1 | !> @file transpose.f90 |
---|
2 | !------------------------------------------------------------------------------! |
---|
3 | ! This file is part of the PALM model system. |
---|
4 | ! |
---|
5 | ! PALM is free software: you can redistribute it and/or modify it under the |
---|
6 | ! terms of the GNU General Public License as published by the Free Software |
---|
7 | ! Foundation, either version 3 of the License, or (at your option) any later |
---|
8 | ! version. |
---|
9 | ! |
---|
10 | ! PALM is distributed in the hope that it will be useful, but WITHOUT ANY |
---|
11 | ! WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR |
---|
12 | ! A PARTICULAR PURPOSE. See the GNU General Public License for more details. |
---|
13 | ! |
---|
14 | ! You should have received a copy of the GNU General Public License along with |
---|
15 | ! PALM. If not, see <http://www.gnu.org/licenses/>. |
---|
16 | ! |
---|
17 | ! Copyright 1997-2018 Leibniz Universitaet Hannover |
---|
18 | !------------------------------------------------------------------------------! |
---|
19 | ! |
---|
20 | ! Current revisions: |
---|
21 | ! ----------------- |
---|
22 | ! |
---|
23 | ! |
---|
24 | ! Former revisions: |
---|
25 | ! ----------------- |
---|
26 | ! $Id: transpose.f90 3241 2018-09-12 15:02:00Z schwenkel $ |
---|
27 | ! unused variables removed |
---|
28 | ! |
---|
29 | ! 2718 2018-01-02 08:49:38Z maronga |
---|
30 | ! Corrected "Former revisions" section |
---|
31 | ! |
---|
32 | ! 2696 2017-12-14 17:12:51Z kanani |
---|
33 | ! Change in file header (GPL part) |
---|
34 | ! |
---|
35 | ! 2119 2017-01-17 16:51:50Z raasch |
---|
36 | ! |
---|
37 | ! 2118 2017-01-17 16:38:49Z raasch |
---|
38 | ! OpenACC directives removed |
---|
39 | ! |
---|
40 | ! 2000 2016-08-20 18:09:15Z knoop |
---|
41 | ! Forced header and separation lines into 80 columns |
---|
42 | ! |
---|
43 | ! 1682 2015-10-07 23:56:08Z knoop |
---|
44 | ! Code annotations made doxygen readable |
---|
45 | ! |
---|
46 | ! 1324 2014-03-21 09:13:16Z suehring |
---|
47 | ! Bugfix: ONLY statement for module pegrid removed |
---|
48 | ! |
---|
49 | ! 1320 2014-03-20 08:40:49Z raasch |
---|
50 | ! ONLY-attribute added to USE-statements, |
---|
51 | ! kind-parameters added to all INTEGER and REAL declaration statements, |
---|
52 | ! kinds are defined in new module kinds, |
---|
53 | ! old module precision_kind is removed, |
---|
54 | ! revision history before 2012 removed, |
---|
55 | ! comment fields (!:) to be used for variable explanations added to |
---|
56 | ! all variable declaration statements |
---|
57 | ! |
---|
58 | ! 1318 2014-03-17 13:35:16Z raasch |
---|
59 | ! cpu_log_nowait parameter added to cpu measurements of the transpositions |
---|
60 | ! required for solving the Poisson equation (poisfft), |
---|
61 | ! module interfaces removed |
---|
62 | ! |
---|
63 | ! 1257 2013-11-08 15:18:40Z raasch |
---|
64 | ! openacc loop and loop vector clauses removed |
---|
65 | ! |
---|
66 | ! 1216 2013-08-26 09:31:42Z raasch |
---|
67 | ! re-sorting of the transposed / to be transposed arrays moved to separate |
---|
68 | ! routines resort_for_... |
---|
69 | ! |
---|
70 | ! 1111 2013-03-08 23:54:10Z raasch |
---|
71 | ! openACC directives added, |
---|
72 | ! resorting data from/to work changed, work got 4 dimensions instead of 1 |
---|
73 | ! |
---|
74 | ! 1106 2013-03-04 05:31:38Z raasch |
---|
75 | ! preprocessor lines rearranged so that routines can also be used in serial |
---|
76 | ! (non-parallel) mode |
---|
77 | ! |
---|
78 | ! 1092 2013-02-02 11:24:22Z raasch |
---|
79 | ! unused variables removed |
---|
80 | ! |
---|
81 | ! 1036 2012-10-22 13:43:42Z raasch |
---|
82 | ! code put under GPL (PALM 3.9) |
---|
83 | ! |
---|
84 | ! 1003 2012-09-14 14:35:53Z raasch |
---|
85 | ! indices nxa, nya, etc. replaced by nx, ny, etc. |
---|
86 | ! |
---|
87 | ! Revision 1.1 1997/07/24 11:25:18 raasch |
---|
88 | ! Initial revision |
---|
89 | ! |
---|
90 | !------------------------------------------------------------------------------! |
---|
91 | ! Description: |
---|
92 | ! ------------ |
---|
93 | !> Resorting data for the transposition from x to y. The transposition itself |
---|
94 | !> is carried out in transpose_xy |
---|
95 | !------------------------------------------------------------------------------! |
---|
96 | SUBROUTINE resort_for_xy( f_in, f_inv ) |
---|
97 | |
---|
98 | |
---|
99 | USE indices, & |
---|
100 | ONLY: nx |
---|
101 | |
---|
102 | USE kinds |
---|
103 | |
---|
104 | USE transpose_indices, & |
---|
105 | ONLY: nyn_x, nys_x, nzb_x, nzt_x |
---|
106 | |
---|
107 | IMPLICIT NONE |
---|
108 | |
---|
