1 | !> @file transpose.f90 |
---|
2 | !--------------------------------------------------------------------------------! |
---|
3 | ! This file is part of PALM. |
---|
4 | ! |
---|
5 | ! PALM is free software: you can redistribute it and/or modify it under the terms |
---|
6 | ! of the GNU General Public License as published by the Free Software Foundation, |
---|
7 | ! either version 3 of the License, or (at your option) any later version. |
---|
8 | ! |
---|
9 | ! PALM is distributed in the hope that it will be useful, but WITHOUT ANY |
---|
10 | ! WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR |
---|
11 | ! A PARTICULAR PURPOSE. See the GNU General Public License for more details. |
---|
12 | ! |
---|
13 | ! You should have received a copy of the GNU General Public License along with |
---|
14 | ! PALM. If not, see <http://www.gnu.org/licenses/>. |
---|
15 | ! |
---|
16 | ! Copyright 1997-2016 Leibniz Universitaet Hannover |
---|
17 | !--------------------------------------------------------------------------------! |
---|
18 | ! |
---|
19 | ! Current revisions: |
---|
20 | ! ----------------- |
---|
21 | ! |
---|
22 | ! |
---|
23 | ! Former revisions: |
---|
24 | ! ----------------- |
---|
25 | ! $Id: transpose.f90 1818 2016-04-06 15:53:27Z suehring $ |
---|
26 | ! |
---|
27 | ! 1682 2015-10-07 23:56:08Z knoop |
---|
28 | ! Code annotations made doxygen readable |
---|
29 | ! |
---|
30 | ! 1324 2014-03-21 09:13:16Z suehring |
---|
31 | ! Bugfix: ONLY statement for module pegrid removed |
---|
32 | ! |
---|
33 | ! 1320 2014-03-20 08:40:49Z raasch |
---|
34 | ! ONLY-attribute added to USE-statements, |
---|
35 | ! kind-parameters added to all INTEGER and REAL declaration statements, |
---|
36 | ! kinds are defined in new module kinds, |
---|
37 | ! old module precision_kind is removed, |
---|
38 | ! revision history before 2012 removed, |
---|
39 | ! comment fields (!:) to be used for variable explanations added to |
---|
40 | ! all variable declaration statements |
---|
41 | ! |
---|
42 | ! 1318 2014-03-17 13:35:16Z raasch |
---|
43 | ! cpu_log_nowait parameter added to cpu measurements of the transpositions |
---|
44 | ! required for solving the Poisson equation (poisfft), |
---|
45 | ! module interfaces removed |
---|
46 | ! |
---|
47 | ! 1257 2013-11-08 15:18:40Z raasch |
---|
48 | ! openacc loop and loop vector clauses removed |
---|
49 | ! |
---|
50 | ! 1216 2013-08-26 09:31:42Z raasch |
---|
51 | ! re-sorting of the transposed / to be transposed arrays moved to separate |
---|
52 | ! routines resort_for_... |
---|
53 | ! |
---|
54 | ! 1111 2013-03-08 23:54:10Z raasch |
---|
55 | ! openACC directives added, |
---|
56 | ! resorting data from/to work changed, work got 4 dimensions instead of 1 |
---|
57 | ! |
---|
58 | ! 1106 2013-03-04 05:31:38Z raasch |
---|
59 | ! preprocessor lines rearranged so that routines can also be used in serial |
---|
60 | ! (non-parallel) mode |
---|
61 | ! |
---|
62 | ! 1092 2013-02-02 11:24:22Z raasch |
---|
63 | ! unused variables removed |
---|
64 | ! |
---|
65 | ! 1036 2012-10-22 13:43:42Z raasch |
---|
66 | ! code put under GPL (PALM 3.9) |
---|
67 | ! |
---|
68 | ! 1003 2012-09-14 14:35:53Z raasch |
---|
69 | ! indices nxa, nya, etc. replaced by nx, ny, etc. |
---|
70 | ! |
---|
71 | ! Revision 1.1 1997/07/24 11:25:18 raasch |
---|
72 | ! Initial revision |
---|
73 | ! |
---|
74 | !------------------------------------------------------------------------------! |
---|
75 | ! Description: |
---|
76 | ! ------------ |
---|
77 | !> Resorting data for the transposition from x to y. The transposition itself |
---|
78 | !> is carried out in transpose_xy |
---|
79 | !------------------------------------------------------------------------------! |
---|
80 | SUBROUTINE resort_for_xy( f_in, f_inv ) |
---|
81 | |
---|
82 | |
---|
83 | USE indices, & |
---|
84 | ONLY: nx |
---|
85 | |
---|
86 | USE kinds |
---|
87 | |
---|
88 | USE transpose_indices, & |
---|
89 | ONLY: nxl_z, nxr_z, nyn_x, nyn_z, nys_x, nys_z, nzb_x, nzt_x |
---|
90 | |
---|
91 | IMPLICIT NONE |
---|
92 | |
---|
93 | REAL(wp) :: f_in(0:nx,nys_x:nyn_x,nzb_x:nzt_x) !< |
---|
94 | REAL(wp) :: f_inv(nys_x:nyn_x,nzb_x:nzt_x,0:nx) !< |
---|
95 | |
---|
96 | |
---|
97 | INTEGER(iwp) :: i !< |
---|
98 | INTEGER(iwp) :: j !< |
---|
99 | INTEGER(iwp) :: k !< |
---|
100 | ! |
---|
101 | !-- Rearrange indices of input array in order to make data to be send |
---|
102 | !-- by MPI contiguous |
---|
103 | !$OMP PARALLEL PRIVATE ( i, j, k ) |
---|
104 | !$OMP DO |
---|
105 | !$acc kernels present( f_in, f_inv ) |
---|
106 | DO i = 0, nx |
---|
107 | DO k = nzb_x, nzt_x |
---|
108 | DO j = nys_x, nyn_x |
---|
109 | f_inv(j,k,i) = f_in(i,j,k) |
---|
110 | ENDDO |
---|
111 | ENDDO |
---|
112 | ENDDO |
---|
113 | !$acc end kernels |
---|
114 | !$OMP END PARALLEL |
---|
115 | |
---|
