1 | SUBROUTINE transpose_xy( f_in, work, f_out ) |
---|
2 | |
---|
3 | !--------------------------------------------------------------------------------! |
---|
4 | ! This file is part of PALM. |
---|
5 | ! |
---|
6 | ! PALM is free software: you can redistribute it and/or modify it under the terms |
---|
7 | ! of the GNU General Public License as published by the Free Software Foundation, |
---|
8 | ! either version 3 of the License, or (at your option) any later version. |
---|
9 | ! |
---|
10 | ! PALM is distributed in the hope that it will be useful, but WITHOUT ANY |
---|
11 | ! WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR |
---|
12 | ! A PARTICULAR PURPOSE. See the GNU General Public License for more details. |
---|
13 | ! |
---|
14 | ! You should have received a copy of the GNU General Public License along with |
---|
15 | ! PALM. If not, see <http://www.gnu.org/licenses/>. |
---|
16 | ! |
---|
17 | ! Copyright 1997-2012 Leibniz University Hannover |
---|
18 | !--------------------------------------------------------------------------------! |
---|
19 | ! |
---|
20 | ! Current revisions: |
---|
21 | ! ----------------- |
---|
22 | ! |
---|
23 | ! |
---|
24 | ! Former revisions: |
---|
25 | ! ----------------- |
---|
26 | ! $Id: transpose.f90 1107 2013-03-04 06:23:14Z raasch $ |
---|
27 | ! |
---|
28 | ! 1106 2013-03-04 05:31:38Z raasch |
---|
29 | ! preprocessor lines rearranged so that routines can also be used in serial |
---|
30 | ! (non-parallel) mode |
---|
31 | ! |
---|
32 | ! 1092 2013-02-02 11:24:22Z raasch |
---|
33 | ! unused variables removed |
---|
34 | ! |
---|
35 | ! 1036 2012-10-22 13:43:42Z raasch |
---|
36 | ! code put under GPL (PALM 3.9) |
---|
37 | ! |
---|
38 | ! 1003 2012-09-14 14:35:53Z raasch |
---|
39 | ! indices nxa, nya, etc. replaced by nx, ny, etc. |
---|
40 | ! |
---|
41 | ! 683 2011-02-09 14:25:15Z raasch |
---|
42 | ! openMP parallelization of transpositions for 2d-domain-decomposition |
---|
43 | ! |
---|
44 | ! 622 2010-12-10 08:08:13Z raasch |
---|
45 | ! optional barriers included in order to speed up collective operations |
---|
46 | ! |
---|
47 | ! 164 2008-05-15 08:46:15Z raasch |
---|
48 | ! f_inv changed from subroutine argument to automatic array in order to do |
---|
49 | ! re-ordering from f_in to f_inv in one step, one array work is needed instead |
---|
50 | ! of work1 and work2 |
---|
51 | ! |
---|
52 | ! February 2007 |
---|
53 | ! RCS Log replace by Id keyword, revision history cleaned up |
---|
54 | ! |
---|
55 | ! Revision 1.2 2004/04/30 13:12:17 raasch |
---|
56 | ! Switched from mpi_alltoallv to the simpler mpi_alltoall, |
---|
57 | ! all former transpose-routine files collected in this file, enlarged |
---|
58 | ! transposition arrays introduced |
---|
59 | ! |
---|
60 | ! Revision 1.1 2004/04/30 13:08:16 raasch |
---|
61 | ! Initial revision (collection of former routines transpose_xy, transpose_xz, |
---|
62 | ! transpose_yx, transpose_yz, transpose_zx, transpose_zy) |
---|
63 | ! |
---|
64 | ! Revision 1.1 1997/07/24 11:25:18 raasch |
---|
65 | ! Initial revision |
---|
66 | ! |
---|
67 | ! |
---|
68 | ! Description: |
---|
69 | ! ------------ |
---|
70 | ! Transposition of input array (f_in) from x to y. For the input array, all |
---|
71 | ! elements along x reside on the same PE, while after transposition, all |
---|
72 | ! elements along y reside on the same PE. |
---|
73 | !------------------------------------------------------------------------------! |
---|
74 | |
---|
75 | USE cpulog |