109 | REAL(wp) :: f_in(0:nx,nys_x:nyn_x,nzb_x:nzt_x) !< |
---|
110 | REAL(wp) :: f_inv(nys_x:nyn_x,nzb_x:nzt_x,0:nx) !< |
---|
111 | |
---|
112 | |
---|
113 | INTEGER(iwp) :: i !< |
---|
114 | INTEGER(iwp) :: j !< |
---|
115 | INTEGER(iwp) :: k !< |
---|
116 | ! |
---|
117 | !-- Rearrange indices of input array in order to make data to be send |
---|
118 | !-- by MPI contiguous |
---|
119 | !$OMP PARALLEL PRIVATE ( i, j, k ) |
---|
120 | !$OMP DO |
---|
121 | DO i = 0, nx |
---|
122 | DO k = nzb_x, nzt_x |
---|
123 | DO j = nys_x, nyn_x |
---|
124 | f_inv(j,k,i) = f_in(i,j,k) |
---|
125 | ENDDO |
---|
126 | ENDDO |
---|
127 | ENDDO |
---|
128 | !$OMP END PARALLEL |
---|
129 | |
---|
130 | END SUBROUTINE resort_for_xy |
---|
131 | |
---|
132 | |
---|
133 | !------------------------------------------------------------------------------! |
---|
134 | ! Description: |
---|
135 | ! ------------ |
---|
136 | !> Transposition of input array (f_in) from x to y. For the input array, all |
---|
137 | !> elements along x reside on the same PE, while after transposition, all |
---|
138 | !> elements along y reside on the same PE. |
---|
139 | !------------------------------------------------------------------------------! |
---|
140 | SUBROUTINE transpose_xy( f_inv, f_out ) |
---|
141 | |
---|
142 | |
---|
143 | USE cpulog, & |
---|
144 | ONLY: cpu_log, cpu_log_nowait, log_point_s |
---|
145 | |
---|
146 | USE indices, & |
---|
147 | ONLY: nx, ny |
---|
148 | |
---|
149 | USE kinds |
---|
150 | |
---|
151 | USE pegrid |
---|
152 | |
---|
153 | USE transpose_indices, & |
---|
154 | ONLY: nxl_y, nxr_y, nyn_x, nys_x, nzb_x, nzb_y, nzt_x, nzt_y |
---|
155 | |
---|
156 | IMPLICIT NONE |
---|
157 | |
---|
158 | INTEGER(iwp) :: i !< |
---|
159 | INTEGER(iwp) :: j !< |
---|
160 | INTEGER(iwp) :: k !< |
---|
161 | INTEGER(iwp) :: l !< |
---|
162 | INTEGER(iwp) :: ys !< |
---|
163 | |
---|
164 | REAL(wp) :: f_inv(nys_x:nyn_x,nzb_x:nzt_x,0:nx) !< |
---|
165 | REAL(wp) :: f_out(0:ny,nxl_y:nxr_y,nzb_y:nzt_y) !< |
---|
166 | |
---|
167 | REAL(wp), DIMENSION(nyn_x-nys_x+1,nzb_y:nzt_y,nxl_y:nxr_y,0:pdims(2)-1) :: work !< |
---|
168 | |
---|
169 | |
---|
170 | IF ( numprocs /= 1 ) THEN |
---|
171 | |
---|
172 | #if defined( __parallel ) |
---|
173 | ! |
---|
174 | !-- Transpose array |
---|
175 | CALL cpu_log( log_point_s(32), 'mpi_alltoall', 'start', cpu_log_nowait ) |
---|
176 | IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) |
---|
177 | CALL MPI_ALLTOALL( f_inv(nys_x,nzb_x,0), sendrecvcount_xy, MPI_REAL, & |
---|
178 | work(1,nzb_y,nxl_y,0), sendrecvcount_xy, MPI_REAL, & |
---|
179 | comm1dy, ierr ) |
---|
180 | CALL cpu_log( log_point_s(32), 'mpi_alltoall', 'stop' ) |
---|
181 | |
---|
182 | ! |
---|
183 | !-- Reorder transposed array |
---|
184 | !$OMP PARALLEL PRIVATE ( i, j, k, l, ys ) |
---|
185 | !$OMP DO |
---|
186 | DO l = 0, pdims(2) - 1 |
---|
187 | ys = 0 + l * ( nyn_x - nys_x + 1 ) |
---|
188 | DO i = nxl_y, nxr_y |
---|
189 | DO k = nzb_y, nzt_y |
---|
190 | DO j = ys, ys + nyn_x - nys_x |
---|
191 | f_out(j,i,k) = work(j-ys+1,k,i,l) |
---|
192 | ENDDO |
---|
193 | ENDDO |
---|
194 | ENDDO |
---|
195 | ENDDO |
---|
196 | !$OMP END PARALLEL |
---|
197 | #endif |
---|
198 | |
---|
199 | ELSE |
---|
200 | |
---|
201 | ! |
---|
202 | !-- Reorder transposed array |
---|
203 | !$OMP PARALLEL PRIVATE ( i, j, k ) |
---|
204 | !$OMP DO |
---|
205 | DO k = nzb_y, nzt_y |
---|
206 | DO i = nxl_y, nxr_y |
---|
207 | DO j = 0, ny |
---|
208 | f_out(j,i,k) = f_inv(j,k,i) |
---|
209 | ENDDO |
---|
210 | ENDDO |
---|
211 | ENDDO |
---|
212 | !$OMP END PARALLEL |
---|
213 | |
---|
214 | ENDIF |
---|
215 | |
---|
216 | END SUBROUTINE transpose_xy |
---|
217 | |
---|
218 | |
---|
219 | !------------------------------------------------------------------------------! |
---|
220 | ! Description: |
---|
221 | ! ------------ |
---|
222 | !> Resorting data after the transposition from x to z. The transposition itself |
---|
223 | !> is carried out in transpose_xz |
---|
224 | !------------------------------------------------------------------------------! |
---|
225 | SUBROUTINE resort_for_xz( f_inv, f_out ) |
---|
226 | |
---|
227 | |
---|
228 | USE indices, & |
---|
229 | ONLY: nxl, nxr, nyn, nys, nz |
---|
230 | |
---|
231 | USE kinds |
---|
232 | |
---|
233 | IMPLICIT NONE |
---|
234 | |
---|
235 | REAL(wp) :: f_inv(nys:nyn,nxl:nxr,1:nz) !< |
---|
236 | REAL(wp) :: f_out(1:nz,nys:nyn,nxl:nxr) !< |
---|
237 | |
---|
238 | INTEGER(iwp) :: i !< |
---|
239 | INTEGER(iwp) :: j !< |
---|
240 | INTEGER(iwp) :: k !< |
---|
241 | ! |
---|
242 | !-- Rearrange indices of input array in order to make data to be send |
