1 | !> @file transpose.f90 |
---|
2 | !------------------------------------------------------------------------------! |
---|
3 | ! This file is part of the PALM model system. |
---|
4 | ! |
---|
5 | ! PALM is free software: you can redistribute it and/or modify it under the |
---|
6 | ! terms of the GNU General Public License as published by the Free Software |
---|
7 | ! Foundation, either version 3 of the License, or (at your option) any later |
---|
8 | ! version. |
---|
9 | ! |
---|
10 | ! PALM is distributed in the hope that it will be useful, but WITHOUT ANY |
---|
11 | ! WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR |
---|
12 | ! A PARTICULAR PURPOSE. See the GNU General Public License for more details. |
---|
13 | ! |
---|
14 | ! You should have received a copy of the GNU General Public License along with |
---|
15 | ! PALM. If not, see <http://www.gnu.org/licenses/>. |
---|
16 | ! |
---|
17 | ! Copyright 1997-2019 Leibniz Universitaet Hannover |
---|
18 | !------------------------------------------------------------------------------! |
---|
19 | ! |
---|
20 | ! Current revisions: |
---|
21 | ! ----------------- |
---|
22 | ! |
---|
23 | ! |
---|
24 | ! Former revisions: |
---|
25 | ! ----------------- |
---|
26 | ! $Id: transpose.f90 4236 2019-09-25 11:26:18Z monakurppa $ |
---|
27 | ! Added missing OpenMP directives |
---|
28 | ! |
---|
29 | ! 4182 2019-08-22 15:20:23Z scharf |
---|
30 | ! Corrected "Former revisions" section |
---|
31 | ! |
---|
32 | ! 4171 2019-08-19 17:44:09Z gronemeier |
---|
33 | ! loop reordering for performance optimization |
---|
34 | ! |
---|
35 | ! 3832 2019-03-28 13:16:58Z raasch |
---|
36 | ! loop reordering for performance optimization |
---|
37 | ! |
---|
38 | ! 3694 2019-01-23 17:01:49Z knoop |
---|
39 | ! OpenACC port for SPEC |
---|
40 | ! |
---|
41 | ! Revision 1.1 1997/07/24 11:25:18 raasch |
---|
42 | ! Initial revision |
---|
43 | ! |
---|
44 | ! |
---|
45 | ! Description: |
---|
46 | ! ------------ |
---|
47 | !> Resorting data for the transposition from x to y. The transposition itself |
---|
48 | !> is carried out in transpose_xy |
---|
49 | !------------------------------------------------------------------------------! |
---|
50 | |
---|
51 | #define __acc_fft_device ( defined( _OPENACC ) && ( defined ( __cuda_fft ) ) ) |
---|
52 | |
---|
53 | SUBROUTINE resort_for_xy( f_in, f_inv ) |
---|
54 | |
---|
55 | |
---|
56 | USE indices, & |
---|
57 | ONLY: nx |
---|
58 | |
---|
59 | USE kinds |
---|
60 | |
---|
61 | USE transpose_indices, & |
---|
62 | ONLY: nyn_x, nys_x, nzb_x, nzt_x |
---|
63 | |
---|
64 | IMPLICIT NONE |
---|
65 | |
---|
66 | REAL(wp) :: f_in(0:nx,nys_x:nyn_x,nzb_x:nzt_x) !< |
---|
67 | REAL(wp) :: f_inv(nys_x:nyn_x,nzb_x:nzt_x,0:nx) !< |
---|
68 | |
---|
69 | |
---|
70 | INTEGER(iwp) :: i !< |
---|
71 | INTEGER(iwp) :: j !< |
---|
72 | INTEGER(iwp) :: k !< |
---|
73 | ! |
---|
74 | !-- Rearrange indices of input array in order to make data to be send |
---|
75 | !-- by MPI contiguous |
---|
76 | !$OMP PARALLEL PRIVATE ( i, j, k ) |
---|
77 | !$OMP DO |
---|
78 | #if __acc_fft_device |
---|
79 | !$ACC PARALLEL LOOP COLLAPSE(3) PRIVATE(i,j,k) & |
---|
80 | !$ACC PRESENT(f_inv, f_in) |
---|
81 | #endif |
---|
82 | DO k = nzb_x, nzt_x |
---|
83 | DO j = nys_x, nyn_x |
---|
84 | DO i = 0, nx |
---|
85 | f_inv(j,k,i) = f_in(i,j,k) |
---|
86 | ENDDO |
---|
87 | ENDDO |
---|
88 | ENDDO |
---|
89 | !$OMP END PARALLEL |
---|
90 | |
---|
91 | END SUBROUTINE resort_for_xy |
---|
92 | |
---|
93 | |
---|
94 | !------------------------------------------------------------------------------! |
---|
95 | ! Description: |
---|
96 | ! ------------ |
---|
97 | !> Transposition of input array (f_in) from x to y. For the input array, all |
---|
98 | !> elements along x reside on the same PE, while after transposition, all |
---|
99 | !> elements along y reside on the same PE. |
---|
100 | !------------------------------------------------------------------------------! |
---|
101 | SUBROUTINE transpose_xy( f_inv, f_out ) |
---|
102 | |
---|
103 | |
---|
104 | USE cpulog, & |
---|
105 | ONLY: cpu_log, cpu_log_nowait, log_point_s |
---|
106 | |
---|
107 | USE indices, & |
---|
108 | ONLY: nx, ny |
---|
109 | |
---|
110 | USE kinds |
---|
111 | |
---|
112 | USE pegrid |
---|
113 | |
---|
114 | USE transpose_indices, & |
---|
115 | ONLY: nxl_y, nxr_y, nyn_x, nys_x, nzb_x, nzb_y, nzt_x, nzt_y |
---|
116 | |
---|
117 | IMPLICIT NONE |
---|
118 | |
---|
119 | INTEGER(iwp) :: i !< |
---|
120 | INTEGER(iwp) :: j !< |
---|
121 | INTEGER(iwp) :: k !< |
---|
122 | INTEGER(iwp) :: l !< |
---|
123 | INTEGER(iwp) :: ys !< |
---|
124 | |
---|
125 | REAL(wp) :: f_inv(nys_x:nyn_x,nzb_x:nzt_x,0:nx) !< |
---|
126 | REAL(wp) :: f_out(0:ny,nxl_y:nxr_y,nzb_y:nzt_y) !< |
---|
127 | |
---|
128 | REAL(wp), DIMENSION(nyn_x-nys_x+1,nzb_y:nzt_y,nxl_y:nxr_y,0:pdims(2)-1) :: work !< |
---|
129 | #if __acc_fft_device |
---|
130 | !$ACC DECLARE CREATE(work) |
---|
131 | #endif |
---|
132 | |
---|
133 | |
---|
134 | IF ( numprocs /= 1 ) THEN |
---|
135 | |
---|
136 | #if defined( __parallel ) |
---|
137 | ! |
---|
138 | !-- Transpose array |
---|
139 | CALL cpu_log( log_point_s(32), 'mpi_alltoall', 'start', cpu_log_nowait ) |
