[1682] | 1 | !> @file transpose.f90 |
---|
[2000] | 2 | !------------------------------------------------------------------------------! |
---|
[2696] | 3 | ! This file is part of the PALM model system. |
---|
[1036] | 4 | ! |
---|
[2000] | 5 | ! PALM is free software: you can redistribute it and/or modify it under the |
---|
| 6 | ! terms of the GNU General Public License as published by the Free Software |
---|
| 7 | ! Foundation, either version 3 of the License, or (at your option) any later |
---|
| 8 | ! version. |
---|
[1036] | 9 | ! |
---|
| 10 | ! PALM is distributed in the hope that it will be useful, but WITHOUT ANY |
---|
| 11 | ! WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR |
---|
| 12 | ! A PARTICULAR PURPOSE. See the GNU General Public License for more details. |
---|
| 13 | ! |
---|
| 14 | ! You should have received a copy of the GNU General Public License along with |
---|
| 15 | ! PALM. If not, see <http://www.gnu.org/licenses/>. |
---|
| 16 | ! |
---|
[4360] | 17 | ! Copyright 1997-2020 Leibniz Universitaet Hannover |
---|
[2000] | 18 | !------------------------------------------------------------------------------! |
---|
[1036] | 19 | ! |
---|
[484] | 20 | ! Current revisions: |
---|
[1] | 21 | ! ----------------- |
---|
[1321] | 22 | ! |
---|
[2119] | 23 | ! |
---|
[1321] | 24 | ! Former revisions: |
---|
| 25 | ! ----------------- |
---|
| 26 | ! $Id: transpose.f90 4415 2020-02-20 10:30:33Z oliver.maas $ |
---|
[4415] | 27 | ! bugfix for misplaced preprocessor directive |
---|
| 28 | ! |
---|
| 29 | ! 4370 2020-01-10 14:00:44Z raasch |
---|
[4370] | 30 | ! vector array renamed |
---|
| 31 | ! |
---|
| 32 | ! 4366 2020-01-09 08:12:43Z raasch |
---|
[4366] | 33 | ! modifications for NEC vectorization |
---|
| 34 | ! |
---|
| 35 | ! 4360 2020-01-07 11:25:50Z suehring |
---|
[4236] | 36 | ! Added missing OpenMP directives |
---|
| 37 | ! |
---|
| 38 | ! 4182 2019-08-22 15:20:23Z scharf |
---|
[4182] | 39 | ! Corrected "Former revisions" section |
---|
[4181] | 40 | ! |
---|
[4182] | 41 | ! 4171 2019-08-19 17:44:09Z gronemeier |
---|
[3832] | 42 | ! loop reordering for performance optimization |
---|
[4171] | 43 | ! |
---|
| 44 | ! 3832 2019-03-28 13:16:58Z raasch |
---|
| 45 | ! loop reordering for performance optimization |
---|
| 46 | ! |
---|
[3832] | 47 | ! 3694 2019-01-23 17:01:49Z knoop |
---|
[3634] | 48 | ! OpenACC port for SPEC |
---|
[4171] | 49 | ! |
---|
[4182] | 50 | ! Revision 1.1 1997/07/24 11:25:18 raasch |
---|
| 51 | ! Initial revision |
---|
| 52 | ! |
---|
| 53 | ! |
---|
[1216] | 54 | ! Description: |
---|
| 55 | ! ------------ |
---|
[1682] | 56 | !> Resorting data for the transposition from x to y. The transposition itself |
---|
| 57 | !> is carried out in transpose_xy |
---|
[1216] | 58 | !------------------------------------------------------------------------------! |
---|
[4181] | 59 | |
---|
| 60 | #define __acc_fft_device ( defined( _OPENACC ) && ( defined ( __cuda_fft ) ) ) |
---|
| 61 | |
---|
[1682] | 62 | SUBROUTINE resort_for_xy( f_in, f_inv ) |
---|
[1216] | 63 | |
---|
[4171] | 64 | |
---|
[1320] | 65 | USE indices, & |
---|
| 66 | ONLY: nx |
---|
[1216] | 67 | |
---|
[1320] | 68 | USE kinds |
---|
| 69 | |
---|
| 70 | USE transpose_indices, & |
---|
[3241] | 71 | ONLY: nyn_x, nys_x, nzb_x, nzt_x |
---|
[1320] | 72 | |
---|
[1216] | 73 | IMPLICIT NONE |
---|
| 74 | |
---|
[4171] | 75 | REAL(wp) :: f_in(0:nx,nys_x:nyn_x,nzb_x:nzt_x) !< |
---|
| 76 | REAL(wp) :: f_inv(nys_x:nyn_x,nzb_x:nzt_x,0:nx) !< |
---|
[1216] | 77 | |
---|
| 78 | |
---|
[4171] | 79 | INTEGER(iwp) :: i !< |
---|
| 80 | INTEGER(iwp) :: j !< |
---|
| 81 | INTEGER(iwp) :: k !< |
---|
[1] | 82 | ! |
---|
[1216] | 83 | !-- Rearrange indices of input array in order to make data to be send |
---|
| 84 | !-- by MPI contiguous |
---|
| 85 | !$OMP PARALLEL PRIVATE ( i, j, k ) |
---|
| 86 | !$OMP DO |
---|
[3690] | 87 | #if __acc_fft_device |
---|
[3634] | 88 | !$ACC PARALLEL LOOP COLLAPSE(3) PRIVATE(i,j,k) & |
---|
| 89 | !$ACC PRESENT(f_inv, f_in) |
---|
[3690] | 90 | #endif |
---|
[3832] | 91 | DO k = nzb_x, nzt_x |
---|
[4171] | 92 | DO j = nys_x, nyn_x |
---|
| 93 | DO i = 0, nx |
---|
[1216] | 94 | f_inv(j,k,i) = f_in(i,j,k) |
---|
| 95 | ENDDO |
---|
| 96 | ENDDO |
---|
| 97 | ENDDO |
---|
| 98 | !$OMP END PARALLEL |
---|
| 99 | |
---|
| 100 | END SUBROUTINE resort_for_xy |
---|
| 101 | |
---|
| 102 | |
---|
| 103 | !------------------------------------------------------------------------------! |
---|
[1] | 104 | ! Description: |
---|
| 105 | ! ------------ |
---|
[1682] | 106 | !> Transposition of input array (f_in) from x to y. For the input array, all |
---|
| 107 | !> elements along x reside on the same PE, while after transposition, all |
---|
| 108 | !> elements along y reside on the same PE. |
---|
[1] | 109 | !------------------------------------------------------------------------------! |
---|
[1682] | 110 | SUBROUTINE transpose_xy( f_inv, f_out ) |
---|
[1] | 111 | |
---|
[1682] | 112 | |
---|
[1320] | 113 | USE cpulog, & |
---|
| 114 | ONLY: cpu_log, cpu_log_nowait, log_point_s |
---|
| 115 | |
---|
| 116 | USE indices, & |
---|
| 117 | ONLY: nx, ny |
---|
[4171] | 118 | |
---|
[1320] | 119 | USE kinds |
---|
| 120 | |
---|
[1] | 121 | USE pegrid |
---|
| 122 | |
---|
[1320] | 123 | USE transpose_indices, & |
---|
| 124 | ONLY: nxl_y, nxr_y, nyn_x, nys_x, nzb_x, nzb_y, nzt_x, nzt_y |
---|
| 125 | |
---|
[1] | 126 | IMPLICIT NONE |
---|
| 127 | |
---|
[4171] | 128 | INTEGER(iwp) :: i !< |
---|
| 129 | INTEGER(iwp) :: j !< |
---|
| 130 | INTEGER(iwp) :: k !< |
---|
| 131 | INTEGER(iwp) :: l !< |
---|
| 132 | INTEGER(iwp) :: ys !< |
---|
[1] | 133 | |
---|
[4171] | 134 | REAL(wp) :: f_inv(nys_x:nyn_x,nzb_x:nzt_x,0:nx) !< |
---|
| 135 | REAL(wp) :: f_out(0:ny,nxl_y:nxr_y,nzb_y:nzt_y) !< |
---|
| 136 | |
---|
| 137 | REAL(wp), DIMENSION(nyn_x-nys_x+1,nzb_y:nzt_y,nxl_y:nxr_y,0:pdims(2)-1) :: work !< |
---|
[3690] | 138 | #if __acc_fft_device |
---|
[3634] | 139 | !$ACC DECLARE CREATE(work) |
---|
[3690] | 140 | #endif |
---|
[1111] | 141 | |
---|
| 142 | |
---|
[1106] | 143 | IF ( numprocs /= 1 ) THEN |
---|
| 144 | |
---|
| 145 | #if defined( __parallel ) |
---|
[1] | 146 | ! |
---|
[1106] | 147 | !-- Transpose array |