---|
76 | USE indices |
---|
77 | USE interfaces |
---|
78 | USE pegrid |
---|
79 | USE transpose_indices |
---|
80 | |
---|
81 | IMPLICIT NONE |
---|
82 | |
---|
83 | INTEGER :: i, j, k, l, m, ys |
---|
84 | |
---|
85 | REAL :: f_in(0:nx,nys_x:nyn_x,nzb_x:nzt_x), & |
---|
86 | f_inv(nys_x:nyn_x,nzb_x:nzt_x,0:nx), & |
---|
87 | f_out(0:ny,nxl_y:nxr_y,nzb_y:nzt_y), & |
---|
88 | work(nnx*nny*nnz) |
---|
89 | |
---|
90 | ! |
---|
91 | !-- Rearrange indices of input array in order to make data to be send |
---|
92 | !-- by MPI contiguous |
---|
93 | !$OMP PARALLEL PRIVATE ( i, j, k ) |
---|
94 | !$OMP DO |
---|
95 | DO i = 0, nx |
---|
96 | DO k = nzb_x, nzt_x |
---|
97 | DO j = nys_x, nyn_x |
---|
98 | f_inv(j,k,i) = f_in(i,j,k) |
---|
99 | ENDDO |
---|
100 | ENDDO |
---|
101 | ENDDO |
---|
102 | !$OMP END PARALLEL |
---|
103 | |
---|
104 | IF ( numprocs /= 1 ) THEN |
---|
105 | |
---|
106 | #if defined( __parallel ) |
---|
107 | ! |
---|
108 | !-- Transpose array |
---|
109 | CALL cpu_log( log_point_s(32), 'mpi_alltoall', 'start' ) |
---|
110 | IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) |
---|
111 | CALL MPI_ALLTOALL( f_inv(nys_x,nzb_x,0), sendrecvcount_xy, MPI_REAL, & |
---|
112 | work(1), sendrecvcount_xy, MPI_REAL, & |
---|
113 | comm1dy, ierr ) |
---|
114 | CALL cpu_log( log_point_s(32), 'mpi_alltoall', 'stop' ) |
---|
115 | |
---|
116 | ! |
---|
117 | !-- Reorder transposed array |
---|
118 | !$OMP PARALLEL PRIVATE ( i, j, k, l, m, ys ) |
---|
119 | !$OMP DO |
---|
120 | DO l = 0, pdims(2) - 1 |
---|
121 | m = l * ( nxr_y - nxl_y + 1 ) * ( nzt_y - nzb_y + 1 ) * & |
---|
122 | ( nyn_x - nys_x + 1 ) |
---|
123 | ys = 0 + l * ( nyn_x - nys_x + 1 ) |
---|
124 | DO i = nxl_y, nxr_y |
---|
125 | DO k = nzb_y, nzt_y |
---|
126 | DO j = ys, ys + nyn_x - nys_x |
---|
127 | m = m + 1 |
---|
128 | f_out(j,i,k) = work(m) |
---|
129 | ENDDO |
---|
130 | ENDDO |
---|
131 | ENDDO |
---|
132 | ENDDO |
---|
133 | !$OMP END PARALLEL |
---|
134 | #endif |
---|
135 | |
---|
136 | ELSE |
---|
137 | |
---|
138 | ! |
---|
139 | !-- Reorder transposed array |
---|
140 | !$OMP PARALLEL PRIVATE ( i, j, k ) |
---|
141 | !$OMP DO |
---|
142 | DO k = nzb_y, nzt_y |
---|
143 | DO i = nxl_y, nxr_y |
---|
144 | DO j = 0, ny |
---|
145 | f_out(j,i,k) = f_inv(j,k,i) |
---|
146 | ENDDO |
---|
147 | ENDDO |
---|
148 | ENDDO |
---|
149 | !$OMP END PARALLEL |
---|
150 | |
---|
151 | ENDIF |
---|
152 | |
---|
153 | END SUBROUTINE transpose_xy |
---|
154 | |
---|
155 | |
---|
156 | SUBROUTINE transpose_xz( f_in, work, f_out ) |
---|
157 | |
---|
158 | !------------------------------------------------------------------------------! |
---|
159 | ! Description: |
---|
160 | ! ------------ |
---|
161 | ! Transposition of input array (f_in) from x to z. For the input array, all |
---|
162 | ! elements along x reside on the same PE, while after transposition, all |
---|
163 | ! elements along z reside on the same PE. |
---|
164 | !------------------------------------------------------------------------------! |
---|
165 | |
---|
166 | USE cpulog |
---|
167 | USE indices |
---|
168 | USE interfaces |
---|
169 | USE pegrid |
---|
170 | USE transpose_indices |
---|
171 | |
---|
172 | IMPLICIT NONE |
---|
173 | |
---|
174 | INTEGER :: i, j, k, l, m, xs |
---|
175 | |
---|
176 | REAL :: f_in(0:nx,nys_x:nyn_x,nzb_x:nzt_x), & |
---|
177 | f_inv(nys:nyn,nxl:nxr,1:nz), & |
---|
178 | f_out(1:nz,nys:nyn,nxl:nxr), & |
---|
179 | work(nnx*nny*nnz) |
---|
180 | |
---|
181 | |
---|
182 | ! |
---|