---|
140 | |
---|
141 | #if __acc_fft_device |
---|
142 | #ifndef __cuda_aware_mpi |
---|
143 | !$ACC UPDATE HOST(f_inv) |
---|
144 | #else |
---|
145 | !$ACC HOST_DATA USE_DEVICE(work, f_inv) |
---|
146 | #endif |
---|
147 | #endif |
---|
148 | |
---|
149 | IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) |
---|
150 | CALL MPI_ALLTOALL( f_inv(nys_x,nzb_x,0), sendrecvcount_xy, MPI_REAL, & |
---|
151 | work(1,nzb_y,nxl_y,0), sendrecvcount_xy, MPI_REAL, & |
---|
152 | comm1dy, ierr ) |
---|
153 | |
---|
154 | #if __acc_fft_device |
---|
155 | #ifndef __cuda_aware_mpi |
---|
156 | !$ACC UPDATE DEVICE(work) |
---|
157 | #else |
---|
158 | !$ACC END HOST_DATA |
---|
159 | #endif |
---|
160 | #endif |
---|
161 | |
---|
162 | CALL cpu_log( log_point_s(32), 'mpi_alltoall', 'stop' ) |
---|
163 | |
---|
164 | ! |
---|
165 | !-- Reorder transposed array |
---|
166 | !$OMP PARALLEL PRIVATE ( i, j, k, l, ys ) |
---|
167 | DO l = 0, pdims(2) - 1 |
---|
168 | ys = 0 + l * ( nyn_x - nys_x + 1 ) |
---|
169 | #if __acc_fft_device |
---|
170 | !$ACC PARALLEL LOOP COLLAPSE(3) PRIVATE(i,j,k) & |
---|
171 | !$ACC PRESENT(f_out, work) |
---|
172 | #endif |
---|
173 | !$OMP DO |
---|
174 | DO i = nxl_y, nxr_y |
---|
175 | DO k = nzb_y, nzt_y |
---|
176 | DO j = ys, ys + nyn_x - nys_x |
---|
177 | f_out(j,i,k) = work(j-ys+1,k,i,l) |
---|
178 | ENDDO |
---|
179 | ENDDO |
---|
180 | ENDDO |
---|
181 | !$OMP END DO NOWAIT |
---|
182 | ENDDO |
---|
183 | !$OMP END PARALLEL |
---|
184 | #endif |
---|
185 | |
---|
186 | ELSE |
---|
187 | |
---|
188 | ! |
---|
189 | !-- Reorder transposed array |
---|
190 | !$OMP PARALLEL PRIVATE ( i, j, k ) |
---|
191 | !$OMP DO |
---|
192 | #if __acc_fft_device |
---|
193 | !$ACC PARALLEL LOOP COLLAPSE(3) PRIVATE(i,j,k) & |
---|
194 | !$ACC PRESENT(f_out, f_inv) |
---|
195 | #endif |
---|
196 | DO k = nzb_y, nzt_y |
---|
197 | DO i = nxl_y, nxr_y |
---|
198 | DO j = 0, ny |
---|
199 | f_out(j,i,k) = f_inv(j,k,i) |
---|
200 | ENDDO |
---|
201 | ENDDO |
---|
202 | ENDDO |
---|
203 | !$OMP END PARALLEL |
---|
204 | |
---|
205 | ENDIF |
---|
206 | |
---|
207 | END SUBROUTINE transpose_xy |
---|
208 | |
---|
209 | |
---|
210 | !------------------------------------------------------------------------------! |
---|
211 | ! Description: |
---|
212 | ! ------------ |
---|
213 | !> Resorting data after the transposition from x to z. The transposition itself |
---|
214 | !> is carried out in transpose_xz |
---|
215 | !------------------------------------------------------------------------------! |
---|
216 | SUBROUTINE resort_for_xz( f_inv, f_out ) |
---|
217 | |
---|
218 | |
---|
219 | USE indices, & |
---|
220 | ONLY: nxl, nxr, nyn, nys, nz |
---|
221 | |
---|
222 | USE kinds |
---|
223 | |
---|
224 | IMPLICIT NONE |
---|
225 | |
---|
226 | REAL(wp) :: f_inv(nys:nyn,nxl:nxr,1:nz) !< |
---|
227 | REAL(wp) :: f_out(1:nz,nys:nyn,nxl:nxr) !< |
---|
228 | |
---|
229 | INTEGER(iwp) :: i !< |
---|
230 | INTEGER(iwp) :: j !< |
---|
231 | INTEGER(iwp) :: k !< |
---|
232 | ! |
---|
233 | !-- Rearrange indices of input array in order to make data to be send |
---|
234 | !-- by MPI contiguous. |
---|
235 | !-- In case of parallel fft/transposition, scattered store is faster in |
---|
236 | !-- backward direction!!! |
---|
237 | !$OMP PARALLEL PRIVATE ( i, j, k ) |
---|
238 | !$OMP DO |
---|
239 | #if __acc_fft_device |
---|
240 | !$ACC PARALLEL LOOP COLLAPSE(3) PRIVATE(i,j,k) & |
---|
241 | !$ACC PRESENT(f_out, f_inv) |
---|
242 | #endif |
---|
243 | DO i = nxl, nxr |
---|
244 | DO j = nys, nyn |
---|
245 | DO k = 1, nz |
---|
246 | f_out(k,j,i) = f_inv(j,i,k) |
---|
247 | ENDDO |
---|
248 | ENDDO |
---|
249 | ENDDO |
---|
250 | !$OMP END PARALLEL |
---|
251 | |
---|
252 | END SUBROUTINE resort_for_xz |
---|
253 | |
---|
254 | |
---|
255 | !------------------------------------------------------------------------------! |
---|
256 | ! Description: |
---|
257 | ! ------------ |
---|
258 | !> Transposition of input array (f_in) from x to z. For the input array, all |
---|
259 | !> elements along x reside on the same PE, while after transposition, all |
---|
260 | !> elements along z reside on the same PE. |
---|
261 | !------------------------------------------------------------------------------! |
---|
262 | SUBROUTINE transpose_xz( f_in, f_inv ) |
---|
263 | |
---|
264 | |
---|
265 | USE cpulog, & |
---|
266 | ONLY: cpu_log, cpu_log_nowait, log_point_s |
---|
267 | |
---|
268 | USE indices, & |
---|
269 | ONLY: nnx, nx, nxl, nxr, nyn, nys, nz |
---|
270 | |
---|
271 | USE kinds |
---|
272 | |
---|
273 | USE pegrid |
---|
274 | |
---|
275 | USE transpose_indices, & |
---|
276 | ONLY: nyn_x, nys_x, nzb_x, nzt_x |
---|
277 | |
---|
278 | IMPLICIT NONE |
---|
279 | |
---|
280 | INTEGER(iwp) :: i !< |
---|
281 | INTEGER(iwp) :: j !< |
---|
282 | INTEGER(iwp) :: k !< |
---|
283 | INTEGER(iwp) :: l !< |
---|
284 | INTEGER(iwp) :: xs !< |
---|
285 | |
---|
286 | REAL(wp) :: f_in(0:nx,nys_x:nyn_x,nzb_x:nzt_x) !< |
---|
287 | REAL(wp) :: f_inv(nys:nyn,nxl:nxr,1:nz) !< |
---|
288 | |
---|
289 | REAL(wp), DIMENSION(nys_x:nyn_x,nnx,nzb_x:nzt_x,0:pdims(1)-1) :: work !< |
---|
290 | #if __acc_fft_device |
---|
291 | !$ACC DECLARE CREATE(work) |