---|
[1318] | 148 | CALL cpu_log( log_point_s(32), 'mpi_alltoall', 'start', cpu_log_nowait ) |
---|
[3690] | 149 | |
---|
| 150 | #if __acc_fft_device |
---|
[3657] | 151 | #ifndef __cuda_aware_mpi |
---|
[3634] | 152 | !$ACC UPDATE HOST(f_inv) |
---|
[3657] | 153 | #else |
---|
| 154 | !$ACC HOST_DATA USE_DEVICE(work, f_inv) |
---|
| 155 | #endif |
---|
[3690] | 156 | #endif |
---|
| 157 | |
---|
[1106] | 158 | IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) |
---|
[1111] | 159 | CALL MPI_ALLTOALL( f_inv(nys_x,nzb_x,0), sendrecvcount_xy, MPI_REAL, & |
---|
| 160 | work(1,nzb_y,nxl_y,0), sendrecvcount_xy, MPI_REAL, & |
---|
[1106] | 161 | comm1dy, ierr ) |
---|
[3690] | 162 | |
---|
| 163 | #if __acc_fft_device |
---|
[3657] | 164 | #ifndef __cuda_aware_mpi |
---|
[3634] | 165 | !$ACC UPDATE DEVICE(work) |
---|
[3657] | 166 | #else |
---|
| 167 | !$ACC END HOST_DATA |
---|
| 168 | #endif |
---|
[3690] | 169 | #endif |
---|
| 170 | |
---|
[1106] | 171 | CALL cpu_log( log_point_s(32), 'mpi_alltoall', 'stop' ) |
---|
[1] | 172 | |
---|
| 173 | ! |
---|
[1106] | 174 | !-- Reorder transposed array |
---|
[1111] | 175 | !$OMP PARALLEL PRIVATE ( i, j, k, l, ys ) |
---|
[1106] | 176 | DO l = 0, pdims(2) - 1 |
---|
| 177 | ys = 0 + l * ( nyn_x - nys_x + 1 ) |
---|
[3690] | 178 | #if __acc_fft_device |
---|
[3634] | 179 | !$ACC PARALLEL LOOP COLLAPSE(3) PRIVATE(i,j,k) & |
---|
| 180 | !$ACC PRESENT(f_out, work) |
---|
[3690] | 181 | #endif |
---|
[4236] | 182 | !$OMP DO |
---|
[1106] | 183 | DO i = nxl_y, nxr_y |
---|
| 184 | DO k = nzb_y, nzt_y |
---|
| 185 | DO j = ys, ys + nyn_x - nys_x |
---|
[1111] | 186 | f_out(j,i,k) = work(j-ys+1,k,i,l) |
---|
[1106] | 187 | ENDDO |
---|
[1] | 188 | ENDDO |
---|
| 189 | ENDDO |
---|
[4236] | 190 | !$OMP END DO NOWAIT |
---|
[1] | 191 | ENDDO |
---|
[683] | 192 | !$OMP END PARALLEL |
---|
[1] | 193 | #endif |
---|
| 194 | |
---|
[1106] | 195 | ELSE |
---|
| 196 | |
---|
| 197 | ! |
---|
| 198 | !-- Reorder transposed array |
---|
| 199 | !$OMP PARALLEL PRIVATE ( i, j, k ) |
---|
| 200 | !$OMP DO |
---|
[3690] | 201 | #if __acc_fft_device |
---|
[3634] | 202 | !$ACC PARALLEL LOOP COLLAPSE(3) PRIVATE(i,j,k) & |
---|
| 203 | !$ACC PRESENT(f_out, f_inv) |
---|
[3690] | 204 | #endif |
---|
[1106] | 205 | DO k = nzb_y, nzt_y |
---|
| 206 | DO i = nxl_y, nxr_y |
---|
| 207 | DO j = 0, ny |
---|
| 208 | f_out(j,i,k) = f_inv(j,k,i) |
---|
| 209 | ENDDO |
---|
| 210 | ENDDO |
---|
| 211 | ENDDO |
---|
| 212 | !$OMP END PARALLEL |
---|
| 213 | |
---|
| 214 | ENDIF |
---|
| 215 | |
---|
[1] | 216 | END SUBROUTINE transpose_xy |
---|
| 217 | |
---|
| 218 | |
---|
| 219 | !------------------------------------------------------------------------------! |
---|
| 220 | ! Description: |
---|
| 221 | ! ------------ |
---|
[1682] | 222 | !> Resorting data after the transposition from x to z. The transposition itself |
---|
| 223 | !> is carried out in transpose_xz |
---|
[1216] | 224 | !------------------------------------------------------------------------------! |
---|
[1682] | 225 | SUBROUTINE resort_for_xz( f_inv, f_out ) |
---|
[1216] | 226 | |
---|
[1682] | 227 | |
---|
[1320] | 228 | USE indices, & |
---|
| 229 | ONLY: nxl, nxr, nyn, nys, nz |
---|
[1216] | 230 | |
---|
[1320] | 231 | USE kinds |
---|
| 232 | |
---|
[1216] | 233 | IMPLICIT NONE |
---|
| 234 | |
---|
[4171] | 235 | REAL(wp) :: f_inv(nys:nyn,nxl:nxr,1:nz) !< |
---|
| 236 | REAL(wp) :: f_out(1:nz,nys:nyn,nxl:nxr) !< |
---|
[1216] | 237 | |
---|
[4171] | 238 | INTEGER(iwp) :: i !< |
---|
| 239 | INTEGER(iwp) :: j !< |
---|
| 240 | INTEGER(iwp) :: k !< |
---|
[1216] | 241 | ! |
---|
| 242 | !-- Rearrange indices of input array in order to make data to be send |
---|
| 243 | !-- by MPI contiguous. |
---|
| 244 | !-- In case of parallel fft/transposition, scattered store is faster in |
---|
| 245 | !-- backward direction!!! |
---|
| 246 | !$OMP PARALLEL PRIVATE ( i, j, k ) |
---|
| 247 | !$OMP DO |
---|
[3690] | 248 | #if __acc_fft_device |
---|
[3634] | 249 | !$ACC PARALLEL LOOP COLLAPSE(3) PRIVATE(i,j,k) & |
---|
| 250 | !$ACC PRESENT(f_out, f_inv) |
---|
[3690] | 251 | #endif |
---|
[4171] | 252 | DO i = nxl, nxr |
---|
| 253 | DO j = nys, nyn |
---|
| 254 | DO k = 1, nz |
---|
[1216] | 255 | f_out(k,j,i) = f_inv(j,i,k) |
---|
| 256 | ENDDO |
---|
| 257 | ENDDO |
---|
| 258 | ENDDO |
---|
| 259 | !$OMP END PARALLEL |
---|
| 260 | |
---|
| 261 | END SUBROUTINE resort_for_xz |
---|
| 262 | |
---|
| 263 | |
---|
| 264 | !------------------------------------------------------------------------------! |
---|
| 265 | ! Description: |
---|
| 266 | ! ------------ |
---|
[1682] | 267 | !> Transposition of input array (f_in) from x to z. For the input array, all |
---|
| 268 | !> elements along x reside on the same PE, while after transposition, all |
---|
| 269 | !> elements along z reside on the same PE. |
---|
[1] | 270 | !------------------------------------------------------------------------------! |
---|
[1682] | 271 | SUBROUTINE transpose_xz( f_in, f_inv ) |
---|
[1] | 272 | |
---|
[1682] | 273 | |
---|
[1320] | 274 | USE cpulog, & |
---|
| 275 | ONLY: cpu_log, cpu_log_nowait, log_point_s |
---|
[1] | 276 | |
---|
[4366] | 277 | USE fft_xy, & |
---|
[4370] | 278 | ONLY: f_vec_x, temperton_fft_vec |
---|
[4366] | 279 | |
---|
[1320] | 280 | USE indices, & |
---|
[3241] | 281 | ONLY: nnx, nx, nxl, nxr, nyn, nys, nz |
---|
[1320] | 282 | |
---|
| 283 | USE kinds |
---|
| 284 | |
---|
[1324] | 285 | USE pegrid |
---|
[1320] | 286 | |
---|
| 287 | USE transpose_indices, & |
---|
| 288 | ONLY: nyn_x, nys_x, nzb_x, nzt_x |
---|
| 289 | |
---|
[1] | 290 | IMPLICIT NONE |
---|
| 291 | |
---|
[4171] | 292 | INTEGER(iwp) :: i !< |
---|
| 293 | INTEGER(iwp) :: j !< |
---|
| 294 | INTEGER(iwp) :: k !< |
---|
| 295 | INTEGER(iwp) :: l !< |
---|
[4366] | 296 | INTEGER(iwp) :: mm !< |
---|
[4171] | 297 | INTEGER(iwp) :: xs !< |
---|
[1] | 298 | |
---|
[4171] | 299 | REAL(wp) :: f_in(0:nx,nys_x:nyn_x,nzb_x:nzt_x) !< |
---|
| 300 | REAL(wp) :: f_inv(nys:nyn,nxl:nxr,1:nz) !< |
---|
[1] | 301 | |
---|
[4171] | 302 | REAL(wp), DIMENSION(nys_x:nyn_x,nnx,nzb_x:nzt_x,0:pdims(1)-1) :: work !< |
---|
[3690] | 303 | #if __acc_fft_device |
---|
[3634] | 304 | !$ACC DECLARE CREATE(work) |
