1 | !> @file transpose.f90 |
---|
2 | !--------------------------------------------------------------------------------------------------! |
---|
3 | ! This file is part of the PALM model system. |
---|
4 | ! |
---|
5 | ! PALM is free software: you can redistribute it and/or modify it under the terms of the GNU General |
---|
6 | ! Public License as published by the Free Software Foundation, either version 3 of the License, or |
---|
7 | ! (at your option) any later version. |
---|
8 | ! |
---|
9 | ! PALM is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the |
---|
10 | ! implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General |
---|
11 | ! Public License for more details. |
---|
12 | ! |
---|
13 | ! You should have received a copy of the GNU General Public License along with PALM. If not, see |
---|
14 | ! <http://www.gnu.org/licenses/>. |
---|
15 | ! |
---|
16 | ! Copyright 1997-2020 Leibniz Universitaet Hannover |
---|
17 | !--------------------------------------------------------------------------------------------------! |
---|
18 | ! |
---|
19 | ! |
---|
20 | ! Current revisions: |
---|
21 | ! ----------------- |
---|
22 | ! |
---|
23 | ! |
---|
24 | ! Former revisions: |
---|
25 | ! ----------------- |
---|
26 | ! $Id: transpose.f90 4540 2020-05-18 15:23:29Z oliver.maas $ |
---|
27 | ! File re-formatted to follow the PALM coding standard |
---|
28 | ! |
---|
29 | ! |
---|
30 | ! 4429 2020-02-27 15:24:30Z raasch |
---|
31 | ! Bugfix: cpp-directives added for serial mode |
---|
32 | ! |
---|
33 | ! 4415 2020-02-20 10:30:33Z raasch |
---|
34 | ! Bugfix for misplaced preprocessor directive |
---|
35 | ! |
---|
36 | ! 4370 2020-01-10 14:00:44Z raasch |
---|
37 | ! Vector array renamed |
---|
38 | ! |
---|
39 | ! 4366 2020-01-09 08:12:43Z raasch |
---|
40 | ! Modifications for NEC vectorization |
---|
41 | ! |
---|
42 | ! 4360 2020-01-07 11:25:50Z suehring |
---|
43 | ! Added missing OpenMP directives |
---|
44 | ! |
---|
45 | ! 4182 2019-08-22 15:20:23Z scharf |
---|
46 | ! Corrected "Former revisions" section |
---|
47 | ! |
---|
48 | ! 4171 2019-08-19 17:44:09Z gronemeier |
---|
49 | ! Loop reordering for performance optimization |
---|
50 | ! |
---|
51 | ! 3832 2019-03-28 13:16:58Z raasch |
---|
52 | ! Loop reordering for performance optimization |
---|
53 | ! |
---|
54 | ! 3694 2019-01-23 17:01:49Z knoop |
---|
55 | ! OpenACC port for SPEC |
---|
56 | ! |
---|
57 | ! Revision 1.1 1997/07/24 11:25:18 raasch |
---|
58 | ! Initial revision |
---|
59 | ! |
---|
60 | ! |
---|
61 | ! Description: |
---|
62 | ! ------------ |
---|
63 | !> Resorting data for the transposition from x to y. The transposition itself is carried out in |
---|
64 | !> transpose_xy. |
---|
65 | !--------------------------------------------------------------------------------------------------! |
---|
66 | |
---|
67 | #define __acc_fft_device ( defined( _OPENACC ) && ( defined ( __cuda_fft ) ) ) |
---|
68 | |
---|
69 | SUBROUTINE resort_for_xy( f_in, f_inv ) |
---|
70 | |
---|
71 | |
---|
72 | USE indices, & |
---|
73 | ONLY: nx |
---|
74 | |
---|
75 | USE kinds |
---|
76 | |
---|
77 | USE transpose_indices, & |
---|
78 | ONLY: nyn_x, & |
---|
79 | nys_x, & |
---|
80 | nzb_x, & |
---|
81 | nzt_x |
---|
82 | |
---|
83 | IMPLICIT NONE |
---|
84 | |
---|
85 | INTEGER(iwp) :: i !< |
---|
86 | INTEGER(iwp) :: j !< |
---|
87 | INTEGER(iwp) :: k !< |
---|
88 | |
---|
89 | REAL(wp) :: f_in(0:nx,nys_x:nyn_x,nzb_x:nzt_x) !< |
---|
90 | REAL(wp) :: f_inv(nys_x:nyn_x,nzb_x:nzt_x,0:nx) !< |
---|
91 | |
---|
92 | ! |
---|
93 | !-- Rearrange indices of input array in order to make data to be send by MPI contiguous |
---|
94 | !$OMP PARALLEL PRIVATE ( i, j, k ) |
---|
95 | !$OMP DO |
---|
96 | #if __acc_fft_device |
---|
97 | !$ACC PARALLEL LOOP COLLAPSE(3) PRIVATE(i,j,k) & |
---|
98 | !$ACC PRESENT(f_inv, f_in) |
---|
99 | #endif |
---|
100 | DO k = nzb_x, nzt_x |
---|
101 | DO j = nys_x, nyn_x |
---|
102 | DO i = 0, nx |
---|
103 | f_inv(j,k,i) = f_in(i,j,k) |
---|
104 | ENDDO |
---|
105 | ENDDO |
---|
106 | ENDDO |
---|
107 | !$OMP END PARALLEL |
---|
108 | |
---|
109 | END SUBROUTINE resort_for_xy |
---|
110 | |
---|
111 | |
---|
112 | !--------------------------------------------------------------------------------------------------! |
---|
113 | ! Description: |
---|
114 | ! ------------ |
---|
115 | !> Transposition of input array (f_in) from x to y. For the input array, all elements along x reside |
---|
116 | !> on the same PE, while after transposition, all elements along y reside on the same PE. |
---|
117 | !--------------------------------------------------------------------------------------------------! |
---|
118 | SUBROUTINE transpose_xy( f_inv, f_out ) |
---|
119 | |
---|
120 | |
---|
121 | #if defined( __parallel ) |
---|
122 | USE cpulog, & |
---|
123 | ONLY: cpu_log, & |
---|
124 | cpu_log_nowait, & |
---|
125 | log_point_s |
---|
126 | #endif |
---|
127 | |
---|
128 | USE indices, & |
---|
129 | ONLY: nx, & |
---|
130 | ny |
---|
131 | |
---|
132 | USE kinds |
---|
133 | |
---|
134 | USE pegrid |
---|
135 | |
---|
136 | USE transpose_indices, & |
---|
137 | ONLY: nxl_y, & |
---|
138 | nxr_y, & |
---|
139 | nyn_x, & |
---|
140 | nys_x, & |
---|
141 | nzb_x, & |
---|
142 | nzb_y, & |
---|
143 | nzt_x, & |
---|
144 | nzt_y |
---|
145 | |
---|
146 | IMPLICIT NONE |
---|
147 | |
---|
148 | INTEGER(iwp) :: i !< |
---|
149 | INTEGER(iwp) :: j !< |
---|
150 | INTEGER(iwp) :: k !< |
---|
151 | |
---|
152 | #if defined( __parallel ) |
---|
153 | INTEGER(iwp) :: l !< |
---|
154 | INTEGER(iwp) :: ys !< |
---|
155 | #endif |
---|
156 | |
---|
157 | REAL(wp) :: f_inv(nys_x:nyn_x,nzb_x:nzt_x,0:nx) !< |
---|
158 | REAL(wp) :: f_out(0:ny,nxl_y:nxr_y,nzb_y:nzt_y) !< |
---|
159 | |
---|
160 | #if defined( __parallel ) |
---|
161 | REAL(wp), DIMENSION(nyn_x-nys_x+1,nzb_y:nzt_y,nxl_y:nxr_y,0:pdims(2)-1) :: work !< |