---|
292 | #endif |
---|
293 | |
---|
294 | |
---|
295 | ! |
---|
296 | !-- If the PE grid is one-dimensional along y, the array has only to be |
---|
297 | !-- reordered locally and therefore no transposition has to be done. |
---|
298 | IF ( pdims(1) /= 1 ) THEN |
---|
299 | |
---|
300 | #if defined( __parallel ) |
---|
301 | ! |
---|
302 | !-- Reorder input array for transposition |
---|
303 | !$OMP PARALLEL PRIVATE ( i, j, k, l, xs ) |
---|
304 | DO l = 0, pdims(1) - 1 |
---|
305 | xs = 0 + l * nnx |
---|
306 | #if __acc_fft_device |
---|
307 | !$ACC PARALLEL LOOP COLLAPSE(3) PRIVATE(i,j,k) & |
---|
308 | !$ACC PRESENT(work, f_in) |
---|
309 | #endif |
---|
310 | !$OMP DO |
---|
311 | DO k = nzb_x, nzt_x |
---|
312 | DO i = xs, xs + nnx - 1 |
---|
313 | DO j = nys_x, nyn_x |
---|
314 | work(j,i-xs+1,k,l) = f_in(i,j,k) |
---|
315 | ENDDO |
---|
316 | ENDDO |
---|
317 | ENDDO |
---|
318 | !$OMP END DO NOWAIT |
---|
319 | ENDDO |
---|
320 | !$OMP END PARALLEL |
---|
321 | |
---|
322 | ! |
---|
323 | !-- Transpose array |
---|
324 | CALL cpu_log( log_point_s(32), 'mpi_alltoall', 'start', cpu_log_nowait ) |
---|
325 | |
---|
326 | #if __acc_fft_device |
---|
327 | #ifndef __cuda_aware_mpi |
---|
328 | !$ACC UPDATE HOST(work) |
---|
329 | #else |
---|
330 | !$ACC HOST_DATA USE_DEVICE(work, f_inv) |
---|
331 | #endif |
---|
332 | #endif |
---|
333 | |
---|
334 | IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) |
---|
335 | CALL MPI_ALLTOALL( work(nys_x,1,nzb_x,0), sendrecvcount_zx, MPI_REAL, & |
---|
336 | f_inv(nys,nxl,1), sendrecvcount_zx, MPI_REAL, & |
---|
337 | comm1dx, ierr ) |
---|
338 | |
---|
339 | #if __acc_fft_device |
---|
340 | #ifndef __cuda_aware_mpi |
---|
341 | !$ACC UPDATE DEVICE(f_inv) |
---|
342 | #else |
---|
343 | !$ACC END HOST_DATA |
---|
344 | #endif |
---|
345 | #endif |
---|
346 | |
---|
347 | CALL cpu_log( log_point_s(32), 'mpi_alltoall', 'stop' ) |
---|
348 | #endif |
---|
349 | |
---|
350 | ELSE |
---|
351 | |
---|
352 | ! |
---|
353 | !-- Reorder the array in a way that the z index is in first position |
---|
354 | !$OMP PARALLEL PRIVATE ( i, j, k ) |
---|
355 | !$OMP DO |
---|
356 | #if __acc_fft_device |
---|
357 | !$ACC PARALLEL LOOP COLLAPSE(3) PRIVATE(i,j,k) & |
---|
358 | !$ACC PRESENT(f_inv, f_in) |
---|
359 | #endif |
---|
360 | DO i = nxl, nxr |
---|
361 | DO j = nys, nyn |
---|
362 | DO k = 1, nz |
---|
363 | f_inv(j,i,k) = f_in(i,j,k) |
---|
364 | ENDDO |
---|
365 | ENDDO |
---|
366 | ENDDO |
---|
367 | !$OMP END PARALLEL |
---|
368 | |
---|
369 | ENDIF |
---|
370 | |
---|
371 | END SUBROUTINE transpose_xz |
---|
372 | |
---|
373 | |
---|
374 | !------------------------------------------------------------------------------! |
---|
375 | ! Description: |
---|
376 | ! ------------ |
---|
377 | !> Resorting data after the transposition from y to x. The transposition itself |
---|
378 | !> is carried out in transpose_yx |
---|
379 | !------------------------------------------------------------------------------! |
---|
380 | SUBROUTINE resort_for_yx( f_inv, f_out ) |
---|
381 | |
---|
382 | |
---|
383 | USE indices, & |
---|
384 | ONLY: nx |
---|
385 | |
---|
386 | USE kinds |
---|
387 | |
---|
388 | USE transpose_indices, & |
---|
389 | ONLY: nyn_x, nys_x, nzb_x, nzt_x |
---|
390 | |
---|
391 | IMPLICIT NONE |
---|
392 | |
---|
393 | REAL(wp) :: f_inv(nys_x:nyn_x,nzb_x:nzt_x,0:nx) !< |
---|
394 | REAL(wp) :: f_out(0:nx,nys_x:nyn_x,nzb_x:nzt_x) !< |
---|
395 | |
---|
396 | |
---|
397 | INTEGER(iwp) :: i !< |
---|
398 | INTEGER(iwp) :: j !< |
---|
399 | INTEGER(iwp) :: k !< |
---|
400 | ! |
---|
401 | !-- Rearrange indices of input array in order to make data to be send |
---|
402 | !-- by MPI contiguous |
---|
403 | !$OMP PARALLEL PRIVATE ( i, j, k ) |
---|
404 | !$OMP DO |
---|
405 | #if __acc_fft_device |
---|
406 | !$ACC PARALLEL LOOP COLLAPSE(3) PRIVATE(i,j,k) & |
---|
407 | !$ACC PRESENT(f_out, f_inv) |
---|
408 | #endif |
---|
409 | DO k = nzb_x, nzt_x |
---|
410 | DO j = nys_x, nyn_x |
---|
411 | DO i = 0, nx |
---|
412 | f_out(i,j,k) = f_inv(j,k,i) |
---|
413 | ENDDO |
---|
414 | ENDDO |
---|
415 | ENDDO |
---|
416 | !$OMP END PARALLEL |
---|
417 | |
---|
418 | END SUBROUTINE resort_for_yx |
---|
419 | |
---|
420 | |
---|
421 | !------------------------------------------------------------------------------! |
---|
422 | ! Description: |
---|
423 | ! ------------ |
---|
424 | !> Transposition of input array (f_in) from y to x. For the input array, all |
---|
425 | !> elements along y reside on the same PE, while after transposition, all |
---|
426 | !> elements along x reside on the same PE. |
---|
427 | !------------------------------------------------------------------------------! |
---|
428 | SUBROUTINE transpose_yx( f_in, f_inv ) |
---|
429 | |
---|
430 | |
---|
431 | USE cpulog, & |
---|
432 | ONLY: cpu_log, cpu_log_nowait, log_point_s |
---|
433 | |
---|
434 | USE indices, & |
---|
435 | ONLY: nx, ny |
---|
436 | |
---|
437 | USE kinds |
---|
438 | |
---|
439 | USE pegrid |
---|
440 | |
---|
441 | USE transpose_indices, & |
---|
442 | ONLY: nxl_y, nxr_y, nyn_x, nys_x, nzb_x, nzb_y, nzt_x, nzt_y |
---|
443 | |
---|
444 | IMPLICIT NONE |
---|
445 | |
---|
446 | INTEGER(iwp) :: i !< |