---|
[3690] | 305 | #endif |
---|
[1111] | 306 | |
---|
[4366] | 307 | ! |
---|
| 308 | !-- If the PE grid is one-dimensional along y, the array has only to be |
---|
| 309 | !-- reordered locally and therefore no transposition has to be done. |
---|
[1] | 310 | IF ( pdims(1) /= 1 ) THEN |
---|
[1106] | 311 | |
---|
| 312 | #if defined( __parallel ) |
---|
[1] | 313 | ! |
---|
[4366] | 314 | !-- Reorder input array for transposition. Data from the vectorized Temperton-fft is stored in |
---|
[4370] | 315 | !-- different array format (f_vec_x). |
---|
[4366] | 316 | IF ( temperton_fft_vec ) THEN |
---|
| 317 | |
---|
| 318 | DO l = 0, pdims(1) - 1 |
---|
| 319 | xs = 0 + l * nnx |
---|
| 320 | DO k = nzb_x, nzt_x |
---|
| 321 | DO i = xs, xs + nnx - 1 |
---|
| 322 | DO j = nys_x, nyn_x |
---|
| 323 | mm = j-nys_x+1+(k-nzb_x)*(nyn_x-nys_x+1) |
---|
[4370] | 324 | work(j,i-xs+1,k,l) = f_vec_x(mm,i) |
---|
[4366] | 325 | ENDDO |
---|
| 326 | ENDDO |
---|
| 327 | ENDDO |
---|
| 328 | ENDDO |
---|
| 329 | |
---|
| 330 | ELSE |
---|
| 331 | |
---|
| 332 | !$OMP PARALLEL PRIVATE ( i, j, k, l, xs ) |
---|
| 333 | DO l = 0, pdims(1) - 1 |
---|
| 334 | xs = 0 + l * nnx |
---|
[3690] | 335 | #if __acc_fft_device |
---|
[4366] | 336 | !$ACC PARALLEL LOOP COLLAPSE(3) PRIVATE(i,j,k) & |
---|
| 337 | !$ACC PRESENT(work, f_in) |
---|
[3690] | 338 | #endif |
---|
[4366] | 339 | !$OMP DO |
---|
| 340 | DO k = nzb_x, nzt_x |
---|
| 341 | DO i = xs, xs + nnx - 1 |
---|
| 342 | DO j = nys_x, nyn_x |
---|
| 343 | work(j,i-xs+1,k,l) = f_in(i,j,k) |
---|
| 344 | ENDDO |
---|
[1] | 345 | ENDDO |
---|
| 346 | ENDDO |
---|
[4366] | 347 | !$OMP END DO NOWAIT |
---|
[1] | 348 | ENDDO |
---|
[4366] | 349 | !$OMP END PARALLEL |
---|
[1] | 350 | |
---|
[4366] | 351 | ENDIF |
---|
| 352 | |
---|
[1] | 353 | ! |
---|
| 354 | !-- Transpose array |
---|
[1318] | 355 | CALL cpu_log( log_point_s(32), 'mpi_alltoall', 'start', cpu_log_nowait ) |
---|
[3690] | 356 | |
---|
| 357 | #if __acc_fft_device |
---|
[3657] | 358 | #ifndef __cuda_aware_mpi |
---|
[3634] | 359 | !$ACC UPDATE HOST(work) |
---|
[3657] | 360 | #else |
---|
| 361 | !$ACC HOST_DATA USE_DEVICE(work, f_inv) |
---|
| 362 | #endif |
---|
[3690] | 363 | #endif |
---|
| 364 | |
---|
[622] | 365 | IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) |
---|
[1111] | 366 | CALL MPI_ALLTOALL( work(nys_x,1,nzb_x,0), sendrecvcount_zx, MPI_REAL, & |
---|
| 367 | f_inv(nys,nxl,1), sendrecvcount_zx, MPI_REAL, & |
---|
[1] | 368 | comm1dx, ierr ) |
---|
[3690] | 369 | |
---|
| 370 | #if __acc_fft_device |
---|
[3657] | 371 | #ifndef __cuda_aware_mpi |
---|
[3634] | 372 | !$ACC UPDATE DEVICE(f_inv) |
---|
[3657] | 373 | #else |
---|
| 374 | !$ACC END HOST_DATA |
---|
| 375 | #endif |
---|
[3694] | 376 | #endif |
---|
| 377 | |
---|
[1] | 378 | CALL cpu_log( log_point_s(32), 'mpi_alltoall', 'stop' ) |
---|
[1106] | 379 | #endif |
---|
| 380 | |
---|
[1] | 381 | ELSE |
---|
[1106] | 382 | |
---|
[1] | 383 | ! |
---|
| 384 | !-- Reorder the array in a way that the z index is in first position |
---|
[683] | 385 | !$OMP PARALLEL PRIVATE ( i, j, k ) |
---|
| 386 | !$OMP DO |
---|
[3690] | 387 | #if __acc_fft_device |
---|
[3634] | 388 | !$ACC PARALLEL LOOP COLLAPSE(3) PRIVATE(i,j,k) & |
---|
| 389 | !$ACC PRESENT(f_inv, f_in) |
---|
[3690] | 390 | #endif |
---|
[1003] | 391 | DO i = nxl, nxr |
---|
| 392 | DO j = nys, nyn |
---|
| 393 | DO k = 1, nz |
---|
[164] | 394 | f_inv(j,i,k) = f_in(i,j,k) |
---|
[1] | 395 | ENDDO |
---|
| 396 | ENDDO |
---|
| 397 | ENDDO |
---|
[683] | 398 | !$OMP END PARALLEL |
---|
[1] | 399 | |
---|
[164] | 400 | ENDIF |
---|
| 401 | |
---|
[1] | 402 | END SUBROUTINE transpose_xz |
---|
| 403 | |
---|
| 404 | |
---|
| 405 | !------------------------------------------------------------------------------! |
---|
| 406 | ! Description: |
---|
| 407 | ! ------------ |
---|
[1682] | 408 | !> Resorting data after the transposition from y to x. The transposition itself |
---|
| 409 | !> is carried out in transpose_yx |
---|
[1216] | 410 | !------------------------------------------------------------------------------! |
---|
[1682] | 411 | SUBROUTINE resort_for_yx( f_inv, f_out ) |
---|
[1216] | 412 | |
---|
[1682] | 413 | |
---|
[1320] | 414 | USE indices, & |
---|
| 415 | ONLY: nx |
---|
[1216] | 416 | |
---|
[1320] | 417 | USE kinds |
---|
| 418 | |
---|
| 419 | USE transpose_indices, & |
---|
| 420 | ONLY: nyn_x, nys_x, nzb_x, nzt_x |
---|
| 421 | |
---|
[1216] | 422 | IMPLICIT NONE |
---|
| 423 | |
---|
[4171] | 424 | REAL(wp) :: f_inv(nys_x:nyn_x,nzb_x:nzt_x,0:nx) !< |
---|
| 425 | REAL(wp) :: f_out(0:nx,nys_x:nyn_x,nzb_x:nzt_x) !< |
---|
[1216] | 426 | |
---|
| 427 | |
---|
[4171] | 428 | INTEGER(iwp) :: i !< |
---|
| 429 | INTEGER(iwp) :: j !< |
---|
| 430 | INTEGER(iwp) :: k !< |
---|
[1216] | 431 | ! |
---|
| 432 | !-- Rearrange indices of input array in order to make data to be send |
---|
| 433 | !-- by MPI contiguous |
---|
| 434 | !$OMP PARALLEL PRIVATE ( i, j, k ) |
---|
| 435 | !$OMP DO |
---|
[3690] | 436 | #if __acc_fft_device |
---|
[3634] | 437 | !$ACC PARALLEL LOOP COLLAPSE(3) PRIVATE(i,j,k) & |
---|
| 438 | !$ACC PRESENT(f_out, f_inv) |
---|
[3690] | 439 | #endif |
---|
[4171] | 440 | DO k = nzb_x, nzt_x |
---|
| 441 | DO j = nys_x, nyn_x |
---|
| 442 | DO i = 0, nx |
---|
[1216] | 443 | f_out(i,j,k) = f_inv(j,k,i) |
---|
| 444 | ENDDO |
---|
| 445 | ENDDO |
---|
| 446 | ENDDO |
---|
| 447 | !$OMP END PARALLEL |
---|
| 448 | |
---|
| 449 | END SUBROUTINE resort_for_yx |
---|
| 450 | |
---|
| 451 | |
---|
| 452 | !------------------------------------------------------------------------------! |
---|
| 453 | ! Description: |
---|
| 454 | ! ------------ |
---|
[1682] | 455 | !> Transposition of input array (f_in) from y to x. For the input array, all |
---|
| 456 | !> elements along y reside on the same PE, while after transposition, all |
---|
| 457 | !> elements along x reside on the same PE. |
---|
[1] | 458 | !------------------------------------------------------------------------------! |
---|
[1682] | 459 | SUBROUTINE transpose_yx( f_in, f_inv ) |
---|
[1] | 460 | |
---|
[1682] | 461 | |
---|
[1320] | 462 | USE cpulog, & |
---|
| 463 | ONLY: cpu_log, cpu_log_nowait, log_point_s |