---|
243 | !-- by MPI contiguous. |
---|
244 | !-- In case of parallel fft/transposition, scattered store is faster in |
---|
245 | !-- backward direction!!! |
---|
246 | !$OMP PARALLEL PRIVATE ( i, j, k ) |
---|
247 | !$OMP DO |
---|
248 | DO k = 1, nz |
---|
249 | DO i = nxl, nxr |
---|
250 | DO j = nys, nyn |
---|
251 | f_out(k,j,i) = f_inv(j,i,k) |
---|
252 | ENDDO |
---|
253 | ENDDO |
---|
254 | ENDDO |
---|
255 | !$OMP END PARALLEL |
---|
256 | |
---|
257 | END SUBROUTINE resort_for_xz |
---|
258 | |
---|
259 | |
---|
260 | !------------------------------------------------------------------------------! |
---|
261 | ! Description: |
---|
262 | ! ------------ |
---|
263 | !> Transposition of input array (f_in) from x to z. For the input array, all |
---|
264 | !> elements along x reside on the same PE, while after transposition, all |
---|
265 | !> elements along z reside on the same PE. |
---|
266 | !------------------------------------------------------------------------------! |
---|
267 | SUBROUTINE transpose_xz( f_in, f_inv ) |
---|
268 | |
---|
269 | |
---|
270 | USE cpulog, & |
---|
271 | ONLY: cpu_log, cpu_log_nowait, log_point_s |
---|
272 | |
---|
273 | USE indices, & |
---|
274 | ONLY: nnx, nx, nxl, nxr, nyn, nys, nz |
---|
275 | |
---|
276 | USE kinds |
---|
277 | |
---|
278 | USE pegrid |
---|
279 | |
---|
280 | USE transpose_indices, & |
---|
281 | ONLY: nyn_x, nys_x, nzb_x, nzt_x |
---|
282 | |
---|
283 | IMPLICIT NONE |
---|
284 | |
---|
285 | INTEGER(iwp) :: i !< |
---|
286 | INTEGER(iwp) :: j !< |
---|
287 | INTEGER(iwp) :: k !< |
---|
288 | INTEGER(iwp) :: l !< |
---|
289 | INTEGER(iwp) :: xs !< |
---|
290 | |
---|
291 | REAL(wp) :: f_in(0:nx,nys_x:nyn_x,nzb_x:nzt_x) !< |
---|
292 | REAL(wp) :: f_inv(nys:nyn,nxl:nxr,1:nz) !< |
---|
293 | |
---|
294 | REAL(wp), DIMENSION(nys_x:nyn_x,nnx,nzb_x:nzt_x,0:pdims(1)-1) :: work !< |
---|
295 | |
---|
296 | |
---|
297 | ! |
---|
298 | !-- If the PE grid is one-dimensional along y, the array has only to be |
---|
299 | !-- reordered locally and therefore no transposition has to be done. |
---|
300 | IF ( pdims(1) /= 1 ) THEN |
---|
301 | |
---|
302 | #if defined( __parallel ) |
---|
303 | ! |
---|
304 | !-- Reorder input array for transposition |
---|
305 | !$OMP PARALLEL PRIVATE ( i, j, k, l, xs ) |
---|
306 | !$OMP DO |
---|
307 | DO l = 0, pdims(1) - 1 |
---|
308 | xs = 0 + l * nnx |
---|
309 | DO k = nzb_x, nzt_x |
---|
310 | DO i = xs, xs + nnx - 1 |
---|
311 | DO j = nys_x, nyn_x |
---|
312 | work(j,i-xs+1,k,l) = f_in(i,j,k) |
---|
313 | ENDDO |
---|
314 | ENDDO |
---|
315 | ENDDO |
---|
316 | ENDDO |
---|
317 | !$OMP END PARALLEL |
---|
318 | |
---|
319 | ! |
---|
320 | !-- Transpose array |
---|
321 | CALL cpu_log( log_point_s(32), 'mpi_alltoall', 'start', cpu_log_nowait ) |
---|
322 | IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) |
---|
323 | CALL MPI_ALLTOALL( work(nys_x,1,nzb_x,0), sendrecvcount_zx, MPI_REAL, & |
---|
324 | f_inv(nys,nxl,1), sendrecvcount_zx, MPI_REAL, & |
---|
325 | comm1dx, ierr ) |
---|
326 | CALL cpu_log( log_point_s(32), 'mpi_alltoall', 'stop' ) |
---|
327 | #endif |
---|
328 | |
---|
329 | ELSE |
---|
330 | |
---|
331 | ! |
---|
332 | !-- Reorder the array in a way that the z index is in first position |
---|
333 | !$OMP PARALLEL PRIVATE ( i, j, k ) |
---|
334 | !$OMP DO |
---|
335 | DO i = nxl, nxr |
---|
336 | DO j = nys, nyn |
---|
337 | DO k = 1, nz |
---|
338 | f_inv(j,i,k) = f_in(i,j,k) |
---|
339 | ENDDO |
---|
340 | ENDDO |
---|
341 | ENDDO |
---|
342 | !$OMP END PARALLEL |
---|
343 | |
---|
344 | ENDIF |
---|
345 | |
---|
346 | END SUBROUTINE transpose_xz |
---|
347 | |
---|
348 | |
---|
349 | !------------------------------------------------------------------------------! |
---|
350 | ! Description: |
---|
351 | ! ------------ |
---|
352 | !> Resorting data after the transposition from y to x. The transposition itself |
---|
353 | !> is carried out in transpose_yx |
---|
354 | !------------------------------------------------------------------------------! |
---|
355 | SUBROUTINE resort_for_yx( f_inv, f_out ) |
---|
356 | |
---|
357 | |
---|
358 | USE indices, & |
---|
359 | ONLY: nx |
---|
360 | |
---|
361 | USE kinds |
---|
362 | |
---|
363 | USE transpose_indices, & |
---|
364 | ONLY: nyn_x, nys_x, nzb_x, nzt_x |
---|
365 | |
---|
366 | IMPLICIT NONE |
---|
367 | |
---|
368 | REAL(wp) :: f_inv(nys_x:nyn_x,nzb_x:nzt_x,0:nx) !< |
---|
369 | REAL(wp) :: f_out(0:nx,nys_x:nyn_x,nzb_x:nzt_x) !< |
---|
370 | |
---|
371 | |
---|
372 | INTEGER(iwp) :: i !< |
---|
373 | INTEGER(iwp) :: j !< |
---|
374 | INTEGER(iwp) :: k !< |
---|
375 | ! |
---|