183 | !-- If the PE grid is one-dimensional along y, the array has only to be |
---|
184 | !-- reordered locally and therefore no transposition has to be done. |
---|
185 | IF ( pdims(1) /= 1 ) THEN |
---|
186 | |
---|
187 | #if defined( __parallel ) |
---|
188 | ! |
---|
189 | !-- Reorder input array for transposition |
---|
190 | !$OMP PARALLEL PRIVATE ( i, j, k, l, m, xs ) |
---|
191 | !$OMP DO |
---|
192 | DO l = 0, pdims(1) - 1 |
---|
193 | m = l * ( nzt_x - nzb_x + 1 ) * nnx * ( nyn_x - nys_x + 1 ) |
---|
194 | xs = 0 + l * nnx |
---|
195 | DO k = nzb_x, nzt_x |
---|
196 | DO i = xs, xs + nnx - 1 |
---|
197 | DO j = nys_x, nyn_x |
---|
198 | m = m + 1 |
---|
199 | work(m) = f_in(i,j,k) |
---|
200 | ENDDO |
---|
201 | ENDDO |
---|
202 | ENDDO |
---|
203 | ENDDO |
---|
204 | !$OMP END PARALLEL |
---|
205 | |
---|
206 | ! |
---|
207 | !-- Transpose array |
---|
208 | CALL cpu_log( log_point_s(32), 'mpi_alltoall', 'start' ) |
---|
209 | IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) |
---|
210 | CALL MPI_ALLTOALL( work(1), sendrecvcount_zx, MPI_REAL, & |
---|
211 | f_inv(nys,nxl,1), sendrecvcount_zx, MPI_REAL, & |
---|
212 | comm1dx, ierr ) |
---|
213 | CALL cpu_log( log_point_s(32), 'mpi_alltoall', 'stop' ) |
---|
214 | |
---|
215 | ! |
---|
216 | !-- Reorder transposed array in a way that the z index is in first position |
---|
217 | !$OMP PARALLEL PRIVATE ( i, j, k ) |
---|
218 | !$OMP DO |
---|
219 | DO k = 1, nz |
---|
220 | DO i = nxl, nxr |
---|
221 | DO j = nys, nyn |
---|
222 | f_out(k,j,i) = f_inv(j,i,k) |
---|
223 | ENDDO |
---|
224 | ENDDO |
---|
225 | ENDDO |
---|
226 | !$OMP END PARALLEL |
---|
227 | #endif |
---|
228 | |
---|
229 | ELSE |
---|
230 | |
---|
231 | ! |
---|
232 | !-- Reorder the array in a way that the z index is in first position |
---|
233 | !$OMP PARALLEL PRIVATE ( i, j, k ) |
---|
234 | !$OMP DO |
---|
235 | DO i = nxl, nxr |
---|
236 | DO j = nys, nyn |
---|
237 | DO k = 1, nz |
---|
238 | f_inv(j,i,k) = f_in(i,j,k) |
---|
239 | ENDDO |
---|
240 | ENDDO |
---|
241 | ENDDO |
---|
242 | !$OMP END PARALLEL |
---|
243 | |
---|
244 | !$OMP PARALLEL PRIVATE ( i, j, k ) |
---|
245 | !$OMP DO |
---|
246 | DO k = 1, nz |
---|
247 | DO i = nxl, nxr |
---|
248 | DO j = nys, nyn |
---|
249 | f_out(k,j,i) = f_inv(j,i,k) |
---|
250 | ENDDO |
---|
251 | ENDDO |
---|
252 | ENDDO |
---|
253 | !$OMP END PARALLEL |
---|
254 | |
---|
255 | ENDIF |
---|
256 | |
---|
257 | END SUBROUTINE transpose_xz |
---|
258 | |
---|
259 | |
---|
260 | SUBROUTINE transpose_yx( f_in, work, f_out ) |
---|
261 | |
---|
262 | !------------------------------------------------------------------------------! |
---|
263 | ! Description: |
---|
264 | ! ------------ |
---|
265 | ! Transposition of input array (f_in) from y to x. For the input array, all |
---|
266 | ! elements along y reside on the same PE, while after transposition, all |
---|
267 | ! elements along x reside on the same PE. |
---|
268 | !------------------------------------------------------------------------------! |
---|
269 | |
---|
270 | USE cpulog |
---|
271 | USE indices |
---|
272 | USE interfaces |
---|
273 | USE pegrid |
---|
274 | USE transpose_indices |
---|
275 | |
---|
276 | IMPLICIT NONE |
---|
277 | |
---|
278 | INTEGER :: i, j, k, l, m, ys |
---|
279 | |
---|
280 | REAL :: f_in(0:ny,nxl_y:nxr_y,nzb_y:nzt_y), & |
---|
281 | f_inv(nys_x:nyn_x,nzb_x:nzt_x,0:nx), & |
---|
282 | f_out(0:nx,nys_x:nyn_x,nzb_x:nzt_x), & |
---|
283 | work(nnx*nny*nnz) |
---|
284 | |
---|
285 | IF ( numprocs /= 1 ) THEN |