---|
[1] | 464 | |
---|
[1320] | 465 | USE indices, & |
---|
| 466 | ONLY: nx, ny |
---|
| 467 | |
---|
| 468 | USE kinds |
---|
| 469 | |
---|
[1324] | 470 | USE pegrid |
---|
[1320] | 471 | |
---|
| 472 | USE transpose_indices, & |
---|
| 473 | ONLY: nxl_y, nxr_y, nyn_x, nys_x, nzb_x, nzb_y, nzt_x, nzt_y |
---|
| 474 | |
---|
[1] | 475 | IMPLICIT NONE |
---|
| 476 | |
---|
[4171] | 477 | INTEGER(iwp) :: i !< |
---|
| 478 | INTEGER(iwp) :: j !< |
---|
| 479 | INTEGER(iwp) :: k !< |
---|
| 480 | INTEGER(iwp) :: l !< |
---|
| 481 | INTEGER(iwp) :: ys !< |
---|
[1] | 482 | |
---|
[4171] | 483 | REAL(wp) :: f_in(0:ny,nxl_y:nxr_y,nzb_y:nzt_y) !< |
---|
| 484 | REAL(wp) :: f_inv(nys_x:nyn_x,nzb_x:nzt_x,0:nx) !< |
---|
[1111] | 485 | |
---|
[4171] | 486 | REAL(wp), DIMENSION(nyn_x-nys_x+1,nzb_y:nzt_y,nxl_y:nxr_y,0:pdims(2)-1) :: work !< |
---|
[3690] | 487 | #if __acc_fft_device |
---|
[3634] | 488 | !$ACC DECLARE CREATE(work) |
---|
[3690] | 489 | #endif |
---|
[1111] | 490 | |
---|
[1320] | 491 | |
---|
[1106] | 492 | IF ( numprocs /= 1 ) THEN |
---|
| 493 | |
---|
[1] | 494 | #if defined( __parallel ) |
---|
| 495 | ! |
---|
[1106] | 496 | !-- Reorder input array for transposition |
---|
[1111] | 497 | !$OMP PARALLEL PRIVATE ( i, j, k, l, ys ) |
---|
[1106] | 498 | DO l = 0, pdims(2) - 1 |
---|
| 499 | ys = 0 + l * ( nyn_x - nys_x + 1 ) |
---|
[3690] | 500 | #if __acc_fft_device |
---|
[3634] | 501 | !$ACC PARALLEL LOOP COLLAPSE(3) PRIVATE(i,j,k) & |
---|
| 502 | !$ACC PRESENT(work, f_in) |
---|
[3690] | 503 | #endif |
---|
[4236] | 504 | !$OMP DO |
---|
[1106] | 505 | DO i = nxl_y, nxr_y |
---|
| 506 | DO k = nzb_y, nzt_y |
---|
| 507 | DO j = ys, ys + nyn_x - nys_x |
---|
[1111] | 508 | work(j-ys+1,k,i,l) = f_in(j,i,k) |
---|
[1106] | 509 | ENDDO |
---|
| 510 | ENDDO |
---|
| 511 | ENDDO |
---|
[4236] | 512 | !$OMP END DO NOWAIT |
---|
[1106] | 513 | ENDDO |
---|
| 514 | !$OMP END PARALLEL |
---|
| 515 | |
---|
| 516 | ! |
---|
| 517 | !-- Transpose array |
---|
[1318] | 518 | CALL cpu_log( log_point_s(32), 'mpi_alltoall', 'start', cpu_log_nowait ) |
---|
[3690] | 519 | |
---|
| 520 | #if __acc_fft_device |
---|
[3657] | 521 | #ifndef __cuda_aware_mpi |
---|
[3634] | 522 | !$ACC UPDATE HOST(work) |
---|
[3657] | 523 | #else |
---|
| 524 | !$ACC HOST_DATA USE_DEVICE(work, f_inv) |
---|
| 525 | #endif |
---|
[3690] | 526 | #endif |
---|
| 527 | |
---|
[1106] | 528 | IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) |
---|
[1111] | 529 | CALL MPI_ALLTOALL( work(1,nzb_y,nxl_y,0), sendrecvcount_xy, MPI_REAL, & |
---|
| 530 | f_inv(nys_x,nzb_x,0), sendrecvcount_xy, MPI_REAL, & |
---|
[1106] | 531 | comm1dy, ierr ) |
---|
[3690] | 532 | |
---|
| 533 | #if __acc_fft_device |
---|
[3657] | 534 | #ifndef __cuda_aware_mpi |
---|
[3634] | 535 | !$ACC UPDATE DEVICE(f_inv) |
---|
[3657] | 536 | #else |
---|
| 537 | !$ACC END HOST_DATA |
---|
| 538 | #endif |
---|
[3690] | 539 | #endif |
---|
| 540 | |
---|
[1106] | 541 | CALL cpu_log( log_point_s(32), 'mpi_alltoall', 'stop' ) |
---|
| 542 | #endif |
---|
| 543 | |
---|
| 544 | ELSE |
---|
| 545 | |
---|
| 546 | ! |
---|
| 547 | !-- Reorder array f_in the same way as ALLTOALL did it |
---|
| 548 | !$OMP PARALLEL PRIVATE ( i, j, k ) |
---|
| 549 | !$OMP DO |
---|
[3690] | 550 | #if __acc_fft_device |
---|
[3634] | 551 | !$ACC PARALLEL LOOP COLLAPSE(3) PRIVATE(i,j,k) & |
---|
| 552 | !$ACC PRESENT(f_inv, f_in) |
---|
[3690] | 553 | #endif |
---|
[1003] | 554 | DO i = nxl_y, nxr_y |
---|
| 555 | DO k = nzb_y, nzt_y |
---|
[1106] | 556 | DO j = 0, ny |
---|
| 557 | f_inv(j,k,i) = f_in(j,i,k) |
---|
[1] | 558 | ENDDO |
---|
| 559 | ENDDO |
---|
| 560 | ENDDO |
---|
[683] | 561 | !$OMP END PARALLEL |
---|
[1] | 562 | |
---|
[1106] | 563 | ENDIF |
---|
[1] | 564 | |
---|
| 565 | END SUBROUTINE transpose_yx |
---|
| 566 | |
---|
| 567 | |
---|
| 568 | !------------------------------------------------------------------------------! |
---|
| 569 | ! Description: |
---|
| 570 | ! ------------ |
---|
[1682] | 571 | !> Transposition of input array (f_in) from y to x. For the input array, all |
---|
| 572 | !> elements along y reside on the same PE, while after transposition, all |
---|
| 573 | !> elements along x reside on the same PE. |
---|
| 574 | !> This is a direct transposition for arrays with indices in regular order |
---|
| 575 | !> (k,j,i) (cf. transpose_yx). |
---|
[1] | 576 | !------------------------------------------------------------------------------! |
---|
[1682] | 577 | SUBROUTINE transpose_yxd( f_in, f_out ) |
---|
[1] | 578 | |
---|
[1682] | 579 | |
---|
[1320] | 580 | USE cpulog, & |
---|
[3241] | 581 | ONLY: cpu_log, log_point_s |
---|
[1] | 582 | |
---|
[1320] | 583 | USE indices, & |
---|
| 584 | ONLY: nnx, nny, nnz, nx, nxl, nxr, nyn, nys, nz |
---|
| 585 | |
---|
| 586 | USE kinds |
---|
| 587 | |
---|
[1324] | 588 | USE pegrid |
---|
[1320] | 589 | |
---|
| 590 | USE transpose_indices, & |
---|
| 591 | ONLY: nyn_x, nys_x, nzb_x, nzt_x |
---|
| 592 | |
---|
[1] | 593 | IMPLICIT NONE |
---|
| 594 | |
---|
[4171] | 595 | INTEGER(iwp) :: i !< |
---|
| 596 | INTEGER(iwp) :: j !< |
---|
| 597 | INTEGER(iwp) :: k !< |
---|
| 598 | INTEGER(iwp) :: l !< |
---|
| 599 | INTEGER(iwp) :: m !< |
---|
| 600 | INTEGER(iwp) :: xs !< |
---|
[1] | 601 | |
---|
[4171] | 602 | REAL(wp) :: f_in(1:nz,nys:nyn,nxl:nxr) !< |
---|
| 603 | REAL(wp) :: f_inv(nxl:nxr,1:nz,nys:nyn) !< |
---|
| 604 | REAL(wp) :: f_out(0:nx,nys_x:nyn_x,nzb_x:nzt_x) !< |
---|
| 605 | REAL(wp) :: work(nnx*nny*nnz) !< |
---|
[1] | 606 | #if defined( __parallel ) |
---|
| 607 | |
---|
| 608 | ! |
---|
| 609 | !-- Rearrange indices of input array in order to make data to be send |
---|
| 610 | !-- by MPI contiguous |
---|
[1003] | 611 | DO k = 1, nz |
---|
| 612 | DO j = nys, nyn |
---|
| 613 | DO i = nxl, nxr |
---|
[164] | 614 | f_inv(i,k,j) = f_in(k,j,i) |
---|
[1] | 615 | ENDDO |
---|
| 616 | ENDDO |
---|
| 617 | ENDDO |
---|
| 618 | |
---|
| 619 | ! |
---|
| 620 | !-- Transpose array |
---|
| 621 | CALL cpu_log( log_point_s(32), 'mpi_alltoall', 'start' ) |
---|
[622] | 622 | IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) |
---|
[1] | 623 | CALL MPI_ALLTOALL( f_inv(nxl,1,nys), sendrecvcount_xy, MPI_REAL, & |
---|