376 | !-- Rearrange indices of input array in order to make data to be send |
---|
377 | !-- by MPI contiguous |
---|
378 | !$OMP PARALLEL PRIVATE ( i, j, k ) |
---|
379 | !$OMP DO |
---|
380 | DO i = 0, nx |
---|
381 | DO k = nzb_x, nzt_x |
---|
382 | DO j = nys_x, nyn_x |
---|
383 | f_out(i,j,k) = f_inv(j,k,i) |
---|
384 | ENDDO |
---|
385 | ENDDO |
---|
386 | ENDDO |
---|
387 | !$OMP END PARALLEL |
---|
388 | |
---|
389 | END SUBROUTINE resort_for_yx |
---|
390 | |
---|
391 | |
---|
392 | !------------------------------------------------------------------------------! |
---|
393 | ! Description: |
---|
394 | ! ------------ |
---|
395 | !> Transposition of input array (f_in) from y to x. For the input array, all |
---|
396 | !> elements along y reside on the same PE, while after transposition, all |
---|
397 | !> elements along x reside on the same PE. |
---|
398 | !------------------------------------------------------------------------------! |
---|
399 | SUBROUTINE transpose_yx( f_in, f_inv ) |
---|
400 | |
---|
401 | |
---|
402 | USE cpulog, & |
---|
403 | ONLY: cpu_log, cpu_log_nowait, log_point_s |
---|
404 | |
---|
405 | USE indices, & |
---|
406 | ONLY: nx, ny |
---|
407 | |
---|
408 | USE kinds |
---|
409 | |
---|
410 | USE pegrid |
---|
411 | |
---|
412 | USE transpose_indices, & |
---|
413 | ONLY: nxl_y, nxr_y, nyn_x, nys_x, nzb_x, nzb_y, nzt_x, nzt_y |
---|
414 | |
---|
415 | IMPLICIT NONE |
---|
416 | |
---|
417 | INTEGER(iwp) :: i !< |
---|
418 | INTEGER(iwp) :: j !< |
---|
419 | INTEGER(iwp) :: k !< |
---|
420 | INTEGER(iwp) :: l !< |
---|
421 | INTEGER(iwp) :: ys !< |
---|
422 | |
---|
423 | REAL(wp) :: f_in(0:ny,nxl_y:nxr_y,nzb_y:nzt_y) !< |
---|
424 | REAL(wp) :: f_inv(nys_x:nyn_x,nzb_x:nzt_x,0:nx) !< |
---|
425 | |
---|
426 | REAL(wp), DIMENSION(nyn_x-nys_x+1,nzb_y:nzt_y,nxl_y:nxr_y,0:pdims(2)-1) :: work !< |
---|
427 | |
---|
428 | |
---|
429 | IF ( numprocs /= 1 ) THEN |
---|
430 | |
---|
431 | #if defined( __parallel ) |
---|
432 | ! |
---|
433 | !-- Reorder input array for transposition |
---|
434 | !$OMP PARALLEL PRIVATE ( i, j, k, l, ys ) |
---|
435 | !$OMP DO |
---|
436 | DO l = 0, pdims(2) - 1 |
---|
437 | ys = 0 + l * ( nyn_x - nys_x + 1 ) |
---|
438 | DO i = nxl_y, nxr_y |
---|
439 | DO k = nzb_y, nzt_y |
---|
440 | DO j = ys, ys + nyn_x - nys_x |
---|
441 | work(j-ys+1,k,i,l) = f_in(j,i,k) |
---|
442 | ENDDO |
---|
443 | ENDDO |
---|
444 | ENDDO |
---|
445 | ENDDO |
---|
446 | !$OMP END PARALLEL |
---|
447 | |
---|
448 | ! |
---|
449 | !-- Transpose array |
---|
450 | CALL cpu_log( log_point_s(32), 'mpi_alltoall', 'start', cpu_log_nowait ) |
---|
451 | IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) |
---|
452 | CALL MPI_ALLTOALL( work(1,nzb_y,nxl_y,0), sendrecvcount_xy, MPI_REAL, & |
---|
453 | f_inv(nys_x,nzb_x,0), sendrecvcount_xy, MPI_REAL, & |
---|
454 | comm1dy, ierr ) |
---|
455 | CALL cpu_log( log_point_s(32), 'mpi_alltoall', 'stop' ) |
---|
456 | #endif |
---|
457 | |
---|
458 | ELSE |
---|
459 | |
---|
460 | ! |
---|
461 | !-- Reorder array f_in the same way as ALLTOALL did it |
---|
462 | !$OMP PARALLEL PRIVATE ( i, j, k ) |
---|
463 | !$OMP DO |
---|
464 | DO i = nxl_y, nxr_y |
---|
465 | DO k = nzb_y, nzt_y |
---|
466 | DO j = 0, ny |
---|
467 | f_inv(j,k,i) = f_in(j,i,k) |
---|
468 | ENDDO |
---|
469 | ENDDO |
---|
470 | ENDDO |
---|
471 | !$OMP END PARALLEL |
---|
472 | |
---|
473 | ENDIF |
---|
474 | |
---|
475 | END SUBROUTINE transpose_yx |
---|
476 | |
---|
477 | |
---|
478 | !------------------------------------------------------------------------------! |
---|
479 | ! Description: |
---|
480 | ! ------------ |
---|
481 | !> Transposition of input array (f_in) from y to x. For the input array, all |
---|
482 | !> elements along y reside on the same PE, while after transposition, all |
---|
483 | !> elements along x reside on the same PE. |
---|
484 | !> This is a direct transposition for arrays with indices in regular order |
---|
485 | !> (k,j,i) (cf. transpose_yx). |
---|
486 | !------------------------------------------------------------------------------! |
---|
487 | SUBROUTINE transpose_yxd( f_in, f_out ) |
---|
488 | |
---|
489 | |
---|
490 | USE cpulog, & |
---|
491 | ONLY: cpu_log, log_point_s |
---|
492 | |
---|
493 | USE indices, & |
---|
494 | ONLY: nnx, nny, nnz, nx, nxl, nxr, nyn, nys, nz |
---|
495 | |
---|
496 | USE kinds |
---|
497 | |
---|
498 | USE pegrid |
---|
499 | |
---|
500 | USE transpose_indices, & |
---|
501 | ONLY: nyn_x, nys_x, nzb_x, nzt_x |
---|
502 | |
---|
503 | IMPLICIT NONE |
---|
504 | |
---|
505 | INTEGER(iwp) :: i !< |
---|
506 | INTEGER(iwp) :: j !< |
---|
507 | INTEGER(iwp) :: k !< |
---|