116 | END SUBROUTINE resort_for_xy |
---|
117 | |
---|
118 | |
---|
119 | !------------------------------------------------------------------------------! |
---|
120 | ! Description: |
---|
121 | ! ------------ |
---|
122 | !> Transposition of input array (f_in) from x to y. For the input array, all |
---|
123 | !> elements along x reside on the same PE, while after transposition, all |
---|
124 | !> elements along y reside on the same PE. |
---|
125 | !------------------------------------------------------------------------------! |
---|
126 | SUBROUTINE transpose_xy( f_inv, f_out ) |
---|
127 | |
---|
128 | |
---|
129 | USE cpulog, & |
---|
130 | ONLY: cpu_log, cpu_log_nowait, log_point_s |
---|
131 | |
---|
132 | USE indices, & |
---|
133 | ONLY: nx, ny |
---|
134 | |
---|
135 | USE kinds |
---|
136 | |
---|
137 | USE pegrid |
---|
138 | |
---|
139 | USE transpose_indices, & |
---|
140 | ONLY: nxl_y, nxr_y, nyn_x, nys_x, nzb_x, nzb_y, nzt_x, nzt_y |
---|
141 | |
---|
142 | IMPLICIT NONE |
---|
143 | |
---|
144 | INTEGER(iwp) :: i !< |
---|
145 | INTEGER(iwp) :: j !< |
---|
146 | INTEGER(iwp) :: k !< |
---|
147 | INTEGER(iwp) :: l !< |
---|
148 | INTEGER(iwp) :: ys !< |
---|
149 | |
---|
150 | REAL(wp) :: f_inv(nys_x:nyn_x,nzb_x:nzt_x,0:nx) !< |
---|
151 | REAL(wp) :: f_out(0:ny,nxl_y:nxr_y,nzb_y:nzt_y) !< |
---|
152 | |
---|
153 | REAL(wp), DIMENSION(nyn_x-nys_x+1,nzb_y:nzt_y,nxl_y:nxr_y,0:pdims(2)-1) :: work !< |
---|
154 | |
---|
155 | |
---|
156 | IF ( numprocs /= 1 ) THEN |
---|
157 | |
---|
158 | #if defined( __parallel ) |
---|
159 | ! |
---|
160 | !-- Transpose array |
---|
161 | CALL cpu_log( log_point_s(32), 'mpi_alltoall', 'start', cpu_log_nowait ) |
---|
162 | IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) |
---|
163 | !$acc update host( f_inv ) |
---|
164 | CALL MPI_ALLTOALL( f_inv(nys_x,nzb_x,0), sendrecvcount_xy, MPI_REAL, & |
---|
165 | work(1,nzb_y,nxl_y,0), sendrecvcount_xy, MPI_REAL, & |
---|
166 | comm1dy, ierr ) |
---|
167 | CALL cpu_log( log_point_s(32), 'mpi_alltoall', 'stop' ) |
---|
168 | |
---|
169 | ! |
---|
170 | !-- Reorder transposed array |
---|
171 | !$OMP PARALLEL PRIVATE ( i, j, k, l, ys ) |
---|
172 | !$OMP DO |
---|
173 | !$acc data copyin( work ) |
---|
174 | DO l = 0, pdims(2) - 1 |
---|
175 | ys = 0 + l * ( nyn_x - nys_x + 1 ) |
---|
176 | !$acc kernels present( f_out, work ) |
---|
177 | DO i = nxl_y, nxr_y |
---|
178 | DO k = nzb_y, nzt_y |
---|
179 | DO j = ys, ys + nyn_x - nys_x |
---|
180 | f_out(j,i,k) = work(j-ys+1,k,i,l) |
---|
181 | ENDDO |
---|
182 | ENDDO |
---|
183 | ENDDO |
---|
184 | !$acc end kernels |
---|
185 | ENDDO |
---|
186 | !$acc end data |
---|
187 | !$OMP END PARALLEL |
---|
188 | #endif |
---|
189 | |
---|
190 | ELSE |
---|
191 | |
---|
192 | ! |
---|
193 | !-- Reorder transposed array |
---|
194 | !$OMP PARALLEL PRIVATE ( i, j, k ) |
---|
195 | !$OMP DO |
---|
196 | !$acc kernels present( f_inv, f_out ) |
---|
197 | DO k = nzb_y, nzt_y |
---|
198 | DO i = nxl_y, nxr_y |
---|
199 | DO j = 0, ny |
---|
200 | f_out(j,i,k) = f_inv(j,k,i) |
---|
201 | ENDDO |
---|
202 | ENDDO |
---|
203 | ENDDO |
---|
204 | !$acc end kernels |
---|
205 | !$OMP END PARALLEL |
---|
206 | |
---|
207 | ENDIF |
---|
208 | |
---|
209 | END SUBROUTINE transpose_xy |
---|
210 | |
---|
211 | |
---|
212 | !------------------------------------------------------------------------------! |
---|
213 | ! Description: |
---|
214 | ! ------------ |
---|
215 | !> Resorting data after the transposition from x to z. The transposition itself |
---|
216 | !> is carried out in transpose_xz |
---|
217 | !------------------------------------------------------------------------------! |
---|
218 | SUBROUTINE resort_for_xz( f_inv, f_out ) |
---|
219 | |
---|
220 | |
---|
221 | USE indices, & |
---|
222 | ONLY: nxl, nxr, nyn, nys, nz |
---|
223 | |
---|
224 | USE kinds |
---|
225 | |
---|
226 | IMPLICIT NONE |
---|
227 | |
---|
228 | REAL(wp) :: f_inv(nys:nyn,nxl:nxr,1:nz) !< |
---|
229 | REAL(wp) :: f_out(1:nz,nys:nyn,nxl:nxr) !< |
---|
230 | |
---|
231 | INTEGER(iwp) :: i !< |
---|
232 | INTEGER(iwp) :: j !< |
---|
233 | INTEGER(iwp) :: k !< |
---|
234 | ! |
---|
235 | !-- Rearrange indices of input array in order to make data to be send |
---|
236 | !-- by MPI contiguous. |
---|
237 | !-- In case of parallel fft/transposition, scattered store is faster in |
---|
238 | !-- backward direction!!! |
---|
239 | !$OMP PARALLEL PRIVATE ( i, j, k ) |
---|
240 | !$OMP DO |
---|
241 | !$acc kernels present( f_inv, f_out ) |
---|
242 | DO k = 1, nz |
---|
243 | DO i = nxl, nxr |
---|
244 | DO j = nys, nyn |
---|
245 | f_out(k,j,i) = f_inv(j,i,k) |
---|
246 | ENDDO |
---|
247 | ENDDO |
---|
248 | ENDDO |
---|
249 | !$acc end kernels |
---|
250 | !$OMP END PARALLEL |
---|
251 | |
---|
252 | END SUBROUTINE resort_for_xz |
---|
253 | |
---|
254 | |
---|