---|
286 | |
---|
287 | #if defined( __parallel ) |
---|
288 | ! |
---|
289 | !-- Reorder input array for transposition |
---|
290 | !$OMP PARALLEL PRIVATE ( i, j, k, l, m, ys ) |
---|
291 | !$OMP DO |
---|
292 | DO l = 0, pdims(2) - 1 |
---|
293 | m = l * ( nxr_y - nxl_y + 1 ) * ( nzt_y - nzb_y + 1 ) * & |
---|
294 | ( nyn_x - nys_x + 1 ) |
---|
295 | ys = 0 + l * ( nyn_x - nys_x + 1 ) |
---|
296 | DO i = nxl_y, nxr_y |
---|
297 | DO k = nzb_y, nzt_y |
---|
298 | DO j = ys, ys + nyn_x - nys_x |
---|
299 | m = m + 1 |
---|
300 | work(m) = f_in(j,i,k) |
---|
301 | ENDDO |
---|
302 | ENDDO |
---|
303 | ENDDO |
---|
304 | ENDDO |
---|
305 | !$OMP END PARALLEL |
---|
306 | |
---|
307 | ! |
---|
308 | !-- Transpose array |
---|
309 | CALL cpu_log( log_point_s(32), 'mpi_alltoall', 'start' ) |
---|
310 | IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) |
---|
311 | CALL MPI_ALLTOALL( work(1), sendrecvcount_xy, MPI_REAL, & |
---|
312 | f_inv(nys_x,nzb_x,0), sendrecvcount_xy, MPI_REAL, & |
---|
313 | comm1dy, ierr ) |
---|
314 | CALL cpu_log( log_point_s(32), 'mpi_alltoall', 'stop' ) |
---|
315 | #endif |
---|
316 | |
---|
317 | ELSE |
---|
318 | |
---|
319 | ! |
---|
320 | !-- Reorder array f_in the same way as ALLTOALL did it |
---|
321 | !$OMP PARALLEL PRIVATE ( i, j, k ) |
---|
322 | !$OMP DO |
---|
323 | DO i = nxl_y, nxr_y |
---|
324 | DO k = nzb_y, nzt_y |
---|
325 | DO j = 0, ny |
---|
326 | f_inv(j,k,i) = f_in(j,i,k) |
---|
327 | ENDDO |
---|
328 | ENDDO |
---|
329 | ENDDO |
---|
330 | !$OMP END PARALLEL |
---|
331 | |
---|
332 | ENDIF |
---|
333 | |
---|
334 | ! |
---|
335 | !-- Reorder transposed array in a way that the x index is in first position |
---|
336 | !$OMP PARALLEL PRIVATE ( i, j, k ) |
---|
337 | !$OMP DO |
---|
338 | DO i = 0, nx |
---|
339 | DO k = nzb_x, nzt_x |
---|
340 | DO j = nys_x, nyn_x |
---|
341 | f_out(i,j,k) = f_inv(j,k,i) |
---|
342 | ENDDO |
---|
343 | ENDDO |
---|
344 | ENDDO |
---|
345 | !$OMP END PARALLEL |
---|
346 | |
---|
347 | END SUBROUTINE transpose_yx |
---|
348 | |
---|
349 | |
---|
350 | SUBROUTINE transpose_yxd( f_in, work, f_out ) |
---|
351 | |
---|
352 | !------------------------------------------------------------------------------! |
---|
353 | ! Description: |
---|
354 | ! ------------ |
---|
355 | ! Transposition of input array (f_in) from y to x. For the input array, all |
---|
356 | ! elements along y reside on the same PE, while after transposition, all |
---|
357 | ! elements along x reside on the same PE. |
---|
358 | ! This is a direct transposition for arrays with indices in regular order |
---|
359 | ! (k,j,i) (cf. transpose_yx). |
---|
360 | !------------------------------------------------------------------------------! |
---|
361 | |
---|
362 | USE cpulog |
---|
363 | USE indices |
---|
364 | USE interfaces |
---|
365 | USE pegrid |
---|
366 | USE transpose_indices |
---|
367 | |
---|
368 | IMPLICIT NONE |
---|
369 | |
---|
370 | INTEGER :: i, j, k, l, m, xs |
---|
371 | |
---|
372 | REAL :: f_in(1:nz,nys:nyn,nxl:nxr), f_inv(nxl:nxr,1:nz,nys:nyn), & |
---|
373 | f_out(0:nx,nys_x:nyn_x,nzb_x:nzt_x), & |
---|
374 | work(nnx*nny*nnz) |
---|
375 | |
---|
376 | #if defined( __parallel ) |
---|
377 | |
---|
378 | ! |
---|
379 | !-- Rearrange indices of input array in order to make data to be send |
---|
380 | !-- by MPI contiguous |
---|
381 | DO k = 1, nz |
---|
382 | DO j = nys, nyn |
---|
383 | DO i = nxl, nxr |
---|
384 | f_inv(i,k,j) = f_in(k,j,i) |
---|
385 | ENDDO |
---|
386 | ENDDO |