---|
447 | INTEGER(iwp) :: j !< |
---|
448 | INTEGER(iwp) :: k !< |
---|
449 | INTEGER(iwp) :: l !< |
---|
450 | INTEGER(iwp) :: ys !< |
---|
451 | |
---|
452 | REAL(wp) :: f_in(0:ny,nxl_y:nxr_y,nzb_y:nzt_y) !< |
---|
453 | REAL(wp) :: f_inv(nys_x:nyn_x,nzb_x:nzt_x,0:nx) !< |
---|
454 | |
---|
455 | REAL(wp), DIMENSION(nyn_x-nys_x+1,nzb_y:nzt_y,nxl_y:nxr_y,0:pdims(2)-1) :: work !< |
---|
456 | #if __acc_fft_device |
---|
457 | !$ACC DECLARE CREATE(work) |
---|
458 | #endif |
---|
459 | |
---|
460 | |
---|
461 | IF ( numprocs /= 1 ) THEN |
---|
462 | |
---|
463 | #if defined( __parallel ) |
---|
464 | ! |
---|
465 | !-- Reorder input array for transposition |
---|
466 | !$OMP PARALLEL PRIVATE ( i, j, k, l, ys ) |
---|
467 | DO l = 0, pdims(2) - 1 |
---|
468 | ys = 0 + l * ( nyn_x - nys_x + 1 ) |
---|
469 | #if __acc_fft_device |
---|
470 | !$ACC PARALLEL LOOP COLLAPSE(3) PRIVATE(i,j,k) & |
---|
471 | !$ACC PRESENT(work, f_in) |
---|
472 | #endif |
---|
473 | !$OMP DO |
---|
474 | DO i = nxl_y, nxr_y |
---|
475 | DO k = nzb_y, nzt_y |
---|
476 | DO j = ys, ys + nyn_x - nys_x |
---|
477 | work(j-ys+1,k,i,l) = f_in(j,i,k) |
---|
478 | ENDDO |
---|
479 | ENDDO |
---|
480 | ENDDO |
---|
481 | !$OMP END DO NOWAIT |
---|
482 | ENDDO |
---|
483 | !$OMP END PARALLEL |
---|
484 | |
---|
485 | ! |
---|
486 | !-- Transpose array |
---|
487 | CALL cpu_log( log_point_s(32), 'mpi_alltoall', 'start', cpu_log_nowait ) |
---|
488 | |
---|
489 | #if __acc_fft_device |
---|
490 | #ifndef __cuda_aware_mpi |
---|
491 | !$ACC UPDATE HOST(work) |
---|
492 | #else |
---|
493 | !$ACC HOST_DATA USE_DEVICE(work, f_inv) |
---|
494 | #endif |
---|
495 | #endif |
---|
496 | |
---|
497 | IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) |
---|
498 | CALL MPI_ALLTOALL( work(1,nzb_y,nxl_y,0), sendrecvcount_xy, MPI_REAL, & |
---|
499 | f_inv(nys_x,nzb_x,0), sendrecvcount_xy, MPI_REAL, & |
---|
500 | comm1dy, ierr ) |
---|
501 | |
---|
502 | #if __acc_fft_device |
---|
503 | #ifndef __cuda_aware_mpi |
---|
504 | !$ACC UPDATE DEVICE(f_inv) |
---|
505 | #else |
---|
506 | !$ACC END HOST_DATA |
---|
507 | #endif |
---|
508 | #endif |
---|
509 | |
---|
510 | CALL cpu_log( log_point_s(32), 'mpi_alltoall', 'stop' ) |
---|
511 | #endif |
---|
512 | |
---|
513 | ELSE |
---|
514 | |
---|
515 | ! |
---|
516 | !-- Reorder array f_in the same way as ALLTOALL did it |
---|
517 | !$OMP PARALLEL PRIVATE ( i, j, k ) |
---|
518 | !$OMP DO |
---|
519 | #if __acc_fft_device |
---|
520 | !$ACC PARALLEL LOOP COLLAPSE(3) PRIVATE(i,j,k) & |
---|
521 | !$ACC PRESENT(f_inv, f_in) |
---|
522 | #endif |
---|
523 | DO i = nxl_y, nxr_y |
---|
524 | DO k = nzb_y, nzt_y |
---|
525 | DO j = 0, ny |
---|
526 | f_inv(j,k,i) = f_in(j,i,k) |
---|
527 | ENDDO |
---|
528 | ENDDO |
---|
529 | ENDDO |
---|
530 | !$OMP END PARALLEL |
---|
531 | |
---|
532 | ENDIF |
---|
533 | |
---|
534 | END SUBROUTINE transpose_yx |
---|
535 | |
---|
536 | |
---|
537 | !------------------------------------------------------------------------------! |
---|
538 | ! Description: |
---|
539 | ! ------------ |
---|
540 | !> Transposition of input array (f_in) from y to x. For the input array, all |
---|
541 | !> elements along y reside on the same PE, while after transposition, all |
---|
542 | !> elements along x reside on the same PE. |
---|
543 | !> This is a direct transposition for arrays with indices in regular order |
---|
544 | !> (k,j,i) (cf. transpose_yx). |
---|
545 | !------------------------------------------------------------------------------! |
---|
546 | SUBROUTINE transpose_yxd( f_in, f_out ) |
---|
547 | |
---|
548 | |
---|
549 | USE cpulog, & |
---|
550 | ONLY: cpu_log, log_point_s |
---|
551 | |
---|
552 | USE indices, & |
---|
553 | ONLY: nnx, nny, nnz, nx, nxl, nxr, nyn, nys, nz |
---|
554 | |
---|
555 | USE kinds |
---|
556 | |
---|
557 | USE pegrid |
---|
558 | |
---|
559 | USE transpose_indices, & |
---|
560 | ONLY: nyn_x, nys_x, nzb_x, nzt_x |
---|
561 | |
---|
562 | IMPLICIT NONE |
---|
563 | |
---|
564 | INTEGER(iwp) :: i !< |
---|
565 | INTEGER(iwp) :: j !< |
---|
566 | INTEGER(iwp) :: k !< |
---|
567 | INTEGER(iwp) :: l !< |
---|
568 | INTEGER(iwp) :: m !< |
---|
569 | INTEGER(iwp) :: xs !< |
---|
570 | |
---|
571 | REAL(wp) :: f_in(1:nz,nys:nyn,nxl:nxr) !< |
---|
572 | REAL(wp) :: f_inv(nxl:nxr,1:nz,nys:nyn) !< |
---|
573 | REAL(wp) :: f_out(0:nx,nys_x:nyn_x,nzb_x:nzt_x) !< |
---|
574 | REAL(wp) :: work(nnx*nny*nnz) !< |
---|
575 | #if defined( __parallel ) |
---|
576 | |
---|
577 | ! |
---|
578 | !-- Rearrange indices of input array in order to make data to be send |
---|
579 | !-- by MPI contiguous |
---|
580 | DO k = 1, nz |
---|
581 | DO j = nys, nyn |
---|
582 | DO i = nxl, nxr |
---|
583 | f_inv(i,k,j) = f_in(k,j,i) |
---|
584 | ENDDO |
---|
585 | ENDDO |
---|
586 | ENDDO |
---|
587 | |
---|
588 | ! |
---|
589 | !-- Transpose array |
---|
590 | CALL cpu_log( log_point_s(32), 'mpi_alltoall', 'start' ) |
---|
591 | IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) |
---|
592 | CALL MPI_ALLTOALL( f_inv(nxl,1,nys), sendrecvcount_xy, MPI_REAL, & |
---|
593 | work(1), sendrecvcount_xy, MPI_REAL, & |
---|
594 | comm1dx, ierr ) |
---|
595 | CALL cpu_log( log_point_s(32), 'mpi_alltoall', 'stop' ) |
