|
462 | DO i = nxl, nxra |
---|
463 | DO j = nys, nyna |
---|
464 | DO k = 1,nza |
---|
465 | work1(i,j,k) = f_in(k,j,i) |
---|
466 | ENDDO |
---|
467 | ENDDO |
---|
468 | ENDDO |
---|
469 | |
---|
470 | ! |
---|
471 | !-- Move data to different array, because memory location of work1 is |
---|
472 | !-- needed further below (work1 = work2). |
---|
473 | !-- If the PE grid is one-dimensional along y, only local reordering |
---|
474 | !-- of the data is necessary and no transposition has to be done. |
---|
475 | IF ( pdims(1) == 1 ) THEN |
---|
476 | DO k = 1, nza |
---|
477 | DO j = nys, nyna |
---|
478 | DO i = nxl, nxra |
---|
479 | f_out(i,j,k) = work1(i,j,k) |
---|
480 | ENDDO |
---|
481 | ENDDO |
---|
482 | ENDDO |
---|
483 | RETURN |
---|
484 | ELSE |
---|
485 | DO k = 1, nza |
---|
486 | DO j = nys, nyna |
---|
487 | DO i = nxl, nxra |
---|
488 | f_inv(i,j,k) = work1(i,j,k) |
---|
489 | ENDDO |
---|
490 | ENDDO |
---|
491 | ENDDO |
---|
492 | ENDIF |
---|
493 | |
---|
494 | ! |
---|
495 | !-- Transpose array |
---|
496 | CALL cpu_log( log_point_s(32), 'mpi_alltoall', 'start' ) |
---|
497 | CALL MPI_ALLTOALL( f_inv(nxl,nys,1), sendrecvcount_zx, MPI_REAL, & |
---|
498 | work2(1), sendrecvcount_zx, MPI_REAL, & |
---|
499 | comm1dx, ierr ) |
---|
500 | CALL cpu_log( log_point_s(32), 'mpi_alltoall', 'stop' ) |
---|
501 | |
---|
502 | ! |
---|
503 | !-- Reorder transposed array |
---|
504 | m = 0 |
---|
505 | DO l = 0, pdims(1) - 1 |
---|
506 | xs = 0 + l * nnx |
---|
507 | DO k = nzb_x, nzt_xa |
---|
508 | DO j = nys_x, nyn_xa |
---|
509 | DO i = xs, xs + nnx - 1 |
---|
510 | m = m + 1 |
---|
511 | f_out(i,j,k) = work2(m) |
---|
512 | ENDDO |
---|
513 | ENDDO |
---|
514 | ENDDO |
---|
515 | ENDDO |
---|
516 | |
---|
517 | #endif |
---|
518 | |
---|
519 | END SUBROUTINE transpose_zx |
---|
520 | |
---|
521 | |
---|
522 | SUBROUTINE transpose_zy( f_in, work1, f_inv, work2, f_out ) |
---|
523 | |
---|
524 | !------------------------------------------------------------------------------! |
---|
525 | ! Description: |
---|
526 | ! ------------ |
---|
527 | ! Transposition of input array (f_in) from z to y. For the input array, all |
---|
528 | ! elements along z reside on the same PE, while after transposition, all |
---|
529 | ! elements along y reside on the same PE. |
---|
530 | !------------------------------------------------------------------------------! |
---|
531 | |
---|
532 | USE cpulog |
---|
533 | USE indices |
---|
534 | USE interfaces |
---|
535 | USE pegrid |
---|
536 | USE transpose_indices |
---|
537 | |
---|
538 | IMPLICIT NONE |
---|
539 | |
---|
540 | INTEGER :: i, j, k, l, m, zs |
---|
541 | |
---|
542 | REAL :: f_in(nxl_z:nxr_za,nys_z:nyn_za,1:nza), & |
---|