---|
387 | ENDDO |
---|
388 | |
---|
389 | ! |
---|
390 | !-- Transpose array |
---|
391 | CALL cpu_log( log_point_s(32), 'mpi_alltoall', 'start' ) |
---|
392 | IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) |
---|
393 | CALL MPI_ALLTOALL( f_inv(nxl,1,nys), sendrecvcount_xy, MPI_REAL, & |
---|
394 | work(1), sendrecvcount_xy, MPI_REAL, & |
---|
395 | comm1dx, ierr ) |
---|
396 | CALL cpu_log( log_point_s(32), 'mpi_alltoall', 'stop' ) |
---|
397 | |
---|
398 | ! |
---|
399 | !-- Reorder transposed array |
---|
400 | m = 0 |
---|
401 | DO l = 0, pdims(1) - 1 |
---|
402 | xs = 0 + l * nnx |
---|
403 | DO j = nys_x, nyn_x |
---|
404 | DO k = 1, nz |
---|
405 | DO i = xs, xs + nnx - 1 |
---|
406 | m = m + 1 |
---|
407 | f_out(i,j,k) = work(m) |
---|
408 | ENDDO |
---|
409 | ENDDO |
---|
410 | ENDDO |
---|
411 | ENDDO |
---|
412 | |
---|
413 | #endif |
---|
414 | |
---|
415 | END SUBROUTINE transpose_yxd |
---|
416 | |
---|
417 | |
---|
418 | SUBROUTINE transpose_yz( f_in, work, f_out ) |
---|
419 | |
---|
420 | !------------------------------------------------------------------------------! |
---|
421 | ! Description: |
---|
422 | ! ------------ |
---|
423 | ! Transposition of input array (f_in) from y to z. For the input array, all |
---|
424 | ! elements along y reside on the same PE, while after transposition, all |
---|
425 | ! elements along z reside on the same PE. |
---|
426 | !------------------------------------------------------------------------------! |
---|
427 | |
---|
428 | USE cpulog |
---|
429 | USE indices |
---|
430 | USE interfaces |
---|
431 | USE pegrid |
---|
432 | USE transpose_indices |
---|
433 | |
---|
434 | IMPLICIT NONE |
---|
435 | |
---|
436 | INTEGER :: i, j, k, l, m, zs |
---|
437 | |
---|
438 | REAL :: f_in(0:ny,nxl_y:nxr_y,nzb_y:nzt_y), & |
---|
439 | f_inv(nxl_y:nxr_y,nzb_y:nzt_y,0:ny), & |
---|
440 | f_out(nxl_z:nxr_z,nys_z:nyn_z,1:nz), & |
---|
441 | work(nnx*nny*nnz) |
---|
442 | |
---|
443 | ! |
---|
444 | !-- Rearrange indices of input array in order to make data to be send |
---|
445 | !-- by MPI contiguous |
---|
446 | !$OMP PARALLEL PRIVATE ( i, j, k ) |
---|
447 | !$OMP DO |
---|
448 | DO j = 0, ny |
---|
449 | DO k = nzb_y, nzt_y |
---|
450 | DO i = nxl_y, nxr_y |
---|
451 | f_inv(i,k,j) = f_in(j,i,k) |
---|
452 | ENDDO |
---|
453 | ENDDO |
---|
454 | ENDDO |
---|
455 | !$OMP END PARALLEL |
---|
456 | |
---|
457 | ! |
---|
458 | !-- Move data to different array, because memory location of work1 is |
---|
459 | !-- needed further below (work1 = work2). |
---|
460 | !-- If the PE grid is one-dimensional along y, only local reordering |
---|
461 | !-- of the data is necessary and no transposition has to be done. |
---|
462 | IF ( pdims(1) == 1 ) THEN |
---|
463 | |
---|
464 | !$OMP PARALLEL PRIVATE ( i, j, k ) |
---|
465 | !$OMP DO |
---|
466 | DO j = 0, ny |
---|
467 | DO k = nzb_y, nzt_y |
---|
468 | DO i = nxl_y, nxr_y |
---|
469 | f_out(i,j,k) = f_inv(i,k,j) |
---|
470 | ENDDO |
---|
471 | ENDDO |
---|
472 | ENDDO |
---|
473 | !$OMP END PARALLEL |
---|
474 | |
---|
475 | ELSE |
---|
476 | |
---|
477 | #if defined( __parallel ) |
---|
478 | ! |
---|
479 | !-- Transpose array |
---|
480 | CALL cpu_log( log_point_s(32), 'mpi_alltoall', 'start' ) |
---|
481 | IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) |
---|
482 | CALL MPI_ALLTOALL( f_inv(nxl_y,nzb_y,0), sendrecvcount_yz, MPI_REAL, & |
---|
483 | work(1), sendrecvcount_yz, MPI_REAL, & |
---|
484 | comm1dx, ierr ) |
---|