508 | INTEGER(iwp) :: l !< |
---|
509 | INTEGER(iwp) :: m !< |
---|
510 | INTEGER(iwp) :: xs !< |
---|
511 | |
---|
512 | REAL(wp) :: f_in(1:nz,nys:nyn,nxl:nxr) !< |
---|
513 | REAL(wp) :: f_inv(nxl:nxr,1:nz,nys:nyn) !< |
---|
514 | REAL(wp) :: f_out(0:nx,nys_x:nyn_x,nzb_x:nzt_x) !< |
---|
515 | REAL(wp) :: work(nnx*nny*nnz) !< |
---|
516 | #if defined( __parallel ) |
---|
517 | |
---|
518 | ! |
---|
519 | !-- Rearrange indices of input array in order to make data to be send |
---|
520 | !-- by MPI contiguous |
---|
521 | DO k = 1, nz |
---|
522 | DO j = nys, nyn |
---|
523 | DO i = nxl, nxr |
---|
524 | f_inv(i,k,j) = f_in(k,j,i) |
---|
525 | ENDDO |
---|
526 | ENDDO |
---|
527 | ENDDO |
---|
528 | |
---|
529 | ! |
---|
530 | !-- Transpose array |
---|
531 | CALL cpu_log( log_point_s(32), 'mpi_alltoall', 'start' ) |
---|
532 | IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) |
---|
533 | CALL MPI_ALLTOALL( f_inv(nxl,1,nys), sendrecvcount_xy, MPI_REAL, & |
---|
534 | work(1), sendrecvcount_xy, MPI_REAL, & |
---|
535 | comm1dx, ierr ) |
---|
536 | CALL cpu_log( log_point_s(32), 'mpi_alltoall', 'stop' ) |
---|
537 | |
---|
538 | ! |
---|
539 | !-- Reorder transposed array |
---|
540 | m = 0 |
---|
541 | DO l = 0, pdims(1) - 1 |
---|
542 | xs = 0 + l * nnx |
---|
543 | DO j = nys_x, nyn_x |
---|
544 | DO k = 1, nz |
---|
545 | DO i = xs, xs + nnx - 1 |
---|
546 | m = m + 1 |
---|
547 | f_out(i,j,k) = work(m) |
---|
548 | ENDDO |
---|
549 | ENDDO |
---|
550 | ENDDO |
---|
551 | ENDDO |
---|
552 | |
---|
553 | #endif |
---|
554 | |
---|
555 | END SUBROUTINE transpose_yxd |
---|
556 | |
---|
557 | |
---|
558 | !------------------------------------------------------------------------------! |
---|
559 | ! Description: |
---|
560 | ! ------------ |
---|
561 | !> Resorting data for the transposition from y to z. The transposition itself |
---|
562 | !> is carried out in transpose_yz |
---|
563 | !------------------------------------------------------------------------------! |
---|
564 | SUBROUTINE resort_for_yz( f_in, f_inv ) |
---|
565 | |
---|
566 | |
---|
567 | USE indices, & |
---|
568 | ONLY: ny |
---|
569 | |
---|
570 | USE kinds |
---|
571 | |
---|
572 | USE transpose_indices, & |
---|
573 | ONLY: nxl_y, nxr_y, nzb_y, nzt_y |
---|
574 | |
---|
575 | IMPLICIT NONE |
---|
576 | |
---|
577 | REAL(wp) :: f_in(0:ny,nxl_y:nxr_y,nzb_y:nzt_y) !< |
---|
578 | REAL(wp) :: f_inv(nxl_y:nxr_y,nzb_y:nzt_y,0:ny) !< |
---|
579 | |
---|
580 | INTEGER(iwp) :: i !< |
---|
581 | INTEGER(iwp) :: j !< |
---|
582 | INTEGER(iwp) :: k !< |
---|
583 | |
---|
584 | ! |
---|
585 | !-- Rearrange indices of input array in order to make data to be send |
---|
586 | !-- by MPI contiguous |
---|
587 | !$OMP PARALLEL PRIVATE ( i, j, k ) |
---|
588 | !$OMP DO |
---|
589 | DO j = 0, ny |
---|
590 | DO k = nzb_y, nzt_y |
---|
591 | DO i = nxl_y, nxr_y |
---|
592 | f_inv(i,k,j) = f_in(j,i,k) |
---|
593 | ENDDO |
---|
594 | ENDDO |
---|
595 | ENDDO |
---|
596 | !$OMP END PARALLEL |
---|
597 | |
---|
598 | END SUBROUTINE resort_for_yz |
---|
599 | |
---|
600 | |
---|
601 | !------------------------------------------------------------------------------! |
---|
602 | ! Description: |
---|
603 | ! ------------ |
---|
604 | !> Transposition of input array (f_in) from y to z. For the input array, all |
---|
605 | !> elements along y reside on the same PE, while after transposition, all |
---|
606 | !> elements along z reside on the same PE. |
---|
607 | !------------------------------------------------------------------------------! |
---|
608 | SUBROUTINE transpose_yz( f_inv, f_out ) |
---|
609 | |
---|
610 | |
---|
611 | USE cpulog, & |
---|
612 | ONLY: cpu_log, cpu_log_nowait, log_point_s |
---|
613 | |
---|
614 | USE indices, & |
---|
615 | ONLY: ny, nz |
---|
616 | |
---|
617 | USE kinds |
---|
618 | |
---|
619 | USE pegrid |
---|
620 | |
---|
621 | USE transpose_indices, & |
---|
622 | ONLY: nxl_y, nxl_z, nxr_y, nxr_z, nyn_z, nys_z, nzb_y, nzt_y |
---|
623 | |
---|
624 | IMPLICIT NONE |
---|
625 | |
---|
626 | INTEGER(iwp) :: i !< |
---|
627 | INTEGER(iwp) :: j !< |
---|
628 | INTEGER(iwp) :: k !< |
---|
629 | INTEGER(iwp) :: l !< |
---|
630 | INTEGER(iwp) :: zs !< |
---|
631 | |
---|
632 | REAL(wp) :: f_inv(nxl_y:nxr_y,nzb_y:nzt_y,0:ny) !< |
---|
633 | REAL(wp) :: f_out(nxl_z:nxr_z,nys_z:nyn_z,1:nz) !< |
---|
634 | |
---|
635 | REAL(wp), DIMENSION(nxl_z:nxr_z,nzt_y-nzb_y+1,nys_z:nyn_z,0:pdims(1)-1) :: work !< |
---|
636 | |
---|
637 | |
---|
638 | ! |
---|
639 | !-- If the PE grid is one-dimensional along y, only local reordering |
---|
640 | !-- of the data is necessary and no transposition has to be done. |
---|