---|
162 | #if __acc_fft_device |
---|
163 | !$ACC DECLARE CREATE(work) |
---|
164 | #endif |
---|
165 | #endif |
---|
166 | |
---|
167 | |
---|
168 | IF ( numprocs /= 1 ) THEN |
---|
169 | |
---|
170 | #if defined( __parallel ) |
---|
171 | ! |
---|
172 | !-- Transpose array |
---|
173 | CALL cpu_log( log_point_s(32), 'mpi_alltoall', 'start', cpu_log_nowait ) |
---|
174 | |
---|
175 | #if __acc_fft_device |
---|
176 | #ifndef __cuda_aware_mpi |
---|
177 | !$ACC UPDATE HOST(f_inv) |
---|
178 | #else |
---|
179 | !$ACC HOST_DATA USE_DEVICE(work, f_inv) |
---|
180 | #endif |
---|
181 | #endif |
---|
182 | |
---|
183 | IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) |
---|
184 | CALL MPI_ALLTOALL( f_inv(nys_x,nzb_x,0), sendrecvcount_xy, MPI_REAL, & |
---|
185 | work(1,nzb_y,nxl_y,0), sendrecvcount_xy, MPI_REAL, comm1dy, ierr ) |
---|
186 | |
---|
187 | #if __acc_fft_device |
---|
188 | #ifndef __cuda_aware_mpi |
---|
189 | !$ACC UPDATE DEVICE(work) |
---|
190 | #else |
---|
191 | !$ACC END HOST_DATA |
---|
192 | #endif |
---|
193 | #endif |
---|
194 | |
---|
195 | CALL cpu_log( log_point_s(32), 'mpi_alltoall', 'stop' ) |
---|
196 | |
---|
197 | ! |
---|
198 | !-- Reorder transposed array |
---|
199 | !$OMP PARALLEL PRIVATE ( i, j, k, l, ys ) |
---|
200 | DO l = 0, pdims(2) - 1 |
---|
201 | ys = 0 + l * ( nyn_x - nys_x + 1 ) |
---|
202 | #if __acc_fft_device |
---|
203 | !$ACC PARALLEL LOOP COLLAPSE(3) PRIVATE(i,j,k) & |
---|
204 | !$ACC PRESENT(f_out, work) |
---|
205 | #endif |
---|
206 | !$OMP DO |
---|
207 | DO i = nxl_y, nxr_y |
---|
208 | DO k = nzb_y, nzt_y |
---|
209 | DO j = ys, ys + nyn_x - nys_x |
---|
210 | f_out(j,i,k) = work(j-ys+1,k,i,l) |
---|
211 | ENDDO |
---|
212 | ENDDO |
---|
213 | ENDDO |
---|
214 | !$OMP END DO NOWAIT |
---|
215 | ENDDO |
---|
216 | !$OMP END PARALLEL |
---|
217 | #endif |
---|
218 | |
---|
219 | ELSE |
---|
220 | |
---|
221 | ! |
---|
222 | !-- Reorder transposed array |
---|
223 | !$OMP PARALLEL PRIVATE ( i, j, k ) |
---|
224 | !$OMP DO |
---|
225 | #if __acc_fft_device |
---|
226 | !$ACC PARALLEL LOOP COLLAPSE(3) PRIVATE(i,j,k) & |
---|
227 | !$ACC PRESENT(f_out, f_inv) |
---|
228 | #endif |
---|
229 | DO k = nzb_y, nzt_y |
---|
230 | DO i = nxl_y, nxr_y |
---|
231 | DO j = 0, ny |
---|
232 | f_out(j,i,k) = f_inv(j,k,i) |
---|
233 | ENDDO |
---|
234 | ENDDO |
---|
235 | ENDDO |
---|
236 | !$OMP END PARALLEL |
---|
237 | |
---|
238 | ENDIF |
---|
239 | |
---|
240 | END SUBROUTINE transpose_xy |
---|
241 | |
---|
242 | |
---|
243 | !--------------------------------------------------------------------------------------------------! |
---|
244 | ! Description: |
---|
245 | ! ------------ |
---|
246 | !> Resorting data after the transposition from x to z. The transposition itself is carried out in |
---|
247 | !> transpose_xz. |
---|
248 | !--------------------------------------------------------------------------------------------------! |
---|
249 | SUBROUTINE resort_for_xz( f_inv, f_out ) |
---|
250 | |
---|
251 | |
---|
252 | USE indices, & |
---|
253 | ONLY: nxl, & |
---|
254 | nxr, & |
---|
255 | nyn, & |
---|
256 | nys, & |
---|
257 | nz |
---|
258 | |
---|
259 | USE kinds |
---|
260 | |
---|
261 | IMPLICIT NONE |
---|
262 | |
---|
263 | INTEGER(iwp) :: i !< |
---|
264 | INTEGER(iwp) :: j !< |
---|
265 | INTEGER(iwp) :: k !< |
---|
266 | |
---|
267 | REAL(wp) :: f_inv(nys:nyn,nxl:nxr,1:nz) !< |
---|
268 | REAL(wp) :: f_out(1:nz,nys:nyn,nxl:nxr) !< |
---|
269 | |
---|
270 | ! |
---|
271 | !-- Rearrange indices of input array in order to make data to be send by MPI contiguous. |
---|
272 | !-- In case of parallel fft/transposition, scattered store is faster in backward direction!!! |
---|
273 | !$OMP PARALLEL PRIVATE ( i, j, k ) |
---|
274 | !$OMP DO |
---|
275 | #if __acc_fft_device |
---|
276 | !$ACC PARALLEL LOOP COLLAPSE(3) PRIVATE(i,j,k) & |
---|
277 | !$ACC PRESENT(f_out, f_inv) |
---|
278 | #endif |
---|
279 | DO i = nxl, nxr |
---|
280 | DO j = nys, nyn |
---|
281 | DO k = 1, nz |
---|
282 | f_out(k,j,i) = f_inv(j,i,k) |
---|
283 | ENDDO |
---|
284 | ENDDO |
---|
285 | ENDDO |
---|
286 | !$OMP END PARALLEL |
---|
287 | |
---|
288 | END SUBROUTINE resort_for_xz |
---|
289 | |
---|
290 | |
---|
291 | !--------------------------------------------------------------------------------------------------! |
---|
292 | ! Description: |
---|
293 | ! ------------ |
---|
294 | !> Transposition of input array (f_in) from x to z. For the input array, all elements along x reside |
---|
295 | !> on the same PE, while after transposition, all elements along z reside on the same PE. |
---|
296 | !--------------------------------------------------------------------------------------------------! |
---|
297 | SUBROUTINE transpose_xz( f_in, f_inv ) |
---|
298 | |
---|
299 | #if defined( __parallel ) |
---|
300 | USE cpulog, & |
---|
301 | ONLY: cpu_log, & |
---|
302 | cpu_log_nowait, & |
---|
303 | log_point_s |
---|
304 | |
---|
305 | USE fft_xy, & |
---|
306 | ONLY: f_vec_x, & |
---|
307 | temperton_fft_vec |
---|
308 | #endif |
---|
309 | |
---|
310 | USE indices, & |
---|
311 | ONLY: nx, & |
---|
312 | nxl, & |
---|
313 | nxr, & |
---|
314 | nyn, & |
---|
315 | nys, & |
---|
316 | nz |
---|
317 | |
---|
318 | #if defined( __parallel ) |
---|
319 | USE indices, & |
---|
320 | ONLY: nnx |
---|
321 | #endif |
---|
322 | |
---|
323 | USE kinds |
---|
324 | |
---|
325 | USE pegrid |
---|
326 | |
---|
327 | USE transpose_indices, & |
---|
328 | ONLY: nyn_x, & |
---|
329 | nys_x, & |
---|
330 | nzb_x, & |
---|
331 | nzt_x |
---|
332 | |
---|
333 | IMPLICIT NONE |
---|
334 | |
---|
335 | INTEGER(iwp) :: i !< |
---|
336 | INTEGER(iwp) :: j !< |
---|
337 | INTEGER(iwp) :: k !< |
---|
338 | |
---|
339 | #if defined( __parallel ) |
---|
340 | INTEGER(iwp) :: l !< |
---|
341 | INTEGER(iwp) :: mm !< |
---|
342 | INTEGER(iwp) :: xs !< |
---|