485 | CALL cpu_log( log_point_s(32), 'mpi_alltoall', 'stop' ) |
---|
486 | |
---|
487 | ! |
---|
488 | !-- Reorder transposed array |
---|
489 | !$OMP PARALLEL PRIVATE ( i, j, k, l, m, zs ) |
---|
490 | !$OMP DO |
---|
491 | DO l = 0, pdims(1) - 1 |
---|
492 | m = l * ( nyn_z - nys_z + 1 ) * ( nzt_y - nzb_y + 1 ) * & |
---|
493 | ( nxr_z - nxl_z + 1 ) |
---|
494 | zs = 1 + l * ( nzt_y - nzb_y + 1 ) |
---|
495 | DO j = nys_z, nyn_z |
---|
496 | DO k = zs, zs + nzt_y - nzb_y |
---|
497 | DO i = nxl_z, nxr_z |
---|
498 | m = m + 1 |
---|
499 | f_out(i,j,k) = work(m) |
---|
500 | ENDDO |
---|
501 | ENDDO |
---|
502 | ENDDO |
---|
503 | ENDDO |
---|
504 | !$OMP END PARALLEL |
---|
505 | #endif |
---|
506 | |
---|
507 | ENDIF |
---|
508 | |
---|
509 | END SUBROUTINE transpose_yz |
---|
510 | |
---|
511 | |
---|
512 | SUBROUTINE transpose_zx( f_in, work, f_out ) |
---|
513 | |
---|
514 | !------------------------------------------------------------------------------! |
---|
515 | ! Description: |
---|
516 | ! ------------ |
---|
517 | ! Transposition of input array (f_in) from z to x. For the input array, all |
---|
518 | ! elements along z reside on the same PE, while after transposition, all |
---|
519 | ! elements along x reside on the same PE. |
---|
520 | !------------------------------------------------------------------------------! |
---|
521 | |
---|
522 | USE cpulog |
---|
523 | USE indices |
---|
524 | USE interfaces |
---|
525 | USE pegrid |
---|
526 | USE transpose_indices |
---|
527 | |
---|
528 | IMPLICIT NONE |
---|
529 | |
---|
530 | INTEGER :: i, j, k, l, m, xs |
---|
531 | |
---|
532 | REAL :: f_in(1:nz,nys:nyn,nxl:nxr), f_out(0:nx,nys_x:nyn_x,nzb_x:nzt_x), & |
---|
533 | work(nnx*nny*nnz) |
---|
534 | |
---|
535 | !$acc declare create ( f_inv ) |
---|
536 | REAL :: f_inv(nys:nyn,nxl:nxr,1:nz) |
---|
537 | |
---|
538 | |
---|
539 | ! |
---|
540 | !-- Rearrange indices of input array in order to make data to be send |
---|
541 | !-- by MPI contiguous |
---|
542 | !$OMP PARALLEL PRIVATE ( i, j, k ) |
---|
543 | !$OMP DO |
---|
544 | !$acc kernels present( f_in ) |
---|
545 | !$acc loop |
---|
546 | DO k = 1,nz |
---|
547 | DO i = nxl, nxr |
---|
548 | !$acc loop vector( 32 ) |
---|
549 | DO j = nys, nyn |
---|
550 | f_inv(j,i,k) = f_in(k,j,i) |
---|
551 | ENDDO |
---|
552 | ENDDO |
---|
553 | ENDDO |
---|
554 | !$OMP END PARALLEL |
---|
555 | |
---|
556 | ! |
---|
557 | !-- Move data to different array, because memory location of work1 is |
---|
558 | !-- needed further below (work1 = work2). |
---|
559 | !-- If the PE grid is one-dimensional along y, only local reordering |
---|
560 | !-- of the data is necessary and no transposition has to be done. |
---|
561 | IF ( pdims(1) == 1 ) THEN |
---|
562 | |
---|
563 | !$OMP PARALLEL PRIVATE ( i, j, k ) |
---|
564 | !$OMP DO |
---|
565 | !$acc kernels present( f_out ) |
---|
566 | !$acc loop |
---|
567 | DO k = 1, nz |
---|
568 | DO i = nxl, nxr |
---|
569 | !$acc loop vector( 32 ) |
---|
570 | DO j = nys, nyn |
---|
571 | f_out(i,j,k) = f_inv(j,i,k) |
---|
572 | ENDDO |
---|
573 | ENDDO |
---|
574 | ENDDO |
---|
575 | !$OMP END PARALLEL |
---|
576 | |
---|
577 | ELSE |
---|
578 | |
---|
579 | #if defined( __parallel ) |
---|
580 | ! |
---|
581 | !-- Transpose array |
---|
582 | CALL cpu_log( log_point_s(32), 'mpi_alltoall', 'start' ) |
---|
583 | IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) |
---|
584 | CALL MPI_ALLTOALL( f_inv(nys,nxl,1), sendrecvcount_zx, MPI_REAL, & |
---|
585 | work(1), sendrecvcount_zx, MPI_REAL, & |
---|