[164] | 624 | work(1), sendrecvcount_xy, MPI_REAL, & |
---|
[1] | 625 | comm1dx, ierr ) |
---|
| 626 | CALL cpu_log( log_point_s(32), 'mpi_alltoall', 'stop' ) |
---|
| 627 | |
---|
| 628 | ! |
---|
| 629 | !-- Reorder transposed array |
---|
| 630 | m = 0 |
---|
| 631 | DO l = 0, pdims(1) - 1 |
---|
| 632 | xs = 0 + l * nnx |
---|
[1003] | 633 | DO j = nys_x, nyn_x |
---|
| 634 | DO k = 1, nz |
---|
[1] | 635 | DO i = xs, xs + nnx - 1 |
---|
| 636 | m = m + 1 |
---|
[164] | 637 | f_out(i,j,k) = work(m) |
---|
[1] | 638 | ENDDO |
---|
| 639 | ENDDO |
---|
| 640 | ENDDO |
---|
| 641 | ENDDO |
---|
| 642 | |
---|
| 643 | #endif |
---|
| 644 | |
---|
| 645 | END SUBROUTINE transpose_yxd |
---|
| 646 | |
---|
| 647 | |
---|
| 648 | !------------------------------------------------------------------------------! |
---|
| 649 | ! Description: |
---|
| 650 | ! ------------ |
---|
[1682] | 651 | !> Resorting data for the transposition from y to z. The transposition itself |
---|
| 652 | !> is carried out in transpose_yz |
---|
[1216] | 653 | !------------------------------------------------------------------------------! |
---|
[1682] | 654 | SUBROUTINE resort_for_yz( f_in, f_inv ) |
---|
[1216] | 655 | |
---|
[1682] | 656 | |
---|
[1320] | 657 | USE indices, & |
---|
| 658 | ONLY: ny |
---|
[1216] | 659 | |
---|
[1320] | 660 | USE kinds |
---|
| 661 | |
---|
| 662 | USE transpose_indices, & |
---|
| 663 | ONLY: nxl_y, nxr_y, nzb_y, nzt_y |
---|
| 664 | |
---|
[1216] | 665 | IMPLICIT NONE |
---|
| 666 | |
---|
[4171] | 667 | REAL(wp) :: f_in(0:ny,nxl_y:nxr_y,nzb_y:nzt_y) !< |
---|
| 668 | REAL(wp) :: f_inv(nxl_y:nxr_y,nzb_y:nzt_y,0:ny) !< |
---|
[1216] | 669 | |
---|
[4171] | 670 | INTEGER(iwp) :: i !< |
---|
| 671 | INTEGER(iwp) :: j !< |
---|
| 672 | INTEGER(iwp) :: k !< |
---|
[1216] | 673 | |
---|
| 674 | ! |
---|
| 675 | !-- Rearrange indices of input array in order to make data to be send |
---|
| 676 | !-- by MPI contiguous |
---|
| 677 | !$OMP PARALLEL PRIVATE ( i, j, k ) |
---|
| 678 | !$OMP DO |
---|
[3690] | 679 | #if __acc_fft_device |
---|
[3634] | 680 | !$ACC PARALLEL LOOP COLLAPSE(3) PRIVATE(i,j,k) & |
---|
| 681 | !$ACC PRESENT(f_inv, f_in) |
---|
[3690] | 682 | #endif |
---|
[4171] | 683 | DO k = nzb_y, nzt_y |
---|
| 684 | DO i = nxl_y, nxr_y |
---|
| 685 | DO j = 0, ny |
---|
[1216] | 686 | f_inv(i,k,j) = f_in(j,i,k) |
---|
| 687 | ENDDO |
---|
| 688 | ENDDO |
---|
| 689 | ENDDO |
---|
| 690 | !$OMP END PARALLEL |
---|
| 691 | |
---|
| 692 | END SUBROUTINE resort_for_yz |
---|
| 693 | |
---|
| 694 | |
---|
| 695 | !------------------------------------------------------------------------------! |
---|
| 696 | ! Description: |
---|
| 697 | ! ------------ |
---|
[1682] | 698 | !> Transposition of input array (f_in) from y to z. For the input array, all |
---|
| 699 | !> elements along y reside on the same PE, while after transposition, all |
---|
| 700 | !> elements along z reside on the same PE. |
---|
[1] | 701 | !------------------------------------------------------------------------------! |
---|
[1682] | 702 | SUBROUTINE transpose_yz( f_inv, f_out ) |
---|
[1] | 703 | |
---|
[1682] | 704 | |
---|
[1320] | 705 | USE cpulog, & |
---|
| 706 | ONLY: cpu_log, cpu_log_nowait, log_point_s |
---|
[1] | 707 | |
---|
[1320] | 708 | USE indices, & |
---|
| 709 | ONLY: ny, nz |
---|
| 710 | |
---|
| 711 | USE kinds |
---|
| 712 | |
---|
[1324] | 713 | USE pegrid |
---|
[1320] | 714 | |
---|
| 715 | USE transpose_indices, & |
---|
| 716 | ONLY: nxl_y, nxl_z, nxr_y, nxr_z, nyn_z, nys_z, nzb_y, nzt_y |
---|
| 717 | |
---|
[1] | 718 | IMPLICIT NONE |
---|
| 719 | |
---|
[4171] | 720 | INTEGER(iwp) :: i !< |
---|
| 721 | INTEGER(iwp) :: j !< |
---|
| 722 | INTEGER(iwp) :: k !< |
---|
| 723 | INTEGER(iwp) :: l !< |
---|
| 724 | INTEGER(iwp) :: zs !< |
---|
[1] | 725 | |
---|
[4171] | 726 | REAL(wp) :: f_inv(nxl_y:nxr_y,nzb_y:nzt_y,0:ny) !< |
---|
| 727 | REAL(wp) :: f_out(nxl_z:nxr_z,nys_z:nyn_z,1:nz) !< |
---|
[1111] | 728 | |
---|
[4171] | 729 | REAL(wp), DIMENSION(nxl_z:nxr_z,nzt_y-nzb_y+1,nys_z:nyn_z,0:pdims(1)-1) :: work !< |
---|
[3690] | 730 | #if __acc_fft_device |
---|
[3634] | 731 | !$ACC DECLARE CREATE(work) |
---|
[3690] | 732 | #endif |
---|
[1111] | 733 | |
---|
[1320] | 734 | |
---|
[1] | 735 | ! |
---|
| 736 | !-- If the PE grid is one-dimensional along y, only local reordering |
---|
| 737 | !-- of the data is necessary and no transposition has to be done. |
---|
| 738 | IF ( pdims(1) == 1 ) THEN |
---|
[1106] | 739 | |
---|
[683] | 740 | !$OMP PARALLEL PRIVATE ( i, j, k ) |
---|
| 741 | !$OMP DO |
---|
[3690] | 742 | #if __acc_fft_device |
---|
[3634] | 743 | !$ACC PARALLEL LOOP COLLAPSE(3) PRIVATE(i,j,k) & |
---|
| 744 | !$ACC PRESENT(f_out, f_inv) |
---|
[3690] | 745 | #endif |
---|
[1003] | 746 | DO j = 0, ny |
---|
| 747 | DO k = nzb_y, nzt_y |
---|
| 748 | DO i = nxl_y, nxr_y |
---|
[164] | 749 | f_out(i,j,k) = f_inv(i,k,j) |
---|
[1] | 750 | ENDDO |
---|
| 751 | ENDDO |
---|
| 752 | ENDDO |
---|
[683] | 753 | !$OMP END PARALLEL |
---|
[1] | 754 | |
---|
[1106] | 755 | ELSE |
---|
| 756 | |
---|
| 757 | #if defined( __parallel ) |
---|
[1] | 758 | ! |
---|
[1106] | 759 | !-- Transpose array |
---|
[1318] | 760 | CALL cpu_log( log_point_s(32), 'mpi_alltoall', 'start', cpu_log_nowait ) |
---|
[3690] | 761 | |
---|
| 762 | #if __acc_fft_device |
---|
[3657] | 763 | #ifndef __cuda_aware_mpi |
---|
[3634] | 764 | !$ACC UPDATE HOST(f_inv) |
---|
[3657] | 765 | #else |
---|
| 766 | !$ACC HOST_DATA USE_DEVICE(work, f_inv) |
---|
| 767 | #endif |
---|
[3690] | 768 | #endif |
---|
| 769 | |
---|
[1106] | 770 | IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) |
---|
[1111] | 771 | CALL MPI_ALLTOALL( f_inv(nxl_y,nzb_y,0), sendrecvcount_yz, MPI_REAL, & |
---|
| 772 | work(nxl_z,1,nys_z,0), sendrecvcount_yz, MPI_REAL, & |
---|
[1106] | 773 | comm1dx, ierr ) |
---|
[3690] | 774 | |
---|
| 775 | #if __acc_fft_device |
---|
[3657] | 776 | #ifndef __cuda_aware_mpi |
---|
[3634] | 777 | !$ACC UPDATE DEVICE(work) |
---|
[3657] | 778 | #else |
---|
| 779 | !$ACC END HOST_DATA |
---|
| 780 | #endif |
---|
[3690] | 781 | #endif |
---|
| 782 | |
---|
[1106] | 783 | CALL cpu_log( log_point_s(32), 'mpi_alltoall', 'stop' ) |
---|
[1] | 784 | |
---|
| 785 | ! |
---|