343 | #endif |
---|
344 | |
---|
345 | REAL(wp) :: f_in(0:nx,nys_x:nyn_x,nzb_x:nzt_x) !< |
---|
346 | REAL(wp) :: f_inv(nys:nyn,nxl:nxr,1:nz) !< |
---|
347 | |
---|
348 | #if defined( __parallel ) |
---|
349 | REAL(wp), DIMENSION(nys_x:nyn_x,nnx,nzb_x:nzt_x,0:pdims(1)-1) :: work !< |
---|
350 | #if __acc_fft_device |
---|
351 | !$ACC DECLARE CREATE(work) |
---|
352 | #endif |
---|
353 | #endif |
---|
354 | |
---|
355 | ! |
---|
356 | !-- If the PE grid is one-dimensional along y, the array has only to be reordered locally and |
---|
357 | !-- therefore no transposition has to be done. |
---|
358 | IF ( pdims(1) /= 1 ) THEN |
---|
359 | |
---|
360 | #if defined( __parallel ) |
---|
361 | ! |
---|
362 | !-- Reorder input array for transposition. Data from the vectorized Temperton-fft is stored in |
---|
363 | !-- different array format (f_vec_x). |
---|
364 | IF ( temperton_fft_vec ) THEN |
---|
365 | |
---|
366 | DO l = 0, pdims(1) - 1 |
---|
367 | xs = 0 + l * nnx |
---|
368 | DO k = nzb_x, nzt_x |
---|
369 | DO i = xs, xs + nnx - 1 |
---|
370 | DO j = nys_x, nyn_x |
---|
371 | mm = j-nys_x+1+(k-nzb_x)*(nyn_x-nys_x+1) |
---|
372 | work(j,i-xs+1,k,l) = f_vec_x(mm,i) |
---|
373 | ENDDO |
---|
374 | ENDDO |
---|
375 | ENDDO |
---|
376 | ENDDO |
---|
377 | |
---|
378 | ELSE |
---|
379 | |
---|
380 | !$OMP PARALLEL PRIVATE ( i, j, k, l, xs ) |
---|
381 | DO l = 0, pdims(1) - 1 |
---|
382 | xs = 0 + l * nnx |
---|
383 | #if __acc_fft_device |
---|
384 | !$ACC PARALLEL LOOP COLLAPSE(3) PRIVATE(i,j,k) & |
---|
385 | !$ACC PRESENT(work, f_in) |
---|
386 | #endif |
---|
387 | !$OMP DO |
---|
388 | DO k = nzb_x, nzt_x |
---|
389 | DO i = xs, xs + nnx - 1 |
---|
390 | DO j = nys_x, nyn_x |
---|
391 | work(j,i-xs+1,k,l) = f_in(i,j,k) |
---|
392 | ENDDO |
---|
393 | ENDDO |
---|
394 | ENDDO |
---|
395 | !$OMP END DO NOWAIT |
---|
396 | ENDDO |
---|
397 | !$OMP END PARALLEL |
---|
398 | |
---|
399 | ENDIF |
---|
400 | |
---|
401 | ! |
---|
402 | !-- Transpose array |
---|
403 | CALL cpu_log( log_point_s(32), 'mpi_alltoall', 'start', cpu_log_nowait ) |
---|
404 | |
---|
405 | #if __acc_fft_device |
---|
406 | #ifndef __cuda_aware_mpi |
---|
407 | !$ACC UPDATE HOST(work) |
---|
408 | #else |
---|
409 | !$ACC HOST_DATA USE_DEVICE(work, f_inv) |
---|
410 | #endif |
---|
411 | #endif |
---|
412 | |
---|
413 | IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) |
---|
414 | CALL MPI_ALLTOALL( work(nys_x,1,nzb_x,0), sendrecvcount_zx, MPI_REAL, & |
---|
415 | f_inv(nys,nxl,1), sendrecvcount_zx, MPI_REAL, comm1dx, ierr ) |
---|
416 | |
---|
417 | #if __acc_fft_device |
---|
418 | #ifndef __cuda_aware_mpi |
---|
419 | !$ACC UPDATE DEVICE(f_inv) |
---|
420 | #else |
---|
421 | !$ACC END HOST_DATA |
---|
422 | #endif |
---|
423 | #endif |
---|
424 | |
---|
425 | CALL cpu_log( log_point_s(32), 'mpi_alltoall', 'stop' ) |
---|
426 | #endif |
---|
427 | |
---|
428 | ELSE |
---|
429 | |
---|
430 | ! |
---|
431 | !-- Reorder the array in a way that the z index is in first position |
---|
432 | !$OMP PARALLEL PRIVATE ( i, j, k ) |
---|
433 | !$OMP DO |
---|
434 | #if __acc_fft_device |
---|
435 | !$ACC PARALLEL LOOP COLLAPSE(3) PRIVATE(i,j,k) & |
---|
436 | !$ACC PRESENT(f_inv, f_in) |
---|
437 | #endif |
---|
438 | DO i = nxl, nxr |
---|
439 | DO j = nys, nyn |
---|
440 | DO k = 1, nz |
---|
441 | f_inv(j,i,k) = f_in(i,j,k) |
---|
442 | ENDDO |
---|
443 | ENDDO |
---|
444 | ENDDO |
---|
445 | !$OMP END PARALLEL |
---|
446 | |
---|
447 | ENDIF |
---|
448 | |
---|
449 | END SUBROUTINE transpose_xz |
---|
450 | |
---|
451 | |
---|
452 | !--------------------------------------------------------------------------------------------------! |
---|
453 | ! Description: |
---|
454 | ! ------------ |
---|
455 | !> Resorting data after the transposition from y to x. The transposition itself is carried out in |
---|
456 | !> transpose_yx. |
---|
457 | !--------------------------------------------------------------------------------------------------! |
---|
458 | SUBROUTINE resort_for_yx( f_inv, f_out ) |
---|
459 | |
---|
460 | |
---|
461 | USE indices, & |
---|
462 | ONLY: nx |
---|
463 | |
---|
464 | USE kinds |
---|
465 | |
---|
466 | USE transpose_indices, & |
---|
467 | ONLY: nyn_x, & |
---|
468 | nys_x, & |
---|
469 | nzb_x, & |
---|
470 | nzt_x |
---|
471 | |
---|
472 | IMPLICIT NONE |
---|
473 | |
---|
474 | INTEGER(iwp) :: i !< |
---|
475 | INTEGER(iwp) :: j !< |
---|
476 | INTEGER(iwp) :: k !< |
---|
477 | |
---|
478 | REAL(wp) :: f_inv(nys_x:nyn_x,nzb_x:nzt_x,0:nx) !< |
---|
479 | REAL(wp) :: f_out(0:nx,nys_x:nyn_x,nzb_x:nzt_x) !< |
---|
480 | |
---|
481 | ! |
---|
482 | !-- Rearrange indices of input array in order to make data to be send by MPI contiguous. |
---|
483 | !$OMP PARALLEL PRIVATE ( i, j, k ) |
---|
484 | !$OMP DO |
---|
485 | #if __acc_fft_device |
---|
486 | !$ACC PARALLEL LOOP COLLAPSE(3) PRIVATE(i,j,k) & |
---|
487 | !$ACC PRESENT(f_out, f_inv) |
---|
488 | #endif |
---|
489 | DO k = nzb_x, nzt_x |
---|
490 | DO j = nys_x, nyn_x |
---|
491 | DO i = 0, nx |
---|
492 | f_out(i,j,k) = f_inv(j,k,i) |
---|
493 | ENDDO |
---|
494 | ENDDO |
---|
495 | ENDDO |
---|
496 | !$OMP END PARALLEL |
---|
497 | |
---|
498 | END SUBROUTINE resort_for_yx |
---|
499 | |
---|
500 | |
---|
501 | !--------------------------------------------------------------------------------------------------! |
---|
502 | ! Description: |
---|
503 | ! ------------ |
---|
504 | !> Transposition of input array (f_in) from y to x. For the input array, all elements along y |
---|
505 | !> reside on the same PE, while after transposition, all elements along x reside on the same PE. |
---|
506 | !--------------------------------------------------------------------------------------------------! |
---|
507 | SUBROUTINE transpose_yx( f_in, f_inv ) |
---|
508 | |
---|
509 | |
---|
510 | #if defined( __parallel ) |
---|
511 | USE cpulog, & |
---|