255 | !------------------------------------------------------------------------------! |
---|
256 | ! Description: |
---|
257 | ! ------------ |
---|
258 | !> Transposition of input array (f_in) from x to z. For the input array, all |
---|
259 | !> elements along x reside on the same PE, while after transposition, all |
---|
260 | !> elements along z reside on the same PE. |
---|
261 | !------------------------------------------------------------------------------! |
---|
262 | SUBROUTINE transpose_xz( f_in, f_inv ) |
---|
263 | |
---|
264 | |
---|
265 | USE cpulog, & |
---|
266 | ONLY: cpu_log, cpu_log_nowait, log_point_s |
---|
267 | |
---|
268 | USE indices, & |
---|
269 | ONLY: nnx, nx, nxl, nxr, ny, nyn, nys, nz |
---|
270 | |
---|
271 | USE kinds |
---|
272 | |
---|
273 | USE pegrid |
---|
274 | |
---|
275 | USE transpose_indices, & |
---|
276 | ONLY: nyn_x, nys_x, nzb_x, nzt_x |
---|
277 | |
---|
278 | IMPLICIT NONE |
---|
279 | |
---|
280 | INTEGER(iwp) :: i !< |
---|
281 | INTEGER(iwp) :: j !< |
---|
282 | INTEGER(iwp) :: k !< |
---|
283 | INTEGER(iwp) :: l !< |
---|
284 | INTEGER(iwp) :: xs !< |
---|
285 | |
---|
286 | REAL(wp) :: f_in(0:nx,nys_x:nyn_x,nzb_x:nzt_x) !< |
---|
287 | REAL(wp) :: f_inv(nys:nyn,nxl:nxr,1:nz) !< |
---|
288 | |
---|
289 | REAL(wp), DIMENSION(nys_x:nyn_x,nnx,nzb_x:nzt_x,0:pdims(1)-1) :: work !< |
---|
290 | |
---|
291 | |
---|
292 | ! |
---|
293 | !-- If the PE grid is one-dimensional along y, the array has only to be |
---|
294 | !-- reordered locally and therefore no transposition has to be done. |
---|
295 | IF ( pdims(1) /= 1 ) THEN |
---|
296 | |
---|
297 | #if defined( __parallel ) |
---|
298 | ! |
---|
299 | !-- Reorder input array for transposition |
---|
300 | !$OMP PARALLEL PRIVATE ( i, j, k, l, xs ) |
---|
301 | !$OMP DO |
---|
302 | !$acc data copyout( work ) |
---|
303 | DO l = 0, pdims(1) - 1 |
---|
304 | xs = 0 + l * nnx |
---|
305 | !$acc kernels present( f_in, work ) |
---|
306 | DO k = nzb_x, nzt_x |
---|
307 | DO i = xs, xs + nnx - 1 |
---|
308 | DO j = nys_x, nyn_x |
---|
309 | work(j,i-xs+1,k,l) = f_in(i,j,k) |
---|
310 | ENDDO |
---|
311 | ENDDO |
---|
312 | ENDDO |
---|
313 | !$acc end kernels |
---|
314 | ENDDO |
---|
315 | !$acc end data |
---|
316 | !$OMP END PARALLEL |
---|
317 | |
---|
318 | ! |
---|
319 | !-- Transpose array |
---|
320 | CALL cpu_log( log_point_s(32), 'mpi_alltoall', 'start', cpu_log_nowait ) |
---|
321 | IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) |
---|
322 | CALL MPI_ALLTOALL( work(nys_x,1,nzb_x,0), sendrecvcount_zx, MPI_REAL, & |
---|
323 | f_inv(nys,nxl,1), sendrecvcount_zx, MPI_REAL, & |
---|
324 | comm1dx, ierr ) |
---|
325 | !$acc update device( f_inv ) |
---|
326 | CALL cpu_log( log_point_s(32), 'mpi_alltoall', 'stop' ) |
---|
327 | #endif |
---|
328 | |
---|
329 | ELSE |
---|
330 | |
---|
331 | ! |
---|
332 | !-- Reorder the array in a way that the z index is in first position |
---|
333 | !$OMP PARALLEL PRIVATE ( i, j, k ) |
---|
334 | !$OMP DO |
---|
335 | !$acc kernels present( f_in, f_inv ) |
---|
336 | DO i = nxl, nxr |
---|
337 | DO j = nys, nyn |
---|
338 | DO k = 1, nz |
---|
339 | f_inv(j,i,k) = f_in(i,j,k) |
---|
340 | ENDDO |
---|
341 | ENDDO |
---|
342 | ENDDO |
---|
343 | !$acc end kernels |
---|
344 | !$OMP END PARALLEL |
---|
345 | |
---|
346 | ENDIF |
---|
347 | |
---|
348 | END SUBROUTINE transpose_xz |
---|
349 | |
---|
350 | |
---|
351 | !------------------------------------------------------------------------------! |
---|
352 | ! Description: |
---|
353 | ! ------------ |
---|
354 | !> Resorting data after the transposition from y to x. The transposition itself |
---|
355 | !> is carried out in transpose_yx |
---|
356 | !------------------------------------------------------------------------------! |
---|
357 | SUBROUTINE resort_for_yx( f_inv, f_out ) |
---|
358 | |
---|
359 | |
---|
360 | USE indices, & |
---|
361 | ONLY: nx |
---|
362 | |
---|
363 | USE kinds |
---|
364 | |
---|
365 | USE transpose_indices, & |
---|
366 | ONLY: nyn_x, nys_x, nzb_x, nzt_x |
---|
367 | |
---|
368 | IMPLICIT NONE |
---|
369 | |
---|
370 | REAL(wp) :: f_inv(nys_x:nyn_x,nzb_x:nzt_x,0:nx) !< |
---|
371 | REAL(wp) :: f_out(0:nx,nys_x:nyn_x,nzb_x:nzt_x) !< |
---|
372 | |
---|
373 | |
---|
374 | INTEGER(iwp) :: i !< |
---|
375 | INTEGER(iwp) :: j !< |
---|
376 | INTEGER(iwp) :: k !< |
---|
377 | ! |
---|
378 | !-- Rearrange indices of input array in order to make data to be send |
---|
379 | !-- by MPI contiguous |
---|
380 | !$OMP PARALLEL PRIVATE ( i, j, k ) |
---|
381 | !$OMP DO |
---|
382 | !$acc kernels present( f_inv, f_out ) |
---|
383 | DO i = 0, nx |
---|
384 | DO k = nzb_x, nzt_x |
---|
385 | DO j = nys_x, nyn_x |
---|
386 | f_out(i,j,k) = f_inv(j,k,i) |
---|
387 | ENDDO |
---|
388 | ENDDO |
---|
389 | ENDDO |
---|
390 | !$acc end kernels |
---|
391 | !$OMP END PARALLEL |