[1106] | 786 | !-- Reorder transposed array |
---|
[1111] | 787 | !$OMP PARALLEL PRIVATE ( i, j, k, l, zs ) |
---|
[1106] | 788 | DO l = 0, pdims(1) - 1 |
---|
| 789 | zs = 1 + l * ( nzt_y - nzb_y + 1 ) |
---|
[3690] | 790 | #if __acc_fft_device |
---|
[3634] | 791 | !$ACC PARALLEL LOOP COLLAPSE(3) PRIVATE(i,j,k) & |
---|
| 792 | !$ACC PRESENT(f_out, work) |
---|
[3690] | 793 | #endif |
---|
[4236] | 794 | !$OMP DO |
---|
[1106] | 795 | DO j = nys_z, nyn_z |
---|
| 796 | DO k = zs, zs + nzt_y - nzb_y |
---|
| 797 | DO i = nxl_z, nxr_z |
---|
[1111] | 798 | f_out(i,j,k) = work(i,k-zs+1,j,l) |
---|
[1106] | 799 | ENDDO |
---|
[1] | 800 | ENDDO |
---|
| 801 | ENDDO |
---|
[4236] | 802 | !$OMP END DO NOWAIT |
---|
[1] | 803 | ENDDO |
---|
[683] | 804 | !$OMP END PARALLEL |
---|
[1] | 805 | #endif |
---|
| 806 | |
---|
[1106] | 807 | ENDIF |
---|
| 808 | |
---|
[1] | 809 | END SUBROUTINE transpose_yz |
---|
| 810 | |
---|
| 811 | |
---|
| 812 | !------------------------------------------------------------------------------! |
---|
| 813 | ! Description: |
---|
| 814 | ! ------------ |
---|
[1682] | 815 | !> Resorting data for the transposition from z to x. The transposition itself |
---|
| 816 | !> is carried out in transpose_zx |
---|
[1216] | 817 | !------------------------------------------------------------------------------! |
---|
[1682] | 818 | SUBROUTINE resort_for_zx( f_in, f_inv ) |
---|
[1216] | 819 | |
---|
[1682] | 820 | |
---|
[1320] | 821 | USE indices, & |
---|
| 822 | ONLY: nxl, nxr, nyn, nys, nz |
---|
[1216] | 823 | |
---|
[1320] | 824 | USE kinds |
---|
| 825 | |
---|
[1216] | 826 | IMPLICIT NONE |
---|
| 827 | |
---|
[4171] | 828 | REAL(wp) :: f_in(1:nz,nys:nyn,nxl:nxr) !< |
---|
| 829 | REAL(wp) :: f_inv(nys:nyn,nxl:nxr,1:nz) !< |
---|
[1216] | 830 | |
---|
[4171] | 831 | INTEGER(iwp) :: i !< |
---|
| 832 | INTEGER(iwp) :: j !< |
---|
| 833 | INTEGER(iwp) :: k !< |
---|
[1216] | 834 | |
---|
| 835 | ! |
---|
| 836 | !-- Rearrange indices of input array in order to make data to be send |
---|
| 837 | !-- by MPI contiguous |
---|
| 838 | !$OMP PARALLEL PRIVATE ( i, j, k ) |
---|
| 839 | !$OMP DO |
---|
[3690] | 840 | #if __acc_fft_device |
---|
[3634] | 841 | !$ACC PARALLEL LOOP COLLAPSE(3) PRIVATE(i,j,k) & |
---|
| 842 | !$ACC PRESENT(f_in, f_inv) |
---|
[3690] | 843 | #endif |
---|
[3832] | 844 | DO i = nxl, nxr |
---|
[4171] | 845 | DO j = nys, nyn |
---|
| 846 | DO k = 1,nz |
---|
[1216] | 847 | f_inv(j,i,k) = f_in(k,j,i) |
---|
| 848 | ENDDO |
---|
| 849 | ENDDO |
---|
| 850 | ENDDO |
---|
| 851 | !$OMP END PARALLEL |
---|
| 852 | |
---|
| 853 | END SUBROUTINE resort_for_zx |
---|
| 854 | |
---|
| 855 | |
---|
| 856 | !------------------------------------------------------------------------------! |
---|
| 857 | ! Description: |
---|
| 858 | ! ------------ |
---|
[1682] | 859 | !> Transposition of input array (f_in) from z to x. For the input array, all |
---|
| 860 | !> elements along z reside on the same PE, while after transposition, all |
---|
| 861 | !> elements along x reside on the same PE. |
---|
[1] | 862 | !------------------------------------------------------------------------------! |
---|
[1682] | 863 | SUBROUTINE transpose_zx( f_inv, f_out ) |
---|
[1] | 864 | |
---|
[1682] | 865 | |
---|
[1320] | 866 | USE cpulog, & |
---|
| 867 | ONLY: cpu_log, cpu_log_nowait, log_point_s |
---|
[1] | 868 | |
---|
[4366] | 869 | USE fft_xy, & |
---|
[4370] | 870 | ONLY: f_vec_x, temperton_fft_vec |
---|
[4366] | 871 | |
---|
[1320] | 872 | USE indices, & |
---|
| 873 | ONLY: nnx, nx, nxl, nxr, nyn, nys, nz |
---|
| 874 | |
---|
| 875 | USE kinds |
---|
| 876 | |
---|
[1324] | 877 | USE pegrid |
---|
[1320] | 878 | |
---|
| 879 | USE transpose_indices, & |
---|
| 880 | ONLY: nyn_x, nys_x, nzb_x, nzt_x |
---|
| 881 | |
---|
[1] | 882 | IMPLICIT NONE |
---|
| 883 | |
---|
[4171] | 884 | INTEGER(iwp) :: i !< |
---|
| 885 | INTEGER(iwp) :: j !< |
---|
| 886 | INTEGER(iwp) :: k !< |
---|
| 887 | INTEGER(iwp) :: l !< |
---|
[4366] | 888 | INTEGER(iwp) :: mm !< |
---|
[4171] | 889 | INTEGER(iwp) :: xs !< |
---|
[1] | 890 | |
---|
[4171] | 891 | REAL(wp) :: f_inv(nys:nyn,nxl:nxr,1:nz) !< |
---|
| 892 | REAL(wp) :: f_out(0:nx,nys_x:nyn_x,nzb_x:nzt_x) !< |
---|
[1111] | 893 | |
---|
[4171] | 894 | REAL(wp), DIMENSION(nys_x:nyn_x,nnx,nzb_x:nzt_x,0:pdims(1)-1) :: work !< |
---|
[3690] | 895 | #if __acc_fft_device |
---|
[3634] | 896 | !$ACC DECLARE CREATE(work) |
---|
[3690] | 897 | #endif |
---|
[1] | 898 | |
---|
[1320] | 899 | |
---|
[1] | 900 | ! |
---|
| 901 | !-- If the PE grid is one-dimensional along y, only local reordering |
---|
| 902 | !-- of the data is necessary and no transposition has to be done. |
---|
| 903 | IF ( pdims(1) == 1 ) THEN |
---|
[1106] | 904 | |
---|
[683] | 905 | !$OMP PARALLEL PRIVATE ( i, j, k ) |
---|
| 906 | !$OMP DO |
---|
[3690] | 907 | #if __acc_fft_device |
---|
[3634] | 908 | !$ACC PARALLEL LOOP COLLAPSE(3) PRIVATE(i,j,k) & |
---|
| 909 | !$ACC PRESENT(f_out, f_inv) |
---|
[3690] | 910 | #endif |
---|
[1003] | 911 | DO k = 1, nz |
---|
| 912 | DO i = nxl, nxr |
---|
| 913 | DO j = nys, nyn |
---|
[164] | 914 | f_out(i,j,k) = f_inv(j,i,k) |
---|
[1] | 915 | ENDDO |
---|
| 916 | ENDDO |
---|
| 917 | ENDDO |
---|
[683] | 918 | !$OMP END PARALLEL |
---|
[1] | 919 | |
---|
[1106] | 920 | ELSE |
---|
| 921 | |
---|
| 922 | #if defined( __parallel ) |
---|
[1] | 923 | ! |
---|
[1106] | 924 | !-- Transpose array |
---|
[1318] | 925 | CALL cpu_log( log_point_s(32), 'mpi_alltoall', 'start', cpu_log_nowait ) |
---|
[3690] | 926 | |
---|
| 927 | #if __acc_fft_device |
---|
[3657] | 928 | #ifndef __cuda_aware_mpi |
---|
[3634] | 929 | !$ACC UPDATE HOST(f_inv) |
---|
[3657] | 930 | #else |
---|
| 931 | !$ACC HOST_DATA USE_DEVICE(work, f_inv) |
---|
| 932 | #endif |
---|
[3690] | 933 | #endif |
---|
| 934 | |
---|
[1106] | 935 | IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) |
---|
[1111] | 936 | CALL MPI_ALLTOALL( f_inv(nys,nxl,1), sendrecvcount_zx, MPI_REAL, & |
---|
| 937 | work(nys_x,1,nzb_x,0), sendrecvcount_zx, MPI_REAL, & |
---|
[1106] | 938 | comm1dx, ierr ) |
---|
[3690] | 939 | |
---|
| 940 | #if __acc_fft_device |
---|
[3657] | 941 | #ifndef __cuda_aware_mpi |
---|
[3634] | 942 | !$ACC UPDATE DEVICE(work) |