641 | IF ( pdims(1) == 1 ) THEN |
---|
642 | |
---|
643 | !$OMP PARALLEL PRIVATE ( i, j, k ) |
---|
644 | !$OMP DO |
---|
645 | DO j = 0, ny |
---|
646 | DO k = nzb_y, nzt_y |
---|
647 | DO i = nxl_y, nxr_y |
---|
648 | f_out(i,j,k) = f_inv(i,k,j) |
---|
649 | ENDDO |
---|
650 | ENDDO |
---|
651 | ENDDO |
---|
652 | !$OMP END PARALLEL |
---|
653 | |
---|
654 | ELSE |
---|
655 | |
---|
656 | #if defined( __parallel ) |
---|
657 | ! |
---|
658 | !-- Transpose array |
---|
659 | CALL cpu_log( log_point_s(32), 'mpi_alltoall', 'start', cpu_log_nowait ) |
---|
660 | IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) |
---|
661 | CALL MPI_ALLTOALL( f_inv(nxl_y,nzb_y,0), sendrecvcount_yz, MPI_REAL, & |
---|
662 | work(nxl_z,1,nys_z,0), sendrecvcount_yz, MPI_REAL, & |
---|
663 | comm1dx, ierr ) |
---|
664 | CALL cpu_log( log_point_s(32), 'mpi_alltoall', 'stop' ) |
---|
665 | |
---|
666 | ! |
---|
667 | !-- Reorder transposed array |
---|
668 | !$OMP PARALLEL PRIVATE ( i, j, k, l, zs ) |
---|
669 | !$OMP DO |
---|
670 | DO l = 0, pdims(1) - 1 |
---|
671 | zs = 1 + l * ( nzt_y - nzb_y + 1 ) |
---|
672 | DO j = nys_z, nyn_z |
---|
673 | DO k = zs, zs + nzt_y - nzb_y |
---|
674 | DO i = nxl_z, nxr_z |
---|
675 | f_out(i,j,k) = work(i,k-zs+1,j,l) |
---|
676 | ENDDO |
---|
677 | ENDDO |
---|
678 | ENDDO |
---|
679 | ENDDO |
---|
680 | !$OMP END PARALLEL |
---|
681 | #endif |
---|
682 | |
---|
683 | ENDIF |
---|
684 | |
---|
685 | END SUBROUTINE transpose_yz |
---|
686 | |
---|
687 | |
---|
688 | !------------------------------------------------------------------------------! |
---|
689 | ! Description: |
---|
690 | ! ------------ |
---|
691 | !> Resorting data for the transposition from z to x. The transposition itself |
---|
692 | !> is carried out in transpose_zx |
---|
693 | !------------------------------------------------------------------------------! |
---|
694 | SUBROUTINE resort_for_zx( f_in, f_inv ) |
---|
695 | |
---|
696 | |
---|
697 | USE indices, & |
---|
698 | ONLY: nxl, nxr, nyn, nys, nz |
---|
699 | |
---|
700 | USE kinds |
---|
701 | |
---|
702 | IMPLICIT NONE |
---|
703 | |
---|
704 | REAL(wp) :: f_in(1:nz,nys:nyn,nxl:nxr) !< |
---|
705 | REAL(wp) :: f_inv(nys:nyn,nxl:nxr,1:nz) !< |
---|
706 | |
---|
707 | INTEGER(iwp) :: i !< |
---|
708 | INTEGER(iwp) :: j !< |
---|
709 | INTEGER(iwp) :: k !< |
---|
710 | |
---|
711 | ! |
---|
712 | !-- Rearrange indices of input array in order to make data to be send |
---|
713 | !-- by MPI contiguous |
---|
714 | !$OMP PARALLEL PRIVATE ( i, j, k ) |
---|
715 | !$OMP DO |
---|
716 | DO k = 1,nz |
---|
717 | DO i = nxl, nxr |
---|
718 | DO j = nys, nyn |
---|
719 | f_inv(j,i,k) = f_in(k,j,i) |
---|
720 | ENDDO |
---|
721 | ENDDO |
---|
722 | ENDDO |
---|
723 | !$OMP END PARALLEL |
---|
724 | |
---|
725 | END SUBROUTINE resort_for_zx |
---|
726 | |
---|
727 | |
---|
728 | !------------------------------------------------------------------------------! |
---|
729 | ! Description: |
---|
730 | ! ------------ |
---|
731 | !> Transposition of input array (f_in) from z to x. For the input array, all |
---|
732 | !> elements along z reside on the same PE, while after transposition, all |
---|
733 | !> elements along x reside on the same PE. |
---|
734 | !------------------------------------------------------------------------------! |
---|
735 | SUBROUTINE transpose_zx( f_inv, f_out ) |
---|
736 | |
---|
737 | |
---|
738 | USE cpulog, & |
---|
739 | ONLY: cpu_log, cpu_log_nowait, log_point_s |
---|
740 | |
---|
741 | USE indices, & |
---|
742 | ONLY: nnx, nx, nxl, nxr, nyn, nys, nz |
---|
743 | |
---|
744 | USE kinds |
---|
745 | |
---|
746 | USE pegrid |
---|
747 | |
---|
748 | USE transpose_indices, & |
---|
749 | ONLY: nyn_x, nys_x, nzb_x, nzt_x |
---|
750 | |
---|
751 | IMPLICIT NONE |
---|
752 | |
---|
753 | INTEGER(iwp) :: i !< |
---|
754 | INTEGER(iwp) :: j !< |
---|
755 | INTEGER(iwp) :: k !< |
---|
756 | INTEGER(iwp) :: l !< |
---|
757 | INTEGER(iwp) :: xs !< |
---|
758 | |
---|
759 | REAL(wp) :: f_inv(nys:nyn,nxl:nxr,1:nz) !< |
---|
760 | REAL(wp) :: f_out(0:nx,nys_x:nyn_x,nzb_x:nzt_x) !< |
---|
761 | |
---|
762 | REAL(wp), DIMENSION(nys_x:nyn_x,nnx,nzb_x:nzt_x,0:pdims(1)-1) :: work !< |
---|
763 | |
---|
764 | |
---|
765 | ! |
---|
766 | !-- If the PE grid is one-dimensional along y, only local reordering |
---|
767 | !-- of the data is necessary and no transposition has to be done. |
---|
768 | IF ( pdims(1) == 1 ) THEN |
---|
769 | |
---|
770 | !$OMP PARALLEL PRIVATE ( i, j, k ) |
---|
771 | !$OMP DO |
---|
772 | DO k = 1, nz |
---|
773 | DO i = nxl, nxr |
---|
774 | DO j = nys, nyn |
---|
775 | f_out(i,j,k) = f_inv(j,i,k) |
---|