---|
392 | |
---|
393 | END SUBROUTINE resort_for_yx |
---|
394 | |
---|
395 | |
---|
396 | !------------------------------------------------------------------------------! |
---|
397 | ! Description: |
---|
398 | ! ------------ |
---|
399 | !> Transposition of input array (f_in) from y to x. For the input array, all |
---|
400 | !> elements along y reside on the same PE, while after transposition, all |
---|
401 | !> elements along x reside on the same PE. |
---|
402 | !------------------------------------------------------------------------------! |
---|
403 | SUBROUTINE transpose_yx( f_in, f_inv ) |
---|
404 | |
---|
405 | |
---|
406 | USE cpulog, & |
---|
407 | ONLY: cpu_log, cpu_log_nowait, log_point_s |
---|
408 | |
---|
409 | USE indices, & |
---|
410 | ONLY: nx, ny |
---|
411 | |
---|
412 | USE kinds |
---|
413 | |
---|
414 | USE pegrid |
---|
415 | |
---|
416 | USE transpose_indices, & |
---|
417 | ONLY: nxl_y, nxr_y, nyn_x, nys_x, nzb_x, nzb_y, nzt_x, nzt_y |
---|
418 | |
---|
419 | IMPLICIT NONE |
---|
420 | |
---|
421 | INTEGER(iwp) :: i !< |
---|
422 | INTEGER(iwp) :: j !< |
---|
423 | INTEGER(iwp) :: k !< |
---|
424 | INTEGER(iwp) :: l !< |
---|
425 | INTEGER(iwp) :: ys !< |
---|
426 | |
---|
427 | REAL(wp) :: f_in(0:ny,nxl_y:nxr_y,nzb_y:nzt_y) !< |
---|
428 | REAL(wp) :: f_inv(nys_x:nyn_x,nzb_x:nzt_x,0:nx) !< |
---|
429 | |
---|
430 | REAL(wp), DIMENSION(nyn_x-nys_x+1,nzb_y:nzt_y,nxl_y:nxr_y,0:pdims(2)-1) :: work !< |
---|
431 | |
---|
432 | |
---|
433 | IF ( numprocs /= 1 ) THEN |
---|
434 | |
---|
435 | #if defined( __parallel ) |
---|
436 | ! |
---|
437 | !-- Reorder input array for transposition |
---|
438 | !$OMP PARALLEL PRIVATE ( i, j, k, l, ys ) |
---|
439 | !$OMP DO |
---|
440 | !$acc data copyout( work ) |
---|
441 | DO l = 0, pdims(2) - 1 |
---|
442 | ys = 0 + l * ( nyn_x - nys_x + 1 ) |
---|
443 | !$acc kernels present( f_in, work ) |
---|
444 | DO i = nxl_y, nxr_y |
---|
445 | DO k = nzb_y, nzt_y |
---|
446 | DO j = ys, ys + nyn_x - nys_x |
---|
447 | work(j-ys+1,k,i,l) = f_in(j,i,k) |
---|
448 | ENDDO |
---|
449 | ENDDO |
---|
450 | ENDDO |
---|
451 | !$acc end kernels |
---|
452 | ENDDO |
---|
453 | !$acc end data |
---|
454 | !$OMP END PARALLEL |
---|
455 | |
---|
456 | ! |
---|
457 | !-- Transpose array |
---|
458 | CALL cpu_log( log_point_s(32), 'mpi_alltoall', 'start', cpu_log_nowait ) |
---|
459 | IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) |
---|
460 | CALL MPI_ALLTOALL( work(1,nzb_y,nxl_y,0), sendrecvcount_xy, MPI_REAL, & |
---|
461 | f_inv(nys_x,nzb_x,0), sendrecvcount_xy, MPI_REAL, & |
---|
462 | comm1dy, ierr ) |
---|
463 | !$acc update device( f_inv ) |
---|
464 | CALL cpu_log( log_point_s(32), 'mpi_alltoall', 'stop' ) |
---|
465 | #endif |
---|
466 | |
---|
467 | ELSE |
---|
468 | |
---|
469 | ! |
---|
470 | !-- Reorder array f_in the same way as ALLTOALL did it |
---|
471 | !$OMP PARALLEL PRIVATE ( i, j, k ) |
---|
472 | !$OMP DO |
---|
473 | !$acc kernels present( f_in, f_inv ) |
---|
474 | DO i = nxl_y, nxr_y |
---|
475 | DO k = nzb_y, nzt_y |
---|
476 | DO j = 0, ny |
---|
477 | f_inv(j,k,i) = f_in(j,i,k) |
---|
478 | ENDDO |
---|
479 | ENDDO |
---|
480 | ENDDO |
---|
481 | !$acc end kernels |
---|
482 | !$OMP END PARALLEL |
---|
483 | |
---|
484 | ENDIF |
---|
485 | |
---|
486 | END SUBROUTINE transpose_yx |
---|
487 | |
---|
488 | |
---|
489 | !------------------------------------------------------------------------------! |
---|
490 | ! Description: |
---|
491 | ! ------------ |
---|
492 | !> Transposition of input array (f_in) from y to x. For the input array, all |
---|
493 | !> elements along y reside on the same PE, while after transposition, all |
---|
494 | !> elements along x reside on the same PE. |
---|
495 | !> This is a direct transposition for arrays with indices in regular order |
---|
496 | !> (k,j,i) (cf. transpose_yx). |
---|
497 | !------------------------------------------------------------------------------! |
---|
498 | SUBROUTINE transpose_yxd( f_in, f_out ) |
---|
499 | |
---|
500 | |
---|
501 | USE cpulog, & |
---|
502 | ONLY: cpu_log, cpu_log_nowait, log_point_s |
---|
503 | |
---|
504 | USE indices, & |
---|
505 | ONLY: nnx, nny, nnz, nx, nxl, nxr, nyn, nys, nz |
---|
506 | |
---|
507 | USE kinds |
---|
508 | |
---|
509 | USE pegrid |
---|
510 | |
---|
511 | USE transpose_indices, & |
---|
512 | ONLY: nyn_x, nys_x, nzb_x, nzt_x |
---|
513 | |
---|
514 | IMPLICIT NONE |
---|
515 | |
---|
516 | INTEGER(iwp) :: i !< |
---|
517 | INTEGER(iwp) :: j !< |
---|
518 | INTEGER(iwp) :: k !< |
---|
519 | INTEGER(iwp) :: l !< |
---|
520 | INTEGER(iwp) :: m !< |
---|
521 | INTEGER(iwp) :: xs !< |
---|
522 | |
---|
523 | REAL(wp) :: f_in(1:nz,nys:nyn,nxl:nxr) !< |
---|
524 | REAL(wp) :: f_inv(nxl:nxr,1:nz,nys:nyn) !< |
---|
525 | REAL(wp) :: f_out(0:nx,nys_x:nyn_x,nzb_x:nzt_x) !< |
---|