---|
[3657] | 943 | #else |
---|
| 944 | !$ACC END HOST_DATA |
---|
| 945 | #endif |
---|
[3690] | 946 | #endif |
---|
| 947 | |
---|
[1106] | 948 | CALL cpu_log( log_point_s(32), 'mpi_alltoall', 'stop' ) |
---|
[1] | 949 | |
---|
| 950 | ! |
---|
[4366] | 951 | !-- Reorder transposed array. |
---|
[4370] | 952 | !-- Data for the vectorized Temperton-fft is stored in different array format (f_vec_x) which |
---|
| 953 | !-- saves additional data copy in fft_x. |
---|
[4366] | 954 | IF ( temperton_fft_vec ) THEN |
---|
| 955 | |
---|
| 956 | DO l = 0, pdims(1) - 1 |
---|
| 957 | xs = 0 + l * nnx |
---|
| 958 | DO k = nzb_x, nzt_x |
---|
| 959 | DO i = xs, xs + nnx - 1 |
---|
| 960 | DO j = nys_x, nyn_x |
---|
| 961 | mm = j-nys_x+1+(k-nzb_x)*(nyn_x-nys_x+1) |
---|
[4370] | 962 | f_vec_x(mm,i) = work(j,i-xs+1,k,l) |
---|
[4366] | 963 | ENDDO |
---|
| 964 | ENDDO |
---|
| 965 | ENDDO |
---|
| 966 | ENDDO |
---|
| 967 | |
---|
| 968 | ELSE |
---|
| 969 | |
---|
| 970 | !$OMP PARALLEL PRIVATE ( i, j, k, l, xs ) |
---|
| 971 | DO l = 0, pdims(1) - 1 |
---|
| 972 | xs = 0 + l * nnx |
---|
[3690] | 973 | #if __acc_fft_device |
---|
[4366] | 974 | !$ACC PARALLEL LOOP COLLAPSE(3) PRIVATE(i,j,k) & |
---|
| 975 | !$ACC PRESENT(f_out, work) |
---|
[3690] | 976 | #endif |
---|
[4366] | 977 | !$OMP DO |
---|
| 978 | DO k = nzb_x, nzt_x |
---|
| 979 | DO i = xs, xs + nnx - 1 |
---|
| 980 | DO j = nys_x, nyn_x |
---|
| 981 | f_out(i,j,k) = work(j,i-xs+1,k,l) |
---|
| 982 | ENDDO |
---|
[1106] | 983 | ENDDO |
---|
[1] | 984 | ENDDO |
---|
[4366] | 985 | !$OMP END DO NOWAIT |
---|
[1] | 986 | ENDDO |
---|
[4366] | 987 | !$OMP END PARALLEL |
---|
[1] | 988 | |
---|
[4366] | 989 | ENDIF |
---|
| 990 | |
---|
[4415] | 991 | #endif |
---|
| 992 | |
---|
[1106] | 993 | ENDIF |
---|
| 994 | |
---|
[1] | 995 | END SUBROUTINE transpose_zx |
---|
| 996 | |
---|
| 997 | |
---|
| 998 | !------------------------------------------------------------------------------! |
---|
| 999 | ! Description: |
---|
| 1000 | ! ------------ |
---|
[1682] | 1001 | !> Resorting data after the transposition from z to y. The transposition itself |
---|
| 1002 | !> is carried out in transpose_zy |
---|
[1216] | 1003 | !------------------------------------------------------------------------------! |
---|
[1682] | 1004 | SUBROUTINE resort_for_zy( f_inv, f_out ) |
---|
[1216] | 1005 | |
---|
[1682] | 1006 | |
---|
[1320] | 1007 | USE indices, & |
---|
| 1008 | ONLY: ny |
---|
[1216] | 1009 | |
---|
[1320] | 1010 | USE kinds |
---|
| 1011 | |
---|
| 1012 | USE transpose_indices, & |
---|
| 1013 | ONLY: nxl_y, nxr_y, nzb_y, nzt_y |
---|
| 1014 | |
---|
[1216] | 1015 | IMPLICIT NONE |
---|
| 1016 | |
---|
[4171] | 1017 | REAL(wp) :: f_inv(nxl_y:nxr_y,nzb_y:nzt_y,0:ny) !< |
---|
| 1018 | REAL(wp) :: f_out(0:ny,nxl_y:nxr_y,nzb_y:nzt_y) !< |
---|
[1216] | 1019 | |
---|
| 1020 | |
---|
[4171] | 1021 | INTEGER(iwp) :: i !< |
---|
| 1022 | INTEGER(iwp) :: j !< |
---|
| 1023 | INTEGER(iwp) :: k !< |
---|
[1216] | 1024 | |
---|
| 1025 | ! |
---|
| 1026 | !-- Rearrange indices of input array in order to make data to be send |
---|
| 1027 | !-- by MPI contiguous |
---|
| 1028 | !$OMP PARALLEL PRIVATE ( i, j, k ) |
---|
| 1029 | !$OMP DO |
---|
[3690] | 1030 | #if __acc_fft_device |
---|
[3634] | 1031 | !$ACC PARALLEL LOOP COLLAPSE(3) PRIVATE(i,j,k) & |
---|
| 1032 | !$ACC PRESENT(f_out, f_inv) |
---|
[3690] | 1033 | #endif |
---|
[4171] | 1034 | DO k = nzb_y, nzt_y |
---|
| 1035 | DO i = nxl_y, nxr_y |
---|
| 1036 | DO j = 0, ny |
---|
[1216] | 1037 | f_out(j,i,k) = f_inv(i,k,j) |
---|
| 1038 | ENDDO |
---|
| 1039 | ENDDO |
---|
| 1040 | ENDDO |
---|
| 1041 | !$OMP END PARALLEL |
---|
| 1042 | |
---|
| 1043 | END SUBROUTINE resort_for_zy |
---|
| 1044 | |
---|
| 1045 | |
---|
| 1046 | !------------------------------------------------------------------------------! |
---|
[3241] | 1047 | ! Description:cpu_log_nowait |
---|
[1216] | 1048 | ! ------------ |
---|
[1682] | 1049 | !> Transposition of input array (f_in) from z to y. For the input array, all |
---|
| 1050 | !> elements along z reside on the same PE, while after transposition, all |
---|
| 1051 | !> elements along y reside on the same PE. |
---|
[1] | 1052 | !------------------------------------------------------------------------------! |
---|
[1682] | 1053 | SUBROUTINE transpose_zy( f_in, f_inv ) |
---|
[1] | 1054 | |
---|
[1682] | 1055 | |
---|
[1320] | 1056 | USE cpulog, & |
---|
| 1057 | ONLY: cpu_log, cpu_log_nowait, log_point_s |
---|
[1] | 1058 | |
---|
[1320] | 1059 | USE indices, & |
---|
| 1060 | ONLY: ny, nz |
---|
| 1061 | |
---|
| 1062 | USE kinds |
---|
| 1063 | |
---|
[1324] | 1064 | USE pegrid |
---|
[1320] | 1065 | |
---|
| 1066 | USE transpose_indices, & |
---|
| 1067 | ONLY: nxl_y, nxl_z, nxr_y, nxr_z, nyn_z, nys_z, nzb_y, nzt_y |
---|
| 1068 | |
---|
[1] | 1069 | IMPLICIT NONE |
---|
| 1070 | |
---|
[4171] | 1071 | INTEGER(iwp) :: i !< |
---|
| 1072 | INTEGER(iwp) :: j !< |
---|
| 1073 | INTEGER(iwp) :: k !< |
---|
| 1074 | INTEGER(iwp) :: l !< |
---|
| 1075 | INTEGER(iwp) :: zs !< |
---|
[1] | 1076 | |
---|
[4171] | 1077 | REAL(wp) :: f_in(nxl_z:nxr_z,nys_z:nyn_z,1:nz) !< |
---|
| 1078 | REAL(wp) :: f_inv(nxl_y:nxr_y,nzb_y:nzt_y,0:ny) !< |
---|
[1111] | 1079 | |
---|
[1682] | 1080 | REAL(wp), DIMENSION(nxl_z:nxr_z,nzt_y-nzb_y+1,nys_z:nyn_z,0:pdims(1)-1) :: work !< |
---|
[3690] | 1081 | #if __acc_fft_device |
---|
[3634] | 1082 | !$ACC DECLARE CREATE(work) |
---|
[3690] | 1083 | #endif |
---|
[1111] | 1084 | |
---|
[1] | 1085 | ! |
---|
| 1086 | !-- If the PE grid is one-dimensional along y, the array has only to be |
---|
| 1087 | !-- reordered locally and therefore no transposition has to be done. |
---|
| 1088 | IF ( pdims(1) /= 1 ) THEN |
---|
[1106] | 1089 | |
---|
| 1090 | #if defined( __parallel ) |
---|
[1] | 1091 | ! |
---|
| 1092 | !-- Reorder input array for transposition |
---|
[1111] | 1093 | !$OMP PARALLEL PRIVATE ( i, j, k, l, zs ) |
---|
[1] | 1094 | DO l = 0, pdims(1) - 1 |
---|
[1003] | 1095 | zs = 1 + l * ( nzt_y - nzb_y + 1 ) |
---|
[3690] | 1096 | #if __acc_fft_device |
---|
[3634] | 1097 | !$ACC PARALLEL LOOP COLLAPSE(3) PRIVATE(i,j,k) & |
---|
| 1098 | !$ACC PRESENT(work, f_in) |
---|
[3690] | 1099 | #endif |