776 | ENDDO |
---|
777 | ENDDO |
---|
778 | ENDDO |
---|
779 | !$OMP END PARALLEL |
---|
780 | |
---|
781 | ELSE |
---|
782 | |
---|
783 | #if defined( __parallel ) |
---|
784 | ! |
---|
785 | !-- Transpose array |
---|
786 | CALL cpu_log( log_point_s(32), 'mpi_alltoall', 'start', cpu_log_nowait ) |
---|
787 | IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) |
---|
788 | CALL MPI_ALLTOALL( f_inv(nys,nxl,1), sendrecvcount_zx, MPI_REAL, & |
---|
789 | work(nys_x,1,nzb_x,0), sendrecvcount_zx, MPI_REAL, & |
---|
790 | comm1dx, ierr ) |
---|
791 | CALL cpu_log( log_point_s(32), 'mpi_alltoall', 'stop' ) |
---|
792 | |
---|
793 | ! |
---|
794 | !-- Reorder transposed array |
---|
795 | !$OMP PARALLEL PRIVATE ( i, j, k, l, xs ) |
---|
796 | !$OMP DO |
---|
797 | DO l = 0, pdims(1) - 1 |
---|
798 | xs = 0 + l * nnx |
---|
799 | DO k = nzb_x, nzt_x |
---|
800 | DO i = xs, xs + nnx - 1 |
---|
801 | DO j = nys_x, nyn_x |
---|
802 | f_out(i,j,k) = work(j,i-xs+1,k,l) |
---|
803 | ENDDO |
---|
804 | ENDDO |
---|
805 | ENDDO |
---|
806 | ENDDO |
---|
807 | !$OMP END PARALLEL |
---|
808 | #endif |
---|
809 | |
---|
810 | ENDIF |
---|
811 | |
---|
812 | END SUBROUTINE transpose_zx |
---|
813 | |
---|
814 | |
---|
815 | !------------------------------------------------------------------------------! |
---|
816 | ! Description: |
---|
817 | ! ------------ |
---|
818 | !> Resorting data after the transposition from z to y. The transposition itself |
---|
819 | !> is carried out in transpose_zy |
---|
820 | !------------------------------------------------------------------------------! |
---|
821 | SUBROUTINE resort_for_zy( f_inv, f_out ) |
---|
822 | |
---|
823 | |
---|
824 | USE indices, & |
---|
825 | ONLY: ny |
---|
826 | |
---|
827 | USE kinds |
---|
828 | |
---|
829 | USE transpose_indices, & |
---|
830 | ONLY: nxl_y, nxr_y, nzb_y, nzt_y |
---|
831 | |
---|
832 | IMPLICIT NONE |
---|
833 | |
---|
834 | REAL(wp) :: f_inv(nxl_y:nxr_y,nzb_y:nzt_y,0:ny) !< |
---|
835 | REAL(wp) :: f_out(0:ny,nxl_y:nxr_y,nzb_y:nzt_y) !< |
---|
836 | |
---|
837 | |
---|
838 | INTEGER(iwp) :: i !< |
---|
839 | INTEGER(iwp) :: j !< |
---|
840 | INTEGER(iwp) :: k !< |
---|
841 | |
---|
842 | ! |
---|
843 | !-- Rearrange indices of input array in order to make data to be send |
---|
844 | !-- by MPI contiguous |
---|
845 | !$OMP PARALLEL PRIVATE ( i, j, k ) |
---|
846 | !$OMP DO |
---|
847 | DO k = nzb_y, nzt_y |
---|
848 | DO j = 0, ny |
---|
849 | DO i = nxl_y, nxr_y |
---|
850 | f_out(j,i,k) = f_inv(i,k,j) |
---|
851 | ENDDO |
---|
852 | ENDDO |
---|
853 | ENDDO |
---|
854 | !$OMP END PARALLEL |
---|
855 | |
---|
856 | END SUBROUTINE resort_for_zy |
---|
857 | |
---|
858 | |
---|
859 | !------------------------------------------------------------------------------! |
---|
860 | ! Description:cpu_log_nowait |
---|
861 | ! ------------ |
---|
862 | !> Transposition of input array (f_in) from z to y. For the input array, all |
---|
863 | !> elements along z reside on the same PE, while after transposition, all |
---|
864 | !> elements along y reside on the same PE. |
---|
865 | !------------------------------------------------------------------------------! |
---|
866 | SUBROUTINE transpose_zy( f_in, f_inv ) |
---|
867 | |
---|
868 | |
---|
869 | USE cpulog, & |
---|
870 | ONLY: cpu_log, cpu_log_nowait, log_point_s |
---|
871 | |
---|
872 | USE indices, & |
---|
873 | ONLY: ny, nz |
---|
874 | |
---|
875 | USE kinds |
---|
876 | |
---|
877 | USE pegrid |
---|
878 | |
---|
879 | USE transpose_indices, & |
---|
880 | ONLY: nxl_y, nxl_z, nxr_y, nxr_z, nyn_z, nys_z, nzb_y, nzt_y |
---|
881 | |
---|
882 | IMPLICIT NONE |
---|
883 | |
---|
884 | INTEGER(iwp) :: i !< |
---|
885 | INTEGER(iwp) :: j !< |
---|
886 | INTEGER(iwp) :: k !< |
---|
887 | INTEGER(iwp) :: l !< |
---|
888 | INTEGER(iwp) :: zs !< |
---|
889 | |
---|
890 | REAL(wp) :: f_in(nxl_z:nxr_z,nys_z:nyn_z,1:nz) !< |
---|
891 | REAL(wp) :: f_inv(nxl_y:nxr_y,nzb_y:nzt_y,0:ny) !< |
---|
892 | |
---|
893 | REAL(wp), DIMENSION(nxl_z:nxr_z,nzt_y-nzb_y+1,nys_z:nyn_z,0:pdims(1)-1) :: work !< |
---|
894 | |
---|
895 | ! |
---|
896 | !-- If the PE grid is one-dimensional along y, the array has only to be |
---|
897 | !-- reordered locally and therefore no transposition has to be done. |
---|
898 | IF ( pdims(1) /= 1 ) THEN |
---|
899 | |
---|
900 | #if defined( __parallel ) |
---|
901 | ! |
---|
902 | !-- Reorder input array for transposition |
---|
903 | !$OMP PARALLEL PRIVATE ( i, j, k, l, zs ) |
---|
904 | !$OMP DO |
---|
905 | DO l = 0, pdims(1) - 1 |
---|
906 | zs = 1 + l * ( nzt_y - nzb_y + 1 ) |
---|
907 | DO j = nys_z, nyn_z |
---|
908 | DO k = zs, zs + nzt_y - nzb_y |