526 | REAL(wp) :: work(nnx*nny*nnz) !< |
---|
527 | #if defined( __parallel ) |
---|
528 | |
---|
529 | ! |
---|
530 | !-- Rearrange indices of input array in order to make data to be send |
---|
531 | !-- by MPI contiguous |
---|
532 | DO k = 1, nz |
---|
533 | DO j = nys, nyn |
---|
534 | DO i = nxl, nxr |
---|
535 | f_inv(i,k,j) = f_in(k,j,i) |
---|
536 | ENDDO |
---|
537 | ENDDO |
---|
538 | ENDDO |
---|
539 | |
---|
540 | ! |
---|
541 | !-- Transpose array |
---|
542 | CALL cpu_log( log_point_s(32), 'mpi_alltoall', 'start' ) |
---|
543 | IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) |
---|
544 | CALL MPI_ALLTOALL( f_inv(nxl,1,nys), sendrecvcount_xy, MPI_REAL, & |
---|
545 | work(1), sendrecvcount_xy, MPI_REAL, & |
---|
546 | comm1dx, ierr ) |
---|
547 | CALL cpu_log( log_point_s(32), 'mpi_alltoall', 'stop' ) |
---|
548 | |
---|
549 | ! |
---|
550 | !-- Reorder transposed array |
---|
551 | m = 0 |
---|
552 | DO l = 0, pdims(1) - 1 |
---|
553 | xs = 0 + l * nnx |
---|
554 | DO j = nys_x, nyn_x |
---|
555 | DO k = 1, nz |
---|
556 | DO i = xs, xs + nnx - 1 |
---|
557 | m = m + 1 |
---|
558 | f_out(i,j,k) = work(m) |
---|
559 | ENDDO |
---|
560 | ENDDO |
---|
561 | ENDDO |
---|
562 | ENDDO |
---|
563 | |
---|
564 | #endif |
---|
565 | |
---|
566 | END SUBROUTINE transpose_yxd |
---|
567 | |
---|
568 | |
---|
569 | !------------------------------------------------------------------------------! |
---|
570 | ! Description: |
---|
571 | ! ------------ |
---|
572 | !> Resorting data for the transposition from y to z. The transposition itself |
---|
573 | !> is carried out in transpose_yz |
---|
574 | !------------------------------------------------------------------------------! |
---|
575 | SUBROUTINE resort_for_yz( f_in, f_inv ) |
---|
576 | |
---|
577 | |
---|
578 | USE indices, & |
---|
579 | ONLY: ny |
---|
580 | |
---|
581 | USE kinds |
---|
582 | |
---|
583 | USE transpose_indices, & |
---|
584 | ONLY: nxl_y, nxr_y, nzb_y, nzt_y |
---|
585 | |
---|
586 | IMPLICIT NONE |
---|
587 | |
---|
588 | REAL(wp) :: f_in(0:ny,nxl_y:nxr_y,nzb_y:nzt_y) !< |
---|
589 | REAL(wp) :: f_inv(nxl_y:nxr_y,nzb_y:nzt_y,0:ny) !< |
---|
590 | |
---|
591 | INTEGER(iwp) :: i !< |
---|
592 | INTEGER(iwp) :: j !< |
---|
593 | INTEGER(iwp) :: k !< |
---|
594 | |
---|
595 | ! |
---|
596 | !-- Rearrange indices of input array in order to make data to be send |
---|
597 | !-- by MPI contiguous |
---|
598 | !$OMP PARALLEL PRIVATE ( i, j, k ) |
---|
599 | !$OMP DO |
---|
600 | !$acc kernels present( f_in, f_inv ) |
---|
601 | DO j = 0, ny |
---|
602 | DO k = nzb_y, nzt_y |
---|
603 | DO i = nxl_y, nxr_y |
---|
604 | f_inv(i,k,j) = f_in(j,i,k) |
---|
605 | ENDDO |
---|
606 | ENDDO |
---|
607 | ENDDO |
---|
608 | !$acc end kernels |
---|
609 | !$OMP END PARALLEL |
---|
610 | |
---|
611 | END SUBROUTINE resort_for_yz |
---|
612 | |
---|
613 | |
---|
614 | !------------------------------------------------------------------------------! |
---|
615 | ! Description: |
---|
616 | ! ------------ |
---|
617 | !> Transposition of input array (f_in) from y to z. For the input array, all |
---|
618 | !> elements along y reside on the same PE, while after transposition, all |
---|
619 | !> elements along z reside on the same PE. |
---|
620 | !------------------------------------------------------------------------------! |
---|
621 | SUBROUTINE transpose_yz( f_inv, f_out ) |
---|
622 | |
---|
623 | |
---|
624 | USE cpulog, & |
---|
625 | ONLY: cpu_log, cpu_log_nowait, log_point_s |
---|
626 | |
---|
627 | USE indices, & |
---|
628 | ONLY: ny, nz |
---|
629 | |
---|
630 | USE kinds |
---|
631 | |
---|
632 | USE pegrid |
---|
633 | |
---|
634 | USE transpose_indices, & |
---|
635 | ONLY: nxl_y, nxl_z, nxr_y, nxr_z, nyn_z, nys_z, nzb_y, nzt_y |
---|
636 | |
---|
637 | IMPLICIT NONE |
---|
638 | |
---|
639 | INTEGER(iwp) :: i !< |
---|
640 | INTEGER(iwp) :: j !< |
---|
641 | INTEGER(iwp) :: k !< |
---|
642 | INTEGER(iwp) :: l !< |
---|
643 | INTEGER(iwp) :: zs !< |
---|
644 | |
---|
645 | REAL(wp) :: f_inv(nxl_y:nxr_y,nzb_y:nzt_y,0:ny) !< |
---|
646 | REAL(wp) :: f_out(nxl_z:nxr_z,nys_z:nyn_z,1:nz) !< |
---|
647 | |
---|
648 | REAL(wp), DIMENSION(nxl_z:nxr_z,nzt_y-nzb_y+1,nys_z:nyn_z,0:pdims(1)-1) :: work !< |
---|
649 | |
---|
650 | |
---|
651 | ! |
---|
652 | !-- If the PE grid is one-dimensional along y, only local reordering |
---|
653 | !-- of the data is necessary and no transposition has to be done. |
---|
654 | IF ( pdims(1) == 1 ) THEN |
---|
655 | |
---|
656 | !$OMP PARALLEL PRIVATE ( i, j, k ) |
---|
657 | !$OMP DO |
---|
658 | !$acc kernels present( f_inv, f_out ) |
---|
659 | DO j = 0, ny |
---|
660 | DO k = nzb_y, nzt_y |
---|
661 | DO i = nxl_y, nxr_y |
---|
662 | f_out(i,j,k) = f_inv(i,k,j) |
---|
663 | ENDDO |
---|
664 | ENDDO |
---|
665 | ENDDO |
---|
666 | !$acc end kernels |
---|
667 | !$OMP END PARALLEL |
---|