512 | ONLY: cpu_log, & |
---|
513 | cpu_log_nowait, & |
---|
514 | log_point_s |
---|
515 | #endif |
---|
516 | |
---|
517 | USE indices, & |
---|
518 | ONLY: nx, & |
---|
519 | ny |
---|
520 | |
---|
521 | USE kinds |
---|
522 | |
---|
523 | USE pegrid |
---|
524 | |
---|
525 | USE transpose_indices, & |
---|
526 | ONLY: nxl_y, & |
---|
527 | nxr_y, & |
---|
528 | nyn_x, & |
---|
529 | nys_x, & |
---|
530 | nzb_x, & |
---|
531 | nzb_y, & |
---|
532 | nzt_x, & |
---|
533 | nzt_y |
---|
534 | |
---|
535 | IMPLICIT NONE |
---|
536 | |
---|
537 | INTEGER(iwp) :: i !< |
---|
538 | INTEGER(iwp) :: j !< |
---|
539 | INTEGER(iwp) :: k !< |
---|
540 | |
---|
541 | #if defined( __parallel ) |
---|
542 | INTEGER(iwp) :: l !< |
---|
543 | INTEGER(iwp) :: ys !< |
---|
544 | #endif |
---|
545 | |
---|
546 | REAL(wp) :: f_in(0:ny,nxl_y:nxr_y,nzb_y:nzt_y) !< |
---|
547 | REAL(wp) :: f_inv(nys_x:nyn_x,nzb_x:nzt_x,0:nx) !< |
---|
548 | |
---|
549 | #if defined( __parallel ) |
---|
550 | REAL(wp), DIMENSION(nyn_x-nys_x+1,nzb_y:nzt_y,nxl_y:nxr_y,0:pdims(2)-1) :: work !< |
---|
551 | #if __acc_fft_device |
---|
552 | !$ACC DECLARE CREATE(work) |
---|
553 | #endif |
---|
554 | #endif |
---|
555 | |
---|
556 | |
---|
557 | IF ( numprocs /= 1 ) THEN |
---|
558 | |
---|
559 | #if defined( __parallel ) |
---|
560 | ! |
---|
561 | !-- Reorder input array for transposition |
---|
562 | !$OMP PARALLEL PRIVATE ( i, j, k, l, ys ) |
---|
563 | DO l = 0, pdims(2) - 1 |
---|
564 | ys = 0 + l * ( nyn_x - nys_x + 1 ) |
---|
565 | #if __acc_fft_device |
---|
566 | !$ACC PARALLEL LOOP COLLAPSE(3) PRIVATE(i,j,k) & |
---|
567 | !$ACC PRESENT(work, f_in) |
---|
568 | #endif |
---|
569 | !$OMP DO |
---|
570 | DO i = nxl_y, nxr_y |
---|
571 | DO k = nzb_y, nzt_y |
---|
572 | DO j = ys, ys + nyn_x - nys_x |
---|
573 | work(j-ys+1,k,i,l) = f_in(j,i,k) |
---|
574 | ENDDO |
---|
575 | ENDDO |
---|
576 | ENDDO |
---|
577 | !$OMP END DO NOWAIT |
---|
578 | ENDDO |
---|
579 | !$OMP END PARALLEL |
---|
580 | |
---|
581 | ! |
---|
582 | !-- Transpose array |
---|
583 | CALL cpu_log( log_point_s(32), 'mpi_alltoall', 'start', cpu_log_nowait ) |
---|
584 | |
---|
585 | #if __acc_fft_device |
---|
586 | #ifndef __cuda_aware_mpi |
---|
587 | !$ACC UPDATE HOST(work) |
---|
588 | #else |
---|
589 | !$ACC HOST_DATA USE_DEVICE(work, f_inv) |
---|
590 | #endif |
---|
591 | #endif |
---|
592 | |
---|
593 | IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) |
---|
594 | CALL MPI_ALLTOALL( work(1,nzb_y,nxl_y,0), sendrecvcount_xy, MPI_REAL, & |
---|
595 | f_inv(nys_x,nzb_x,0), sendrecvcount_xy, MPI_REAL, comm1dy, ierr ) |
---|
596 | |
---|
597 | #if __acc_fft_device |
---|
598 | #ifndef __cuda_aware_mpi |
---|
599 | !$ACC UPDATE DEVICE(f_inv) |
---|
600 | #else |
---|
601 | !$ACC END HOST_DATA |
---|
602 | #endif |
---|
603 | #endif |
---|
604 | |
---|
605 | CALL cpu_log( log_point_s(32), 'mpi_alltoall', 'stop' ) |
---|
606 | #endif |
---|
607 | |
---|
608 | ELSE |
---|
609 | |
---|
610 | ! |
---|
611 | !-- Reorder array f_in the same way as ALLTOALL did it. |
---|
612 | !$OMP PARALLEL PRIVATE ( i, j, k ) |
---|
613 | !$OMP DO |
---|
614 | #if __acc_fft_device |
---|
615 | !$ACC PARALLEL LOOP COLLAPSE(3) PRIVATE(i,j,k) & |
---|
616 | !$ACC PRESENT(f_inv, f_in) |
---|
617 | #endif |
---|
618 | DO i = nxl_y, nxr_y |
---|
619 | DO k = nzb_y, nzt_y |
---|
620 | DO j = 0, ny |
---|
621 | f_inv(j,k,i) = f_in(j,i,k) |
---|
622 | ENDDO |
---|
623 | ENDDO |
---|
624 | ENDDO |
---|
625 | !$OMP END PARALLEL |
---|
626 | |
---|
627 | ENDIF |
---|
628 | |
---|
629 | END SUBROUTINE transpose_yx |
---|
630 | |
---|
631 | |
---|
632 | !--------------------------------------------------------------------------------------------------! |
---|
633 | ! Description: |
---|
634 | ! ------------ |
---|
635 | !> Transposition of input array (f_in) from y to x. For the input array, all elements along y reside |
---|
636 | !> on the same PE, while after transposition, all elements along x reside on the same PE. This is a |
---|
637 | !> direct transposition for arrays with indices in regular order (k,j,i) (cf. transpose_yx). |
---|
638 | !--------------------------------------------------------------------------------------------------! |
---|
639 | #if defined( __parallel ) |
---|
640 | SUBROUTINE transpose_yxd( f_in, f_out ) |
---|
641 | |
---|
642 | |
---|
643 | USE cpulog, & |
---|
644 | ONLY: cpu_log, & |
---|
645 | log_point_s |
---|
646 | |
---|
647 | USE indices, & |
---|
648 | ONLY: nnx, & |
---|
649 | nny, & |
---|
650 | nnz, & |
---|
651 | nx, & |
---|
652 | nxl, & |
---|
653 | nxr, & |
---|
654 | nyn, & |
---|
655 | nys, & |
---|
656 | nz |
---|
657 | |
---|
658 | USE kinds |
---|
659 | |
---|
660 | USE pegrid |
---|
661 | |
---|
662 | USE transpose_indices, & |
---|
663 | ONLY: nyn_x, & |
---|
664 | nys_x, & |
---|
665 | nzb_x, & |
---|
666 | nzt_x |
---|
667 | |
---|
668 | IMPLICIT NONE |
---|
669 | |
---|
670 | INTEGER(iwp) :: i !< |
---|
671 | INTEGER(iwp) :: j !< |
---|
672 | INTEGER(iwp) :: k !< |
---|
673 | INTEGER(iwp) :: l !< |
---|
674 | INTEGER(iwp) :: m !< |
---|
675 | INTEGER(iwp) :: xs !< |
---|
676 | |
---|
677 | REAL(wp) :: f_in(1:nz,nys:nyn,nxl:nxr) !< |
---|
678 | REAL(wp) :: f_inv(nxl:nxr,1:nz,nys:nyn) !< |
---|
679 | REAL(wp) :: f_out(0:nx,nys_x:nyn_x,nzb_x:nzt_x) !< |
---|
680 | REAL(wp) :: work(nnx*nny*nnz) !< |
---|
681 | |
---|
682 | ! |
---|
683 | !-- Rearrange indices of input array in order to make data to be send by MPI contiguous. |
---|
684 | DO k = 1, nz |
---|
685 | DO j = nys, nyn |
---|
686 | DO i = nxl, nxr |
---|
687 | f_inv(i,k,j) = f_in(k,j,i) |
---|
688 | ENDDO |
---|
689 | ENDDO |
---|
690 | ENDDO |
---|
691 | |
---|
692 | ! |
---|
693 | !-- Transpose array |
---|
694 | CALL cpu_log( log_point_s(32), 'mpi_alltoall', 'start' ) |
---|
695 | IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) |
---|