---|
[4236] | 1100 | !$OMP DO |
---|
[1003] | 1101 | DO j = nys_z, nyn_z |
---|
| 1102 | DO k = zs, zs + nzt_y - nzb_y |
---|
| 1103 | DO i = nxl_z, nxr_z |
---|
[1111] | 1104 | work(i,k-zs+1,j,l) = f_in(i,j,k) |
---|
[1] | 1105 | ENDDO |
---|
| 1106 | ENDDO |
---|
| 1107 | ENDDO |
---|
[4236] | 1108 | !$OMP END DO NOWAIT |
---|
[1] | 1109 | ENDDO |
---|
[683] | 1110 | !$OMP END PARALLEL |
---|
[1] | 1111 | |
---|
| 1112 | ! |
---|
| 1113 | !-- Transpose array |
---|
[1318] | 1114 | CALL cpu_log( log_point_s(32), 'mpi_alltoall', 'start', cpu_log_nowait ) |
---|
[3690] | 1115 | |
---|
| 1116 | #if __acc_fft_device |
---|
[3657] | 1117 | #ifndef __cuda_aware_mpi |
---|
[3634] | 1118 | !$ACC UPDATE HOST(work) |
---|
[3657] | 1119 | #else |
---|
| 1120 | !$ACC HOST_DATA USE_DEVICE(work, f_inv) |
---|
| 1121 | #endif |
---|
[3690] | 1122 | #endif |
---|
| 1123 | |
---|
[622] | 1124 | IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) |
---|
[1111] | 1125 | CALL MPI_ALLTOALL( work(nxl_z,1,nys_z,0), sendrecvcount_yz, MPI_REAL, & |
---|
| 1126 | f_inv(nxl_y,nzb_y,0), sendrecvcount_yz, MPI_REAL, & |
---|
[1] | 1127 | comm1dx, ierr ) |
---|
[3690] | 1128 | |
---|
| 1129 | #if __acc_fft_device |
---|
[3657] | 1130 | #ifndef __cuda_aware_mpi |
---|
[3634] | 1131 | !$ACC UPDATE DEVICE(f_inv) |
---|
[3657] | 1132 | #else |
---|
| 1133 | !$ACC END HOST_DATA |
---|
| 1134 | #endif |
---|
[3690] | 1135 | #endif |
---|
| 1136 | |
---|
[1] | 1137 | CALL cpu_log( log_point_s(32), 'mpi_alltoall', 'stop' ) |
---|
[1106] | 1138 | #endif |
---|
[1] | 1139 | |
---|
| 1140 | ELSE |
---|
| 1141 | ! |
---|
[1106] | 1142 | !-- Reorder the array in the same way like ALLTOALL did it |
---|
[683] | 1143 | !$OMP PARALLEL PRIVATE ( i, j, k ) |
---|
| 1144 | !$OMP DO |
---|
[3690] | 1145 | #if __acc_fft_device |
---|
[3634] | 1146 | !$ACC PARALLEL LOOP COLLAPSE(3) PRIVATE(i,j,k) & |
---|
| 1147 | !$ACC PRESENT(f_inv, f_in) |
---|
[3690] | 1148 | #endif |
---|
[1003] | 1149 | DO k = nzb_y, nzt_y |
---|
| 1150 | DO j = 0, ny |
---|
| 1151 | DO i = nxl_y, nxr_y |
---|
[164] | 1152 | f_inv(i,k,j) = f_in(i,j,k) |
---|
| 1153 | ENDDO |
---|
| 1154 | ENDDO |
---|
| 1155 | ENDDO |
---|
[683] | 1156 | !$OMP END PARALLEL |
---|
[1106] | 1157 | |
---|
| 1158 | ENDIF |
---|
| 1159 | |
---|
[1] | 1160 | END SUBROUTINE transpose_zy |
---|
| 1161 | |
---|
| 1162 | |
---|
| 1163 | !------------------------------------------------------------------------------! |
---|
| 1164 | ! Description: |
---|
| 1165 | ! ------------ |
---|
[1682] | 1166 | !> Transposition of input array (f_in) from z to y. For the input array, all |
---|
| 1167 | !> elements along z reside on the same PE, while after transposition, all |
---|
| 1168 | !> elements along y reside on the same PE. |
---|
| 1169 | !> This is a direct transposition for arrays with indices in regular order |
---|
| 1170 | !> (k,j,i) (cf. transpose_zy). |
---|
[1] | 1171 | !------------------------------------------------------------------------------! |
---|
[1682] | 1172 | SUBROUTINE transpose_zyd( f_in, f_out ) |
---|
[1] | 1173 | |
---|
[1682] | 1174 | |
---|
[1320] | 1175 | USE cpulog, & |
---|
[3241] | 1176 | ONLY: cpu_log, log_point_s |
---|
[1] | 1177 | |
---|
[1320] | 1178 | USE indices, & |
---|
| 1179 | ONLY: nnx, nny, nnz, nxl, nxr, nyn, nys, ny, nz |
---|
| 1180 | |
---|
| 1181 | USE kinds |
---|
| 1182 | |
---|
[1324] | 1183 | USE pegrid |
---|
[1320] | 1184 | |
---|
| 1185 | USE transpose_indices, & |
---|
[3241] | 1186 | ONLY: nxl_yd, nxr_yd, nzb_yd, nzt_yd |
---|
[1320] | 1187 | |
---|
[1] | 1188 | IMPLICIT NONE |
---|
| 1189 | |
---|
[4171] | 1190 | INTEGER(iwp) :: i !< |
---|
| 1191 | INTEGER(iwp) :: j !< |
---|
| 1192 | INTEGER(iwp) :: k !< |
---|
| 1193 | INTEGER(iwp) :: l !< |
---|
| 1194 | INTEGER(iwp) :: m !< |
---|
| 1195 | INTEGER(iwp) :: ys !< |
---|
[1] | 1196 | |
---|
[4171] | 1197 | REAL(wp) :: f_in(1:nz,nys:nyn,nxl:nxr) !< |
---|
| 1198 | REAL(wp) :: f_inv(nys:nyn,nxl:nxr,1:nz) !< |
---|
| 1199 | REAL(wp) :: f_out(0:ny,nxl_yd:nxr_yd,nzb_yd:nzt_yd) !< |
---|
| 1200 | REAL(wp) :: work(nnx*nny*nnz) !< |
---|
[1320] | 1201 | |
---|
[1] | 1202 | #if defined( __parallel ) |
---|
| 1203 | |
---|
| 1204 | ! |
---|
| 1205 | !-- Rearrange indices of input array in order to make data to be send |
---|
| 1206 | !-- by MPI contiguous |
---|
[1003] | 1207 | DO i = nxl, nxr |
---|
| 1208 | DO j = nys, nyn |
---|
| 1209 | DO k = 1, nz |
---|
[164] | 1210 | f_inv(j,i,k) = f_in(k,j,i) |
---|
[1] | 1211 | ENDDO |
---|
| 1212 | ENDDO |
---|
| 1213 | ENDDO |
---|
| 1214 | |
---|
| 1215 | ! |
---|
| 1216 | !-- Move data to different array, because memory location of work1 is |
---|
| 1217 | !-- needed further below (work1 = work2). |
---|
| 1218 | !-- If the PE grid is one-dimensional along x, only local reordering |
---|
| 1219 | !-- of the data is necessary and no transposition has to be done. |
---|
| 1220 | IF ( pdims(2) == 1 ) THEN |
---|
[1003] | 1221 | DO k = 1, nz |
---|
| 1222 | DO i = nxl, nxr |
---|
| 1223 | DO j = nys, nyn |
---|
[164] | 1224 | f_out(j,i,k) = f_inv(j,i,k) |
---|
[1] | 1225 | ENDDO |
---|
| 1226 | ENDDO |
---|
| 1227 | ENDDO |
---|
| 1228 | RETURN |
---|
| 1229 | ENDIF |
---|
| 1230 | |
---|
| 1231 | ! |
---|
| 1232 | !-- Transpose array |
---|
| 1233 | CALL cpu_log( log_point_s(32), 'mpi_alltoall', 'start' ) |
---|
[622] | 1234 | IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) |
---|
[1] | 1235 | CALL MPI_ALLTOALL( f_inv(nys,nxl,1), sendrecvcount_zyd, MPI_REAL, & |
---|
[164] | 1236 | work(1), sendrecvcount_zyd, MPI_REAL, & |
---|
[1] | 1237 | comm1dy, ierr ) |
---|
| 1238 | CALL cpu_log( log_point_s(32), 'mpi_alltoall', 'stop' ) |
---|
| 1239 | |
---|
| 1240 | ! |
---|
| 1241 | !-- Reorder transposed array |
---|
| 1242 | m = 0 |
---|
| 1243 | DO l = 0, pdims(2) - 1 |
---|
| 1244 | ys = 0 + l * nny |
---|
[1003] | 1245 | DO k = nzb_yd, nzt_yd |
---|
| 1246 | DO i = nxl_yd, nxr_yd |
---|
[1] | 1247 | DO j = ys, ys + nny - 1 |
---|
| 1248 | m = m + 1 |
---|
[164] | 1249 | f_out(j,i,k) = work(m) |
---|
[1] | 1250 | ENDDO |
---|
| 1251 | ENDDO |
---|
| 1252 | ENDDO |
---|
| 1253 | ENDDO |
---|
| 1254 | |
---|
| 1255 | #endif |
---|
| 1256 | |
---|
| 1257 | END SUBROUTINE transpose_zyd |
---|