668 | |
---|
669 | ELSE |
---|
670 | |
---|
671 | #if defined( __parallel ) |
---|
672 | ! |
---|
673 | !-- Transpose array |
---|
674 | CALL cpu_log( log_point_s(32), 'mpi_alltoall', 'start', cpu_log_nowait ) |
---|
675 | IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) |
---|
676 | !$acc update host( f_inv ) |
---|
677 | CALL MPI_ALLTOALL( f_inv(nxl_y,nzb_y,0), sendrecvcount_yz, MPI_REAL, & |
---|
678 | work(nxl_z,1,nys_z,0), sendrecvcount_yz, MPI_REAL, & |
---|
679 | comm1dx, ierr ) |
---|
680 | CALL cpu_log( log_point_s(32), 'mpi_alltoall', 'stop' ) |
---|
681 | |
---|
682 | ! |
---|
683 | !-- Reorder transposed array |
---|
684 | !$OMP PARALLEL PRIVATE ( i, j, k, l, zs ) |
---|
685 | !$OMP DO |
---|
686 | !$acc data copyin( work ) |
---|
687 | DO l = 0, pdims(1) - 1 |
---|
688 | zs = 1 + l * ( nzt_y - nzb_y + 1 ) |
---|
689 | !$acc kernels present( f_out ) |
---|
690 | DO j = nys_z, nyn_z |
---|
691 | DO k = zs, zs + nzt_y - nzb_y |
---|
692 | DO i = nxl_z, nxr_z |
---|
693 | f_out(i,j,k) = work(i,k-zs+1,j,l) |
---|
694 | ENDDO |
---|
695 | ENDDO |
---|
696 | ENDDO |
---|
697 | !$acc end kernels |
---|
698 | ENDDO |
---|
699 | !$acc end data |
---|
700 | !$OMP END PARALLEL |
---|
701 | #endif |
---|
702 | |
---|
703 | ENDIF |
---|
704 | |
---|
705 | END SUBROUTINE transpose_yz |
---|
706 | |
---|
707 | |
---|
708 | !------------------------------------------------------------------------------! |
---|
709 | ! Description: |
---|
710 | ! ------------ |
---|
711 | !> Resorting data for the transposition from z to x. The transposition itself |
---|
712 | !> is carried out in transpose_zx |
---|
713 | !------------------------------------------------------------------------------! |
---|
714 | SUBROUTINE resort_for_zx( f_in, f_inv ) |
---|
715 | |
---|
716 | |
---|
717 | USE indices, & |
---|
718 | ONLY: nxl, nxr, nyn, nys, nz |
---|
719 | |
---|
720 | USE kinds |
---|
721 | |
---|
722 | IMPLICIT NONE |
---|
723 | |
---|
724 | REAL(wp) :: f_in(1:nz,nys:nyn,nxl:nxr) !< |
---|
725 | REAL(wp) :: f_inv(nys:nyn,nxl:nxr,1:nz) !< |
---|
726 | |
---|
727 | INTEGER(iwp) :: i !< |
---|
728 | INTEGER(iwp) :: j !< |
---|
729 | INTEGER(iwp) :: k !< |
---|
730 | |
---|
731 | ! |
---|
732 | !-- Rearrange indices of input array in order to make data to be send |
---|
733 | !-- by MPI contiguous |
---|
734 | !$OMP PARALLEL PRIVATE ( i, j, k ) |
---|
735 | !$OMP DO |
---|
736 | !$acc kernels present( f_in, f_inv ) |
---|
737 | DO k = 1,nz |
---|
738 | DO i = nxl, nxr |
---|
739 | DO j = nys, nyn |
---|
740 | f_inv(j,i,k) = f_in(k,j,i) |
---|
741 | ENDDO |
---|
742 | ENDDO |
---|
743 | ENDDO |
---|
744 | !$acc end kernels |
---|
745 | !$OMP END PARALLEL |
---|
746 | |
---|
747 | END SUBROUTINE resort_for_zx |
---|
748 | |
---|
749 | |
---|
750 | !------------------------------------------------------------------------------! |
---|
751 | ! Description: |
---|
752 | ! ------------ |
---|
753 | !> Transposition of input array (f_in) from z to x. For the input array, all |
---|
754 | !> elements along z reside on the same PE, while after transposition, all |
---|
755 | !> elements along x reside on the same PE. |
---|
756 | !------------------------------------------------------------------------------! |
---|
757 | SUBROUTINE transpose_zx( f_inv, f_out ) |
---|
758 | |
---|
759 | |
---|
760 | USE cpulog, & |
---|
761 | ONLY: cpu_log, cpu_log_nowait, log_point_s |
---|
762 | |
---|
763 | USE indices, & |
---|
764 | ONLY: nnx, nx, nxl, nxr, nyn, nys, nz |
---|
765 | |
---|
766 | USE kinds |
---|
767 | |
---|
768 | USE pegrid |
---|
769 | |
---|
770 | USE transpose_indices, & |
---|
771 | ONLY: nyn_x, nys_x, nzb_x, nzt_x |
---|
772 | |
---|
773 | IMPLICIT NONE |
---|
774 | |
---|
775 | INTEGER(iwp) :: i !< |
---|
776 | INTEGER(iwp) :: j !< |
---|
777 | INTEGER(iwp) :: k !< |
---|
778 | INTEGER(iwp) :: l !< |
---|
779 | INTEGER(iwp) :: xs !< |
---|
780 | |
---|
781 | REAL(wp) :: f_inv(nys:nyn,nxl:nxr,1:nz) !< |
---|
782 | REAL(wp) :: f_out(0:nx,nys_x:nyn_x,nzb_x:nzt_x) !< |
---|
783 | |
---|
784 | REAL(wp), DIMENSION(nys_x:nyn_x,nnx,nzb_x:nzt_x,0:pdims(1)-1) :: work !< |
---|
785 | |
---|
786 | |
---|
787 | ! |
---|
788 | !-- If the PE grid is one-dimensional along y, only local reordering |
---|
789 | !-- of the data is necessary and no transposition has to be done. |
---|
790 | IF ( pdims(1) == 1 ) THEN |
---|
791 | |
---|
792 | !$OMP PARALLEL PRIVATE ( i, j, k ) |
---|
793 | !$OMP DO |
---|
794 | !$acc kernels present( f_inv, f_out ) |
---|
795 | DO k = 1, nz |
---|
796 | DO i = nxl, nxr |
---|
797 | DO j = nys, nyn |
---|
798 | f_out(i,j,k) = f_inv(j,i,k) |
---|
799 | ENDDO |
---|
800 | ENDDO |
---|
801 | ENDDO |
---|
802 | !$acc end kernels |
---|
803 | !$OMP END PARALLEL |
---|
804 | |
---|
805 | ELSE |
---|
806 | |
---|
807 | #if defined( __parallel ) |
---|
808 | ! |
---|