696 | CALL MPI_ALLTOALL( f_inv(nxl,1,nys), sendrecvcount_xy, MPI_REAL, & |
---|
697 | work(1), sendrecvcount_xy, MPI_REAL, comm1dx, ierr ) |
---|
698 | CALL cpu_log( log_point_s(32), 'mpi_alltoall', 'stop' ) |
---|
699 | |
---|
700 | ! |
---|
701 | !-- Reorder transposed array |
---|
702 | m = 0 |
---|
703 | DO l = 0, pdims(1) - 1 |
---|
704 | xs = 0 + l * nnx |
---|
705 | DO j = nys_x, nyn_x |
---|
706 | DO k = 1, nz |
---|
707 | DO i = xs, xs + nnx - 1 |
---|
708 | m = m + 1 |
---|
709 | f_out(i,j,k) = work(m) |
---|
710 | ENDDO |
---|
711 | ENDDO |
---|
712 | ENDDO |
---|
713 | ENDDO |
---|
714 | |
---|
715 | END SUBROUTINE transpose_yxd |
---|
716 | #endif |
---|
717 | |
---|
718 | |
---|
719 | !--------------------------------------------------------------------------------------------------! |
---|
720 | ! Description: |
---|
721 | ! ------------ |
---|
722 | !> Resorting data for the transposition from y to z. The transposition itself is carried out in |
---|
723 | !> transpose_yz. |
---|
724 | !--------------------------------------------------------------------------------------------------! |
---|
725 | SUBROUTINE resort_for_yz( f_in, f_inv ) |
---|
726 | |
---|
727 | |
---|
728 | USE indices, & |
---|
729 | ONLY: ny |
---|
730 | |
---|
731 | USE kinds |
---|
732 | |
---|
733 | USE transpose_indices, & |
---|
734 | ONLY: nxl_y, & |
---|
735 | nxr_y, & |
---|
736 | nzb_y, & |
---|
737 | nzt_y |
---|
738 | |
---|
739 | IMPLICIT NONE |
---|
740 | |
---|
741 | INTEGER(iwp) :: i !< |
---|
742 | INTEGER(iwp) :: j !< |
---|
743 | INTEGER(iwp) :: k !< |
---|
744 | |
---|
745 | REAL(wp) :: f_in(0:ny,nxl_y:nxr_y,nzb_y:nzt_y) !< |
---|
746 | REAL(wp) :: f_inv(nxl_y:nxr_y,nzb_y:nzt_y,0:ny) !< |
---|
747 | |
---|
748 | ! |
---|
749 | !-- Rearrange indices of input array in order to make data to be send by MPI contiguous. |
---|
750 | !$OMP PARALLEL PRIVATE ( i, j, k ) |
---|
751 | !$OMP DO |
---|
752 | #if __acc_fft_device |
---|
753 | !$ACC PARALLEL LOOP COLLAPSE(3) PRIVATE(i,j,k) & |
---|
754 | !$ACC PRESENT(f_inv, f_in) |
---|
755 | #endif |
---|
756 | DO k = nzb_y, nzt_y |
---|
757 | DO i = nxl_y, nxr_y |
---|
758 | DO j = 0, ny |
---|
759 | f_inv(i,k,j) = f_in(j,i,k) |
---|
760 | ENDDO |
---|
761 | ENDDO |
---|
762 | ENDDO |
---|
763 | !$OMP END PARALLEL |
---|
764 | |
---|
765 | END SUBROUTINE resort_for_yz |
---|
766 | |
---|
767 | |
---|
768 | !--------------------------------------------------------------------------------------------------! |
---|
769 | ! Description: |
---|
770 | ! ------------ |
---|
771 | !> Transposition of input array (f_in) from y to z. For the input array, all elements along y reside |
---|
772 | !> on the same PE, while after transposition, all elements along z reside on the same PE. |
---|
773 | !--------------------------------------------------------------------------------------------------! |
---|
774 | SUBROUTINE transpose_yz( f_inv, f_out ) |
---|
775 | |
---|
776 | |
---|
777 | #if defined( __parallel ) |
---|
778 | USE cpulog, & |
---|
779 | ONLY: cpu_log, & |
---|
780 | cpu_log_nowait, & |
---|
781 | log_point_s |
---|
782 | #endif |
---|
783 | |
---|
784 | USE indices, & |
---|
785 | ONLY: ny, & |
---|
786 | nz |
---|
787 | |
---|
788 | USE kinds |
---|
789 | |
---|
790 | USE pegrid |
---|
791 | |
---|
792 | USE transpose_indices, & |
---|
793 | ONLY: nxl_y, & |
---|
794 | nxl_z, & |
---|
795 | nxr_y, & |
---|
796 | nxr_z, & |
---|
797 | nyn_z, & |
---|
798 | nys_z, & |
---|
799 | nzb_y, & |
---|
800 | nzt_y |
---|
801 | |
---|
802 | IMPLICIT NONE |
---|
803 | |
---|
804 | INTEGER(iwp) :: i !< |
---|
805 | INTEGER(iwp) :: j !< |
---|
806 | INTEGER(iwp) :: k !< |
---|
807 | |
---|
808 | #if defined( __parallel ) |
---|
809 | INTEGER(iwp) :: l !< |
---|
810 | INTEGER(iwp) :: zs !< |
---|
811 | #endif |
---|
812 | |
---|
813 | REAL(wp) :: f_inv(nxl_y:nxr_y,nzb_y:nzt_y,0:ny) !< |
---|
814 | REAL(wp) :: f_out(nxl_z:nxr_z,nys_z:nyn_z,1:nz) !< |
---|
815 | |
---|
816 | #if defined( __parallel ) |
---|
817 | REAL(wp), DIMENSION(nxl_z:nxr_z,nzt_y-nzb_y+1,nys_z:nyn_z,0:pdims(1)-1) :: work !< |
---|
818 | #if __acc_fft_device |
---|
819 | !$ACC DECLARE CREATE(work) |
---|
820 | #endif |
---|
821 | #endif |
---|
822 | |
---|
823 | |
---|
824 | ! |
---|
825 | !-- If the PE grid is one-dimensional along y, only local reordering of the data is necessary and no |
---|
826 | !-- transposition has to be done. |
---|
827 | IF ( pdims(1) == 1 ) THEN |
---|
828 | |
---|
829 | !$OMP PARALLEL PRIVATE ( i, j, k ) |
---|
830 | !$OMP DO |
---|
831 | #if __acc_fft_device |
---|
832 | !$ACC PARALLEL LOOP COLLAPSE(3) PRIVATE(i,j,k) & |
---|
833 | !$ACC PRESENT(f_out, f_inv) |
---|
834 | #endif |
---|
835 | DO j = 0, ny |
---|
836 | DO k = nzb_y, nzt_y |
---|
837 | DO i = nxl_y, nxr_y |
---|
838 | f_out(i,j,k) = f_inv(i,k,j) |
---|
839 | ENDDO |
---|
840 | ENDDO |
---|
841 | ENDDO |
---|
842 | !$OMP END PARALLEL |
---|
843 | |
---|
844 | ELSE |
---|
845 | |
---|
846 | #if defined( __parallel ) |
---|
847 | ! |
---|
848 | !-- Transpose array |
---|
849 | CALL cpu_log( log_point_s(32), 'mpi_alltoall', 'start', cpu_log_nowait ) |
---|
850 | |
---|
851 | #if __acc_fft_device |
---|
852 | #ifndef __cuda_aware_mpi |
---|
853 | !$ACC UPDATE HOST(f_inv) |
---|
854 | #else |
---|
855 | !$ACC HOST_DATA USE_DEVICE(work, f_inv) |
---|
856 | #endif |
---|
857 | #endif |
---|
858 | |
---|
859 | IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) |
---|
860 | CALL MPI_ALLTOALL( f_inv(nxl_y,nzb_y,0), sendrecvcount_yz, MPI_REAL, & |
---|
861 | work(nxl_z,1,nys_z,0), sendrecvcount_yz, MPI_REAL, comm1dx, ierr ) |
---|
862 | |
---|
863 | #if __acc_fft_device |
---|
864 | #ifndef __cuda_aware_mpi |
---|
865 | !$ACC UPDATE DEVICE(work) |
---|
866 | #else |
---|
867 | !$ACC END HOST_DATA |
---|
868 | #endif |
---|
869 | #endif |
---|
870 | |
---|
871 | CALL cpu_log( log_point_s(32), 'mpi_alltoall', 'stop' ) |