543 | f_inv(nxl_y:nxr_ya,nzb_y:nzt_ya,0:nya), & |
---|
544 | f_out(0:nya,nxl_y:nxr_ya,nzb_y:nzt_ya), & |
---|
545 | work1(0:nya,nxl_y:nxr_ya,nzb_y:nzt_ya), work2(nnx*nny*nnz) |
---|
546 | |
---|
547 | #if defined( __parallel ) |
---|
548 | |
---|
549 | ! |
---|
550 | !-- If the PE grid is one-dimensional along y, the array has only to be |
---|
551 | !-- reordered locally and therefore no transposition has to be done. |
---|
552 | IF ( pdims(1) /= 1 ) THEN |
---|
553 | ! |
---|
554 | !-- Reorder input array for transposition |
---|
555 | m = 0 |
---|
556 | DO l = 0, pdims(1) - 1 |
---|
557 | zs = 1 + l * ( nzt_ya - nzb_y + 1 ) |
---|
558 | DO j = nys_z, nyn_za |
---|
559 | DO k = zs, zs + nzt_ya - nzb_y |
---|
560 | DO i = nxl_z, nxr_za |
---|
561 | m = m + 1 |
---|
562 | work2(m) = f_in(i,j,k) |
---|
563 | ENDDO |
---|
564 | ENDDO |
---|
565 | ENDDO |
---|
566 | ENDDO |
---|
567 | |
---|
568 | ! |
---|
569 | !-- Transpose array |
---|
570 | CALL cpu_log( log_point_s(32), 'mpi_alltoall', 'start' ) |
---|
571 | CALL MPI_ALLTOALL( work2(1), sendrecvcount_yz, MPI_REAL, & |
---|
572 | f_inv(nxl_y,nzb_y,0), sendrecvcount_yz, MPI_REAL, & |
---|
573 | comm1dx, ierr ) |
---|
574 | CALL cpu_log( log_point_s(32), 'mpi_alltoall', 'stop' ) |
---|
575 | |
---|
576 | ! |
---|
577 | !-- Reorder transposed array in a way that the y index is in first position |
---|
578 | DO k = nzb_y, nzt_ya |
---|
579 | DO i = nxl_y, nxr_ya |
---|
580 | DO j = 0, nya |
---|
581 | work1(j,i,k) = f_inv(i,k,j) |
---|
582 | ENDDO |
---|
583 | ENDDO |
---|
584 | ENDDO |
---|
585 | ELSE |
---|
586 | ! |
---|
587 | !-- Reorder the array in a way that the y index is in first position |
---|
588 | DO k = nzb_y, nzt_ya |
---|
589 | DO i = nxl_y, nxr_ya |
---|
590 | DO j = 0, nya |
---|
591 | work1(j,i,k) = f_in(i,j,k) |
---|
592 | ENDDO |
---|
593 | ENDDO |
---|
594 | ENDDO |
---|
595 | ENDIF |
---|
596 | |
---|
597 | ! |
---|
598 | !-- Move data to output array |
---|
599 | DO k = nzb_y, nzt_ya |
---|
600 | DO i = nxl_y, nxr_ya |
---|
601 | DO j = 0, nya |
---|
602 | f_out(j,i,k) = work1(j,i,k) |
---|
603 | ENDDO |
---|
604 | ENDDO |
---|
605 | ENDDO |
---|
606 | |
---|
607 | #endif |
---|
608 | |
---|
609 | END SUBROUTINE transpose_zy |
---|
610 | |
---|
611 | |
---|
612 | SUBROUTINE transpose_zyd( f_in, work1, f_inv, work2, f_out ) |
---|
613 | |
---|
614 | !------------------------------------------------------------------------------! |
---|
615 | ! Description: |
---|
616 | ! ------------ |
---|
617 | ! Transposition of input array (f_in) from z to y. For the input array, all |
---|
618 | ! elements along z reside on the same PE, while after transposition, all |
---|
619 | ! elements along y reside on the same PE. |