809 | !-- Transpose array |
---|
810 | CALL cpu_log( log_point_s(32), 'mpi_alltoall', 'start', cpu_log_nowait ) |
---|
811 | IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) |
---|
812 | !$acc update host( f_inv ) |
---|
813 | CALL MPI_ALLTOALL( f_inv(nys,nxl,1), sendrecvcount_zx, MPI_REAL, & |
---|
814 | work(nys_x,1,nzb_x,0), sendrecvcount_zx, MPI_REAL, & |
---|
815 | comm1dx, ierr ) |
---|
816 | CALL cpu_log( log_point_s(32), 'mpi_alltoall', 'stop' ) |
---|
817 | |
---|
818 | ! |
---|
819 | !-- Reorder transposed array |
---|
820 | !$OMP PARALLEL PRIVATE ( i, j, k, l, xs ) |
---|
821 | !$OMP DO |
---|
822 | !$acc data copyin( work ) |
---|
823 | DO l = 0, pdims(1) - 1 |
---|
824 | xs = 0 + l * nnx |
---|
825 | !$acc kernels present( f_out ) |
---|
826 | DO k = nzb_x, nzt_x |
---|
827 | DO i = xs, xs + nnx - 1 |
---|
828 | DO j = nys_x, nyn_x |
---|
829 | f_out(i,j,k) = work(j,i-xs+1,k,l) |
---|
830 | ENDDO |
---|
831 | ENDDO |
---|
832 | ENDDO |
---|
833 | !$acc end kernels |
---|
834 | ENDDO |
---|
835 | !$acc end data |
---|
836 | !$OMP END PARALLEL |
---|
837 | #endif |
---|
838 | |
---|
839 | ENDIF |
---|
840 | |
---|
841 | END SUBROUTINE transpose_zx |
---|
842 | |
---|
843 | |
---|
844 | !------------------------------------------------------------------------------! |
---|
845 | ! Description: |
---|
846 | ! ------------ |
---|
847 | !> Resorting data after the transposition from z to y. The transposition itself |
---|
848 | !> is carried out in transpose_zy |
---|
849 | !------------------------------------------------------------------------------! |
---|
850 | SUBROUTINE resort_for_zy( f_inv, f_out ) |
---|
851 | |
---|
852 | |
---|
853 | USE indices, & |
---|
854 | ONLY: ny |
---|
855 | |
---|
856 | USE kinds |
---|
857 | |
---|
858 | USE transpose_indices, & |
---|
859 | ONLY: nxl_y, nxr_y, nzb_y, nzt_y |
---|
860 | |
---|
861 | IMPLICIT NONE |
---|
862 | |
---|
863 | REAL(wp) :: f_inv(nxl_y:nxr_y,nzb_y:nzt_y,0:ny) !< |
---|
864 | REAL(wp) :: f_out(0:ny,nxl_y:nxr_y,nzb_y:nzt_y) !< |
---|
865 | |
---|
866 | |
---|
867 | INTEGER(iwp) :: i !< |
---|
868 | INTEGER(iwp) :: j !< |
---|
869 | INTEGER(iwp) :: k !< |
---|
870 | |
---|
871 | ! |
---|
872 | !-- Rearrange indices of input array in order to make data to be send |
---|
873 | !-- by MPI contiguous |
---|
874 | !$OMP PARALLEL PRIVATE ( i, j, k ) |
---|
875 | !$OMP DO |
---|
876 | !$acc kernels present( f_inv, f_out ) |
---|
877 | DO k = nzb_y, nzt_y |
---|
878 | DO j = 0, ny |
---|
879 | DO i = nxl_y, nxr_y |
---|
880 | f_out(j,i,k) = f_inv(i,k,j) |
---|
881 | ENDDO |
---|
882 | ENDDO |
---|
883 | ENDDO |
---|
884 | !$acc end kernels |
---|
885 | !$OMP END PARALLEL |
---|
886 | |
---|
887 | END SUBROUTINE resort_for_zy |
---|
888 | |
---|
889 | |
---|
890 | !------------------------------------------------------------------------------! |
---|
891 | ! Description: |
---|
892 | ! ------------ |
---|
893 | !> Transposition of input array (f_in) from z to y. For the input array, all |
---|
894 | !> elements along z reside on the same PE, while after transposition, all |
---|
895 | !> elements along y reside on the same PE. |
---|
896 | !------------------------------------------------------------------------------! |
---|
897 | SUBROUTINE transpose_zy( f_in, f_inv ) |
---|
898 | |
---|
899 | |
---|
900 | USE cpulog, & |
---|
901 | ONLY: cpu_log, cpu_log_nowait, log_point_s |
---|
902 | |
---|
903 | USE indices, & |
---|
904 | ONLY: ny, nz |
---|
905 | |
---|
906 | USE kinds |
---|
907 | |
---|
908 | USE pegrid |
---|
909 | |
---|
910 | USE transpose_indices, & |
---|
911 | ONLY: nxl_y, nxl_z, nxr_y, nxr_z, nyn_z, nys_z, nzb_y, nzt_y |
---|
912 | |
---|
913 | IMPLICIT NONE |
---|
914 | |
---|
915 | INTEGER(iwp) :: i !< |
---|
916 | INTEGER(iwp) :: j !< |
---|
917 | INTEGER(iwp) :: k !< |
---|
918 | INTEGER(iwp) :: l !< |
---|
919 | INTEGER(iwp) :: zs !< |
---|
920 | |
---|
921 | REAL(wp) :: f_in(nxl_z:nxr_z,nys_z:nyn_z,1:nz) !< |
---|
922 | REAL(wp) :: f_inv(nxl_y:nxr_y,nzb_y:nzt_y,0:ny) !< |
---|
923 | |
---|
924 | REAL(wp), DIMENSION(nxl_z:nxr_z,nzt_y-nzb_y+1,nys_z:nyn_z,0:pdims(1)-1) :: work !< |
---|
925 | |
---|
926 | ! |
---|
927 | !-- If the PE grid is one-dimensional along y, the array has only to be |
---|
928 | !-- reordered locally and therefore no transposition has to be done. |
---|
929 | IF ( pdims(1) /= 1 ) THEN |
---|
930 | |
---|
931 | #if defined( __parallel ) |
---|
932 | ! |
---|
933 | !-- Reorder input array for transposition |
---|
934 | !$OMP PARALLEL PRIVATE ( i, j, k, l, zs ) |
---|
935 | !$OMP DO |
---|
936 | !$acc data copyout( work ) |
---|
937 | DO l = 0, pdims(1) - 1 |
---|
938 | zs = 1 + l * ( nzt_y - nzb_y + 1 ) |
---|
939 | !$acc kernels present( f_in, work ) |
---|
940 | DO j = nys_z, nyn_z |
---|
941 | DO k = zs, zs + nzt_y - nzb_y |
---|
942 | DO i = nxl_z, nxr_z |
---|