---|
872 | |
---|
873 | ! |
---|
874 | !-- Reorder transposed array |
---|
875 | !$OMP PARALLEL PRIVATE ( i, j, k, l, zs ) |
---|
876 | DO l = 0, pdims(1) - 1 |
---|
877 | zs = 1 + l * ( nzt_y - nzb_y + 1 ) |
---|
878 | #if __acc_fft_device |
---|
879 | !$ACC PARALLEL LOOP COLLAPSE(3) PRIVATE(i,j,k) & |
---|
880 | !$ACC PRESENT(f_out, work) |
---|
881 | #endif |
---|
882 | !$OMP DO |
---|
883 | DO j = nys_z, nyn_z |
---|
884 | DO k = zs, zs + nzt_y - nzb_y |
---|
885 | DO i = nxl_z, nxr_z |
---|
886 | f_out(i,j,k) = work(i,k-zs+1,j,l) |
---|
887 | ENDDO |
---|
888 | ENDDO |
---|
889 | ENDDO |
---|
890 | !$OMP END DO NOWAIT |
---|
891 | ENDDO |
---|
892 | !$OMP END PARALLEL |
---|
893 | #endif |
---|
894 | |
---|
895 | ENDIF |
---|
896 | |
---|
897 | END SUBROUTINE transpose_yz |
---|
898 | |
---|
899 | |
---|
900 | !--------------------------------------------------------------------------------------------------! |
---|
901 | ! Description: |
---|
902 | ! ------------ |
---|
903 | !> Resorting data for the transposition from z to x. The transposition itself is carried out in |
---|
904 | !> transpose_zx. |
---|
905 | !--------------------------------------------------------------------------------------------------! |
---|
906 | SUBROUTINE resort_for_zx( f_in, f_inv ) |
---|
907 | |
---|
908 | |
---|
909 | USE indices, & |
---|
910 | ONLY: nxl, & |
---|
911 | nxr, & |
---|
912 | nyn, & |
---|
913 | nys, & |
---|
914 | nz |
---|
915 | |
---|
916 | USE kinds |
---|
917 | |
---|
918 | IMPLICIT NONE |
---|
919 | |
---|
920 | INTEGER(iwp) :: i !< |
---|
921 | INTEGER(iwp) :: j !< |
---|
922 | INTEGER(iwp) :: k !< |
---|
923 | |
---|
924 | REAL(wp) :: f_in(1:nz,nys:nyn,nxl:nxr) !< |
---|
925 | REAL(wp) :: f_inv(nys:nyn,nxl:nxr,1:nz) !< |
---|
926 | |
---|
927 | ! |
---|
928 | !-- Rearrange indices of input array in order to make data to be send by MPI contiguous. |
---|
929 | !$OMP PARALLEL PRIVATE ( i, j, k ) |
---|
930 | !$OMP DO |
---|
931 | #if __acc_fft_device |
---|
932 | !$ACC PARALLEL LOOP COLLAPSE(3) PRIVATE(i,j,k) & |
---|
933 | !$ACC PRESENT(f_in, f_inv) |
---|
934 | #endif |
---|
935 | DO i = nxl, nxr |
---|
936 | DO j = nys, nyn |
---|
937 | DO k = 1,nz |
---|
938 | f_inv(j,i,k) = f_in(k,j,i) |
---|
939 | ENDDO |
---|
940 | ENDDO |
---|
941 | ENDDO |
---|
942 | !$OMP END PARALLEL |
---|
943 | |
---|
944 | END SUBROUTINE resort_for_zx |
---|
945 | |
---|
946 | |
---|
947 | !--------------------------------------------------------------------------------------------------! |
---|
948 | ! Description: |
---|
949 | ! ------------ |
---|
950 | !> Transposition of input array (f_in) from z to x. For the input array, all elements along z reside |
---|
951 | !> on the same PE, while after transposition, all elements along x reside on the same PE. |
---|
952 | !--------------------------------------------------------------------------------------------------! |
---|
953 | SUBROUTINE transpose_zx( f_inv, f_out ) |
---|
954 | |
---|
955 | |
---|
956 | #if defined( __parallel ) |
---|
957 | USE cpulog, & |
---|
958 | ONLY: cpu_log, & |
---|
959 | cpu_log_nowait, & |
---|
960 | log_point_s |
---|
961 | |
---|
962 | USE fft_xy, & |
---|
963 | ONLY: f_vec_x, & |
---|
964 | temperton_fft_vec |
---|
965 | #endif |
---|
966 | |
---|
967 | USE indices, & |
---|
968 | ONLY: nx, & |
---|
969 | nxl, & |
---|
970 | nxr, & |
---|
971 | nyn, & |
---|
972 | nys, & |
---|
973 | nz |
---|
974 | |
---|
975 | #if defined( __parallel ) |
---|
976 | USE indices, & |
---|
977 | ONLY: nnx |
---|
978 | #endif |
---|
979 | |
---|
980 | USE kinds |
---|
981 | |
---|
982 | USE pegrid |
---|
983 | |
---|
984 | USE transpose_indices, & |
---|
985 | ONLY: nyn_x, & |
---|
986 | nys_x, & |
---|
987 | nzb_x, & |
---|
988 | nzt_x |
---|
989 | |
---|
990 | IMPLICIT NONE |
---|
991 | |
---|
992 | INTEGER(iwp) :: i !< |
---|
993 | INTEGER(iwp) :: j !< |
---|
994 | INTEGER(iwp) :: k !< |
---|
995 | |
---|
996 | #if defined( __parallel ) |
---|
997 | INTEGER(iwp) :: l !< |
---|
998 | INTEGER(iwp) :: mm !< |
---|
999 | INTEGER(iwp) :: xs !< |
---|
1000 | #endif |
---|
1001 | |
---|
1002 | REAL(wp) :: f_inv(nys:nyn,nxl:nxr,1:nz) !< |
---|
1003 | REAL(wp) :: f_out(0:nx,nys_x:nyn_x,nzb_x:nzt_x) !< |
---|
1004 | |
---|
1005 | #if defined( __parallel ) |
---|
1006 | REAL(wp), DIMENSION(nys_x:nyn_x,nnx,nzb_x:nzt_x,0:pdims(1)-1) :: work !< |
---|
1007 | #if __acc_fft_device |
---|
1008 | !$ACC DECLARE CREATE(work) |
---|
1009 | #endif |
---|
1010 | #endif |
---|
1011 | |
---|
1012 | |
---|
1013 | ! |
---|
1014 | !-- If the PE grid is one-dimensional along y, only local reordering of the data is necessary and no |
---|
1015 | !-- transposition has to be done. |
---|
1016 | IF ( pdims(1) == 1 ) THEN |
---|
1017 | |
---|
1018 | !$OMP PARALLEL PRIVATE ( i, j, k ) |
---|
1019 | !$OMP DO |
---|
1020 | #if __acc_fft_device |
---|
1021 | !$ACC PARALLEL LOOP COLLAPSE(3) PRIVATE(i,j,k) & |
---|
1022 | !$ACC PRESENT(f_out, f_inv) |
---|
1023 | #endif |
---|
1024 | DO k = 1, nz |
---|
1025 | DO i = nxl, nxr |
---|
1026 | DO j = nys, nyn |
---|
1027 | f_out(i,j,k) = f_inv(j,i,k) |
---|
1028 | ENDDO |
---|
1029 | ENDDO |
---|
1030 | ENDDO |
---|
1031 | !$OMP END PARALLEL |
---|
1032 | |
---|
1033 | ELSE |
---|
1034 | |
---|
1035 | #if defined( __parallel ) |
---|
1036 | ! |
---|
1037 | !-- Transpose array |
---|
1038 | CALL cpu_log( log_point_s(32), 'mpi_alltoall', 'start', cpu_log_nowait ) |
---|
1039 | |
---|
1040 | #if __acc_fft_device |
---|
1041 | #ifndef __cuda_aware_mpi |
---|
1042 | !$ACC UPDATE HOST(f_inv) |
---|
1043 | #else |
---|
1044 | !$ACC HOST_DATA USE_DEVICE(work, f_inv) |
---|
1045 | #endif |
---|
1046 | #endif |
---|
1047 | |
---|
1048 | IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) |
---|
1049 | CALL MPI_ALLTOALL( f_inv(nys,nxl,1), sendrecvcount_zx, MPI_REAL, & |
---|