---|
596 | |
---|
597 | ! |
---|
598 | !-- Reorder transposed array |
---|
599 | m = 0 |
---|
600 | DO l = 0, pdims(1) - 1 |
---|
601 | xs = 0 + l * nnx |
---|
602 | DO j = nys_x, nyn_x |
---|
603 | DO k = 1, nz |
---|
604 | DO i = xs, xs + nnx - 1 |
---|
605 | m = m + 1 |
---|
606 | f_out(i,j,k) = work(m) |
---|
607 | ENDDO |
---|
608 | ENDDO |
---|
609 | ENDDO |
---|
610 | ENDDO |
---|
611 | |
---|
612 | #endif |
---|
613 | |
---|
614 | END SUBROUTINE transpose_yxd |
---|
615 | |
---|
616 | |
---|
617 | !------------------------------------------------------------------------------! |
---|
618 | ! Description: |
---|
619 | ! ------------ |
---|
620 | !> Resorting data for the transposition from y to z. The transposition itself |
---|
621 | !> is carried out in transpose_yz |
---|
622 | !------------------------------------------------------------------------------! |
---|
623 | SUBROUTINE resort_for_yz( f_in, f_inv ) |
---|
624 | |
---|
625 | |
---|
626 | USE indices, & |
---|
627 | ONLY: ny |
---|
628 | |
---|
629 | USE kinds |
---|
630 | |
---|
631 | USE transpose_indices, & |
---|
632 | ONLY: nxl_y, nxr_y, nzb_y, nzt_y |
---|
633 | |
---|
634 | IMPLICIT NONE |
---|
635 | |
---|
636 | REAL(wp) :: f_in(0:ny,nxl_y:nxr_y,nzb_y:nzt_y) !< |
---|
637 | REAL(wp) :: f_inv(nxl_y:nxr_y,nzb_y:nzt_y,0:ny) !< |
---|
638 | |
---|
639 | INTEGER(iwp) :: i !< |
---|
640 | INTEGER(iwp) :: j !< |
---|
641 | INTEGER(iwp) :: k !< |
---|
642 | |
---|
643 | ! |
---|
644 | !-- Rearrange indices of input array in order to make data to be send |
---|
645 | !-- by MPI contiguous |
---|
646 | !$OMP PARALLEL PRIVATE ( i, j, k ) |
---|
647 | !$OMP DO |
---|
648 | #if __acc_fft_device |
---|
649 | !$ACC PARALLEL LOOP COLLAPSE(3) PRIVATE(i,j,k) & |
---|
650 | !$ACC PRESENT(f_inv, f_in) |
---|
651 | #endif |
---|
652 | DO k = nzb_y, nzt_y |
---|
653 | DO i = nxl_y, nxr_y |
---|
654 | DO j = 0, ny |
---|
655 | f_inv(i,k,j) = f_in(j,i,k) |
---|
656 | ENDDO |
---|
657 | ENDDO |
---|
658 | ENDDO |
---|
659 | !$OMP END PARALLEL |
---|
660 | |
---|
661 | END SUBROUTINE resort_for_yz |
---|
662 | |
---|
663 | |
---|
664 | !------------------------------------------------------------------------------! |
---|
665 | ! Description: |
---|
666 | ! ------------ |
---|
667 | !> Transposition of input array (f_in) from y to z. For the input array, all |
---|
668 | !> elements along y reside on the same PE, while after transposition, all |
---|
669 | !> elements along z reside on the same PE. |
---|
670 | !------------------------------------------------------------------------------! |
---|
671 | SUBROUTINE transpose_yz( f_inv, f_out ) |
---|
672 | |
---|
673 | |
---|
674 | USE cpulog, & |
---|
675 | ONLY: cpu_log, cpu_log_nowait, log_point_s |
---|
676 | |
---|
677 | USE indices, & |
---|
678 | ONLY: ny, nz |
---|
679 | |
---|
680 | USE kinds |
---|
681 | |
---|
682 | USE pegrid |
---|
683 | |
---|
684 | USE transpose_indices, & |
---|
685 | ONLY: nxl_y, nxl_z, nxr_y, nxr_z, nyn_z, nys_z, nzb_y, nzt_y |
---|
686 | |
---|
687 | IMPLICIT NONE |
---|
688 | |
---|
689 | INTEGER(iwp) :: i !< |
---|
690 | INTEGER(iwp) :: j !< |
---|
691 | INTEGER(iwp) :: k !< |
---|
692 | INTEGER(iwp) :: l !< |
---|
693 | INTEGER(iwp) :: zs !< |
---|
694 | |
---|
695 | REAL(wp) :: f_inv(nxl_y:nxr_y,nzb_y:nzt_y,0:ny) !< |
---|
696 | REAL(wp) :: f_out(nxl_z:nxr_z,nys_z:nyn_z,1:nz) !< |
---|
697 | |
---|
698 | REAL(wp), DIMENSION(nxl_z:nxr_z,nzt_y-nzb_y+1,nys_z:nyn_z,0:pdims(1)-1) :: work !< |
---|
699 | #if __acc_fft_device |
---|
700 | !$ACC DECLARE CREATE(work) |
---|
701 | #endif |
---|
702 | |
---|
703 | |
---|
704 | ! |
---|
705 | !-- If the PE grid is one-dimensional along y, only local reordering |
---|
706 | !-- of the data is necessary and no transposition has to be done. |
---|
707 | IF ( pdims(1) == 1 ) THEN |
---|
708 | |
---|
709 | !$OMP PARALLEL PRIVATE ( i, j, k ) |
---|
710 | !$OMP DO |
---|
711 | #if __acc_fft_device |
---|
712 | !$ACC PARALLEL LOOP COLLAPSE(3) PRIVATE(i,j,k) & |
---|
713 | !$ACC PRESENT(f_out, f_inv) |
---|
714 | #endif |
---|
715 | DO j = 0, ny |
---|
716 | DO k = nzb_y, nzt_y |
---|
717 | DO i = nxl_y, nxr_y |
---|
718 | f_out(i,j,k) = f_inv(i,k,j) |
---|
719 | ENDDO |
---|
720 | ENDDO |
---|
721 | ENDDO |
---|
722 | !$OMP END PARALLEL |
---|
723 | |
---|
724 | ELSE |
---|
725 | |
---|
726 | #if defined( __parallel ) |
---|
727 | ! |
---|
728 | !-- Transpose array |
---|
729 | CALL cpu_log( log_point_s(32), 'mpi_alltoall', 'start', cpu_log_nowait ) |
---|
730 | |
---|
731 | #if __acc_fft_device |
---|
732 | #ifndef __cuda_aware_mpi |
---|
733 | !$ACC UPDATE HOST(f_inv) |
---|
734 | #else |
---|
735 | !$ACC HOST_DATA USE_DEVICE(work, f_inv) |
---|
736 | #endif |
---|
737 | #endif |
---|
738 | |
---|
739 | IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) |
---|
740 | CALL MPI_ALLTOALL( f_inv(nxl_y,nzb_y,0), sendrecvcount_yz, MPI_REAL, & |
---|
741 | work(nxl_z,1,nys_z,0), sendrecvcount_yz, MPI_REAL, & |
---|
742 | comm1dx, ierr ) |
---|
743 | |
---|
744 | #if __acc_fft_device |
---|
745 | #ifndef __cuda_aware_mpi |
---|
746 | !$ACC UPDATE DEVICE(work) |
---|
747 | #else |
---|
748 | !$ACC END HOST_DATA |
---|
749 | #endif |
---|
750 | #endif |