586 | comm1dx, ierr ) |
---|
587 | CALL cpu_log( log_point_s(32), 'mpi_alltoall', 'stop' ) |
---|
588 | |
---|
589 | ! |
---|
590 | !-- Reorder transposed array |
---|
591 | !$OMP PARALLEL PRIVATE ( i, j, k, l, m, xs ) |
---|
592 | !$OMP DO |
---|
593 | DO l = 0, pdims(1) - 1 |
---|
594 | m = l * ( nzt_x - nzb_x + 1 ) * nnx * ( nyn_x - nys_x + 1 ) |
---|
595 | xs = 0 + l * nnx |
---|
596 | DO k = nzb_x, nzt_x |
---|
597 | DO i = xs, xs + nnx - 1 |
---|
598 | DO j = nys_x, nyn_x |
---|
599 | m = m + 1 |
---|
600 | f_out(i,j,k) = work(m) |
---|
601 | ENDDO |
---|
602 | ENDDO |
---|
603 | ENDDO |
---|
604 | ENDDO |
---|
605 | !$OMP END PARALLEL |
---|
606 | #endif |
---|
607 | |
---|
608 | ENDIF |
---|
609 | |
---|
610 | END SUBROUTINE transpose_zx |
---|
611 | |
---|
612 | |
---|
613 | SUBROUTINE transpose_zy( f_in, work, f_out ) |
---|
614 | |
---|
615 | !------------------------------------------------------------------------------! |
---|
616 | ! Description: |
---|
617 | ! ------------ |
---|
618 | ! Transposition of input array (f_in) from z to y. For the input array, all |
---|
619 | ! elements along z reside on the same PE, while after transposition, all |
---|
620 | ! elements along y reside on the same PE. |
---|
621 | !------------------------------------------------------------------------------! |
---|
622 | |
---|
623 | USE cpulog |
---|
624 | USE indices |
---|
625 | USE interfaces |
---|
626 | USE pegrid |
---|
627 | USE transpose_indices |
---|
628 | |
---|
629 | IMPLICIT NONE |
---|
630 | |
---|
631 | INTEGER :: i, j, k, l, m, zs |
---|
632 | |
---|
633 | REAL :: f_in(nxl_z:nxr_z,nys_z:nyn_z,1:nz), & |
---|
634 | f_inv(nxl_y:nxr_y,nzb_y:nzt_y,0:ny), & |
---|
635 | f_out(0:ny,nxl_y:nxr_y,nzb_y:nzt_y), & |
---|
636 | work(nnx*nny*nnz) |
---|
637 | |
---|
638 | ! |
---|
639 | !-- If the PE grid is one-dimensional along y, the array has only to be |
---|
640 | !-- reordered locally and therefore no transposition has to be done. |
---|
641 | IF ( pdims(1) /= 1 ) THEN |
---|
642 | |
---|
643 | #if defined( __parallel ) |
---|
644 | ! |
---|
645 | !-- Reorder input array for transposition |
---|
646 | !$OMP PARALLEL PRIVATE ( i, j, k, l, m, zs ) |
---|
647 | !$OMP DO |
---|
648 | DO l = 0, pdims(1) - 1 |
---|
649 | m = l * ( nyn_z - nys_z + 1 ) * ( nzt_y - nzb_y + 1 ) * & |
---|
650 | ( nxr_z - nxl_z + 1 ) |
---|
651 | zs = 1 + l * ( nzt_y - nzb_y + 1 ) |
---|
652 | DO j = nys_z, nyn_z |
---|
653 | DO k = zs, zs + nzt_y - nzb_y |
---|
654 | DO i = nxl_z, nxr_z |
---|
655 | m = m + 1 |
---|
656 | work(m) = f_in(i,j,k) |
---|
657 | ENDDO |
---|
658 | ENDDO |
---|
659 | ENDDO |
---|
660 | ENDDO |
---|
661 | !$OMP END PARALLEL |
---|
662 | |
---|
663 | ! |
---|
664 | !-- Transpose array |
---|
665 | CALL cpu_log( log_point_s(32), 'mpi_alltoall', 'start' ) |
---|
666 | IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) |
---|
667 | CALL MPI_ALLTOALL( work(1), sendrecvcount_yz, MPI_REAL, & |
---|
668 | f_inv(nxl_y,nzb_y,0), sendrecvcount_yz, MPI_REAL, & |
---|
669 | comm1dx, ierr ) |
---|
670 | CALL cpu_log( log_point_s(32), 'mpi_alltoall', 'stop' ) |
---|
671 | #endif |
---|
672 | |
---|
673 | ELSE |
---|
674 | ! |
---|
675 | !-- Reorder the array in the same way like ALLTOALL did it |
---|
676 | !$OMP PARALLEL PRIVATE ( i, j, k ) |
---|
677 | !$OMP DO |
---|
678 | DO k = nzb_y, nzt_y |
---|
679 | DO j = 0, ny |
---|
680 | DO i = nxl_y, nxr_y |
---|
681 | f_inv(i,k,j) = f_in(i,j,k) |
---|
682 | ENDDO |
---|
683 | ENDDO |
---|
684 | ENDDO |
---|