1050 | work(nys_x,1,nzb_x,0), sendrecvcount_zx, MPI_REAL, comm1dx, ierr ) |
---|
1051 | |
---|
1052 | #if __acc_fft_device |
---|
1053 | #ifndef __cuda_aware_mpi |
---|
1054 | !$ACC UPDATE DEVICE(work) |
---|
1055 | #else |
---|
1056 | !$ACC END HOST_DATA |
---|
1057 | #endif |
---|
1058 | #endif |
---|
1059 | |
---|
1060 | CALL cpu_log( log_point_s(32), 'mpi_alltoall', 'stop' ) |
---|
1061 | |
---|
1062 | ! |
---|
1063 | !-- Reorder transposed array. |
---|
1064 | !-- Data for the vectorized Temperton-fft is stored in different array format (f_vec_x) which |
---|
1065 | !-- saves additional data copy in fft_x. |
---|
1066 | IF ( temperton_fft_vec ) THEN |
---|
1067 | |
---|
1068 | DO l = 0, pdims(1) - 1 |
---|
1069 | xs = 0 + l * nnx |
---|
1070 | DO k = nzb_x, nzt_x |
---|
1071 | DO i = xs, xs + nnx - 1 |
---|
1072 | DO j = nys_x, nyn_x |
---|
1073 | mm = j-nys_x+1+(k-nzb_x)*(nyn_x-nys_x+1) |
---|
1074 | f_vec_x(mm,i) = work(j,i-xs+1,k,l) |
---|
1075 | ENDDO |
---|
1076 | ENDDO |
---|
1077 | ENDDO |
---|
1078 | ENDDO |
---|
1079 | |
---|
1080 | ELSE |
---|
1081 | |
---|
1082 | !$OMP PARALLEL PRIVATE ( i, j, k, l, xs ) |
---|
1083 | DO l = 0, pdims(1) - 1 |
---|
1084 | xs = 0 + l * nnx |
---|
1085 | #if __acc_fft_device |
---|
1086 | !$ACC PARALLEL LOOP COLLAPSE(3) PRIVATE(i,j,k) & |
---|
1087 | !$ACC PRESENT(f_out, work) |
---|
1088 | #endif |
---|
1089 | !$OMP DO |
---|
1090 | DO k = nzb_x, nzt_x |
---|
1091 | DO i = xs, xs + nnx - 1 |
---|
1092 | DO j = nys_x, nyn_x |
---|
1093 | f_out(i,j,k) = work(j,i-xs+1,k,l) |
---|
1094 | ENDDO |
---|
1095 | ENDDO |
---|
1096 | ENDDO |
---|
1097 | !$OMP END DO NOWAIT |
---|
1098 | ENDDO |
---|
1099 | !$OMP END PARALLEL |
---|
1100 | |
---|
1101 | ENDIF |
---|
1102 | |
---|
1103 | #endif |
---|
1104 | |
---|
1105 | ENDIF |
---|
1106 | |
---|
1107 | END SUBROUTINE transpose_zx |
---|
1108 | |
---|
1109 | |
---|
1110 | !--------------------------------------------------------------------------------------------------! |
---|
1111 | ! Description: |
---|
1112 | ! ------------ |
---|
1113 | !> Resorting data after the transposition from z to y. The transposition itself is carried out in |
---|
1114 | !> transpose_zy. |
---|
1115 | !--------------------------------------------------------------------------------------------------! |
---|
1116 | SUBROUTINE resort_for_zy( f_inv, f_out ) |
---|
1117 | |
---|
1118 | |
---|
1119 | USE indices, & |
---|
1120 | ONLY: ny |
---|
1121 | |
---|
1122 | USE kinds |
---|
1123 | |
---|
1124 | USE transpose_indices, & |
---|
1125 | ONLY: nxl_y, & |
---|
1126 | nxr_y, & |
---|
1127 | nzb_y, & |
---|
1128 | nzt_y |
---|
1129 | |
---|
1130 | IMPLICIT NONE |
---|
1131 | |
---|
1132 | INTEGER(iwp) :: i !< |
---|
1133 | INTEGER(iwp) :: j !< |
---|
1134 | INTEGER(iwp) :: k !< |
---|
1135 | |
---|
1136 | REAL(wp) :: f_inv(nxl_y:nxr_y,nzb_y:nzt_y,0:ny) !< |
---|
1137 | REAL(wp) :: f_out(0:ny,nxl_y:nxr_y,nzb_y:nzt_y) !< |
---|
1138 | |
---|
1139 | ! |
---|
1140 | !-- Rearrange indices of input array in order to make data to be send by MPI contiguous. |
---|
1141 | !$OMP PARALLEL PRIVATE ( i, j, k ) |
---|
1142 | !$OMP DO |
---|
1143 | #if __acc_fft_device |
---|
1144 | !$ACC PARALLEL LOOP COLLAPSE(3) PRIVATE(i,j,k) & |
---|
1145 | !$ACC PRESENT(f_out, f_inv) |
---|
1146 | #endif |
---|
1147 | DO k = nzb_y, nzt_y |
---|
1148 | DO i = nxl_y, nxr_y |
---|
1149 | DO j = 0, ny |
---|
1150 | f_out(j,i,k) = f_inv(i,k,j) |
---|
1151 | ENDDO |
---|
1152 | ENDDO |
---|
1153 | ENDDO |
---|
1154 | !$OMP END PARALLEL |
---|
1155 | |
---|
1156 | END SUBROUTINE resort_for_zy |
---|
1157 | |
---|
1158 | |
---|
1159 | !--------------------------------------------------------------------------------------------------! |
---|
1160 | ! Description:cpu_log_nowait |
---|
1161 | ! ------------ |
---|
1162 | !> Transposition of input array (f_in) from z to y. For the input array, all elements along z reside |
---|
1163 | !> on the same PE, while after transposition, all elements along y reside on the same PE. |
---|
1164 | !--------------------------------------------------------------------------------------------------! |
---|
1165 | SUBROUTINE transpose_zy( f_in, f_inv ) |
---|
1166 | |
---|
1167 | |
---|
1168 | #if defined( __parallel ) |
---|
1169 | USE cpulog, & |
---|
1170 | ONLY: cpu_log, & |
---|
1171 | cpu_log_nowait, & |
---|
1172 | log_point_s |
---|
1173 | #endif |
---|
1174 | |
---|
1175 | USE indices, & |
---|
1176 | ONLY: ny, & |
---|
1177 | nz |
---|
1178 | |
---|
1179 | USE kinds |
---|
1180 | |
---|
1181 | USE pegrid |
---|
1182 | |
---|
1183 | USE transpose_indices, & |
---|
1184 | ONLY: nxl_y, & |
---|
1185 | nxl_z, & |
---|
1186 | nxr_y, & |
---|
1187 | nxr_z, & |
---|
1188 | nyn_z, & |
---|
1189 | nys_z, & |
---|
1190 | nzb_y, & |
---|
1191 | nzt_y |
---|
1192 | |
---|
1193 | IMPLICIT NONE |
---|
1194 | |
---|
1195 | INTEGER(iwp) :: i !< |
---|
1196 | INTEGER(iwp) :: j !< |
---|
1197 | INTEGER(iwp) :: k !< |
---|
1198 | |
---|
1199 | #if defined( __parallel ) |
---|
1200 | INTEGER(iwp) :: l !< |
---|
1201 | INTEGER(iwp) :: zs !< |
---|
1202 | #endif |
---|
1203 | |
---|
1204 | REAL(wp) :: f_in(nxl_z:nxr_z,nys_z:nyn_z,1:nz) !< |
---|
1205 | REAL(wp) :: f_inv(nxl_y:nxr_y,nzb_y:nzt_y,0:ny) !< |
---|
1206 | |
---|
1207 | #if defined( __parallel ) |
---|
1208 | REAL(wp), DIMENSION(nxl_z:nxr_z,nzt_y-nzb_y+1,nys_z:nyn_z,0:pdims(1)-1) :: work !< |
---|
1209 | #if __acc_fft_device |
---|
1210 | !$ACC DECLARE CREATE(work) |
---|
1211 | #endif |
---|
1212 | #endif |
---|
1213 | |
---|
1214 | ! |
---|
1215 | !-- If the PE grid is one-dimensional along y, the array has only to be reordered locally and |
---|
1216 | !-- therefore no transposition has to be done. |
---|
1217 | IF ( pdims(1) /= 1 ) THEN |
---|
1218 | |
---|
1219 | #if defined( __parallel ) |
---|
1220 | ! |
---|
1221 | !-- Reorder input array for transposition |
---|
1222 | !$OMP PARALLEL PRIVATE ( i, j, k, l, zs ) |