---|
620 | ! This is a direct transposition for arrays with indices in regular order |
---|
621 | ! (k,j,i) (cf. transpose_zy). |
---|
622 | !------------------------------------------------------------------------------! |
---|
623 | |
---|
624 | USE cpulog |
---|
625 | USE indices |
---|
626 | USE interfaces |
---|
627 | USE pegrid |
---|
628 | USE transpose_indices |
---|
629 | |
---|
630 | IMPLICIT NONE |
---|
631 | |
---|
632 | INTEGER :: i, j, k, l, m, ys |
---|
633 | |
---|
634 | REAL :: f_in(1:nza,nys:nyna,nxl:nxra), f_inv(nys:nyna,nxl:nxra,1:nza), & |
---|
635 | f_out(0:nya,nxl_yd:nxr_yda,nzb_yd:nzt_yda), & |
---|
636 | work1(nys:nyna,nxl:nxra,1:nza), work2(nnx*nny*nnz) |
---|
637 | |
---|
638 | #if defined( __parallel ) |
---|
639 | |
---|
640 | ! |
---|
641 | !-- Rearrange indices of input array in order to make data to be send |
---|
642 | !-- by MPI contiguous |
---|
643 | DO i = nxl, nxra |
---|
644 | DO j = nys, nyna |
---|
645 | DO k = 1, nza |
---|
646 | work1(j,i,k) = f_in(k,j,i) |
---|
647 | ENDDO |
---|
648 | ENDDO |
---|
649 | ENDDO |
---|
650 | |
---|
651 | ! |
---|
652 | !-- Move data to different array, because memory location of work1 is |
---|
653 | !-- needed further below (work1 = work2). |
---|
654 | !-- If the PE grid is one-dimensional along x, only local reordering |
---|
655 | !-- of the data is necessary and no transposition has to be done. |
---|
656 | IF ( pdims(2) == 1 ) THEN |
---|
657 | DO k = 1, nza |
---|
658 | DO i = nxl, nxra |
---|
659 | DO j = nys, nyna |
---|
660 | f_out(j,i,k) = work1(j,i,k) |
---|
661 | ENDDO |
---|
662 | ENDDO |
---|
663 | ENDDO |
---|
664 | RETURN |
---|
665 | ELSE |
---|
666 | DO k = 1, nza |
---|
667 | DO i = nxl, nxra |
---|
668 | DO j = nys, nyna |
---|
669 | f_inv(j,i,k) = work1(j,i,k) |
---|
670 | ENDDO |
---|
671 | ENDDO |
---|
672 | ENDDO |
---|
673 | ENDIF |
---|
674 | |
---|
675 | ! |
---|
676 | !-- Transpose array |
---|
677 | CALL cpu_log( log_point_s(32), 'mpi_alltoall', 'start' ) |
---|
678 | CALL MPI_ALLTOALL( f_inv(nys,nxl,1), sendrecvcount_zyd, MPI_REAL, & |
---|
679 | work2(1), sendrecvcount_zyd, MPI_REAL, & |
---|
680 | comm1dy, ierr ) |
---|
681 | CALL cpu_log( log_point_s(32), 'mpi_alltoall', 'stop' ) |
---|
682 | |
---|
683 | ! |
---|
684 | !-- Reorder transposed array |
---|
685 | m = 0 |
---|
686 | DO l = 0, pdims(2) - 1 |
---|
687 | ys = 0 + l * nny |
---|
688 | DO k = nzb_yd, nzt_yda |
---|
689 | DO i = nxl_yd, nxr_yda |
---|
690 | DO j = ys, ys + nny - 1 |
---|
691 | m = m + 1 |
---|
692 | f_out(j,i,k) = work2(m) |
---|
693 | ENDDO |
---|
694 | ENDDO |
---|
695 | ENDDO |
---|
696 | ENDDO |
---|
697 | |
---|
698 | #endif |
---|
699 | |
---|
700 | END SUBROUTINE transpose_zyd |
---|