---|
909 | DO i = nxl_z, nxr_z |
---|
910 | work(i,k-zs+1,j,l) = f_in(i,j,k) |
---|
911 | ENDDO |
---|
912 | ENDDO |
---|
913 | ENDDO |
---|
914 | ENDDO |
---|
915 | !$OMP END PARALLEL |
---|
916 | |
---|
917 | ! |
---|
918 | !-- Transpose array |
---|
919 | CALL cpu_log( log_point_s(32), 'mpi_alltoall', 'start', cpu_log_nowait ) |
---|
920 | IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) |
---|
921 | CALL MPI_ALLTOALL( work(nxl_z,1,nys_z,0), sendrecvcount_yz, MPI_REAL, & |
---|
922 | f_inv(nxl_y,nzb_y,0), sendrecvcount_yz, MPI_REAL, & |
---|
923 | comm1dx, ierr ) |
---|
924 | CALL cpu_log( log_point_s(32), 'mpi_alltoall', 'stop' ) |
---|
925 | #endif |
---|
926 | |
---|
927 | ELSE |
---|
928 | ! |
---|
929 | !-- Reorder the array in the same way like ALLTOALL did it |
---|
930 | !$OMP PARALLEL PRIVATE ( i, j, k ) |
---|
931 | !$OMP DO |
---|
932 | DO k = nzb_y, nzt_y |
---|
933 | DO j = 0, ny |
---|
934 | DO i = nxl_y, nxr_y |
---|
935 | f_inv(i,k,j) = f_in(i,j,k) |
---|
936 | ENDDO |
---|
937 | ENDDO |
---|
938 | ENDDO |
---|
939 | !$OMP END PARALLEL |
---|
940 | |
---|
941 | ENDIF |
---|
942 | |
---|
943 | END SUBROUTINE transpose_zy |
---|
944 | |
---|
945 | |
---|
946 | !------------------------------------------------------------------------------! |
---|
947 | ! Description: |
---|
948 | ! ------------ |
---|
949 | !> Transposition of input array (f_in) from z to y. For the input array, all |
---|
950 | !> elements along z reside on the same PE, while after transposition, all |
---|
951 | !> elements along y reside on the same PE. |
---|
952 | !> This is a direct transposition for arrays with indices in regular order |
---|
953 | !> (k,j,i) (cf. transpose_zy). |
---|
954 | !------------------------------------------------------------------------------! |
---|
955 | SUBROUTINE transpose_zyd( f_in, f_out ) |
---|
956 | |
---|
957 | |
---|
958 | USE cpulog, & |
---|
959 | ONLY: cpu_log, log_point_s |
---|
960 | |
---|
961 | USE indices, & |
---|
962 | ONLY: nnx, nny, nnz, nxl, nxr, nyn, nys, ny, nz |
---|
963 | |
---|
964 | USE kinds |
---|
965 | |
---|
966 | USE pegrid |
---|
967 | |
---|
968 | USE transpose_indices, & |
---|
969 | ONLY: nxl_yd, nxr_yd, nzb_yd, nzt_yd |
---|
970 | |
---|
971 | IMPLICIT NONE |
---|
972 | |
---|
973 | INTEGER(iwp) :: i !< |
---|
974 | INTEGER(iwp) :: j !< |
---|
975 | INTEGER(iwp) :: k !< |
---|
976 | INTEGER(iwp) :: l !< |
---|
977 | INTEGER(iwp) :: m !< |
---|
978 | INTEGER(iwp) :: ys !< |
---|
979 | |
---|
980 | REAL(wp) :: f_in(1:nz,nys:nyn,nxl:nxr) !< |
---|
981 | REAL(wp) :: f_inv(nys:nyn,nxl:nxr,1:nz) !< |
---|
982 | REAL(wp) :: f_out(0:ny,nxl_yd:nxr_yd,nzb_yd:nzt_yd) !< |
---|
983 | REAL(wp) :: work(nnx*nny*nnz) !< |
---|
984 | |
---|
985 | #if defined( __parallel ) |
---|
986 | |
---|
987 | ! |
---|
988 | !-- Rearrange indices of input array in order to make data to be send |
---|
989 | !-- by MPI contiguous |
---|
990 | DO i = nxl, nxr |
---|
991 | DO j = nys, nyn |
---|
992 | DO k = 1, nz |
---|
993 | f_inv(j,i,k) = f_in(k,j,i) |
---|
994 | ENDDO |
---|
995 | ENDDO |
---|
996 | ENDDO |
---|
997 | |
---|
998 | ! |
---|
999 | !-- Move data to different array, because memory location of work1 is |
---|
1000 | !-- needed further below (work1 = work2). |
---|
1001 | !-- If the PE grid is one-dimensional along x, only local reordering |
---|
1002 | !-- of the data is necessary and no transposition has to be done. |
---|
1003 | IF ( pdims(2) == 1 ) THEN |
---|
1004 | DO k = 1, nz |
---|
1005 | DO i = nxl, nxr |
---|
1006 | DO j = nys, nyn |
---|
1007 | f_out(j,i,k) = f_inv(j,i,k) |
---|
1008 | ENDDO |
---|
1009 | ENDDO |
---|
1010 | ENDDO |
---|
1011 | RETURN |
---|
1012 | ENDIF |
---|
1013 | |
---|
1014 | ! |
---|
1015 | !-- Transpose array |
---|
1016 | CALL cpu_log( log_point_s(32), 'mpi_alltoall', 'start' ) |
---|
1017 | IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) |
---|
1018 | CALL MPI_ALLTOALL( f_inv(nys,nxl,1), sendrecvcount_zyd, MPI_REAL, & |
---|
1019 | work(1), sendrecvcount_zyd, MPI_REAL, & |
---|
1020 | comm1dy, ierr ) |
---|
1021 | CALL cpu_log( log_point_s(32), 'mpi_alltoall', 'stop' ) |
---|
1022 | |
---|
1023 | ! |
---|
1024 | !-- Reorder transposed array |
---|
1025 | m = 0 |
---|
1026 | DO l = 0, pdims(2) - 1 |
---|
1027 | ys = 0 + l * nny |
---|
1028 | DO k = nzb_yd, nzt_yd |
---|
1029 | DO i = nxl_yd, nxr_yd |
---|
1030 | DO j = ys, ys + nny - 1 |
---|
1031 | m = m + 1 |
---|
1032 | f_out(j,i,k) = work(m) |
---|
1033 | ENDDO |
---|
1034 | ENDDO |
---|
1035 | ENDDO |
---|
1036 | ENDDO |
---|
1037 | |
---|
1038 | #endif |
---|
1039 | |
---|
1040 | END SUBROUTINE transpose_zyd |
---|