---|
751 | |
---|
752 | CALL cpu_log( log_point_s(32), 'mpi_alltoall', 'stop' ) |
---|
753 | |
---|
754 | ! |
---|
755 | !-- Reorder transposed array |
---|
756 | !$OMP PARALLEL PRIVATE ( i, j, k, l, zs ) |
---|
757 | DO l = 0, pdims(1) - 1 |
---|
758 | zs = 1 + l * ( nzt_y - nzb_y + 1 ) |
---|
759 | #if __acc_fft_device |
---|
760 | !$ACC PARALLEL LOOP COLLAPSE(3) PRIVATE(i,j,k) & |
---|
761 | !$ACC PRESENT(f_out, work) |
---|
762 | #endif |
---|
763 | !$OMP DO |
---|
764 | DO j = nys_z, nyn_z |
---|
765 | DO k = zs, zs + nzt_y - nzb_y |
---|
766 | DO i = nxl_z, nxr_z |
---|
767 | f_out(i,j,k) = work(i,k-zs+1,j,l) |
---|
768 | ENDDO |
---|
769 | ENDDO |
---|
770 | ENDDO |
---|
771 | !$OMP END DO NOWAIT |
---|
772 | ENDDO |
---|
773 | !$OMP END PARALLEL |
---|
774 | #endif |
---|
775 | |
---|
776 | ENDIF |
---|
777 | |
---|
778 | END SUBROUTINE transpose_yz |
---|
779 | |
---|
780 | |
---|
781 | !------------------------------------------------------------------------------! |
---|
782 | ! Description: |
---|
783 | ! ------------ |
---|
784 | !> Resorting data for the transposition from z to x. The transposition itself |
---|
785 | !> is carried out in transpose_zx |
---|
786 | !------------------------------------------------------------------------------! |
---|
787 | SUBROUTINE resort_for_zx( f_in, f_inv ) |
---|
788 | |
---|
789 | |
---|
790 | USE indices, & |
---|
791 | ONLY: nxl, nxr, nyn, nys, nz |
---|
792 | |
---|
793 | USE kinds |
---|
794 | |
---|
795 | IMPLICIT NONE |
---|
796 | |
---|
797 | REAL(wp) :: f_in(1:nz,nys:nyn,nxl:nxr) !< |
---|
798 | REAL(wp) :: f_inv(nys:nyn,nxl:nxr,1:nz) !< |
---|
799 | |
---|
800 | INTEGER(iwp) :: i !< |
---|
801 | INTEGER(iwp) :: j !< |
---|
802 | INTEGER(iwp) :: k !< |
---|
803 | |
---|
804 | ! |
---|
805 | !-- Rearrange indices of input array in order to make data to be send |
---|
806 | !-- by MPI contiguous |
---|
807 | !$OMP PARALLEL PRIVATE ( i, j, k ) |
---|
808 | !$OMP DO |
---|
809 | #if __acc_fft_device |
---|
810 | !$ACC PARALLEL LOOP COLLAPSE(3) PRIVATE(i,j,k) & |
---|
811 | !$ACC PRESENT(f_in, f_inv) |
---|
812 | #endif |
---|
813 | DO i = nxl, nxr |
---|
814 | DO j = nys, nyn |
---|
815 | DO k = 1,nz |
---|
816 | f_inv(j,i,k) = f_in(k,j,i) |
---|
817 | ENDDO |
---|
818 | ENDDO |
---|
819 | ENDDO |
---|
820 | !$OMP END PARALLEL |
---|
821 | |
---|
822 | END SUBROUTINE resort_for_zx |
---|
823 | |
---|
824 | |
---|
825 | !------------------------------------------------------------------------------! |
---|
826 | ! Description: |
---|
827 | ! ------------ |
---|
828 | !> Transposition of input array (f_in) from z to x. For the input array, all |
---|
829 | !> elements along z reside on the same PE, while after transposition, all |
---|
830 | !> elements along x reside on the same PE. |
---|
831 | !------------------------------------------------------------------------------! |
---|
832 | SUBROUTINE transpose_zx( f_inv, f_out ) |
---|
833 | |
---|
834 | |
---|
835 | USE cpulog, & |
---|
836 | ONLY: cpu_log, cpu_log_nowait, log_point_s |
---|
837 | |
---|
838 | USE indices, & |
---|
839 | ONLY: nnx, nx, nxl, nxr, nyn, nys, nz |
---|
840 | |
---|
841 | USE kinds |
---|
842 | |
---|
843 | USE pegrid |
---|
844 | |
---|
845 | USE transpose_indices, & |
---|
846 | ONLY: nyn_x, nys_x, nzb_x, nzt_x |
---|
847 | |
---|
848 | IMPLICIT NONE |
---|
849 | |
---|
850 | INTEGER(iwp) :: i !< |
---|
851 | INTEGER(iwp) :: j !< |
---|
852 | INTEGER(iwp) :: k !< |
---|
853 | INTEGER(iwp) :: l !< |
---|
854 | INTEGER(iwp) :: xs !< |
---|
855 | |
---|
856 | REAL(wp) :: f_inv(nys:nyn,nxl:nxr,1:nz) !< |
---|
857 | REAL(wp) :: f_out(0:nx,nys_x:nyn_x,nzb_x:nzt_x) !< |
---|
858 | |
---|
859 | REAL(wp), DIMENSION(nys_x:nyn_x,nnx,nzb_x:nzt_x,0:pdims(1)-1) :: work !< |
---|
860 | #if __acc_fft_device |
---|
861 | !$ACC DECLARE CREATE(work) |
---|
862 | #endif |
---|
863 | |
---|
864 | |
---|
865 | ! |
---|
866 | !-- If the PE grid is one-dimensional along y, only local reordering |
---|
867 | !-- of the data is necessary and no transposition has to be done. |
---|
868 | IF ( pdims(1) == 1 ) THEN |
---|
869 | |
---|
870 | !$OMP PARALLEL PRIVATE ( i, j, k ) |
---|
871 | !$OMP DO |
---|
872 | #if __acc_fft_device |
---|
873 | !$ACC PARALLEL LOOP COLLAPSE(3) PRIVATE(i,j,k) & |
---|
874 | !$ACC PRESENT(f_out, f_inv) |
---|
875 | #endif |
---|
876 | DO k = 1, nz |
---|
877 | DO i = nxl, nxr |
---|
878 | DO j = nys, nyn |
---|
879 | f_out(i,j,k) = f_inv(j,i,k) |
---|
880 | ENDDO |
---|
881 | ENDDO |
---|
882 | ENDDO |
---|
883 | !$OMP END PARALLEL |
---|
884 | |
---|
885 | ELSE |
---|
886 | |
---|
887 | #if defined( __parallel ) |
---|
888 | ! |
---|
889 | !-- Transpose array |
---|
890 | CALL cpu_log( log_point_s(32), 'mpi_alltoall', 'start', cpu_log_nowait ) |
---|
891 | |
---|
892 | #if __acc_fft_device |
---|
893 | #ifndef __cuda_aware_mpi |
---|
894 | !$ACC UPDATE HOST(f_inv) |
---|
895 | #else |
---|
896 | !$ACC HOST_DATA USE_DEVICE(work, f_inv) |
---|
897 | #endif |
---|
898 | #endif |
---|
899 | |
---|
900 | IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) |
---|
901 | CALL MPI_ALLTOALL( f_inv(nys,nxl,1), sendrecvcount_zx, MPI_REAL, & |
---|
902 | work(nys_x,1,nzb_x,0), sendrecvcount_zx, MPI_REAL, & |