---|
1223 | DO l = 0, pdims(1) - 1 |
---|
1224 | zs = 1 + l * ( nzt_y - nzb_y + 1 ) |
---|
1225 | #if __acc_fft_device |
---|
1226 | !$ACC PARALLEL LOOP COLLAPSE(3) PRIVATE(i,j,k) & |
---|
1227 | !$ACC PRESENT(work, f_in) |
---|
1228 | #endif |
---|
1229 | !$OMP DO |
---|
1230 | DO j = nys_z, nyn_z |
---|
1231 | DO k = zs, zs + nzt_y - nzb_y |
---|
1232 | DO i = nxl_z, nxr_z |
---|
1233 | work(i,k-zs+1,j,l) = f_in(i,j,k) |
---|
1234 | ENDDO |
---|
1235 | ENDDO |
---|
1236 | ENDDO |
---|
1237 | !$OMP END DO NOWAIT |
---|
1238 | ENDDO |
---|
1239 | !$OMP END PARALLEL |
---|
1240 | |
---|
1241 | ! |
---|
1242 | !-- Transpose array |
---|
1243 | CALL cpu_log( log_point_s(32), 'mpi_alltoall', 'start', cpu_log_nowait ) |
---|
1244 | |
---|
1245 | #if __acc_fft_device |
---|
1246 | #ifndef __cuda_aware_mpi |
---|
1247 | !$ACC UPDATE HOST(work) |
---|
1248 | #else |
---|
1249 | !$ACC HOST_DATA USE_DEVICE(work, f_inv) |
---|
1250 | #endif |
---|
1251 | #endif |
---|
1252 | |
---|
1253 | IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) |
---|
1254 | CALL MPI_ALLTOALL( work(nxl_z,1,nys_z,0), sendrecvcount_yz, MPI_REAL, & |
---|
1255 | f_inv(nxl_y,nzb_y,0), sendrecvcount_yz, MPI_REAL, comm1dx, ierr ) |
---|
1256 | |
---|
1257 | #if __acc_fft_device |
---|
1258 | #ifndef __cuda_aware_mpi |
---|
1259 | !$ACC UPDATE DEVICE(f_inv) |
---|
1260 | #else |
---|
1261 | !$ACC END HOST_DATA |
---|
1262 | #endif |
---|
1263 | #endif |
---|
1264 | |
---|
1265 | CALL cpu_log( log_point_s(32), 'mpi_alltoall', 'stop' ) |
---|
1266 | #endif |
---|
1267 | |
---|
1268 | ELSE |
---|
1269 | ! |
---|
1270 | !-- Reorder the array in the same way like ALLTOALL did it |
---|
1271 | !$OMP PARALLEL PRIVATE ( i, j, k ) |
---|
1272 | !$OMP DO |
---|
1273 | #if __acc_fft_device |
---|
1274 | !$ACC PARALLEL LOOP COLLAPSE(3) PRIVATE(i,j,k) & |
---|
1275 | !$ACC PRESENT(f_inv, f_in) |
---|
1276 | #endif |
---|
1277 | DO k = nzb_y, nzt_y |
---|
1278 | DO j = 0, ny |
---|
1279 | DO i = nxl_y, nxr_y |
---|
1280 | f_inv(i,k,j) = f_in(i,j,k) |
---|
1281 | ENDDO |
---|
1282 | ENDDO |
---|
1283 | ENDDO |
---|
1284 | !$OMP END PARALLEL |
---|
1285 | |
---|
1286 | ENDIF |
---|
1287 | |
---|
1288 | END SUBROUTINE transpose_zy |
---|
1289 | |
---|
1290 | |
---|
1291 | !--------------------------------------------------------------------------------------------------! |
---|
1292 | ! Description: |
---|
1293 | ! ------------ |
---|
1294 | !> Transposition of input array (f_in) from z to y. For the input array, all elements along z reside |
---|
1295 | !> on the same PE, while after transposition, all elements along y reside on the same PE. This is a |
---|
1296 | !> direct transposition for arrays with indices in regular order (k,j,i) (cf. transpose_zy). |
---|
1297 | !--------------------------------------------------------------------------------------------------! |
---|
1298 | #if defined( __parallel ) |
---|
1299 | SUBROUTINE transpose_zyd( f_in, f_out ) |
---|
1300 | |
---|
1301 | |
---|
1302 | USE cpulog, & |
---|
1303 | ONLY: cpu_log, & |
---|
1304 | log_point_s |
---|
1305 | |
---|
1306 | USE indices, & |
---|
1307 | ONLY: nnx, & |
---|
1308 | nny, & |
---|
1309 | nnz, & |
---|
1310 | nxl, & |
---|
1311 | nxr, & |
---|
1312 | nyn, & |
---|
1313 | nys, & |
---|
1314 | ny, & |
---|
1315 | nz |
---|
1316 | |
---|
1317 | USE kinds |
---|
1318 | |
---|
1319 | USE pegrid |
---|
1320 | |
---|
1321 | USE transpose_indices, & |
---|
1322 | ONLY: nxl_yd, & |
---|
1323 | nxr_yd, & |
---|
1324 | nzb_yd, & |
---|
1325 | nzt_yd |
---|
1326 | |
---|
1327 | IMPLICIT NONE |
---|
1328 | |
---|
1329 | INTEGER(iwp) :: i !< |
---|
1330 | INTEGER(iwp) :: j !< |
---|
1331 | INTEGER(iwp) :: k !< |
---|
1332 | INTEGER(iwp) :: l !< |
---|
1333 | INTEGER(iwp) :: m !< |
---|
1334 | INTEGER(iwp) :: ys !< |
---|
1335 | |
---|
1336 | REAL(wp) :: f_in(1:nz,nys:nyn,nxl:nxr) !< |
---|
1337 | REAL(wp) :: f_inv(nys:nyn,nxl:nxr,1:nz) !< |
---|
1338 | REAL(wp) :: f_out(0:ny,nxl_yd:nxr_yd,nzb_yd:nzt_yd) !< |
---|
1339 | REAL(wp) :: work(nnx*nny*nnz) !< |
---|
1340 | |
---|
1341 | ! |
---|
1342 | !-- Rearrange indices of input array in order to make data to be send by MPI contiguous. |
---|
1343 | DO i = nxl, nxr |
---|
1344 | DO j = nys, nyn |
---|
1345 | DO k = 1, nz |
---|
1346 | f_inv(j,i,k) = f_in(k,j,i) |
---|
1347 | ENDDO |
---|
1348 | ENDDO |
---|
1349 | ENDDO |
---|
1350 | |
---|
1351 | ! |
---|
1352 | !-- Move data to different array, because memory location of work1 is needed further below |
---|
1353 | !-- (work1 = work2). If the PE grid is one-dimensional along x, only local reordering of the data is |
---|
1354 | !-- necessary and no transposition has to be done. |
---|
1355 | IF ( pdims(2) == 1 ) THEN |
---|
1356 | DO k = 1, nz |
---|
1357 | DO i = nxl, nxr |
---|
1358 | DO j = nys, nyn |
---|
1359 | f_out(j,i,k) = f_inv(j,i,k) |
---|
1360 | ENDDO |
---|
1361 | ENDDO |
---|
1362 | ENDDO |
---|
1363 | RETURN |
---|
1364 | ENDIF |
---|
1365 | |
---|
1366 | ! |
---|
1367 | !-- Transpose array |
---|
1368 | CALL cpu_log( log_point_s(32), 'mpi_alltoall', 'start' ) |
---|
1369 | IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) |
---|
1370 | CALL MPI_ALLTOALL( f_inv(nys,nxl,1), sendrecvcount_zyd, MPI_REAL, & |
---|
1371 | work(1), sendrecvcount_zyd, MPI_REAL, comm1dy, ierr ) |
---|
1372 | CALL cpu_log( log_point_s(32), 'mpi_alltoall', 'stop' ) |
---|
1373 | |
---|
1374 | ! |
---|
1375 | !-- Reorder transposed array |
---|
1376 | m = 0 |
---|
1377 | DO l = 0, pdims(2) - 1 |
---|
1378 | ys = 0 + l * nny |
---|
1379 | DO k = nzb_yd, nzt_yd |
---|
1380 | DO i = nxl_yd, nxr_yd |
---|
1381 | DO j = ys, ys + nny - 1 |
---|
1382 | m = m + 1 |
---|
1383 | f_out(j,i,k) = work(m) |
---|
1384 | ENDDO |
---|
1385 | ENDDO |
---|
1386 | ENDDO |
---|
1387 | ENDDO |
---|
1388 | |
---|
1389 | END SUBROUTINE transpose_zyd |
---|
1390 | #endif |
---|