943 | work(i,k-zs+1,j,l) = f_in(i,j,k) |
---|
944 | ENDDO |
---|
945 | ENDDO |
---|
946 | ENDDO |
---|
947 | !$acc end kernels |
---|
948 | ENDDO |
---|
949 | !$acc end data |
---|
950 | !$OMP END PARALLEL |
---|
951 | |
---|
952 | ! |
---|
953 | !-- Transpose array |
---|
954 | CALL cpu_log( log_point_s(32), 'mpi_alltoall', 'start', cpu_log_nowait ) |
---|
955 | IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) |
---|
956 | CALL MPI_ALLTOALL( work(nxl_z,1,nys_z,0), sendrecvcount_yz, MPI_REAL, & |
---|
957 | f_inv(nxl_y,nzb_y,0), sendrecvcount_yz, MPI_REAL, & |
---|
958 | comm1dx, ierr ) |
---|
959 | !$acc update device( f_inv ) |
---|
960 | CALL cpu_log( log_point_s(32), 'mpi_alltoall', 'stop' ) |
---|
961 | #endif |
---|
962 | |
---|
963 | ELSE |
---|
964 | ! |
---|
965 | !-- Reorder the array in the same way like ALLTOALL did it |
---|
966 | !$OMP PARALLEL PRIVATE ( i, j, k ) |
---|
967 | !$OMP DO |
---|
968 | !$acc kernels present( f_in, f_inv ) |
---|
969 | DO k = nzb_y, nzt_y |
---|
970 | DO j = 0, ny |
---|
971 | DO i = nxl_y, nxr_y |
---|
972 | f_inv(i,k,j) = f_in(i,j,k) |
---|
973 | ENDDO |
---|
974 | ENDDO |
---|
975 | ENDDO |
---|
976 | !$acc end kernels |
---|
977 | !$OMP END PARALLEL |
---|
978 | |
---|
979 | ENDIF |
---|
980 | |
---|
981 | END SUBROUTINE transpose_zy |
---|
982 | |
---|
983 | |
---|
984 | !------------------------------------------------------------------------------! |
---|
985 | ! Description: |
---|
986 | ! ------------ |
---|
987 | !> Transposition of input array (f_in) from z to y. For the input array, all |
---|
988 | !> elements along z reside on the same PE, while after transposition, all |
---|
989 | !> elements along y reside on the same PE. |
---|
990 | !> This is a direct transposition for arrays with indices in regular order |
---|
991 | !> (k,j,i) (cf. transpose_zy). |
---|
992 | !------------------------------------------------------------------------------! |
---|
993 | SUBROUTINE transpose_zyd( f_in, f_out ) |
---|
994 | |
---|
995 | |
---|
996 | USE cpulog, & |
---|
997 | ONLY: cpu_log, cpu_log_nowait, log_point_s |
---|
998 | |
---|
999 | USE indices, & |
---|
1000 | ONLY: nnx, nny, nnz, nxl, nxr, nyn, nys, ny, nz |
---|
1001 | |
---|
1002 | USE kinds |
---|
1003 | |
---|
1004 | USE pegrid |
---|
1005 | |
---|
1006 | USE transpose_indices, & |
---|
1007 | ONLY: nxl_y, nxl_yd, nxr_y, nxr_yd, nzb_y, nzb_yd, nzt_y, nzt_yd |
---|
1008 | |
---|
1009 | IMPLICIT NONE |
---|
1010 | |
---|
1011 | INTEGER(iwp) :: i !< |
---|
1012 | INTEGER(iwp) :: j !< |
---|
1013 | INTEGER(iwp) :: k !< |
---|
1014 | INTEGER(iwp) :: l !< |
---|
1015 | INTEGER(iwp) :: m !< |
---|
1016 | INTEGER(iwp) :: ys !< |
---|
1017 | |
---|
1018 | REAL(wp) :: f_in(1:nz,nys:nyn,nxl:nxr) !< |
---|
1019 | REAL(wp) :: f_inv(nys:nyn,nxl:nxr,1:nz) !< |
---|
1020 | REAL(wp) :: f_out(0:ny,nxl_yd:nxr_yd,nzb_yd:nzt_yd) !< |
---|
1021 | REAL(wp) :: work(nnx*nny*nnz) !< |
---|
1022 | |
---|
1023 | #if defined( __parallel ) |
---|
1024 | |
---|
1025 | ! |
---|
1026 | !-- Rearrange indices of input array in order to make data to be send |
---|
1027 | !-- by MPI contiguous |
---|
1028 | DO i = nxl, nxr |
---|
1029 | DO j = nys, nyn |
---|
1030 | DO k = 1, nz |
---|
1031 | f_inv(j,i,k) = f_in(k,j,i) |
---|
1032 | ENDDO |
---|
1033 | ENDDO |
---|
1034 | ENDDO |
---|
1035 | |
---|
1036 | ! |
---|
1037 | !-- Move data to different array, because memory location of work1 is |
---|
1038 | !-- needed further below (work1 = work2). |
---|
1039 | !-- If the PE grid is one-dimensional along x, only local reordering |
---|
1040 | !-- of the data is necessary and no transposition has to be done. |
---|
1041 | IF ( pdims(2) == 1 ) THEN |
---|
1042 | DO k = 1, nz |
---|
1043 | DO i = nxl, nxr |
---|
1044 | DO j = nys, nyn |
---|
1045 | f_out(j,i,k) = f_inv(j,i,k) |
---|
1046 | ENDDO |
---|
1047 | ENDDO |
---|
1048 | ENDDO |
---|
1049 | RETURN |
---|
1050 | ENDIF |
---|
1051 | |
---|
1052 | ! |
---|
1053 | !-- Transpose array |
---|
1054 | CALL cpu_log( log_point_s(32), 'mpi_alltoall', 'start' ) |
---|
1055 | IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) |
---|
1056 | CALL MPI_ALLTOALL( f_inv(nys,nxl,1), sendrecvcount_zyd, MPI_REAL, & |
---|
1057 | work(1), sendrecvcount_zyd, MPI_REAL, & |
---|
1058 | comm1dy, ierr ) |
---|
1059 | CALL cpu_log( log_point_s(32), 'mpi_alltoall', 'stop' ) |
---|
1060 | |
---|
1061 | ! |
---|
1062 | !-- Reorder transposed array |
---|
1063 | m = 0 |
---|
1064 | DO l = 0, pdims(2) - 1 |
---|
1065 | ys = 0 + l * nny |
---|
1066 | DO k = nzb_yd, nzt_yd |
---|
1067 | DO i = nxl_yd, nxr_yd |
---|
1068 | DO j = ys, ys + nny - 1 |
---|
1069 | m = m + 1 |
---|
1070 | f_out(j,i,k) = work(m) |
---|
1071 | ENDDO |
---|
1072 | ENDDO |
---|
1073 | ENDDO |
---|
1074 | ENDDO |
---|
1075 | |
---|
1076 | #endif |
---|
1077 | |
---|
1078 | END SUBROUTINE transpose_zyd |
---|