---|
903 | comm1dx, ierr ) |
---|
904 | |
---|
905 | #if __acc_fft_device |
---|
906 | #ifndef __cuda_aware_mpi |
---|
907 | !$ACC UPDATE DEVICE(work) |
---|
908 | #else |
---|
909 | !$ACC END HOST_DATA |
---|
910 | #endif |
---|
911 | #endif |
---|
912 | |
---|
913 | CALL cpu_log( log_point_s(32), 'mpi_alltoall', 'stop' ) |
---|
914 | |
---|
915 | ! |
---|
916 | !-- Reorder transposed array |
---|
917 | !$OMP PARALLEL PRIVATE ( i, j, k, l, xs ) |
---|
918 | DO l = 0, pdims(1) - 1 |
---|
919 | xs = 0 + l * nnx |
---|
920 | #if __acc_fft_device |
---|
921 | !$ACC PARALLEL LOOP COLLAPSE(3) PRIVATE(i,j,k) & |
---|
922 | !$ACC PRESENT(f_out, work) |
---|
923 | #endif |
---|
924 | !$OMP DO |
---|
925 | DO k = nzb_x, nzt_x |
---|
926 | DO i = xs, xs + nnx - 1 |
---|
927 | DO j = nys_x, nyn_x |
---|
928 | f_out(i,j,k) = work(j,i-xs+1,k,l) |
---|
929 | ENDDO |
---|
930 | ENDDO |
---|
931 | ENDDO |
---|
932 | !$OMP END DO NOWAIT |
---|
933 | ENDDO |
---|
934 | !$OMP END PARALLEL |
---|
935 | #endif |
---|
936 | |
---|
937 | ENDIF |
---|
938 | |
---|
939 | END SUBROUTINE transpose_zx |
---|
940 | |
---|
941 | |
---|
942 | !------------------------------------------------------------------------------! |
---|
943 | ! Description: |
---|
944 | ! ------------ |
---|
945 | !> Resorting data after the transposition from z to y. The transposition itself |
---|
946 | !> is carried out in transpose_zy |
---|
947 | !------------------------------------------------------------------------------! |
---|
948 | SUBROUTINE resort_for_zy( f_inv, f_out ) |
---|
949 | |
---|
950 | |
---|
951 | USE indices, & |
---|
952 | ONLY: ny |
---|
953 | |
---|
954 | USE kinds |
---|
955 | |
---|
956 | USE transpose_indices, & |
---|
957 | ONLY: nxl_y, nxr_y, nzb_y, nzt_y |
---|
958 | |
---|
959 | IMPLICIT NONE |
---|
960 | |
---|
961 | REAL(wp) :: f_inv(nxl_y:nxr_y,nzb_y:nzt_y,0:ny) !< |
---|
962 | REAL(wp) :: f_out(0:ny,nxl_y:nxr_y,nzb_y:nzt_y) !< |
---|
963 | |
---|
964 | |
---|
965 | INTEGER(iwp) :: i !< |
---|
966 | INTEGER(iwp) :: j !< |
---|
967 | INTEGER(iwp) :: k !< |
---|
968 | |
---|
969 | ! |
---|
970 | !-- Rearrange indices of input array in order to make data to be send |
---|
971 | !-- by MPI contiguous |
---|
972 | !$OMP PARALLEL PRIVATE ( i, j, k ) |
---|
973 | !$OMP DO |
---|
974 | #if __acc_fft_device |
---|
975 | !$ACC PARALLEL LOOP COLLAPSE(3) PRIVATE(i,j,k) & |
---|
976 | !$ACC PRESENT(f_out, f_inv) |
---|
977 | #endif |
---|
978 | DO k = nzb_y, nzt_y |
---|
979 | DO i = nxl_y, nxr_y |
---|
980 | DO j = 0, ny |
---|
981 | f_out(j,i,k) = f_inv(i,k,j) |
---|
982 | ENDDO |
---|
983 | ENDDO |
---|
984 | ENDDO |
---|
985 | !$OMP END PARALLEL |
---|
986 | |
---|
987 | END SUBROUTINE resort_for_zy |
---|
988 | |
---|
989 | |
---|
990 | !------------------------------------------------------------------------------! |
---|
991 | ! Description:cpu_log_nowait |
---|
992 | ! ------------ |
---|
993 | !> Transposition of input array (f_in) from z to y. For the input array, all |
---|
994 | !> elements along z reside on the same PE, while after transposition, all |
---|
995 | !> elements along y reside on the same PE. |
---|
996 | !------------------------------------------------------------------------------! |
---|
997 | SUBROUTINE transpose_zy( f_in, f_inv ) |
---|
998 | |
---|
999 | |
---|
1000 | USE cpulog, & |
---|
1001 | ONLY: cpu_log, cpu_log_nowait, log_point_s |
---|
1002 | |
---|
1003 | USE indices, & |
---|
1004 | ONLY: ny, nz |
---|
1005 | |
---|
1006 | USE kinds |
---|
1007 | |
---|
1008 | USE pegrid |
---|
1009 | |
---|
1010 | USE transpose_indices, & |
---|
1011 | ONLY: nxl_y, nxl_z, nxr_y, nxr_z, nyn_z, nys_z, nzb_y, nzt_y |
---|
1012 | |
---|
1013 | IMPLICIT NONE |
---|
1014 | |
---|
1015 | INTEGER(iwp) :: i !< |
---|
1016 | INTEGER(iwp) :: j !< |
---|
1017 | INTEGER(iwp) :: k !< |
---|
1018 | INTEGER(iwp) :: l !< |
---|
1019 | INTEGER(iwp) :: zs !< |
---|
1020 | |
---|
1021 | REAL(wp) :: f_in(nxl_z:nxr_z,nys_z:nyn_z,1:nz) !< |
---|
1022 | REAL(wp) :: f_inv(nxl_y:nxr_y,nzb_y:nzt_y,0:ny) !< |
---|
1023 | |
---|
1024 | REAL(wp), DIMENSION(nxl_z:nxr_z,nzt_y-nzb_y+1,nys_z:nyn_z,0:pdims(1)-1) :: work !< |
---|
1025 | #if __acc_fft_device |
---|
1026 | !$ACC DECLARE CREATE(work) |
---|
1027 | #endif |
---|
1028 | |
---|
1029 | ! |
---|
1030 | !-- If the PE grid is one-dimensional along y, the array has only to be |
---|
1031 | !-- reordered locally and therefore no transposition has to be done. |
---|
1032 | IF ( pdims(1) /= 1 ) THEN |
---|
1033 | |
---|
1034 | #if defined( __parallel ) |
---|
1035 | ! |
---|
1036 | !-- Reorder input array for transposition |
---|
1037 | !$OMP PARALLEL PRIVATE ( i, j, k, l, zs ) |
---|
1038 | DO l = 0, pdims(1) - 1 |
---|
1039 | zs = 1 + l * ( nzt_y - nzb_y + 1 ) |
---|
1040 | #if __acc_fft_device |
---|
1041 | !$ACC PARALLEL LOOP COLLAPSE(3) PRIVATE(i,j,k) & |
---|
1042 | !$ACC PRESENT(work, f_in) |
---|
1043 | #endif |
---|
1044 | !$OMP DO |
---|
1045 | DO j = nys_z, nyn_z |
---|
1046 | DO k = zs, zs + nzt_y - nzb_y |
---|
1047 | DO i = nxl_z, nxr_z |
---|
1048 | work(i,k-zs+1,j,l) = f_in(i,j,k) |
---|
1049 | ENDDO |
---|
1050 | ENDDO |
---|
1051 | ENDDO |
---|
1052 | !$OMP END DO NOWAIT |
---|
1053 | ENDDO |