685 | !$OMP END PARALLEL |
---|
686 | |
---|
687 | ENDIF |
---|
688 | |
---|
689 | ! |
---|
690 | !-- Reorder transposed array in a way that the y index is in first position |
---|
691 | !$OMP PARALLEL PRIVATE ( i, j, k ) |
---|
692 | !$OMP DO |
---|
693 | DO k = nzb_y, nzt_y |
---|
694 | DO i = nxl_y, nxr_y |
---|
695 | DO j = 0, ny |
---|
696 | f_out(j,i,k) = f_inv(i,k,j) |
---|
697 | ENDDO |
---|
698 | ENDDO |
---|
699 | ENDDO |
---|
700 | !$OMP END PARALLEL |
---|
701 | |
---|
702 | END SUBROUTINE transpose_zy |
---|
703 | |
---|
704 | |
---|
705 | SUBROUTINE transpose_zyd( f_in, work, f_out ) |
---|
706 | |
---|
707 | !------------------------------------------------------------------------------! |
---|
708 | ! Description: |
---|
709 | ! ------------ |
---|
710 | ! Transposition of input array (f_in) from z to y. For the input array, all |
---|
711 | ! elements along z reside on the same PE, while after transposition, all |
---|
712 | ! elements along y reside on the same PE. |
---|
713 | ! This is a direct transposition for arrays with indices in regular order |
---|
714 | ! (k,j,i) (cf. transpose_zy). |
---|
715 | !------------------------------------------------------------------------------! |
---|
716 | |
---|
717 | USE cpulog |
---|
718 | USE indices |
---|
719 | USE interfaces |
---|
720 | USE pegrid |
---|
721 | USE transpose_indices |
---|
722 | |
---|
723 | IMPLICIT NONE |
---|
724 | |
---|
725 | INTEGER :: i, j, k, l, m, ys |
---|
726 | |
---|
727 | REAL :: f_in(1:nz,nys:nyn,nxl:nxr), f_inv(nys:nyn,nxl:nxr,1:nz), & |
---|
728 | f_out(0:ny,nxl_yd:nxr_yd,nzb_yd:nzt_yd), & |
---|
729 | work(nnx*nny*nnz) |
---|
730 | |
---|
731 | #if defined( __parallel ) |
---|
732 | |
---|
733 | ! |
---|
734 | !-- Rearrange indices of input array in order to make data to be send |
---|
735 | !-- by MPI contiguous |
---|
736 | DO i = nxl, nxr |
---|
737 | DO j = nys, nyn |
---|
738 | DO k = 1, nz |
---|
739 | f_inv(j,i,k) = f_in(k,j,i) |
---|
740 | ENDDO |
---|
741 | ENDDO |
---|
742 | ENDDO |
---|
743 | |
---|
744 | ! |
---|
745 | !-- Move data to different array, because memory location of work1 is |
---|
746 | !-- needed further below (work1 = work2). |
---|
747 | !-- If the PE grid is one-dimensional along x, only local reordering |
---|
748 | !-- of the data is necessary and no transposition has to be done. |
---|
749 | IF ( pdims(2) == 1 ) THEN |
---|
750 | DO k = 1, nz |
---|
751 | DO i = nxl, nxr |
---|
752 | DO j = nys, nyn |
---|
753 | f_out(j,i,k) = f_inv(j,i,k) |
---|
754 | ENDDO |
---|
755 | ENDDO |
---|
756 | ENDDO |
---|
757 | RETURN |
---|
758 | ENDIF |
---|
759 | |
---|
760 | ! |
---|
761 | !-- Transpose array |
---|
762 | CALL cpu_log( log_point_s(32), 'mpi_alltoall', 'start' ) |
---|
763 | IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) |
---|
764 | CALL MPI_ALLTOALL( f_inv(nys,nxl,1), sendrecvcount_zyd, MPI_REAL, & |
---|
765 | work(1), sendrecvcount_zyd, MPI_REAL, & |
---|
766 | comm1dy, ierr ) |
---|
767 | CALL cpu_log( log_point_s(32), 'mpi_alltoall', 'stop' ) |
---|
768 | |
---|
769 | ! |
---|
770 | !-- Reorder transposed array |
---|
771 | m = 0 |
---|
772 | DO l = 0, pdims(2) - 1 |
---|
773 | ys = 0 + l * nny |
---|
774 | DO k = nzb_yd, nzt_yd |
---|
775 | DO i = nxl_yd, nxr_yd |
---|
776 | DO j = ys, ys + nny - 1 |
---|
777 | m = m + 1 |
---|
778 | f_out(j,i,k) = work(m) |
---|
779 | ENDDO |
---|
780 | ENDDO |
---|
781 | ENDDO |
---|
782 | ENDDO |
---|
783 | |
---|
784 | #endif |
---|
785 | |
---|
786 | END SUBROUTINE transpose_zyd |
---|