---|
1054 | !$OMP END PARALLEL |
---|
1055 | |
---|
1056 | ! |
---|
1057 | !-- Transpose array |
---|
1058 | CALL cpu_log( log_point_s(32), 'mpi_alltoall', 'start', cpu_log_nowait ) |
---|
1059 | |
---|
1060 | #if __acc_fft_device |
---|
1061 | #ifndef __cuda_aware_mpi |
---|
1062 | !$ACC UPDATE HOST(work) |
---|
1063 | #else |
---|
1064 | !$ACC HOST_DATA USE_DEVICE(work, f_inv) |
---|
1065 | #endif |
---|
1066 | #endif |
---|
1067 | |
---|
1068 | IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) |
---|
1069 | CALL MPI_ALLTOALL( work(nxl_z,1,nys_z,0), sendrecvcount_yz, MPI_REAL, & |
---|
1070 | f_inv(nxl_y,nzb_y,0), sendrecvcount_yz, MPI_REAL, & |
---|
1071 | comm1dx, ierr ) |
---|
1072 | |
---|
1073 | #if __acc_fft_device |
---|
1074 | #ifndef __cuda_aware_mpi |
---|
1075 | !$ACC UPDATE DEVICE(f_inv) |
---|
1076 | #else |
---|
1077 | !$ACC END HOST_DATA |
---|
1078 | #endif |
---|
1079 | #endif |
---|
1080 | |
---|
1081 | CALL cpu_log( log_point_s(32), 'mpi_alltoall', 'stop' ) |
---|
1082 | #endif |
---|
1083 | |
---|
1084 | ELSE |
---|
1085 | ! |
---|
1086 | !-- Reorder the array in the same way like ALLTOALL did it |
---|
1087 | !$OMP PARALLEL PRIVATE ( i, j, k ) |
---|
1088 | !$OMP DO |
---|
1089 | #if __acc_fft_device |
---|
1090 | !$ACC PARALLEL LOOP COLLAPSE(3) PRIVATE(i,j,k) & |
---|
1091 | !$ACC PRESENT(f_inv, f_in) |
---|
1092 | #endif |
---|
1093 | DO k = nzb_y, nzt_y |
---|
1094 | DO j = 0, ny |
---|
1095 | DO i = nxl_y, nxr_y |
---|
1096 | f_inv(i,k,j) = f_in(i,j,k) |
---|
1097 | ENDDO |
---|
1098 | ENDDO |
---|
1099 | ENDDO |
---|
1100 | !$OMP END PARALLEL |
---|
1101 | |
---|
1102 | ENDIF |
---|
1103 | |
---|
1104 | END SUBROUTINE transpose_zy |
---|
1105 | |
---|
1106 | |
---|
1107 | !------------------------------------------------------------------------------! |
---|
1108 | ! Description: |
---|
1109 | ! ------------ |
---|
1110 | !> Transposition of input array (f_in) from z to y. For the input array, all |
---|
1111 | !> elements along z reside on the same PE, while after transposition, all |
---|
1112 | !> elements along y reside on the same PE. |
---|
1113 | !> This is a direct transposition for arrays with indices in regular order |
---|
1114 | !> (k,j,i) (cf. transpose_zy). |
---|
1115 | !------------------------------------------------------------------------------! |
---|
1116 | SUBROUTINE transpose_zyd( f_in, f_out ) |
---|
1117 | |
---|
1118 | |
---|
1119 | USE cpulog, & |
---|
1120 | ONLY: cpu_log, log_point_s |
---|
1121 | |
---|
1122 | USE indices, & |
---|
1123 | ONLY: nnx, nny, nnz, nxl, nxr, nyn, nys, ny, nz |
---|
1124 | |
---|
1125 | USE kinds |
---|
1126 | |
---|
1127 | USE pegrid |
---|
1128 | |
---|
1129 | USE transpose_indices, & |
---|
1130 | ONLY: nxl_yd, nxr_yd, nzb_yd, nzt_yd |
---|
1131 | |
---|
1132 | IMPLICIT NONE |
---|
1133 | |
---|
1134 | INTEGER(iwp) :: i !< |
---|
1135 | INTEGER(iwp) :: j !< |
---|
1136 | INTEGER(iwp) :: k !< |
---|
1137 | INTEGER(iwp) :: l !< |
---|
1138 | INTEGER(iwp) :: m !< |
---|
1139 | INTEGER(iwp) :: ys !< |
---|
1140 | |
---|
1141 | REAL(wp) :: f_in(1:nz,nys:nyn,nxl:nxr) !< |
---|
1142 | REAL(wp) :: f_inv(nys:nyn,nxl:nxr,1:nz) !< |
---|
1143 | REAL(wp) :: f_out(0:ny,nxl_yd:nxr_yd,nzb_yd:nzt_yd) !< |
---|
1144 | REAL(wp) :: work(nnx*nny*nnz) !< |
---|
1145 | |
---|
1146 | #if defined( __parallel ) |
---|
1147 | |
---|
1148 | ! |
---|
1149 | !-- Rearrange indices of input array in order to make data to be send |
---|
1150 | !-- by MPI contiguous |
---|
1151 | DO i = nxl, nxr |
---|
1152 | DO j = nys, nyn |
---|
1153 | DO k = 1, nz |
---|
1154 | f_inv(j,i,k) = f_in(k,j,i) |
---|
1155 | ENDDO |
---|
1156 | ENDDO |
---|
1157 | ENDDO |
---|
1158 | |
---|
1159 | ! |
---|
1160 | !-- Move data to different array, because memory location of work1 is |
---|
1161 | !-- needed further below (work1 = work2). |
---|
1162 | !-- If the PE grid is one-dimensional along x, only local reordering |
---|
1163 | !-- of the data is necessary and no transposition has to be done. |
---|
1164 | IF ( pdims(2) == 1 ) THEN |
---|
1165 | DO k = 1, nz |
---|
1166 | DO i = nxl, nxr |
---|
1167 | DO j = nys, nyn |
---|
1168 | f_out(j,i,k) = f_inv(j,i,k) |
---|
1169 | ENDDO |
---|
1170 | ENDDO |
---|
1171 | ENDDO |
---|
1172 | RETURN |
---|
1173 | ENDIF |
---|
1174 | |
---|
1175 | ! |
---|
1176 | !-- Transpose array |
---|
1177 | CALL cpu_log( log_point_s(32), 'mpi_alltoall', 'start' ) |
---|
1178 | IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) |
---|
1179 | CALL MPI_ALLTOALL( f_inv(nys,nxl,1), sendrecvcount_zyd, MPI_REAL, & |
---|
1180 | work(1), sendrecvcount_zyd, MPI_REAL, & |
---|
1181 | comm1dy, ierr ) |
---|
1182 | CALL cpu_log( log_point_s(32), 'mpi_alltoall', 'stop' ) |
---|
1183 | |
---|
1184 | ! |
---|
1185 | !-- Reorder transposed array |
---|
1186 | m = 0 |
---|
1187 | DO l = 0, pdims(2) - 1 |
---|
1188 | ys = 0 + l * nny |
---|
1189 | DO k = nzb_yd, nzt_yd |
---|
1190 | DO i = nxl_yd, nxr_yd |
---|
1191 | DO j = ys, ys + nny - 1 |
---|
1192 | m = m + 1 |
---|
1193 | f_out(j,i,k) = work(m) |
---|
1194 | ENDDO |
---|
1195 | ENDDO |
---|
1196 | ENDDO |
---|
1197 | ENDDO |
---|
1198 | |
---|
1199 | #endif |
---|
1200 | |
---|
1201 | END SUBROUTINE transpose_zyd |
---|